1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/IntrinsicsAMDGPU.h" 18 #include "llvm/IR/IntrinsicsX86.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 namespace { 28 29 struct AMDGPUImageDMaskIntrinsic { 30 unsigned Intr; 31 }; 32 33 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 34 #include "InstCombineTables.inc" 35 36 } // end anonymous namespace 37 38 /// Check to see if the specified operand of the specified instruction is a 39 /// constant integer. If so, check to see if there are any bits set in the 40 /// constant that are not demanded. If so, shrink the constant and return true. 41 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 42 const APInt &Demanded) { 43 assert(I && "No instruction?"); 44 assert(OpNo < I->getNumOperands() && "Operand index too large"); 45 46 // The operand must be a constant integer or splat integer. 47 Value *Op = I->getOperand(OpNo); 48 const APInt *C; 49 if (!match(Op, m_APInt(C))) 50 return false; 51 52 // If there are no bits set that aren't demanded, nothing to do. 53 if (C->isSubsetOf(Demanded)) 54 return false; 55 56 // This instruction is producing bits that are not demanded. Shrink the RHS. 57 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 58 59 return true; 60 } 61 62 63 64 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 65 /// the instruction has any properties that allow us to simplify its operands. 66 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 67 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 68 KnownBits Known(BitWidth); 69 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 70 71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 72 0, &Inst); 73 if (!V) return false; 74 if (V == &Inst) return true; 75 replaceInstUsesWith(Inst, V); 76 return true; 77 } 78 79 /// This form of SimplifyDemandedBits simplifies the specified instruction 80 /// operand if possible, updating it in place. It returns true if it made any 81 /// change and false otherwise. 82 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 83 const APInt &DemandedMask, 84 KnownBits &Known, 85 unsigned Depth) { 86 Use &U = I->getOperandUse(OpNo); 87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 88 Depth, I); 89 if (!NewVal) return false; 90 // Add the old operand back to the worklist. 91 Worklist.addValue(U.get()); 92 U = NewVal; 93 return true; 94 } 95 96 97 /// This function attempts to replace V with a simpler value based on the 98 /// demanded bits. When this function is called, it is known that only the bits 99 /// set in DemandedMask of the result of V are ever used downstream. 100 /// Consequently, depending on the mask and V, it may be possible to replace V 101 /// with a constant or one of its operands. In such cases, this function does 102 /// the replacement and returns true. In all other cases, it returns false after 103 /// analyzing the expression and setting KnownOne and known to be one in the 104 /// expression. Known.Zero contains all the bits that are known to be zero in 105 /// the expression. These are provided to potentially allow the caller (which 106 /// might recursively be SimplifyDemandedBits itself) to simplify the 107 /// expression. 108 /// Known.One and Known.Zero always follow the invariant that: 109 /// Known.One & Known.Zero == 0. 110 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 111 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 112 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 113 /// be the same. 114 /// 115 /// This returns null if it did not change anything and it permits no 116 /// simplification. This returns V itself if it did some simplification of V's 117 /// operands based on the information about what bits are demanded. This returns 118 /// some other non-null value if it found out that V is equal to another value 119 /// in the context where the specified bits are demanded, but not for all users. 120 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 121 KnownBits &Known, unsigned Depth, 122 Instruction *CxtI) { 123 assert(V != nullptr && "Null pointer of Value???"); 124 assert(Depth <= 6 && "Limit Search Depth"); 125 uint32_t BitWidth = DemandedMask.getBitWidth(); 126 Type *VTy = V->getType(); 127 assert( 128 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 129 Known.getBitWidth() == BitWidth && 130 "Value *V, DemandedMask and Known must have same BitWidth"); 131 132 if (isa<Constant>(V)) { 133 computeKnownBits(V, Known, Depth, CxtI); 134 return nullptr; 135 } 136 137 Known.resetAll(); 138 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 139 return UndefValue::get(VTy); 140 141 if (Depth == 6) // Limit search depth. 142 return nullptr; 143 144 Instruction *I = dyn_cast<Instruction>(V); 145 if (!I) { 146 computeKnownBits(V, Known, Depth, CxtI); 147 return nullptr; // Only analyze instructions. 148 } 149 150 // If there are multiple uses of this value and we aren't at the root, then 151 // we can't do any simplifications of the operands, because DemandedMask 152 // only reflects the bits demanded by *one* of the users. 153 if (Depth != 0 && !I->hasOneUse()) 154 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 155 156 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 157 158 // If this is the root being simplified, allow it to have multiple uses, 159 // just set the DemandedMask to all bits so that we can try to simplify the 160 // operands. This allows visitTruncInst (for example) to simplify the 161 // operand of a trunc without duplicating all the logic below. 162 if (Depth == 0 && !V->hasOneUse()) 163 DemandedMask.setAllBits(); 164 165 switch (I->getOpcode()) { 166 default: 167 computeKnownBits(I, Known, Depth, CxtI); 168 break; 169 case Instruction::And: { 170 // If either the LHS or the RHS are Zero, the result is zero. 171 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 172 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 173 Depth + 1)) 174 return I; 175 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 176 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 177 178 // Output known-0 are known to be clear if zero in either the LHS | RHS. 179 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 180 // Output known-1 bits are only known if set in both the LHS & RHS. 181 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 182 183 // If the client is only demanding bits that we know, return the known 184 // constant. 185 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 186 return Constant::getIntegerValue(VTy, IKnownOne); 187 188 // If all of the demanded bits are known 1 on one side, return the other. 189 // These bits cannot contribute to the result of the 'and'. 190 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 191 return I->getOperand(0); 192 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 193 return I->getOperand(1); 194 195 // If the RHS is a constant, see if we can simplify it. 196 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 197 return I; 198 199 Known.Zero = std::move(IKnownZero); 200 Known.One = std::move(IKnownOne); 201 break; 202 } 203 case Instruction::Or: { 204 // If either the LHS or the RHS are One, the result is One. 205 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 206 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 207 Depth + 1)) 208 return I; 209 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 210 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 211 212 // Output known-0 bits are only known if clear in both the LHS & RHS. 213 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 214 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 215 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 216 217 // If the client is only demanding bits that we know, return the known 218 // constant. 219 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 220 return Constant::getIntegerValue(VTy, IKnownOne); 221 222 // If all of the demanded bits are known zero on one side, return the other. 223 // These bits cannot contribute to the result of the 'or'. 224 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 225 return I->getOperand(0); 226 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 227 return I->getOperand(1); 228 229 // If the RHS is a constant, see if we can simplify it. 230 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 231 return I; 232 233 Known.Zero = std::move(IKnownZero); 234 Known.One = std::move(IKnownOne); 235 break; 236 } 237 case Instruction::Xor: { 238 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 239 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 240 return I; 241 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 242 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 243 244 // Output known-0 bits are known if clear or set in both the LHS & RHS. 245 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 246 (RHSKnown.One & LHSKnown.One); 247 // Output known-1 are known to be set if set in only one of the LHS, RHS. 248 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 249 (RHSKnown.One & LHSKnown.Zero); 250 251 // If the client is only demanding bits that we know, return the known 252 // constant. 253 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 254 return Constant::getIntegerValue(VTy, IKnownOne); 255 256 // If all of the demanded bits are known zero on one side, return the other. 257 // These bits cannot contribute to the result of the 'xor'. 258 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 259 return I->getOperand(0); 260 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 261 return I->getOperand(1); 262 263 // If all of the demanded bits are known to be zero on one side or the 264 // other, turn this into an *inclusive* or. 265 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 266 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 267 Instruction *Or = 268 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 269 I->getName()); 270 return InsertNewInstWith(Or, *I); 271 } 272 273 // If all of the demanded bits on one side are known, and all of the set 274 // bits on that side are also known to be set on the other side, turn this 275 // into an AND, as we know the bits will be cleared. 276 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 277 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 278 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 279 Constant *AndC = Constant::getIntegerValue(VTy, 280 ~RHSKnown.One & DemandedMask); 281 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 282 return InsertNewInstWith(And, *I); 283 } 284 285 // If the RHS is a constant, see if we can simplify it. 286 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 287 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 288 return I; 289 290 // If our LHS is an 'and' and if it has one use, and if any of the bits we 291 // are flipping are known to be set, then the xor is just resetting those 292 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 293 // simplifying both of them. 294 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 295 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 296 isa<ConstantInt>(I->getOperand(1)) && 297 isa<ConstantInt>(LHSInst->getOperand(1)) && 298 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 299 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 300 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 301 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 302 303 Constant *AndC = 304 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 305 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 306 InsertNewInstWith(NewAnd, *I); 307 308 Constant *XorC = 309 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 310 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 311 return InsertNewInstWith(NewXor, *I); 312 } 313 314 // Output known-0 bits are known if clear or set in both the LHS & RHS. 315 Known.Zero = std::move(IKnownZero); 316 // Output known-1 are known to be set if set in only one of the LHS, RHS. 317 Known.One = std::move(IKnownOne); 318 break; 319 } 320 case Instruction::Select: { 321 Value *LHS, *RHS; 322 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 323 if (SPF == SPF_UMAX) { 324 // UMax(A, C) == A if ... 325 // The lowest non-zero bit of DemandMask is higher than the highest 326 // non-zero bit of C. 327 const APInt *C; 328 unsigned CTZ = DemandedMask.countTrailingZeros(); 329 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 330 return LHS; 331 } else if (SPF == SPF_UMIN) { 332 // UMin(A, C) == A if ... 333 // The lowest non-zero bit of DemandMask is higher than the highest 334 // non-one bit of C. 335 // This comes from using DeMorgans on the above umax example. 336 const APInt *C; 337 unsigned CTZ = DemandedMask.countTrailingZeros(); 338 if (match(RHS, m_APInt(C)) && 339 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 340 return LHS; 341 } 342 343 // If this is a select as part of any other min/max pattern, don't simplify 344 // any further in case we break the structure. 345 if (SPF != SPF_UNKNOWN) 346 return nullptr; 347 348 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 349 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 350 return I; 351 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 352 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 353 354 // If the operands are constants, see if we can simplify them. 355 // This is similar to ShrinkDemandedConstant, but for a select we want to 356 // try to keep the selected constants the same as icmp value constants, if 357 // we can. This helps not break apart (or helps put back together) 358 // canonical patterns like min and max. 359 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 360 APInt DemandedMask) { 361 const APInt *SelC; 362 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 363 return false; 364 365 // Get the constant out of the ICmp, if there is one. 366 const APInt *CmpC; 367 ICmpInst::Predicate Pred; 368 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) || 369 CmpC->getBitWidth() != SelC->getBitWidth()) 370 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 371 372 // If the constant is already the same as the ICmp, leave it as-is. 373 if (*CmpC == *SelC) 374 return false; 375 // If the constants are not already the same, but can be with the demand 376 // mask, use the constant value from the ICmp. 377 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 378 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 379 return true; 380 } 381 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 382 }; 383 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 384 CanonicalizeSelectConstant(I, 2, DemandedMask)) 385 return I; 386 387 // Only known if known in both the LHS and RHS. 388 Known.One = RHSKnown.One & LHSKnown.One; 389 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 390 break; 391 } 392 case Instruction::ZExt: 393 case Instruction::Trunc: { 394 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 395 396 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 397 KnownBits InputKnown(SrcBitWidth); 398 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 399 return I; 400 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 401 Known = InputKnown.zextOrTrunc(BitWidth); 402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 403 break; 404 } 405 case Instruction::BitCast: 406 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 407 return nullptr; // vector->int or fp->int? 408 409 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 410 if (VectorType *SrcVTy = 411 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 412 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 413 // Don't touch a bitcast between vectors of different element counts. 414 return nullptr; 415 } else 416 // Don't touch a scalar-to-vector bitcast. 417 return nullptr; 418 } else if (I->getOperand(0)->getType()->isVectorTy()) 419 // Don't touch a vector-to-scalar bitcast. 420 return nullptr; 421 422 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 423 return I; 424 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 425 break; 426 case Instruction::SExt: { 427 // Compute the bits in the result that are not present in the input. 428 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 429 430 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 431 432 // If any of the sign extended bits are demanded, we know that the sign 433 // bit is demanded. 434 if (DemandedMask.getActiveBits() > SrcBitWidth) 435 InputDemandedBits.setBit(SrcBitWidth-1); 436 437 KnownBits InputKnown(SrcBitWidth); 438 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 439 return I; 440 441 // If the input sign bit is known zero, or if the NewBits are not demanded 442 // convert this into a zero extension. 443 if (InputKnown.isNonNegative() || 444 DemandedMask.getActiveBits() <= SrcBitWidth) { 445 // Convert to ZExt cast. 446 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 447 return InsertNewInstWith(NewCast, *I); 448 } 449 450 // If the sign bit of the input is known set or clear, then we know the 451 // top bits of the result. 452 Known = InputKnown.sext(BitWidth); 453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 454 break; 455 } 456 case Instruction::Add: 457 case Instruction::Sub: { 458 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 459 /// about the high bits of the operands. 460 unsigned NLZ = DemandedMask.countLeadingZeros(); 461 // Right fill the mask of bits for this ADD/SUB to demand the most 462 // significant bit and all those below it. 463 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 464 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 465 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 466 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 467 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 468 if (NLZ > 0) { 469 // Disable the nsw and nuw flags here: We can no longer guarantee that 470 // we won't wrap after simplification. Removing the nsw/nuw flags is 471 // legal here because the top bit is not demanded. 472 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 473 BinOP.setHasNoSignedWrap(false); 474 BinOP.setHasNoUnsignedWrap(false); 475 } 476 return I; 477 } 478 479 // If we are known to be adding/subtracting zeros to every bit below 480 // the highest demanded bit, we just return the other side. 481 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 482 return I->getOperand(0); 483 // We can't do this with the LHS for subtraction, unless we are only 484 // demanding the LSB. 485 if ((I->getOpcode() == Instruction::Add || 486 DemandedFromOps.isOneValue()) && 487 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 488 return I->getOperand(1); 489 490 // Otherwise just compute the known bits of the result. 491 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 492 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 493 NSW, LHSKnown, RHSKnown); 494 break; 495 } 496 case Instruction::Shl: { 497 const APInt *SA; 498 if (match(I->getOperand(1), m_APInt(SA))) { 499 const APInt *ShrAmt; 500 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 501 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 502 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 503 DemandedMask, Known)) 504 return R; 505 506 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 507 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 508 509 // If the shift is NUW/NSW, then it does demand the high bits. 510 ShlOperator *IOp = cast<ShlOperator>(I); 511 if (IOp->hasNoSignedWrap()) 512 DemandedMaskIn.setHighBits(ShiftAmt+1); 513 else if (IOp->hasNoUnsignedWrap()) 514 DemandedMaskIn.setHighBits(ShiftAmt); 515 516 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 517 return I; 518 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 519 Known.Zero <<= ShiftAmt; 520 Known.One <<= ShiftAmt; 521 // low bits known zero. 522 if (ShiftAmt) 523 Known.Zero.setLowBits(ShiftAmt); 524 } else { 525 computeKnownBits(I, Known, Depth, CxtI); 526 } 527 break; 528 } 529 case Instruction::LShr: { 530 const APInt *SA; 531 if (match(I->getOperand(1), m_APInt(SA))) { 532 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 533 534 // Unsigned shift right. 535 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 536 537 // If the shift is exact, then it does demand the low bits (and knows that 538 // they are zero). 539 if (cast<LShrOperator>(I)->isExact()) 540 DemandedMaskIn.setLowBits(ShiftAmt); 541 542 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 543 return I; 544 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 545 Known.Zero.lshrInPlace(ShiftAmt); 546 Known.One.lshrInPlace(ShiftAmt); 547 if (ShiftAmt) 548 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 549 } else { 550 computeKnownBits(I, Known, Depth, CxtI); 551 } 552 break; 553 } 554 case Instruction::AShr: { 555 // If this is an arithmetic shift right and only the low-bit is set, we can 556 // always convert this into a logical shr, even if the shift amount is 557 // variable. The low bit of the shift cannot be an input sign bit unless 558 // the shift amount is >= the size of the datatype, which is undefined. 559 if (DemandedMask.isOneValue()) { 560 // Perform the logical shift right. 561 Instruction *NewVal = BinaryOperator::CreateLShr( 562 I->getOperand(0), I->getOperand(1), I->getName()); 563 return InsertNewInstWith(NewVal, *I); 564 } 565 566 // If the sign bit is the only bit demanded by this ashr, then there is no 567 // need to do it, the shift doesn't change the high bit. 568 if (DemandedMask.isSignMask()) 569 return I->getOperand(0); 570 571 const APInt *SA; 572 if (match(I->getOperand(1), m_APInt(SA))) { 573 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 574 575 // Signed shift right. 576 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 577 // If any of the high bits are demanded, we should set the sign bit as 578 // demanded. 579 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 580 DemandedMaskIn.setSignBit(); 581 582 // If the shift is exact, then it does demand the low bits (and knows that 583 // they are zero). 584 if (cast<AShrOperator>(I)->isExact()) 585 DemandedMaskIn.setLowBits(ShiftAmt); 586 587 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 588 return I; 589 590 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 591 592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 593 // Compute the new bits that are at the top now plus sign bits. 594 APInt HighBits(APInt::getHighBitsSet( 595 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 596 Known.Zero.lshrInPlace(ShiftAmt); 597 Known.One.lshrInPlace(ShiftAmt); 598 599 // If the input sign bit is known to be zero, or if none of the top bits 600 // are demanded, turn this into an unsigned shift right. 601 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 602 if (Known.Zero[BitWidth-ShiftAmt-1] || 603 !DemandedMask.intersects(HighBits)) { 604 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 605 I->getOperand(1)); 606 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 607 return InsertNewInstWith(LShr, *I); 608 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 609 Known.One |= HighBits; 610 } 611 } else { 612 computeKnownBits(I, Known, Depth, CxtI); 613 } 614 break; 615 } 616 case Instruction::UDiv: { 617 // UDiv doesn't demand low bits that are zero in the divisor. 618 const APInt *SA; 619 if (match(I->getOperand(1), m_APInt(SA))) { 620 // If the shift is exact, then it does demand the low bits. 621 if (cast<UDivOperator>(I)->isExact()) 622 break; 623 624 // FIXME: Take the demanded mask of the result into account. 625 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 626 APInt DemandedMaskIn = 627 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 628 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 629 return I; 630 631 // Propagate zero bits from the input. 632 Known.Zero.setHighBits(std::min( 633 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 634 } else { 635 computeKnownBits(I, Known, Depth, CxtI); 636 } 637 break; 638 } 639 case Instruction::SRem: 640 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 641 // X % -1 demands all the bits because we don't want to introduce 642 // INT_MIN % -1 (== undef) by accident. 643 if (Rem->isMinusOne()) 644 break; 645 APInt RA = Rem->getValue().abs(); 646 if (RA.isPowerOf2()) { 647 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 648 return I->getOperand(0); 649 650 APInt LowBits = RA - 1; 651 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 652 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 653 return I; 654 655 // The low bits of LHS are unchanged by the srem. 656 Known.Zero = LHSKnown.Zero & LowBits; 657 Known.One = LHSKnown.One & LowBits; 658 659 // If LHS is non-negative or has all low bits zero, then the upper bits 660 // are all zero. 661 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 662 Known.Zero |= ~LowBits; 663 664 // If LHS is negative and not all low bits are zero, then the upper bits 665 // are all one. 666 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 667 Known.One |= ~LowBits; 668 669 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 670 break; 671 } 672 } 673 674 // The sign bit is the LHS's sign bit, except when the result of the 675 // remainder is zero. 676 if (DemandedMask.isSignBitSet()) { 677 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 678 // If it's known zero, our sign bit is also zero. 679 if (LHSKnown.isNonNegative()) 680 Known.makeNonNegative(); 681 } 682 break; 683 case Instruction::URem: { 684 KnownBits Known2(BitWidth); 685 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 686 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 687 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 688 return I; 689 690 unsigned Leaders = Known2.countMinLeadingZeros(); 691 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 692 break; 693 } 694 case Instruction::Call: { 695 bool KnownBitsComputed = false; 696 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 697 switch (II->getIntrinsicID()) { 698 default: break; 699 case Intrinsic::bswap: { 700 // If the only bits demanded come from one byte of the bswap result, 701 // just shift the input byte into position to eliminate the bswap. 702 unsigned NLZ = DemandedMask.countLeadingZeros(); 703 unsigned NTZ = DemandedMask.countTrailingZeros(); 704 705 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 706 // we need all the bits down to bit 8. Likewise, round NLZ. If we 707 // have 14 leading zeros, round to 8. 708 NLZ &= ~7; 709 NTZ &= ~7; 710 // If we need exactly one byte, we can do this transformation. 711 if (BitWidth-NLZ-NTZ == 8) { 712 unsigned ResultBit = NTZ; 713 unsigned InputBit = BitWidth-NTZ-8; 714 715 // Replace this with either a left or right shift to get the byte into 716 // the right place. 717 Instruction *NewVal; 718 if (InputBit > ResultBit) 719 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 720 ConstantInt::get(I->getType(), InputBit-ResultBit)); 721 else 722 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 723 ConstantInt::get(I->getType(), ResultBit-InputBit)); 724 NewVal->takeName(I); 725 return InsertNewInstWith(NewVal, *I); 726 } 727 break; 728 } 729 case Intrinsic::fshr: 730 case Intrinsic::fshl: { 731 const APInt *SA; 732 if (!match(I->getOperand(2), m_APInt(SA))) 733 break; 734 735 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 736 // defined, so no need to special-case zero shifts here. 737 uint64_t ShiftAmt = SA->urem(BitWidth); 738 if (II->getIntrinsicID() == Intrinsic::fshr) 739 ShiftAmt = BitWidth - ShiftAmt; 740 741 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 742 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 743 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 744 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 745 return I; 746 747 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 748 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 749 Known.One = LHSKnown.One.shl(ShiftAmt) | 750 RHSKnown.One.lshr(BitWidth - ShiftAmt); 751 KnownBitsComputed = true; 752 break; 753 } 754 case Intrinsic::x86_mmx_pmovmskb: 755 case Intrinsic::x86_sse_movmsk_ps: 756 case Intrinsic::x86_sse2_movmsk_pd: 757 case Intrinsic::x86_sse2_pmovmskb_128: 758 case Intrinsic::x86_avx_movmsk_ps_256: 759 case Intrinsic::x86_avx_movmsk_pd_256: 760 case Intrinsic::x86_avx2_pmovmskb: { 761 // MOVMSK copies the vector elements' sign bits to the low bits 762 // and zeros the high bits. 763 unsigned ArgWidth; 764 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 765 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 766 } else { 767 auto Arg = II->getArgOperand(0); 768 auto ArgType = cast<VectorType>(Arg->getType()); 769 ArgWidth = ArgType->getNumElements(); 770 } 771 772 // If we don't need any of low bits then return zero, 773 // we know that DemandedMask is non-zero already. 774 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 775 if (DemandedElts.isNullValue()) 776 return ConstantInt::getNullValue(VTy); 777 778 // We know that the upper bits are set to zero. 779 Known.Zero.setBitsFrom(ArgWidth); 780 KnownBitsComputed = true; 781 break; 782 } 783 case Intrinsic::x86_sse42_crc32_64_64: 784 Known.Zero.setBitsFrom(32); 785 KnownBitsComputed = true; 786 break; 787 } 788 } 789 790 if (!KnownBitsComputed) 791 computeKnownBits(V, Known, Depth, CxtI); 792 break; 793 } 794 } 795 796 // If the client is only demanding bits that we know, return the known 797 // constant. 798 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 799 return Constant::getIntegerValue(VTy, Known.One); 800 return nullptr; 801 } 802 803 /// Helper routine of SimplifyDemandedUseBits. It computes Known 804 /// bits. It also tries to handle simplifications that can be done based on 805 /// DemandedMask, but without modifying the Instruction. 806 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 807 const APInt &DemandedMask, 808 KnownBits &Known, 809 unsigned Depth, 810 Instruction *CxtI) { 811 unsigned BitWidth = DemandedMask.getBitWidth(); 812 Type *ITy = I->getType(); 813 814 KnownBits LHSKnown(BitWidth); 815 KnownBits RHSKnown(BitWidth); 816 817 // Despite the fact that we can't simplify this instruction in all User's 818 // context, we can at least compute the known bits, and we can 819 // do simplifications that apply to *just* the one user if we know that 820 // this instruction has a simpler value in that context. 821 switch (I->getOpcode()) { 822 case Instruction::And: { 823 // If either the LHS or the RHS are Zero, the result is zero. 824 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 825 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 826 CxtI); 827 828 // Output known-0 are known to be clear if zero in either the LHS | RHS. 829 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 830 // Output known-1 bits are only known if set in both the LHS & RHS. 831 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 832 833 // If the client is only demanding bits that we know, return the known 834 // constant. 835 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 836 return Constant::getIntegerValue(ITy, IKnownOne); 837 838 // If all of the demanded bits are known 1 on one side, return the other. 839 // These bits cannot contribute to the result of the 'and' in this 840 // context. 841 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 842 return I->getOperand(0); 843 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 844 return I->getOperand(1); 845 846 Known.Zero = std::move(IKnownZero); 847 Known.One = std::move(IKnownOne); 848 break; 849 } 850 case Instruction::Or: { 851 // We can simplify (X|Y) -> X or Y in the user's context if we know that 852 // only bits from X or Y are demanded. 853 854 // If either the LHS or the RHS are One, the result is One. 855 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 856 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 857 CxtI); 858 859 // Output known-0 bits are only known if clear in both the LHS & RHS. 860 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 861 // Output known-1 are known to be set if set in either the LHS | RHS. 862 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 863 864 // If the client is only demanding bits that we know, return the known 865 // constant. 866 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 867 return Constant::getIntegerValue(ITy, IKnownOne); 868 869 // If all of the demanded bits are known zero on one side, return the 870 // other. These bits cannot contribute to the result of the 'or' in this 871 // context. 872 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 873 return I->getOperand(0); 874 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 875 return I->getOperand(1); 876 877 Known.Zero = std::move(IKnownZero); 878 Known.One = std::move(IKnownOne); 879 break; 880 } 881 case Instruction::Xor: { 882 // We can simplify (X^Y) -> X or Y in the user's context if we know that 883 // only bits from X or Y are demanded. 884 885 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 886 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 887 CxtI); 888 889 // Output known-0 bits are known if clear or set in both the LHS & RHS. 890 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 891 (RHSKnown.One & LHSKnown.One); 892 // Output known-1 are known to be set if set in only one of the LHS, RHS. 893 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 894 (RHSKnown.One & LHSKnown.Zero); 895 896 // If the client is only demanding bits that we know, return the known 897 // constant. 898 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 899 return Constant::getIntegerValue(ITy, IKnownOne); 900 901 // If all of the demanded bits are known zero on one side, return the 902 // other. 903 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 904 return I->getOperand(0); 905 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 906 return I->getOperand(1); 907 908 // Output known-0 bits are known if clear or set in both the LHS & RHS. 909 Known.Zero = std::move(IKnownZero); 910 // Output known-1 are known to be set if set in only one of the LHS, RHS. 911 Known.One = std::move(IKnownOne); 912 break; 913 } 914 default: 915 // Compute the Known bits to simplify things downstream. 916 computeKnownBits(I, Known, Depth, CxtI); 917 918 // If this user is only demanding bits that we know, return the known 919 // constant. 920 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 921 return Constant::getIntegerValue(ITy, Known.One); 922 923 break; 924 } 925 926 return nullptr; 927 } 928 929 930 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 931 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 932 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 933 /// of "C2-C1". 934 /// 935 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 936 /// ..., bn}, without considering the specific value X is holding. 937 /// This transformation is legal iff one of following conditions is hold: 938 /// 1) All the bit in S are 0, in this case E1 == E2. 939 /// 2) We don't care those bits in S, per the input DemandedMask. 940 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 941 /// rest bits. 942 /// 943 /// Currently we only test condition 2). 944 /// 945 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 946 /// not successful. 947 Value * 948 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 949 Instruction *Shl, const APInt &ShlOp1, 950 const APInt &DemandedMask, 951 KnownBits &Known) { 952 if (!ShlOp1 || !ShrOp1) 953 return nullptr; // No-op. 954 955 Value *VarX = Shr->getOperand(0); 956 Type *Ty = VarX->getType(); 957 unsigned BitWidth = Ty->getScalarSizeInBits(); 958 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 959 return nullptr; // Undef. 960 961 unsigned ShlAmt = ShlOp1.getZExtValue(); 962 unsigned ShrAmt = ShrOp1.getZExtValue(); 963 964 Known.One.clearAllBits(); 965 Known.Zero.setLowBits(ShlAmt - 1); 966 Known.Zero &= DemandedMask; 967 968 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 969 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 970 971 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 972 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 973 (BitMask1.ashr(ShrAmt) << ShlAmt); 974 975 if (ShrAmt <= ShlAmt) { 976 BitMask2 <<= (ShlAmt - ShrAmt); 977 } else { 978 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 979 BitMask2.ashr(ShrAmt - ShlAmt); 980 } 981 982 // Check if condition-2 (see the comment to this function) is satified. 983 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 984 if (ShrAmt == ShlAmt) 985 return VarX; 986 987 if (!Shr->hasOneUse()) 988 return nullptr; 989 990 BinaryOperator *New; 991 if (ShrAmt < ShlAmt) { 992 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 993 New = BinaryOperator::CreateShl(VarX, Amt); 994 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 995 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 996 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 997 } else { 998 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 999 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1000 BinaryOperator::CreateAShr(VarX, Amt); 1001 if (cast<BinaryOperator>(Shr)->isExact()) 1002 New->setIsExact(true); 1003 } 1004 1005 return InsertNewInstWith(New, *Shl); 1006 } 1007 1008 return nullptr; 1009 } 1010 1011 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1012 /// 1013 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1014 /// struct returns. 1015 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 1016 APInt DemandedElts, 1017 int DMaskIdx) { 1018 1019 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported. 1020 if (DMaskIdx < 0 && 1021 II->getType()->getScalarSizeInBits() != 32 && 1022 DemandedElts.getActiveBits() == 3) 1023 return nullptr; 1024 1025 unsigned VWidth = II->getType()->getVectorNumElements(); 1026 if (VWidth == 1) 1027 return nullptr; 1028 1029 IRBuilderBase::InsertPointGuard Guard(Builder); 1030 Builder.SetInsertPoint(II); 1031 1032 // Assume the arguments are unchanged and later override them, if needed. 1033 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 1034 1035 if (DMaskIdx < 0) { 1036 // Buffer case. 1037 1038 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1039 const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros(); 1040 1041 // Start assuming the prefix of elements is demanded, but possibly clear 1042 // some other bits if there are trailing zeros (unused components at front) 1043 // and update offset. 1044 DemandedElts = (1 << ActiveBits) - 1; 1045 1046 if (UnusedComponentsAtFront > 0) { 1047 static const unsigned InvalidOffsetIdx = 0xf; 1048 1049 unsigned OffsetIdx; 1050 switch (II->getIntrinsicID()) { 1051 case Intrinsic::amdgcn_raw_buffer_load: 1052 OffsetIdx = 1; 1053 break; 1054 case Intrinsic::amdgcn_s_buffer_load: 1055 // If resulting type is vec3, there is no point in trimming the 1056 // load with updated offset, as the vec3 would most likely be widened to 1057 // vec4 anyway during lowering. 1058 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1059 OffsetIdx = InvalidOffsetIdx; 1060 else 1061 OffsetIdx = 1; 1062 break; 1063 case Intrinsic::amdgcn_struct_buffer_load: 1064 OffsetIdx = 2; 1065 break; 1066 default: 1067 // TODO: handle tbuffer* intrinsics. 1068 OffsetIdx = InvalidOffsetIdx; 1069 break; 1070 } 1071 1072 if (OffsetIdx != InvalidOffsetIdx) { 1073 // Clear demanded bits and update the offset. 1074 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1075 auto *Offset = II->getArgOperand(OffsetIdx); 1076 unsigned SingleComponentSizeInBits = 1077 getDataLayout().getTypeSizeInBits(II->getType()->getScalarType()); 1078 unsigned OffsetAdd = 1079 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1080 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1081 Args[OffsetIdx] = Builder.CreateAdd(Offset, OffsetAddVal); 1082 } 1083 } 1084 } else { 1085 // Image case. 1086 1087 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 1088 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1089 1090 // Mask off values that are undefined because the dmask doesn't cover them 1091 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 1092 1093 unsigned NewDMaskVal = 0; 1094 unsigned OrigLoadIdx = 0; 1095 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1096 const unsigned Bit = 1 << SrcIdx; 1097 if (!!(DMaskVal & Bit)) { 1098 if (!!DemandedElts[OrigLoadIdx]) 1099 NewDMaskVal |= Bit; 1100 OrigLoadIdx++; 1101 } 1102 } 1103 1104 if (DMaskVal != NewDMaskVal) 1105 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1106 } 1107 1108 unsigned NewNumElts = DemandedElts.countPopulation(); 1109 if (!NewNumElts) 1110 return UndefValue::get(II->getType()); 1111 1112 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1113 if (DMaskIdx >= 0) 1114 II->setArgOperand(DMaskIdx, Args[DMaskIdx]); 1115 return nullptr; 1116 } 1117 1118 // Determine the overload types of the original intrinsic. 1119 auto IID = II->getIntrinsicID(); 1120 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1121 getIntrinsicInfoTableEntries(IID, Table); 1122 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1123 1124 // Validate function argument and return types, extracting overloaded types 1125 // along the way. 1126 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1127 SmallVector<Type *, 6> OverloadTys; 1128 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys); 1129 1130 Module *M = II->getParent()->getParent()->getParent(); 1131 Type *EltTy = II->getType()->getVectorElementType(); 1132 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1133 1134 OverloadTys[0] = NewTy; 1135 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1136 1137 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1138 NewCall->takeName(II); 1139 NewCall->copyMetadata(*II); 1140 1141 if (NewNumElts == 1) { 1142 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1143 DemandedElts.countTrailingZeros()); 1144 } 1145 1146 SmallVector<uint32_t, 8> EltMask; 1147 unsigned NewLoadIdx = 0; 1148 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1149 if (!!DemandedElts[OrigLoadIdx]) 1150 EltMask.push_back(NewLoadIdx++); 1151 else 1152 EltMask.push_back(NewNumElts); 1153 } 1154 1155 Value *Shuffle = 1156 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1157 1158 return Shuffle; 1159 } 1160 1161 /// The specified value produces a vector with any number of elements. 1162 /// This method analyzes which elements of the operand are undef and returns 1163 /// that information in UndefElts. 1164 /// 1165 /// DemandedElts contains the set of elements that are actually used by the 1166 /// caller, and by default (AllowMultipleUsers equals false) the value is 1167 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1168 /// to true, DemandedElts refers to the union of sets of elements that are 1169 /// used by all callers. 1170 /// 1171 /// If the information about demanded elements can be used to simplify the 1172 /// operation, the operation is simplified, then the resultant value is 1173 /// returned. This returns null if no change was made. 1174 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1175 APInt &UndefElts, 1176 unsigned Depth, 1177 bool AllowMultipleUsers) { 1178 unsigned VWidth = V->getType()->getVectorNumElements(); 1179 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1180 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1181 1182 if (isa<UndefValue>(V)) { 1183 // If the entire vector is undefined, just return this info. 1184 UndefElts = EltMask; 1185 return nullptr; 1186 } 1187 1188 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1189 UndefElts = EltMask; 1190 return UndefValue::get(V->getType()); 1191 } 1192 1193 UndefElts = 0; 1194 1195 if (auto *C = dyn_cast<Constant>(V)) { 1196 // Check if this is identity. If so, return 0 since we are not simplifying 1197 // anything. 1198 if (DemandedElts.isAllOnesValue()) 1199 return nullptr; 1200 1201 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1202 Constant *Undef = UndefValue::get(EltTy); 1203 SmallVector<Constant*, 16> Elts; 1204 for (unsigned i = 0; i != VWidth; ++i) { 1205 if (!DemandedElts[i]) { // If not demanded, set to undef. 1206 Elts.push_back(Undef); 1207 UndefElts.setBit(i); 1208 continue; 1209 } 1210 1211 Constant *Elt = C->getAggregateElement(i); 1212 if (!Elt) return nullptr; 1213 1214 if (isa<UndefValue>(Elt)) { // Already undef. 1215 Elts.push_back(Undef); 1216 UndefElts.setBit(i); 1217 } else { // Otherwise, defined. 1218 Elts.push_back(Elt); 1219 } 1220 } 1221 1222 // If we changed the constant, return it. 1223 Constant *NewCV = ConstantVector::get(Elts); 1224 return NewCV != C ? NewCV : nullptr; 1225 } 1226 1227 // Limit search depth. 1228 if (Depth == 10) 1229 return nullptr; 1230 1231 if (!AllowMultipleUsers) { 1232 // If multiple users are using the root value, proceed with 1233 // simplification conservatively assuming that all elements 1234 // are needed. 1235 if (!V->hasOneUse()) { 1236 // Quit if we find multiple users of a non-root value though. 1237 // They'll be handled when it's their turn to be visited by 1238 // the main instcombine process. 1239 if (Depth != 0) 1240 // TODO: Just compute the UndefElts information recursively. 1241 return nullptr; 1242 1243 // Conservatively assume that all elements are needed. 1244 DemandedElts = EltMask; 1245 } 1246 } 1247 1248 Instruction *I = dyn_cast<Instruction>(V); 1249 if (!I) return nullptr; // Only analyze instructions. 1250 1251 bool MadeChange = false; 1252 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1253 APInt Demanded, APInt &Undef) { 1254 auto *II = dyn_cast<IntrinsicInst>(Inst); 1255 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1256 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1257 if (II) 1258 II->setArgOperand(OpNum, V); 1259 else 1260 Inst->setOperand(OpNum, V); 1261 MadeChange = true; 1262 } 1263 }; 1264 1265 APInt UndefElts2(VWidth, 0); 1266 APInt UndefElts3(VWidth, 0); 1267 switch (I->getOpcode()) { 1268 default: break; 1269 1270 case Instruction::GetElementPtr: { 1271 // The LangRef requires that struct geps have all constant indices. As 1272 // such, we can't convert any operand to partial undef. 1273 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1274 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1275 I != E; I++) 1276 if (I.isStruct()) 1277 return true;; 1278 return false; 1279 }; 1280 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1281 break; 1282 1283 // Conservatively track the demanded elements back through any vector 1284 // operands we may have. We know there must be at least one, or we 1285 // wouldn't have a vector result to get here. Note that we intentionally 1286 // merge the undef bits here since gepping with either an undef base or 1287 // index results in undef. 1288 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1289 if (isa<UndefValue>(I->getOperand(i))) { 1290 // If the entire vector is undefined, just return this info. 1291 UndefElts = EltMask; 1292 return nullptr; 1293 } 1294 if (I->getOperand(i)->getType()->isVectorTy()) { 1295 APInt UndefEltsOp(VWidth, 0); 1296 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1297 UndefElts |= UndefEltsOp; 1298 } 1299 } 1300 1301 break; 1302 } 1303 case Instruction::InsertElement: { 1304 // If this is a variable index, we don't know which element it overwrites. 1305 // demand exactly the same input as we produce. 1306 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1307 if (!Idx) { 1308 // Note that we can't propagate undef elt info, because we don't know 1309 // which elt is getting updated. 1310 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1311 break; 1312 } 1313 1314 // The element inserted overwrites whatever was there, so the input demanded 1315 // set is simpler than the output set. 1316 unsigned IdxNo = Idx->getZExtValue(); 1317 APInt PreInsertDemandedElts = DemandedElts; 1318 if (IdxNo < VWidth) 1319 PreInsertDemandedElts.clearBit(IdxNo); 1320 1321 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1322 1323 // If this is inserting an element that isn't demanded, remove this 1324 // insertelement. 1325 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1326 Worklist.push(I); 1327 return I->getOperand(0); 1328 } 1329 1330 // The inserted element is defined. 1331 UndefElts.clearBit(IdxNo); 1332 break; 1333 } 1334 case Instruction::ShuffleVector: { 1335 auto *Shuffle = cast<ShuffleVectorInst>(I); 1336 assert(Shuffle->getOperand(0)->getType() == 1337 Shuffle->getOperand(1)->getType() && 1338 "Expected shuffle operands to have same type"); 1339 unsigned OpWidth = 1340 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1341 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1342 for (unsigned i = 0; i < VWidth; i++) { 1343 if (DemandedElts[i]) { 1344 unsigned MaskVal = Shuffle->getMaskValue(i); 1345 if (MaskVal != -1u) { 1346 assert(MaskVal < OpWidth * 2 && 1347 "shufflevector mask index out of range!"); 1348 if (MaskVal < OpWidth) 1349 LeftDemanded.setBit(MaskVal); 1350 else 1351 RightDemanded.setBit(MaskVal - OpWidth); 1352 } 1353 } 1354 } 1355 1356 APInt LHSUndefElts(OpWidth, 0); 1357 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1358 1359 APInt RHSUndefElts(OpWidth, 0); 1360 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1361 1362 // If this shuffle does not change the vector length and the elements 1363 // demanded by this shuffle are an identity mask, then this shuffle is 1364 // unnecessary. 1365 // 1366 // We are assuming canonical form for the mask, so the source vector is 1367 // operand 0 and operand 1 is not used. 1368 // 1369 // Note that if an element is demanded and this shuffle mask is undefined 1370 // for that element, then the shuffle is not considered an identity 1371 // operation. The shuffle prevents poison from the operand vector from 1372 // leaking to the result by replacing poison with an undefined value. 1373 if (VWidth == OpWidth) { 1374 bool IsIdentityShuffle = true; 1375 for (unsigned i = 0; i < VWidth; i++) { 1376 unsigned MaskVal = Shuffle->getMaskValue(i); 1377 if (DemandedElts[i] && i != MaskVal) { 1378 IsIdentityShuffle = false; 1379 break; 1380 } 1381 } 1382 if (IsIdentityShuffle) 1383 return Shuffle->getOperand(0); 1384 } 1385 1386 bool NewUndefElts = false; 1387 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1388 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1389 bool LHSUniform = true; 1390 bool RHSUniform = true; 1391 for (unsigned i = 0; i < VWidth; i++) { 1392 unsigned MaskVal = Shuffle->getMaskValue(i); 1393 if (MaskVal == -1u) { 1394 UndefElts.setBit(i); 1395 } else if (!DemandedElts[i]) { 1396 NewUndefElts = true; 1397 UndefElts.setBit(i); 1398 } else if (MaskVal < OpWidth) { 1399 if (LHSUndefElts[MaskVal]) { 1400 NewUndefElts = true; 1401 UndefElts.setBit(i); 1402 } else { 1403 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1404 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1405 LHSUniform = LHSUniform && (MaskVal == i); 1406 } 1407 } else { 1408 if (RHSUndefElts[MaskVal - OpWidth]) { 1409 NewUndefElts = true; 1410 UndefElts.setBit(i); 1411 } else { 1412 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1413 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1414 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1415 } 1416 } 1417 } 1418 1419 // Try to transform shuffle with constant vector and single element from 1420 // this constant vector to single insertelement instruction. 1421 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1422 // insertelement V, C[ci], ci-n 1423 if (OpWidth == Shuffle->getType()->getNumElements()) { 1424 Value *Op = nullptr; 1425 Constant *Value = nullptr; 1426 unsigned Idx = -1u; 1427 1428 // Find constant vector with the single element in shuffle (LHS or RHS). 1429 if (LHSIdx < OpWidth && RHSUniform) { 1430 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1431 Op = Shuffle->getOperand(1); 1432 Value = CV->getOperand(LHSValIdx); 1433 Idx = LHSIdx; 1434 } 1435 } 1436 if (RHSIdx < OpWidth && LHSUniform) { 1437 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1438 Op = Shuffle->getOperand(0); 1439 Value = CV->getOperand(RHSValIdx); 1440 Idx = RHSIdx; 1441 } 1442 } 1443 // Found constant vector with single element - convert to insertelement. 1444 if (Op && Value) { 1445 Instruction *New = InsertElementInst::Create( 1446 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1447 Shuffle->getName()); 1448 InsertNewInstWith(New, *Shuffle); 1449 return New; 1450 } 1451 } 1452 if (NewUndefElts) { 1453 // Add additional discovered undefs. 1454 SmallVector<Constant*, 16> Elts; 1455 for (unsigned i = 0; i < VWidth; ++i) { 1456 if (UndefElts[i]) 1457 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1458 else 1459 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1460 Shuffle->getMaskValue(i))); 1461 } 1462 I->setOperand(2, ConstantVector::get(Elts)); 1463 MadeChange = true; 1464 } 1465 break; 1466 } 1467 case Instruction::Select: { 1468 // If this is a vector select, try to transform the select condition based 1469 // on the current demanded elements. 1470 SelectInst *Sel = cast<SelectInst>(I); 1471 if (Sel->getCondition()->getType()->isVectorTy()) { 1472 // TODO: We are not doing anything with UndefElts based on this call. 1473 // It is overwritten below based on the other select operands. If an 1474 // element of the select condition is known undef, then we are free to 1475 // choose the output value from either arm of the select. If we know that 1476 // one of those values is undef, then the output can be undef. 1477 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1478 } 1479 1480 // Next, see if we can transform the arms of the select. 1481 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1482 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1483 for (unsigned i = 0; i < VWidth; i++) { 1484 // isNullValue() always returns false when called on a ConstantExpr. 1485 // Skip constant expressions to avoid propagating incorrect information. 1486 Constant *CElt = CV->getAggregateElement(i); 1487 if (isa<ConstantExpr>(CElt)) 1488 continue; 1489 // TODO: If a select condition element is undef, we can demand from 1490 // either side. If one side is known undef, choosing that side would 1491 // propagate undef. 1492 if (CElt->isNullValue()) 1493 DemandedLHS.clearBit(i); 1494 else 1495 DemandedRHS.clearBit(i); 1496 } 1497 } 1498 1499 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1500 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1501 1502 // Output elements are undefined if the element from each arm is undefined. 1503 // TODO: This can be improved. See comment in select condition handling. 1504 UndefElts = UndefElts2 & UndefElts3; 1505 break; 1506 } 1507 case Instruction::BitCast: { 1508 // Vector->vector casts only. 1509 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1510 if (!VTy) break; 1511 unsigned InVWidth = VTy->getNumElements(); 1512 APInt InputDemandedElts(InVWidth, 0); 1513 UndefElts2 = APInt(InVWidth, 0); 1514 unsigned Ratio; 1515 1516 if (VWidth == InVWidth) { 1517 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1518 // elements as are demanded of us. 1519 Ratio = 1; 1520 InputDemandedElts = DemandedElts; 1521 } else if ((VWidth % InVWidth) == 0) { 1522 // If the number of elements in the output is a multiple of the number of 1523 // elements in the input then an input element is live if any of the 1524 // corresponding output elements are live. 1525 Ratio = VWidth / InVWidth; 1526 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1527 if (DemandedElts[OutIdx]) 1528 InputDemandedElts.setBit(OutIdx / Ratio); 1529 } else if ((InVWidth % VWidth) == 0) { 1530 // If the number of elements in the input is a multiple of the number of 1531 // elements in the output then an input element is live if the 1532 // corresponding output element is live. 1533 Ratio = InVWidth / VWidth; 1534 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1535 if (DemandedElts[InIdx / Ratio]) 1536 InputDemandedElts.setBit(InIdx); 1537 } else { 1538 // Unsupported so far. 1539 break; 1540 } 1541 1542 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1543 1544 if (VWidth == InVWidth) { 1545 UndefElts = UndefElts2; 1546 } else if ((VWidth % InVWidth) == 0) { 1547 // If the number of elements in the output is a multiple of the number of 1548 // elements in the input then an output element is undef if the 1549 // corresponding input element is undef. 1550 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1551 if (UndefElts2[OutIdx / Ratio]) 1552 UndefElts.setBit(OutIdx); 1553 } else if ((InVWidth % VWidth) == 0) { 1554 // If the number of elements in the input is a multiple of the number of 1555 // elements in the output then an output element is undef if all of the 1556 // corresponding input elements are undef. 1557 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1558 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1559 if (SubUndef.countPopulation() == Ratio) 1560 UndefElts.setBit(OutIdx); 1561 } 1562 } else { 1563 llvm_unreachable("Unimp"); 1564 } 1565 break; 1566 } 1567 case Instruction::FPTrunc: 1568 case Instruction::FPExt: 1569 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1570 break; 1571 1572 case Instruction::Call: { 1573 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1574 if (!II) break; 1575 switch (II->getIntrinsicID()) { 1576 case Intrinsic::masked_gather: // fallthrough 1577 case Intrinsic::masked_load: { 1578 // Subtlety: If we load from a pointer, the pointer must be valid 1579 // regardless of whether the element is demanded. Doing otherwise risks 1580 // segfaults which didn't exist in the original program. 1581 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1582 DemandedPassThrough(DemandedElts); 1583 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1584 for (unsigned i = 0; i < VWidth; i++) { 1585 Constant *CElt = CV->getAggregateElement(i); 1586 if (CElt->isNullValue()) 1587 DemandedPtrs.clearBit(i); 1588 else if (CElt->isAllOnesValue()) 1589 DemandedPassThrough.clearBit(i); 1590 } 1591 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1592 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1593 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1594 1595 // Output elements are undefined if the element from both sources are. 1596 // TODO: can strengthen via mask as well. 1597 UndefElts = UndefElts2 & UndefElts3; 1598 break; 1599 } 1600 case Intrinsic::x86_xop_vfrcz_ss: 1601 case Intrinsic::x86_xop_vfrcz_sd: 1602 // The instructions for these intrinsics are speced to zero upper bits not 1603 // pass them through like other scalar intrinsics. So we shouldn't just 1604 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1605 // Instead we should return a zero vector. 1606 if (!DemandedElts[0]) { 1607 Worklist.push(II); 1608 return ConstantAggregateZero::get(II->getType()); 1609 } 1610 1611 // Only the lower element is used. 1612 DemandedElts = 1; 1613 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1614 1615 // Only the lower element is undefined. The high elements are zero. 1616 UndefElts = UndefElts[0]; 1617 break; 1618 1619 // Unary scalar-as-vector operations that work column-wise. 1620 case Intrinsic::x86_sse_rcp_ss: 1621 case Intrinsic::x86_sse_rsqrt_ss: 1622 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1623 1624 // If lowest element of a scalar op isn't used then use Arg0. 1625 if (!DemandedElts[0]) { 1626 Worklist.push(II); 1627 return II->getArgOperand(0); 1628 } 1629 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1630 // checks). 1631 break; 1632 1633 // Binary scalar-as-vector operations that work column-wise. The high 1634 // elements come from operand 0. The low element is a function of both 1635 // operands. 1636 case Intrinsic::x86_sse_min_ss: 1637 case Intrinsic::x86_sse_max_ss: 1638 case Intrinsic::x86_sse_cmp_ss: 1639 case Intrinsic::x86_sse2_min_sd: 1640 case Intrinsic::x86_sse2_max_sd: 1641 case Intrinsic::x86_sse2_cmp_sd: { 1642 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1643 1644 // If lowest element of a scalar op isn't used then use Arg0. 1645 if (!DemandedElts[0]) { 1646 Worklist.push(II); 1647 return II->getArgOperand(0); 1648 } 1649 1650 // Only lower element is used for operand 1. 1651 DemandedElts = 1; 1652 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1653 1654 // Lower element is undefined if both lower elements are undefined. 1655 // Consider things like undef&0. The result is known zero, not undef. 1656 if (!UndefElts2[0]) 1657 UndefElts.clearBit(0); 1658 1659 break; 1660 } 1661 1662 // Binary scalar-as-vector operations that work column-wise. The high 1663 // elements come from operand 0 and the low element comes from operand 1. 1664 case Intrinsic::x86_sse41_round_ss: 1665 case Intrinsic::x86_sse41_round_sd: { 1666 // Don't use the low element of operand 0. 1667 APInt DemandedElts2 = DemandedElts; 1668 DemandedElts2.clearBit(0); 1669 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1670 1671 // If lowest element of a scalar op isn't used then use Arg0. 1672 if (!DemandedElts[0]) { 1673 Worklist.push(II); 1674 return II->getArgOperand(0); 1675 } 1676 1677 // Only lower element is used for operand 1. 1678 DemandedElts = 1; 1679 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1680 1681 // Take the high undef elements from operand 0 and take the lower element 1682 // from operand 1. 1683 UndefElts.clearBit(0); 1684 UndefElts |= UndefElts2[0]; 1685 break; 1686 } 1687 1688 // Three input scalar-as-vector operations that work column-wise. The high 1689 // elements come from operand 0 and the low element is a function of all 1690 // three inputs. 1691 case Intrinsic::x86_avx512_mask_add_ss_round: 1692 case Intrinsic::x86_avx512_mask_div_ss_round: 1693 case Intrinsic::x86_avx512_mask_mul_ss_round: 1694 case Intrinsic::x86_avx512_mask_sub_ss_round: 1695 case Intrinsic::x86_avx512_mask_max_ss_round: 1696 case Intrinsic::x86_avx512_mask_min_ss_round: 1697 case Intrinsic::x86_avx512_mask_add_sd_round: 1698 case Intrinsic::x86_avx512_mask_div_sd_round: 1699 case Intrinsic::x86_avx512_mask_mul_sd_round: 1700 case Intrinsic::x86_avx512_mask_sub_sd_round: 1701 case Intrinsic::x86_avx512_mask_max_sd_round: 1702 case Intrinsic::x86_avx512_mask_min_sd_round: 1703 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1704 1705 // If lowest element of a scalar op isn't used then use Arg0. 1706 if (!DemandedElts[0]) { 1707 Worklist.push(II); 1708 return II->getArgOperand(0); 1709 } 1710 1711 // Only lower element is used for operand 1 and 2. 1712 DemandedElts = 1; 1713 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1714 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1715 1716 // Lower element is undefined if all three lower elements are undefined. 1717 // Consider things like undef&0. The result is known zero, not undef. 1718 if (!UndefElts2[0] || !UndefElts3[0]) 1719 UndefElts.clearBit(0); 1720 1721 break; 1722 1723 case Intrinsic::x86_sse2_packssdw_128: 1724 case Intrinsic::x86_sse2_packsswb_128: 1725 case Intrinsic::x86_sse2_packuswb_128: 1726 case Intrinsic::x86_sse41_packusdw: 1727 case Intrinsic::x86_avx2_packssdw: 1728 case Intrinsic::x86_avx2_packsswb: 1729 case Intrinsic::x86_avx2_packusdw: 1730 case Intrinsic::x86_avx2_packuswb: 1731 case Intrinsic::x86_avx512_packssdw_512: 1732 case Intrinsic::x86_avx512_packsswb_512: 1733 case Intrinsic::x86_avx512_packusdw_512: 1734 case Intrinsic::x86_avx512_packuswb_512: { 1735 auto *Ty0 = II->getArgOperand(0)->getType(); 1736 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1737 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1738 1739 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1740 unsigned VWidthPerLane = VWidth / NumLanes; 1741 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1742 1743 // Per lane, pack the elements of the first input and then the second. 1744 // e.g. 1745 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1746 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1747 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1748 APInt OpDemandedElts(InnerVWidth, 0); 1749 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1750 unsigned LaneIdx = Lane * VWidthPerLane; 1751 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1752 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1753 if (DemandedElts[Idx]) 1754 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1755 } 1756 } 1757 1758 // Demand elements from the operand. 1759 APInt OpUndefElts(InnerVWidth, 0); 1760 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1761 1762 // Pack the operand's UNDEF elements, one lane at a time. 1763 OpUndefElts = OpUndefElts.zext(VWidth); 1764 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1765 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1766 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1767 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1768 UndefElts |= LaneElts; 1769 } 1770 } 1771 break; 1772 } 1773 1774 // PSHUFB 1775 case Intrinsic::x86_ssse3_pshuf_b_128: 1776 case Intrinsic::x86_avx2_pshuf_b: 1777 case Intrinsic::x86_avx512_pshuf_b_512: 1778 // PERMILVAR 1779 case Intrinsic::x86_avx_vpermilvar_ps: 1780 case Intrinsic::x86_avx_vpermilvar_ps_256: 1781 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1782 case Intrinsic::x86_avx_vpermilvar_pd: 1783 case Intrinsic::x86_avx_vpermilvar_pd_256: 1784 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1785 // PERMV 1786 case Intrinsic::x86_avx2_permd: 1787 case Intrinsic::x86_avx2_permps: { 1788 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1789 break; 1790 } 1791 1792 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1793 // in an undefined state. 1794 case Intrinsic::x86_sse4a_extrq: 1795 case Intrinsic::x86_sse4a_extrqi: 1796 case Intrinsic::x86_sse4a_insertq: 1797 case Intrinsic::x86_sse4a_insertqi: 1798 UndefElts.setHighBits(VWidth / 2); 1799 break; 1800 case Intrinsic::amdgcn_buffer_load: 1801 case Intrinsic::amdgcn_buffer_load_format: 1802 case Intrinsic::amdgcn_raw_buffer_load: 1803 case Intrinsic::amdgcn_raw_buffer_load_format: 1804 case Intrinsic::amdgcn_raw_tbuffer_load: 1805 case Intrinsic::amdgcn_s_buffer_load: 1806 case Intrinsic::amdgcn_struct_buffer_load: 1807 case Intrinsic::amdgcn_struct_buffer_load_format: 1808 case Intrinsic::amdgcn_struct_tbuffer_load: 1809 case Intrinsic::amdgcn_tbuffer_load: 1810 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1811 default: { 1812 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1813 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0); 1814 1815 break; 1816 } 1817 } // switch on IntrinsicID 1818 break; 1819 } // case Call 1820 } // switch on Opcode 1821 1822 // TODO: We bail completely on integer div/rem and shifts because they have 1823 // UB/poison potential, but that should be refined. 1824 BinaryOperator *BO; 1825 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1826 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1827 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1828 1829 // Any change to an instruction with potential poison must clear those flags 1830 // because we can not guarantee those constraints now. Other analysis may 1831 // determine that it is safe to re-apply the flags. 1832 if (MadeChange) 1833 BO->dropPoisonGeneratingFlags(); 1834 1835 // Output elements are undefined if both are undefined. Consider things 1836 // like undef & 0. The result is known zero, not undef. 1837 UndefElts &= UndefElts2; 1838 } 1839 1840 // If we've proven all of the lanes undef, return an undef value. 1841 // TODO: Intersect w/demanded lanes 1842 if (UndefElts.isAllOnesValue()) 1843 return UndefValue::get(I->getType());; 1844 1845 return MadeChange ? I : nullptr; 1846 } 1847