1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Check to see if the specified operand of the specified instruction is a
28 /// constant integer. If so, check to see if there are any bits set in the
29 /// constant that are not demanded. If so, shrink the constant and return true.
30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
31                                    const APInt &Demanded) {
32   assert(I && "No instruction?");
33   assert(OpNo < I->getNumOperands() && "Operand index too large");
34 
35   // The operand must be a constant integer or splat integer.
36   Value *Op = I->getOperand(OpNo);
37   const APInt *C;
38   if (!match(Op, m_APInt(C)))
39     return false;
40 
41   // If there are no bits set that aren't demanded, nothing to do.
42   if (C->isSubsetOf(Demanded))
43     return false;
44 
45   // This instruction is producing bits that are not demanded. Shrink the RHS.
46   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
47 
48   return true;
49 }
50 
51 
52 
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
56   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57   KnownBits Known(BitWidth);
58   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
59 
60   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
61                                      0, &Inst);
62   if (!V) return false;
63   if (V == &Inst) return true;
64   replaceInstUsesWith(Inst, V);
65   return true;
66 }
67 
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72                                             const APInt &DemandedMask,
73                                             KnownBits &Known, unsigned Depth) {
74   Use &U = I->getOperandUse(OpNo);
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76                                           Depth, I);
77   if (!NewVal) return false;
78   if (Instruction* OpInst = dyn_cast<Instruction>(U))
79     salvageDebugInfo(*OpInst);
80 
81   replaceUse(U, NewVal);
82   return true;
83 }
84 
85 /// This function attempts to replace V with a simpler value based on the
86 /// demanded bits. When this function is called, it is known that only the bits
87 /// set in DemandedMask of the result of V are ever used downstream.
88 /// Consequently, depending on the mask and V, it may be possible to replace V
89 /// with a constant or one of its operands. In such cases, this function does
90 /// the replacement and returns true. In all other cases, it returns false after
91 /// analyzing the expression and setting KnownOne and known to be one in the
92 /// expression. Known.Zero contains all the bits that are known to be zero in
93 /// the expression. These are provided to potentially allow the caller (which
94 /// might recursively be SimplifyDemandedBits itself) to simplify the
95 /// expression.
96 /// Known.One and Known.Zero always follow the invariant that:
97 ///   Known.One & Known.Zero == 0.
98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
101 /// be the same.
102 ///
103 /// This returns null if it did not change anything and it permits no
104 /// simplification.  This returns V itself if it did some simplification of V's
105 /// operands based on the information about what bits are demanded. This returns
106 /// some other non-null value if it found out that V is equal to another value
107 /// in the context where the specified bits are demanded, but not for all users.
108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
109                                                  KnownBits &Known,
110                                                  unsigned Depth,
111                                                  Instruction *CxtI) {
112   assert(V != nullptr && "Null pointer of Value???");
113   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
114   uint32_t BitWidth = DemandedMask.getBitWidth();
115   Type *VTy = V->getType();
116   assert(
117       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
118       Known.getBitWidth() == BitWidth &&
119       "Value *V, DemandedMask and Known must have same BitWidth");
120 
121   if (isa<Constant>(V)) {
122     computeKnownBits(V, Known, Depth, CxtI);
123     return nullptr;
124   }
125 
126   Known.resetAll();
127   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
128     return UndefValue::get(VTy);
129 
130   if (Depth == MaxAnalysisRecursionDepth)
131     return nullptr;
132 
133   if (isa<ScalableVectorType>(VTy))
134     return nullptr;
135 
136   Instruction *I = dyn_cast<Instruction>(V);
137   if (!I) {
138     computeKnownBits(V, Known, Depth, CxtI);
139     return nullptr;        // Only analyze instructions.
140   }
141 
142   // If there are multiple uses of this value and we aren't at the root, then
143   // we can't do any simplifications of the operands, because DemandedMask
144   // only reflects the bits demanded by *one* of the users.
145   if (Depth != 0 && !I->hasOneUse())
146     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
147 
148   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
149 
150   // If this is the root being simplified, allow it to have multiple uses,
151   // just set the DemandedMask to all bits so that we can try to simplify the
152   // operands.  This allows visitTruncInst (for example) to simplify the
153   // operand of a trunc without duplicating all the logic below.
154   if (Depth == 0 && !V->hasOneUse())
155     DemandedMask.setAllBits();
156 
157   switch (I->getOpcode()) {
158   default:
159     computeKnownBits(I, Known, Depth, CxtI);
160     break;
161   case Instruction::And: {
162     // If either the LHS or the RHS are Zero, the result is zero.
163     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
164         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
165                              Depth + 1))
166       return I;
167     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
168     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
169 
170     Known = LHSKnown & RHSKnown;
171 
172     // If the client is only demanding bits that we know, return the known
173     // constant.
174     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
175       return Constant::getIntegerValue(VTy, Known.One);
176 
177     // If all of the demanded bits are known 1 on one side, return the other.
178     // These bits cannot contribute to the result of the 'and'.
179     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
180       return I->getOperand(0);
181     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
182       return I->getOperand(1);
183 
184     // If the RHS is a constant, see if we can simplify it.
185     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
186       return I;
187 
188     break;
189   }
190   case Instruction::Or: {
191     // If either the LHS or the RHS are One, the result is One.
192     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
193         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
194                              Depth + 1))
195       return I;
196     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
197     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
198 
199     Known = LHSKnown | RHSKnown;
200 
201     // If the client is only demanding bits that we know, return the known
202     // constant.
203     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
204       return Constant::getIntegerValue(VTy, Known.One);
205 
206     // If all of the demanded bits are known zero on one side, return the other.
207     // These bits cannot contribute to the result of the 'or'.
208     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
209       return I->getOperand(0);
210     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
211       return I->getOperand(1);
212 
213     // If the RHS is a constant, see if we can simplify it.
214     if (ShrinkDemandedConstant(I, 1, DemandedMask))
215       return I;
216 
217     break;
218   }
219   case Instruction::Xor: {
220     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
221         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
222       return I;
223     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
224     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
225 
226     Known = LHSKnown ^ RHSKnown;
227 
228     // If the client is only demanding bits that we know, return the known
229     // constant.
230     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
231       return Constant::getIntegerValue(VTy, Known.One);
232 
233     // If all of the demanded bits are known zero on one side, return the other.
234     // These bits cannot contribute to the result of the 'xor'.
235     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
236       return I->getOperand(0);
237     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
238       return I->getOperand(1);
239 
240     // If all of the demanded bits are known to be zero on one side or the
241     // other, turn this into an *inclusive* or.
242     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
243     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
244       Instruction *Or =
245         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
246                                  I->getName());
247       return InsertNewInstWith(Or, *I);
248     }
249 
250     // If all of the demanded bits on one side are known, and all of the set
251     // bits on that side are also known to be set on the other side, turn this
252     // into an AND, as we know the bits will be cleared.
253     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
254     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
255         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
256       Constant *AndC = Constant::getIntegerValue(VTy,
257                                                  ~RHSKnown.One & DemandedMask);
258       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
259       return InsertNewInstWith(And, *I);
260     }
261 
262     // If the RHS is a constant, see if we can change it. Don't alter a -1
263     // constant because that's a canonical 'not' op, and that is better for
264     // combining, SCEV, and codegen.
265     const APInt *C;
266     if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnesValue()) {
267       if ((*C | ~DemandedMask).isAllOnesValue()) {
268         // Force bits to 1 to create a 'not' op.
269         I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
270         return I;
271       }
272       // If we can't turn this into a 'not', try to shrink the constant.
273       if (ShrinkDemandedConstant(I, 1, DemandedMask))
274         return I;
275     }
276 
277     // If our LHS is an 'and' and if it has one use, and if any of the bits we
278     // are flipping are known to be set, then the xor is just resetting those
279     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
280     // simplifying both of them.
281     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
282       ConstantInt *AndRHS, *XorRHS;
283       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
284           match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
285           match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
286           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
287         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
288 
289         Constant *AndC =
290             ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
291         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
292         InsertNewInstWith(NewAnd, *I);
293 
294         Constant *XorC =
295             ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
296         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
297         return InsertNewInstWith(NewXor, *I);
298       }
299     }
300     break;
301   }
302   case Instruction::Select: {
303     Value *LHS, *RHS;
304     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
305     if (SPF == SPF_UMAX) {
306       // UMax(A, C) == A if ...
307       // The lowest non-zero bit of DemandMask is higher than the highest
308       // non-zero bit of C.
309       const APInt *C;
310       unsigned CTZ = DemandedMask.countTrailingZeros();
311       if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
312         return LHS;
313     } else if (SPF == SPF_UMIN) {
314       // UMin(A, C) == A if ...
315       // The lowest non-zero bit of DemandMask is higher than the highest
316       // non-one bit of C.
317       // This comes from using DeMorgans on the above umax example.
318       const APInt *C;
319       unsigned CTZ = DemandedMask.countTrailingZeros();
320       if (match(RHS, m_APInt(C)) &&
321           CTZ >= C->getBitWidth() - C->countLeadingOnes())
322         return LHS;
323     }
324 
325     // If this is a select as part of any other min/max pattern, don't simplify
326     // any further in case we break the structure.
327     if (SPF != SPF_UNKNOWN)
328       return nullptr;
329 
330     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
331         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
332       return I;
333     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
334     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
335 
336     // If the operands are constants, see if we can simplify them.
337     // This is similar to ShrinkDemandedConstant, but for a select we want to
338     // try to keep the selected constants the same as icmp value constants, if
339     // we can. This helps not break apart (or helps put back together)
340     // canonical patterns like min and max.
341     auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
342                                          APInt DemandedMask) {
343       const APInt *SelC;
344       if (!match(I->getOperand(OpNo), m_APInt(SelC)))
345         return false;
346 
347       // Get the constant out of the ICmp, if there is one.
348       const APInt *CmpC;
349       ICmpInst::Predicate Pred;
350       if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) ||
351           CmpC->getBitWidth() != SelC->getBitWidth())
352         return ShrinkDemandedConstant(I, OpNo, DemandedMask);
353 
354       // If the constant is already the same as the ICmp, leave it as-is.
355       if (*CmpC == *SelC)
356         return false;
357       // If the constants are not already the same, but can be with the demand
358       // mask, use the constant value from the ICmp.
359       if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
360         I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
361         return true;
362       }
363       return ShrinkDemandedConstant(I, OpNo, DemandedMask);
364     };
365     if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
366         CanonicalizeSelectConstant(I, 2, DemandedMask))
367       return I;
368 
369     // Only known if known in both the LHS and RHS.
370     Known.One = RHSKnown.One & LHSKnown.One;
371     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
372     break;
373   }
374   case Instruction::ZExt:
375   case Instruction::Trunc: {
376     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
377 
378     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
379     KnownBits InputKnown(SrcBitWidth);
380     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
381       return I;
382     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
383     Known = InputKnown.zextOrTrunc(BitWidth);
384     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
385     break;
386   }
387   case Instruction::BitCast:
388     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
389       return nullptr;  // vector->int or fp->int?
390 
391     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
392       if (VectorType *SrcVTy =
393             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
394         if (cast<FixedVectorType>(DstVTy)->getNumElements() !=
395             cast<FixedVectorType>(SrcVTy)->getNumElements())
396           // Don't touch a bitcast between vectors of different element counts.
397           return nullptr;
398       } else
399         // Don't touch a scalar-to-vector bitcast.
400         return nullptr;
401     } else if (I->getOperand(0)->getType()->isVectorTy())
402       // Don't touch a vector-to-scalar bitcast.
403       return nullptr;
404 
405     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
406       return I;
407     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
408     break;
409   case Instruction::SExt: {
410     // Compute the bits in the result that are not present in the input.
411     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
412 
413     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
414 
415     // If any of the sign extended bits are demanded, we know that the sign
416     // bit is demanded.
417     if (DemandedMask.getActiveBits() > SrcBitWidth)
418       InputDemandedBits.setBit(SrcBitWidth-1);
419 
420     KnownBits InputKnown(SrcBitWidth);
421     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
422       return I;
423 
424     // If the input sign bit is known zero, or if the NewBits are not demanded
425     // convert this into a zero extension.
426     if (InputKnown.isNonNegative() ||
427         DemandedMask.getActiveBits() <= SrcBitWidth) {
428       // Convert to ZExt cast.
429       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
430       return InsertNewInstWith(NewCast, *I);
431      }
432 
433     // If the sign bit of the input is known set or clear, then we know the
434     // top bits of the result.
435     Known = InputKnown.sext(BitWidth);
436     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
437     break;
438   }
439   case Instruction::Add:
440     if ((DemandedMask & 1) == 0) {
441       // If we do not need the low bit, try to convert bool math to logic:
442       // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
443       Value *X, *Y;
444       if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
445                            m_OneUse(m_SExt(m_Value(Y))))) &&
446           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
447         // Truth table for inputs and output signbits:
448         //       X:0 | X:1
449         //      ----------
450         // Y:0  |  0 | 0 |
451         // Y:1  | -1 | 0 |
452         //      ----------
453         IRBuilderBase::InsertPointGuard Guard(Builder);
454         Builder.SetInsertPoint(I);
455         Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
456         return Builder.CreateSExt(AndNot, VTy);
457       }
458 
459       // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
460       // TODO: Relax the one-use checks because we are removing an instruction?
461       if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
462                          m_OneUse(m_SExt(m_Value(Y))))) &&
463           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
464         // Truth table for inputs and output signbits:
465         //       X:0 | X:1
466         //      -----------
467         // Y:0  | -1 | -1 |
468         // Y:1  | -1 |  0 |
469         //      -----------
470         IRBuilderBase::InsertPointGuard Guard(Builder);
471         Builder.SetInsertPoint(I);
472         Value *Or = Builder.CreateOr(X, Y);
473         return Builder.CreateSExt(Or, VTy);
474       }
475     }
476     LLVM_FALLTHROUGH;
477   case Instruction::Sub: {
478     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
479     /// about the high bits of the operands.
480     unsigned NLZ = DemandedMask.countLeadingZeros();
481     // Right fill the mask of bits for this ADD/SUB to demand the most
482     // significant bit and all those below it.
483     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
484     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
485         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
486         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
487         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
488       if (NLZ > 0) {
489         // Disable the nsw and nuw flags here: We can no longer guarantee that
490         // we won't wrap after simplification. Removing the nsw/nuw flags is
491         // legal here because the top bit is not demanded.
492         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
493         BinOP.setHasNoSignedWrap(false);
494         BinOP.setHasNoUnsignedWrap(false);
495       }
496       return I;
497     }
498 
499     // If we are known to be adding/subtracting zeros to every bit below
500     // the highest demanded bit, we just return the other side.
501     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
502       return I->getOperand(0);
503     // We can't do this with the LHS for subtraction, unless we are only
504     // demanding the LSB.
505     if ((I->getOpcode() == Instruction::Add ||
506          DemandedFromOps.isOneValue()) &&
507         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
508       return I->getOperand(1);
509 
510     // Otherwise just compute the known bits of the result.
511     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
512     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
513                                         NSW, LHSKnown, RHSKnown);
514     break;
515   }
516   case Instruction::Shl: {
517     const APInt *SA;
518     if (match(I->getOperand(1), m_APInt(SA))) {
519       const APInt *ShrAmt;
520       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
521         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
522           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
523                                                     DemandedMask, Known))
524             return R;
525 
526       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
527       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
528 
529       // If the shift is NUW/NSW, then it does demand the high bits.
530       ShlOperator *IOp = cast<ShlOperator>(I);
531       if (IOp->hasNoSignedWrap())
532         DemandedMaskIn.setHighBits(ShiftAmt+1);
533       else if (IOp->hasNoUnsignedWrap())
534         DemandedMaskIn.setHighBits(ShiftAmt);
535 
536       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
537         return I;
538       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
539 
540       bool SignBitZero = Known.Zero.isSignBitSet();
541       bool SignBitOne = Known.One.isSignBitSet();
542       Known.Zero <<= ShiftAmt;
543       Known.One  <<= ShiftAmt;
544       // low bits known zero.
545       if (ShiftAmt)
546         Known.Zero.setLowBits(ShiftAmt);
547 
548       // If this shift has "nsw" keyword, then the result is either a poison
549       // value or has the same sign bit as the first operand.
550       if (IOp->hasNoSignedWrap()) {
551         if (SignBitZero)
552           Known.Zero.setSignBit();
553         else if (SignBitOne)
554           Known.One.setSignBit();
555         if (Known.hasConflict())
556           return UndefValue::get(I->getType());
557       }
558     } else {
559       computeKnownBits(I, Known, Depth, CxtI);
560     }
561     break;
562   }
563   case Instruction::LShr: {
564     const APInt *SA;
565     if (match(I->getOperand(1), m_APInt(SA))) {
566       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
567 
568       // Unsigned shift right.
569       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
570 
571       // If the shift is exact, then it does demand the low bits (and knows that
572       // they are zero).
573       if (cast<LShrOperator>(I)->isExact())
574         DemandedMaskIn.setLowBits(ShiftAmt);
575 
576       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
577         return I;
578       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
579       Known.Zero.lshrInPlace(ShiftAmt);
580       Known.One.lshrInPlace(ShiftAmt);
581       if (ShiftAmt)
582         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
583     } else {
584       computeKnownBits(I, Known, Depth, CxtI);
585     }
586     break;
587   }
588   case Instruction::AShr: {
589     // If this is an arithmetic shift right and only the low-bit is set, we can
590     // always convert this into a logical shr, even if the shift amount is
591     // variable.  The low bit of the shift cannot be an input sign bit unless
592     // the shift amount is >= the size of the datatype, which is undefined.
593     if (DemandedMask.isOneValue()) {
594       // Perform the logical shift right.
595       Instruction *NewVal = BinaryOperator::CreateLShr(
596                         I->getOperand(0), I->getOperand(1), I->getName());
597       return InsertNewInstWith(NewVal, *I);
598     }
599 
600     // If the sign bit is the only bit demanded by this ashr, then there is no
601     // need to do it, the shift doesn't change the high bit.
602     if (DemandedMask.isSignMask())
603       return I->getOperand(0);
604 
605     const APInt *SA;
606     if (match(I->getOperand(1), m_APInt(SA))) {
607       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
608 
609       // Signed shift right.
610       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
611       // If any of the high bits are demanded, we should set the sign bit as
612       // demanded.
613       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
614         DemandedMaskIn.setSignBit();
615 
616       // If the shift is exact, then it does demand the low bits (and knows that
617       // they are zero).
618       if (cast<AShrOperator>(I)->isExact())
619         DemandedMaskIn.setLowBits(ShiftAmt);
620 
621       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
622         return I;
623 
624       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
625 
626       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
627       // Compute the new bits that are at the top now plus sign bits.
628       APInt HighBits(APInt::getHighBitsSet(
629           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
630       Known.Zero.lshrInPlace(ShiftAmt);
631       Known.One.lshrInPlace(ShiftAmt);
632 
633       // If the input sign bit is known to be zero, or if none of the top bits
634       // are demanded, turn this into an unsigned shift right.
635       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
636       if (Known.Zero[BitWidth-ShiftAmt-1] ||
637           !DemandedMask.intersects(HighBits)) {
638         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
639                                                           I->getOperand(1));
640         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
641         return InsertNewInstWith(LShr, *I);
642       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
643         Known.One |= HighBits;
644       }
645     } else {
646       computeKnownBits(I, Known, Depth, CxtI);
647     }
648     break;
649   }
650   case Instruction::UDiv: {
651     // UDiv doesn't demand low bits that are zero in the divisor.
652     const APInt *SA;
653     if (match(I->getOperand(1), m_APInt(SA))) {
654       // If the shift is exact, then it does demand the low bits.
655       if (cast<UDivOperator>(I)->isExact())
656         break;
657 
658       // FIXME: Take the demanded mask of the result into account.
659       unsigned RHSTrailingZeros = SA->countTrailingZeros();
660       APInt DemandedMaskIn =
661           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
662       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
663         return I;
664 
665       // Propagate zero bits from the input.
666       Known.Zero.setHighBits(std::min(
667           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
668     } else {
669       computeKnownBits(I, Known, Depth, CxtI);
670     }
671     break;
672   }
673   case Instruction::SRem:
674     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
675       // X % -1 demands all the bits because we don't want to introduce
676       // INT_MIN % -1 (== undef) by accident.
677       if (Rem->isMinusOne())
678         break;
679       APInt RA = Rem->getValue().abs();
680       if (RA.isPowerOf2()) {
681         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
682           return I->getOperand(0);
683 
684         APInt LowBits = RA - 1;
685         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
686         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
687           return I;
688 
689         // The low bits of LHS are unchanged by the srem.
690         Known.Zero = LHSKnown.Zero & LowBits;
691         Known.One = LHSKnown.One & LowBits;
692 
693         // If LHS is non-negative or has all low bits zero, then the upper bits
694         // are all zero.
695         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
696           Known.Zero |= ~LowBits;
697 
698         // If LHS is negative and not all low bits are zero, then the upper bits
699         // are all one.
700         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
701           Known.One |= ~LowBits;
702 
703         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
704         break;
705       }
706     }
707 
708     // The sign bit is the LHS's sign bit, except when the result of the
709     // remainder is zero.
710     if (DemandedMask.isSignBitSet()) {
711       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
712       // If it's known zero, our sign bit is also zero.
713       if (LHSKnown.isNonNegative())
714         Known.makeNonNegative();
715     }
716     break;
717   case Instruction::URem: {
718     KnownBits Known2(BitWidth);
719     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
720     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
721         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
722       return I;
723 
724     unsigned Leaders = Known2.countMinLeadingZeros();
725     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
726     break;
727   }
728   case Instruction::Call: {
729     bool KnownBitsComputed = false;
730     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
731       switch (II->getIntrinsicID()) {
732       case Intrinsic::bswap: {
733         // If the only bits demanded come from one byte of the bswap result,
734         // just shift the input byte into position to eliminate the bswap.
735         unsigned NLZ = DemandedMask.countLeadingZeros();
736         unsigned NTZ = DemandedMask.countTrailingZeros();
737 
738         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
739         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
740         // have 14 leading zeros, round to 8.
741         NLZ &= ~7;
742         NTZ &= ~7;
743         // If we need exactly one byte, we can do this transformation.
744         if (BitWidth-NLZ-NTZ == 8) {
745           unsigned ResultBit = NTZ;
746           unsigned InputBit = BitWidth-NTZ-8;
747 
748           // Replace this with either a left or right shift to get the byte into
749           // the right place.
750           Instruction *NewVal;
751           if (InputBit > ResultBit)
752             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
753                     ConstantInt::get(I->getType(), InputBit-ResultBit));
754           else
755             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
756                     ConstantInt::get(I->getType(), ResultBit-InputBit));
757           NewVal->takeName(I);
758           return InsertNewInstWith(NewVal, *I);
759         }
760         break;
761       }
762       case Intrinsic::fshr:
763       case Intrinsic::fshl: {
764         const APInt *SA;
765         if (!match(I->getOperand(2), m_APInt(SA)))
766           break;
767 
768         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
769         // defined, so no need to special-case zero shifts here.
770         uint64_t ShiftAmt = SA->urem(BitWidth);
771         if (II->getIntrinsicID() == Intrinsic::fshr)
772           ShiftAmt = BitWidth - ShiftAmt;
773 
774         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
775         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
776         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
777             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
778           return I;
779 
780         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
781                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
782         Known.One = LHSKnown.One.shl(ShiftAmt) |
783                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
784         KnownBitsComputed = true;
785         break;
786       }
787       default: {
788         // Handle target specific intrinsics
789         Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
790             *II, DemandedMask, Known, KnownBitsComputed);
791         if (V.hasValue())
792           return V.getValue();
793         break;
794       }
795       }
796     }
797 
798     if (!KnownBitsComputed)
799       computeKnownBits(V, Known, Depth, CxtI);
800     break;
801   }
802   }
803 
804   // If the client is only demanding bits that we know, return the known
805   // constant.
806   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
807     return Constant::getIntegerValue(VTy, Known.One);
808   return nullptr;
809 }
810 
811 /// Helper routine of SimplifyDemandedUseBits. It computes Known
812 /// bits. It also tries to handle simplifications that can be done based on
813 /// DemandedMask, but without modifying the Instruction.
814 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
815     Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
816     Instruction *CxtI) {
817   unsigned BitWidth = DemandedMask.getBitWidth();
818   Type *ITy = I->getType();
819 
820   KnownBits LHSKnown(BitWidth);
821   KnownBits RHSKnown(BitWidth);
822 
823   // Despite the fact that we can't simplify this instruction in all User's
824   // context, we can at least compute the known bits, and we can
825   // do simplifications that apply to *just* the one user if we know that
826   // this instruction has a simpler value in that context.
827   switch (I->getOpcode()) {
828   case Instruction::And: {
829     // If either the LHS or the RHS are Zero, the result is zero.
830     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
831     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
832                      CxtI);
833 
834     Known = LHSKnown & RHSKnown;
835 
836     // If the client is only demanding bits that we know, return the known
837     // constant.
838     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
839       return Constant::getIntegerValue(ITy, Known.One);
840 
841     // If all of the demanded bits are known 1 on one side, return the other.
842     // These bits cannot contribute to the result of the 'and' in this
843     // context.
844     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
845       return I->getOperand(0);
846     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
847       return I->getOperand(1);
848 
849     break;
850   }
851   case Instruction::Or: {
852     // We can simplify (X|Y) -> X or Y in the user's context if we know that
853     // only bits from X or Y are demanded.
854 
855     // If either the LHS or the RHS are One, the result is One.
856     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
857     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
858                      CxtI);
859 
860     Known = LHSKnown | RHSKnown;
861 
862     // If the client is only demanding bits that we know, return the known
863     // constant.
864     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
865       return Constant::getIntegerValue(ITy, Known.One);
866 
867     // If all of the demanded bits are known zero on one side, return the
868     // other.  These bits cannot contribute to the result of the 'or' in this
869     // context.
870     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
871       return I->getOperand(0);
872     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
873       return I->getOperand(1);
874 
875     break;
876   }
877   case Instruction::Xor: {
878     // We can simplify (X^Y) -> X or Y in the user's context if we know that
879     // only bits from X or Y are demanded.
880 
881     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
882     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
883                      CxtI);
884 
885     Known = LHSKnown ^ RHSKnown;
886 
887     // If the client is only demanding bits that we know, return the known
888     // constant.
889     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
890       return Constant::getIntegerValue(ITy, Known.One);
891 
892     // If all of the demanded bits are known zero on one side, return the
893     // other.
894     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
895       return I->getOperand(0);
896     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
897       return I->getOperand(1);
898 
899     break;
900   }
901   default:
902     // Compute the Known bits to simplify things downstream.
903     computeKnownBits(I, Known, Depth, CxtI);
904 
905     // If this user is only demanding bits that we know, return the known
906     // constant.
907     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
908       return Constant::getIntegerValue(ITy, Known.One);
909 
910     break;
911   }
912 
913   return nullptr;
914 }
915 
916 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
917 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
918 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
919 /// of "C2-C1".
920 ///
921 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
922 /// ..., bn}, without considering the specific value X is holding.
923 /// This transformation is legal iff one of following conditions is hold:
924 ///  1) All the bit in S are 0, in this case E1 == E2.
925 ///  2) We don't care those bits in S, per the input DemandedMask.
926 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
927 ///     rest bits.
928 ///
929 /// Currently we only test condition 2).
930 ///
931 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
932 /// not successful.
933 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
934     Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
935     const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
936   if (!ShlOp1 || !ShrOp1)
937     return nullptr; // No-op.
938 
939   Value *VarX = Shr->getOperand(0);
940   Type *Ty = VarX->getType();
941   unsigned BitWidth = Ty->getScalarSizeInBits();
942   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
943     return nullptr; // Undef.
944 
945   unsigned ShlAmt = ShlOp1.getZExtValue();
946   unsigned ShrAmt = ShrOp1.getZExtValue();
947 
948   Known.One.clearAllBits();
949   Known.Zero.setLowBits(ShlAmt - 1);
950   Known.Zero &= DemandedMask;
951 
952   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
953   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
954 
955   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
956   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
957                       (BitMask1.ashr(ShrAmt) << ShlAmt);
958 
959   if (ShrAmt <= ShlAmt) {
960     BitMask2 <<= (ShlAmt - ShrAmt);
961   } else {
962     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
963                         BitMask2.ashr(ShrAmt - ShlAmt);
964   }
965 
966   // Check if condition-2 (see the comment to this function) is satified.
967   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
968     if (ShrAmt == ShlAmt)
969       return VarX;
970 
971     if (!Shr->hasOneUse())
972       return nullptr;
973 
974     BinaryOperator *New;
975     if (ShrAmt < ShlAmt) {
976       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
977       New = BinaryOperator::CreateShl(VarX, Amt);
978       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
979       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
980       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
981     } else {
982       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
983       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
984                      BinaryOperator::CreateAShr(VarX, Amt);
985       if (cast<BinaryOperator>(Shr)->isExact())
986         New->setIsExact(true);
987     }
988 
989     return InsertNewInstWith(New, *Shl);
990   }
991 
992   return nullptr;
993 }
994 
995 /// The specified value produces a vector with any number of elements.
996 /// This method analyzes which elements of the operand are undef and returns
997 /// that information in UndefElts.
998 ///
999 /// DemandedElts contains the set of elements that are actually used by the
1000 /// caller, and by default (AllowMultipleUsers equals false) the value is
1001 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1002 /// to true, DemandedElts refers to the union of sets of elements that are
1003 /// used by all callers.
1004 ///
1005 /// If the information about demanded elements can be used to simplify the
1006 /// operation, the operation is simplified, then the resultant value is
1007 /// returned.  This returns null if no change was made.
1008 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1009                                                     APInt DemandedElts,
1010                                                     APInt &UndefElts,
1011                                                     unsigned Depth,
1012                                                     bool AllowMultipleUsers) {
1013   // Cannot analyze scalable type. The number of vector elements is not a
1014   // compile-time constant.
1015   if (isa<ScalableVectorType>(V->getType()))
1016     return nullptr;
1017 
1018   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1019   APInt EltMask(APInt::getAllOnesValue(VWidth));
1020   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1021 
1022   if (isa<UndefValue>(V)) {
1023     // If the entire vector is undefined, just return this info.
1024     UndefElts = EltMask;
1025     return nullptr;
1026   }
1027 
1028   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1029     UndefElts = EltMask;
1030     return UndefValue::get(V->getType());
1031   }
1032 
1033   UndefElts = 0;
1034 
1035   if (auto *C = dyn_cast<Constant>(V)) {
1036     // Check if this is identity. If so, return 0 since we are not simplifying
1037     // anything.
1038     if (DemandedElts.isAllOnesValue())
1039       return nullptr;
1040 
1041     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1042     Constant *Undef = UndefValue::get(EltTy);
1043     SmallVector<Constant*, 16> Elts;
1044     for (unsigned i = 0; i != VWidth; ++i) {
1045       if (!DemandedElts[i]) {   // If not demanded, set to undef.
1046         Elts.push_back(Undef);
1047         UndefElts.setBit(i);
1048         continue;
1049       }
1050 
1051       Constant *Elt = C->getAggregateElement(i);
1052       if (!Elt) return nullptr;
1053 
1054       if (isa<UndefValue>(Elt)) {   // Already undef.
1055         Elts.push_back(Undef);
1056         UndefElts.setBit(i);
1057       } else {                               // Otherwise, defined.
1058         Elts.push_back(Elt);
1059       }
1060     }
1061 
1062     // If we changed the constant, return it.
1063     Constant *NewCV = ConstantVector::get(Elts);
1064     return NewCV != C ? NewCV : nullptr;
1065   }
1066 
1067   // Limit search depth.
1068   if (Depth == 10)
1069     return nullptr;
1070 
1071   if (!AllowMultipleUsers) {
1072     // If multiple users are using the root value, proceed with
1073     // simplification conservatively assuming that all elements
1074     // are needed.
1075     if (!V->hasOneUse()) {
1076       // Quit if we find multiple users of a non-root value though.
1077       // They'll be handled when it's their turn to be visited by
1078       // the main instcombine process.
1079       if (Depth != 0)
1080         // TODO: Just compute the UndefElts information recursively.
1081         return nullptr;
1082 
1083       // Conservatively assume that all elements are needed.
1084       DemandedElts = EltMask;
1085     }
1086   }
1087 
1088   Instruction *I = dyn_cast<Instruction>(V);
1089   if (!I) return nullptr;        // Only analyze instructions.
1090 
1091   bool MadeChange = false;
1092   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1093                               APInt Demanded, APInt &Undef) {
1094     auto *II = dyn_cast<IntrinsicInst>(Inst);
1095     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1096     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1097       replaceOperand(*Inst, OpNum, V);
1098       MadeChange = true;
1099     }
1100   };
1101 
1102   APInt UndefElts2(VWidth, 0);
1103   APInt UndefElts3(VWidth, 0);
1104   switch (I->getOpcode()) {
1105   default: break;
1106 
1107   case Instruction::GetElementPtr: {
1108     // The LangRef requires that struct geps have all constant indices.  As
1109     // such, we can't convert any operand to partial undef.
1110     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1111       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1112            I != E; I++)
1113         if (I.isStruct())
1114           return true;;
1115       return false;
1116     };
1117     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1118       break;
1119 
1120     // Conservatively track the demanded elements back through any vector
1121     // operands we may have.  We know there must be at least one, or we
1122     // wouldn't have a vector result to get here. Note that we intentionally
1123     // merge the undef bits here since gepping with either an undef base or
1124     // index results in undef.
1125     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1126       if (isa<UndefValue>(I->getOperand(i))) {
1127         // If the entire vector is undefined, just return this info.
1128         UndefElts = EltMask;
1129         return nullptr;
1130       }
1131       if (I->getOperand(i)->getType()->isVectorTy()) {
1132         APInt UndefEltsOp(VWidth, 0);
1133         simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1134         UndefElts |= UndefEltsOp;
1135       }
1136     }
1137 
1138     break;
1139   }
1140   case Instruction::InsertElement: {
1141     // If this is a variable index, we don't know which element it overwrites.
1142     // demand exactly the same input as we produce.
1143     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1144     if (!Idx) {
1145       // Note that we can't propagate undef elt info, because we don't know
1146       // which elt is getting updated.
1147       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1148       break;
1149     }
1150 
1151     // The element inserted overwrites whatever was there, so the input demanded
1152     // set is simpler than the output set.
1153     unsigned IdxNo = Idx->getZExtValue();
1154     APInt PreInsertDemandedElts = DemandedElts;
1155     if (IdxNo < VWidth)
1156       PreInsertDemandedElts.clearBit(IdxNo);
1157 
1158     // If we only demand the element that is being inserted and that element
1159     // was extracted from the same index in another vector with the same type,
1160     // replace this insert with that other vector.
1161     // Note: This is attempted before the call to simplifyAndSetOp because that
1162     //       may change UndefElts to a value that does not match with Vec.
1163     Value *Vec;
1164     if (PreInsertDemandedElts == 0 &&
1165         match(I->getOperand(1),
1166               m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1167         Vec->getType() == I->getType()) {
1168       return Vec;
1169     }
1170 
1171     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1172 
1173     // If this is inserting an element that isn't demanded, remove this
1174     // insertelement.
1175     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1176       Worklist.push(I);
1177       return I->getOperand(0);
1178     }
1179 
1180     // The inserted element is defined.
1181     UndefElts.clearBit(IdxNo);
1182     break;
1183   }
1184   case Instruction::ShuffleVector: {
1185     auto *Shuffle = cast<ShuffleVectorInst>(I);
1186     assert(Shuffle->getOperand(0)->getType() ==
1187            Shuffle->getOperand(1)->getType() &&
1188            "Expected shuffle operands to have same type");
1189     unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1190                            ->getNumElements();
1191     // Handle trivial case of a splat. Only check the first element of LHS
1192     // operand.
1193     if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1194         DemandedElts.isAllOnesValue()) {
1195       if (!isa<UndefValue>(I->getOperand(1))) {
1196         I->setOperand(1, UndefValue::get(I->getOperand(1)->getType()));
1197         MadeChange = true;
1198       }
1199       APInt LeftDemanded(OpWidth, 1);
1200       APInt LHSUndefElts(OpWidth, 0);
1201       simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1202       if (LHSUndefElts[0])
1203         UndefElts = EltMask;
1204       else
1205         UndefElts.clearAllBits();
1206       break;
1207     }
1208 
1209     APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1210     for (unsigned i = 0; i < VWidth; i++) {
1211       if (DemandedElts[i]) {
1212         unsigned MaskVal = Shuffle->getMaskValue(i);
1213         if (MaskVal != -1u) {
1214           assert(MaskVal < OpWidth * 2 &&
1215                  "shufflevector mask index out of range!");
1216           if (MaskVal < OpWidth)
1217             LeftDemanded.setBit(MaskVal);
1218           else
1219             RightDemanded.setBit(MaskVal - OpWidth);
1220         }
1221       }
1222     }
1223 
1224     APInt LHSUndefElts(OpWidth, 0);
1225     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1226 
1227     APInt RHSUndefElts(OpWidth, 0);
1228     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1229 
1230     // If this shuffle does not change the vector length and the elements
1231     // demanded by this shuffle are an identity mask, then this shuffle is
1232     // unnecessary.
1233     //
1234     // We are assuming canonical form for the mask, so the source vector is
1235     // operand 0 and operand 1 is not used.
1236     //
1237     // Note that if an element is demanded and this shuffle mask is undefined
1238     // for that element, then the shuffle is not considered an identity
1239     // operation. The shuffle prevents poison from the operand vector from
1240     // leaking to the result by replacing poison with an undefined value.
1241     if (VWidth == OpWidth) {
1242       bool IsIdentityShuffle = true;
1243       for (unsigned i = 0; i < VWidth; i++) {
1244         unsigned MaskVal = Shuffle->getMaskValue(i);
1245         if (DemandedElts[i] && i != MaskVal) {
1246           IsIdentityShuffle = false;
1247           break;
1248         }
1249       }
1250       if (IsIdentityShuffle)
1251         return Shuffle->getOperand(0);
1252     }
1253 
1254     bool NewUndefElts = false;
1255     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1256     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1257     bool LHSUniform = true;
1258     bool RHSUniform = true;
1259     for (unsigned i = 0; i < VWidth; i++) {
1260       unsigned MaskVal = Shuffle->getMaskValue(i);
1261       if (MaskVal == -1u) {
1262         UndefElts.setBit(i);
1263       } else if (!DemandedElts[i]) {
1264         NewUndefElts = true;
1265         UndefElts.setBit(i);
1266       } else if (MaskVal < OpWidth) {
1267         if (LHSUndefElts[MaskVal]) {
1268           NewUndefElts = true;
1269           UndefElts.setBit(i);
1270         } else {
1271           LHSIdx = LHSIdx == -1u ? i : OpWidth;
1272           LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1273           LHSUniform = LHSUniform && (MaskVal == i);
1274         }
1275       } else {
1276         if (RHSUndefElts[MaskVal - OpWidth]) {
1277           NewUndefElts = true;
1278           UndefElts.setBit(i);
1279         } else {
1280           RHSIdx = RHSIdx == -1u ? i : OpWidth;
1281           RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1282           RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1283         }
1284       }
1285     }
1286 
1287     // Try to transform shuffle with constant vector and single element from
1288     // this constant vector to single insertelement instruction.
1289     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1290     // insertelement V, C[ci], ci-n
1291     if (OpWidth ==
1292         cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1293       Value *Op = nullptr;
1294       Constant *Value = nullptr;
1295       unsigned Idx = -1u;
1296 
1297       // Find constant vector with the single element in shuffle (LHS or RHS).
1298       if (LHSIdx < OpWidth && RHSUniform) {
1299         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1300           Op = Shuffle->getOperand(1);
1301           Value = CV->getOperand(LHSValIdx);
1302           Idx = LHSIdx;
1303         }
1304       }
1305       if (RHSIdx < OpWidth && LHSUniform) {
1306         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1307           Op = Shuffle->getOperand(0);
1308           Value = CV->getOperand(RHSValIdx);
1309           Idx = RHSIdx;
1310         }
1311       }
1312       // Found constant vector with single element - convert to insertelement.
1313       if (Op && Value) {
1314         Instruction *New = InsertElementInst::Create(
1315             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1316             Shuffle->getName());
1317         InsertNewInstWith(New, *Shuffle);
1318         return New;
1319       }
1320     }
1321     if (NewUndefElts) {
1322       // Add additional discovered undefs.
1323       SmallVector<int, 16> Elts;
1324       for (unsigned i = 0; i < VWidth; ++i) {
1325         if (UndefElts[i])
1326           Elts.push_back(UndefMaskElem);
1327         else
1328           Elts.push_back(Shuffle->getMaskValue(i));
1329       }
1330       Shuffle->setShuffleMask(Elts);
1331       MadeChange = true;
1332     }
1333     break;
1334   }
1335   case Instruction::Select: {
1336     // If this is a vector select, try to transform the select condition based
1337     // on the current demanded elements.
1338     SelectInst *Sel = cast<SelectInst>(I);
1339     if (Sel->getCondition()->getType()->isVectorTy()) {
1340       // TODO: We are not doing anything with UndefElts based on this call.
1341       // It is overwritten below based on the other select operands. If an
1342       // element of the select condition is known undef, then we are free to
1343       // choose the output value from either arm of the select. If we know that
1344       // one of those values is undef, then the output can be undef.
1345       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1346     }
1347 
1348     // Next, see if we can transform the arms of the select.
1349     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1350     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1351       for (unsigned i = 0; i < VWidth; i++) {
1352         // isNullValue() always returns false when called on a ConstantExpr.
1353         // Skip constant expressions to avoid propagating incorrect information.
1354         Constant *CElt = CV->getAggregateElement(i);
1355         if (isa<ConstantExpr>(CElt))
1356           continue;
1357         // TODO: If a select condition element is undef, we can demand from
1358         // either side. If one side is known undef, choosing that side would
1359         // propagate undef.
1360         if (CElt->isNullValue())
1361           DemandedLHS.clearBit(i);
1362         else
1363           DemandedRHS.clearBit(i);
1364       }
1365     }
1366 
1367     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1368     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1369 
1370     // Output elements are undefined if the element from each arm is undefined.
1371     // TODO: This can be improved. See comment in select condition handling.
1372     UndefElts = UndefElts2 & UndefElts3;
1373     break;
1374   }
1375   case Instruction::BitCast: {
1376     // Vector->vector casts only.
1377     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1378     if (!VTy) break;
1379     unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1380     APInt InputDemandedElts(InVWidth, 0);
1381     UndefElts2 = APInt(InVWidth, 0);
1382     unsigned Ratio;
1383 
1384     if (VWidth == InVWidth) {
1385       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1386       // elements as are demanded of us.
1387       Ratio = 1;
1388       InputDemandedElts = DemandedElts;
1389     } else if ((VWidth % InVWidth) == 0) {
1390       // If the number of elements in the output is a multiple of the number of
1391       // elements in the input then an input element is live if any of the
1392       // corresponding output elements are live.
1393       Ratio = VWidth / InVWidth;
1394       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1395         if (DemandedElts[OutIdx])
1396           InputDemandedElts.setBit(OutIdx / Ratio);
1397     } else if ((InVWidth % VWidth) == 0) {
1398       // If the number of elements in the input is a multiple of the number of
1399       // elements in the output then an input element is live if the
1400       // corresponding output element is live.
1401       Ratio = InVWidth / VWidth;
1402       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1403         if (DemandedElts[InIdx / Ratio])
1404           InputDemandedElts.setBit(InIdx);
1405     } else {
1406       // Unsupported so far.
1407       break;
1408     }
1409 
1410     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1411 
1412     if (VWidth == InVWidth) {
1413       UndefElts = UndefElts2;
1414     } else if ((VWidth % InVWidth) == 0) {
1415       // If the number of elements in the output is a multiple of the number of
1416       // elements in the input then an output element is undef if the
1417       // corresponding input element is undef.
1418       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1419         if (UndefElts2[OutIdx / Ratio])
1420           UndefElts.setBit(OutIdx);
1421     } else if ((InVWidth % VWidth) == 0) {
1422       // If the number of elements in the input is a multiple of the number of
1423       // elements in the output then an output element is undef if all of the
1424       // corresponding input elements are undef.
1425       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1426         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1427         if (SubUndef.countPopulation() == Ratio)
1428           UndefElts.setBit(OutIdx);
1429       }
1430     } else {
1431       llvm_unreachable("Unimp");
1432     }
1433     break;
1434   }
1435   case Instruction::FPTrunc:
1436   case Instruction::FPExt:
1437     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1438     break;
1439 
1440   case Instruction::Call: {
1441     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1442     if (!II) break;
1443     switch (II->getIntrinsicID()) {
1444     case Intrinsic::masked_gather: // fallthrough
1445     case Intrinsic::masked_load: {
1446       // Subtlety: If we load from a pointer, the pointer must be valid
1447       // regardless of whether the element is demanded.  Doing otherwise risks
1448       // segfaults which didn't exist in the original program.
1449       APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
1450         DemandedPassThrough(DemandedElts);
1451       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1452         for (unsigned i = 0; i < VWidth; i++) {
1453           Constant *CElt = CV->getAggregateElement(i);
1454           if (CElt->isNullValue())
1455             DemandedPtrs.clearBit(i);
1456           else if (CElt->isAllOnesValue())
1457             DemandedPassThrough.clearBit(i);
1458         }
1459       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1460         simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1461       simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1462 
1463       // Output elements are undefined if the element from both sources are.
1464       // TODO: can strengthen via mask as well.
1465       UndefElts = UndefElts2 & UndefElts3;
1466       break;
1467     }
1468     default: {
1469       // Handle target specific intrinsics
1470       Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1471           *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1472           simplifyAndSetOp);
1473       if (V.hasValue())
1474         return V.getValue();
1475       break;
1476     }
1477     } // switch on IntrinsicID
1478     break;
1479   } // case Call
1480   } // switch on Opcode
1481 
1482   // TODO: We bail completely on integer div/rem and shifts because they have
1483   // UB/poison potential, but that should be refined.
1484   BinaryOperator *BO;
1485   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1486     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1487     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1488 
1489     // Any change to an instruction with potential poison must clear those flags
1490     // because we can not guarantee those constraints now. Other analysis may
1491     // determine that it is safe to re-apply the flags.
1492     if (MadeChange)
1493       BO->dropPoisonGeneratingFlags();
1494 
1495     // Output elements are undefined if both are undefined. Consider things
1496     // like undef & 0. The result is known zero, not undef.
1497     UndefElts &= UndefElts2;
1498   }
1499 
1500   // If we've proven all of the lanes undef, return an undef value.
1501   // TODO: Intersect w/demanded lanes
1502   if (UndefElts.isAllOnesValue())
1503     return UndefValue::get(I->getType());;
1504 
1505   return MadeChange ? I : nullptr;
1506 }
1507