1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 switch (I->getOpcode()) { 158 default: 159 computeKnownBits(I, Known, Depth, CxtI); 160 break; 161 case Instruction::And: { 162 // If either the LHS or the RHS are Zero, the result is zero. 163 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 164 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 165 Depth + 1)) 166 return I; 167 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 168 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 169 170 Known = LHSKnown & RHSKnown; 171 172 // If the client is only demanding bits that we know, return the known 173 // constant. 174 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 175 return Constant::getIntegerValue(VTy, Known.One); 176 177 // If all of the demanded bits are known 1 on one side, return the other. 178 // These bits cannot contribute to the result of the 'and'. 179 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 180 return I->getOperand(0); 181 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 182 return I->getOperand(1); 183 184 // If the RHS is a constant, see if we can simplify it. 185 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 186 return I; 187 188 break; 189 } 190 case Instruction::Or: { 191 // If either the LHS or the RHS are One, the result is One. 192 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 193 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 194 Depth + 1)) 195 return I; 196 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 198 199 Known = LHSKnown | RHSKnown; 200 201 // If the client is only demanding bits that we know, return the known 202 // constant. 203 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 204 return Constant::getIntegerValue(VTy, Known.One); 205 206 // If all of the demanded bits are known zero on one side, return the other. 207 // These bits cannot contribute to the result of the 'or'. 208 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 209 return I->getOperand(0); 210 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 211 return I->getOperand(1); 212 213 // If the RHS is a constant, see if we can simplify it. 214 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 215 return I; 216 217 break; 218 } 219 case Instruction::Xor: { 220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 221 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 222 return I; 223 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 224 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 225 226 Known = LHSKnown ^ RHSKnown; 227 228 // If the client is only demanding bits that we know, return the known 229 // constant. 230 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 231 return Constant::getIntegerValue(VTy, Known.One); 232 233 // If all of the demanded bits are known zero on one side, return the other. 234 // These bits cannot contribute to the result of the 'xor'. 235 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 236 return I->getOperand(0); 237 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 238 return I->getOperand(1); 239 240 // If all of the demanded bits are known to be zero on one side or the 241 // other, turn this into an *inclusive* or. 242 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 243 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 244 Instruction *Or = 245 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 246 I->getName()); 247 return InsertNewInstWith(Or, *I); 248 } 249 250 // If all of the demanded bits on one side are known, and all of the set 251 // bits on that side are also known to be set on the other side, turn this 252 // into an AND, as we know the bits will be cleared. 253 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 255 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 256 Constant *AndC = Constant::getIntegerValue(VTy, 257 ~RHSKnown.One & DemandedMask); 258 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 259 return InsertNewInstWith(And, *I); 260 } 261 262 // If the RHS is a constant, see if we can change it. Don't alter a -1 263 // constant because that's a canonical 'not' op, and that is better for 264 // combining, SCEV, and codegen. 265 const APInt *C; 266 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnesValue()) { 267 if ((*C | ~DemandedMask).isAllOnesValue()) { 268 // Force bits to 1 to create a 'not' op. 269 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 270 return I; 271 } 272 // If we can't turn this into a 'not', try to shrink the constant. 273 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 274 return I; 275 } 276 277 // If our LHS is an 'and' and if it has one use, and if any of the bits we 278 // are flipping are known to be set, then the xor is just resetting those 279 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 280 // simplifying both of them. 281 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 282 ConstantInt *AndRHS, *XorRHS; 283 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 284 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 285 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 286 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 288 289 Constant *AndC = 290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 292 InsertNewInstWith(NewAnd, *I); 293 294 Constant *XorC = 295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 297 return InsertNewInstWith(NewXor, *I); 298 } 299 } 300 break; 301 } 302 case Instruction::Select: { 303 Value *LHS, *RHS; 304 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 305 if (SPF == SPF_UMAX) { 306 // UMax(A, C) == A if ... 307 // The lowest non-zero bit of DemandMask is higher than the highest 308 // non-zero bit of C. 309 const APInt *C; 310 unsigned CTZ = DemandedMask.countTrailingZeros(); 311 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 312 return LHS; 313 } else if (SPF == SPF_UMIN) { 314 // UMin(A, C) == A if ... 315 // The lowest non-zero bit of DemandMask is higher than the highest 316 // non-one bit of C. 317 // This comes from using DeMorgans on the above umax example. 318 const APInt *C; 319 unsigned CTZ = DemandedMask.countTrailingZeros(); 320 if (match(RHS, m_APInt(C)) && 321 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 322 return LHS; 323 } 324 325 // If this is a select as part of any other min/max pattern, don't simplify 326 // any further in case we break the structure. 327 if (SPF != SPF_UNKNOWN) 328 return nullptr; 329 330 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 331 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 332 return I; 333 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 334 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 335 336 // If the operands are constants, see if we can simplify them. 337 // This is similar to ShrinkDemandedConstant, but for a select we want to 338 // try to keep the selected constants the same as icmp value constants, if 339 // we can. This helps not break apart (or helps put back together) 340 // canonical patterns like min and max. 341 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 342 const APInt &DemandedMask) { 343 const APInt *SelC; 344 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 345 return false; 346 347 // Get the constant out of the ICmp, if there is one. 348 const APInt *CmpC; 349 ICmpInst::Predicate Pred; 350 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) || 351 CmpC->getBitWidth() != SelC->getBitWidth()) 352 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 353 354 // If the constant is already the same as the ICmp, leave it as-is. 355 if (*CmpC == *SelC) 356 return false; 357 // If the constants are not already the same, but can be with the demand 358 // mask, use the constant value from the ICmp. 359 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 360 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 361 return true; 362 } 363 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 364 }; 365 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 366 CanonicalizeSelectConstant(I, 2, DemandedMask)) 367 return I; 368 369 // Only known if known in both the LHS and RHS. 370 Known.One = RHSKnown.One & LHSKnown.One; 371 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 372 break; 373 } 374 case Instruction::ZExt: 375 case Instruction::Trunc: { 376 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 377 378 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 379 KnownBits InputKnown(SrcBitWidth); 380 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 381 return I; 382 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 383 Known = InputKnown.zextOrTrunc(BitWidth); 384 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 385 break; 386 } 387 case Instruction::BitCast: 388 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 389 return nullptr; // vector->int or fp->int? 390 391 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 392 if (VectorType *SrcVTy = 393 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 394 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 395 cast<FixedVectorType>(SrcVTy)->getNumElements()) 396 // Don't touch a bitcast between vectors of different element counts. 397 return nullptr; 398 } else 399 // Don't touch a scalar-to-vector bitcast. 400 return nullptr; 401 } else if (I->getOperand(0)->getType()->isVectorTy()) 402 // Don't touch a vector-to-scalar bitcast. 403 return nullptr; 404 405 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 406 return I; 407 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 408 break; 409 case Instruction::SExt: { 410 // Compute the bits in the result that are not present in the input. 411 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 412 413 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 414 415 // If any of the sign extended bits are demanded, we know that the sign 416 // bit is demanded. 417 if (DemandedMask.getActiveBits() > SrcBitWidth) 418 InputDemandedBits.setBit(SrcBitWidth-1); 419 420 KnownBits InputKnown(SrcBitWidth); 421 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 422 return I; 423 424 // If the input sign bit is known zero, or if the NewBits are not demanded 425 // convert this into a zero extension. 426 if (InputKnown.isNonNegative() || 427 DemandedMask.getActiveBits() <= SrcBitWidth) { 428 // Convert to ZExt cast. 429 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 430 return InsertNewInstWith(NewCast, *I); 431 } 432 433 // If the sign bit of the input is known set or clear, then we know the 434 // top bits of the result. 435 Known = InputKnown.sext(BitWidth); 436 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 437 break; 438 } 439 case Instruction::Add: 440 if ((DemandedMask & 1) == 0) { 441 // If we do not need the low bit, try to convert bool math to logic: 442 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 443 Value *X, *Y; 444 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 445 m_OneUse(m_SExt(m_Value(Y))))) && 446 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 447 // Truth table for inputs and output signbits: 448 // X:0 | X:1 449 // ---------- 450 // Y:0 | 0 | 0 | 451 // Y:1 | -1 | 0 | 452 // ---------- 453 IRBuilderBase::InsertPointGuard Guard(Builder); 454 Builder.SetInsertPoint(I); 455 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 456 return Builder.CreateSExt(AndNot, VTy); 457 } 458 459 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 460 // TODO: Relax the one-use checks because we are removing an instruction? 461 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 462 m_OneUse(m_SExt(m_Value(Y))))) && 463 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 464 // Truth table for inputs and output signbits: 465 // X:0 | X:1 466 // ----------- 467 // Y:0 | -1 | -1 | 468 // Y:1 | -1 | 0 | 469 // ----------- 470 IRBuilderBase::InsertPointGuard Guard(Builder); 471 Builder.SetInsertPoint(I); 472 Value *Or = Builder.CreateOr(X, Y); 473 return Builder.CreateSExt(Or, VTy); 474 } 475 } 476 LLVM_FALLTHROUGH; 477 case Instruction::Sub: { 478 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 479 /// about the high bits of the operands. 480 unsigned NLZ = DemandedMask.countLeadingZeros(); 481 // Right fill the mask of bits for this ADD/SUB to demand the most 482 // significant bit and all those below it. 483 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 484 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 485 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 486 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 487 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 488 if (NLZ > 0) { 489 // Disable the nsw and nuw flags here: We can no longer guarantee that 490 // we won't wrap after simplification. Removing the nsw/nuw flags is 491 // legal here because the top bit is not demanded. 492 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 493 BinOP.setHasNoSignedWrap(false); 494 BinOP.setHasNoUnsignedWrap(false); 495 } 496 return I; 497 } 498 499 // If we are known to be adding/subtracting zeros to every bit below 500 // the highest demanded bit, we just return the other side. 501 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 502 return I->getOperand(0); 503 // We can't do this with the LHS for subtraction, unless we are only 504 // demanding the LSB. 505 if ((I->getOpcode() == Instruction::Add || 506 DemandedFromOps.isOneValue()) && 507 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 508 return I->getOperand(1); 509 510 // Otherwise just compute the known bits of the result. 511 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 512 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 513 NSW, LHSKnown, RHSKnown); 514 break; 515 } 516 case Instruction::Shl: { 517 const APInt *SA; 518 if (match(I->getOperand(1), m_APInt(SA))) { 519 const APInt *ShrAmt; 520 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 521 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 522 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 523 DemandedMask, Known)) 524 return R; 525 526 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 527 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 528 529 // If the shift is NUW/NSW, then it does demand the high bits. 530 ShlOperator *IOp = cast<ShlOperator>(I); 531 if (IOp->hasNoSignedWrap()) 532 DemandedMaskIn.setHighBits(ShiftAmt+1); 533 else if (IOp->hasNoUnsignedWrap()) 534 DemandedMaskIn.setHighBits(ShiftAmt); 535 536 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 537 return I; 538 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 539 540 bool SignBitZero = Known.Zero.isSignBitSet(); 541 bool SignBitOne = Known.One.isSignBitSet(); 542 Known.Zero <<= ShiftAmt; 543 Known.One <<= ShiftAmt; 544 // low bits known zero. 545 if (ShiftAmt) 546 Known.Zero.setLowBits(ShiftAmt); 547 548 // If this shift has "nsw" keyword, then the result is either a poison 549 // value or has the same sign bit as the first operand. 550 if (IOp->hasNoSignedWrap()) { 551 if (SignBitZero) 552 Known.Zero.setSignBit(); 553 else if (SignBitOne) 554 Known.One.setSignBit(); 555 if (Known.hasConflict()) 556 return UndefValue::get(I->getType()); 557 } 558 } else { 559 computeKnownBits(I, Known, Depth, CxtI); 560 } 561 break; 562 } 563 case Instruction::LShr: { 564 const APInt *SA; 565 if (match(I->getOperand(1), m_APInt(SA))) { 566 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 567 568 // Unsigned shift right. 569 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 570 571 // If the shift is exact, then it does demand the low bits (and knows that 572 // they are zero). 573 if (cast<LShrOperator>(I)->isExact()) 574 DemandedMaskIn.setLowBits(ShiftAmt); 575 576 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 577 return I; 578 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 579 Known.Zero.lshrInPlace(ShiftAmt); 580 Known.One.lshrInPlace(ShiftAmt); 581 if (ShiftAmt) 582 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 583 } else { 584 computeKnownBits(I, Known, Depth, CxtI); 585 } 586 break; 587 } 588 case Instruction::AShr: { 589 // If this is an arithmetic shift right and only the low-bit is set, we can 590 // always convert this into a logical shr, even if the shift amount is 591 // variable. The low bit of the shift cannot be an input sign bit unless 592 // the shift amount is >= the size of the datatype, which is undefined. 593 if (DemandedMask.isOneValue()) { 594 // Perform the logical shift right. 595 Instruction *NewVal = BinaryOperator::CreateLShr( 596 I->getOperand(0), I->getOperand(1), I->getName()); 597 return InsertNewInstWith(NewVal, *I); 598 } 599 600 // If the sign bit is the only bit demanded by this ashr, then there is no 601 // need to do it, the shift doesn't change the high bit. 602 if (DemandedMask.isSignMask()) 603 return I->getOperand(0); 604 605 const APInt *SA; 606 if (match(I->getOperand(1), m_APInt(SA))) { 607 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 608 609 // Signed shift right. 610 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 611 // If any of the high bits are demanded, we should set the sign bit as 612 // demanded. 613 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 614 DemandedMaskIn.setSignBit(); 615 616 // If the shift is exact, then it does demand the low bits (and knows that 617 // they are zero). 618 if (cast<AShrOperator>(I)->isExact()) 619 DemandedMaskIn.setLowBits(ShiftAmt); 620 621 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 622 return I; 623 624 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 625 626 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 627 // Compute the new bits that are at the top now plus sign bits. 628 APInt HighBits(APInt::getHighBitsSet( 629 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 630 Known.Zero.lshrInPlace(ShiftAmt); 631 Known.One.lshrInPlace(ShiftAmt); 632 633 // If the input sign bit is known to be zero, or if none of the top bits 634 // are demanded, turn this into an unsigned shift right. 635 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 636 if (Known.Zero[BitWidth-ShiftAmt-1] || 637 !DemandedMask.intersects(HighBits)) { 638 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 639 I->getOperand(1)); 640 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 641 return InsertNewInstWith(LShr, *I); 642 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 643 Known.One |= HighBits; 644 } 645 } else { 646 computeKnownBits(I, Known, Depth, CxtI); 647 } 648 break; 649 } 650 case Instruction::UDiv: { 651 // UDiv doesn't demand low bits that are zero in the divisor. 652 const APInt *SA; 653 if (match(I->getOperand(1), m_APInt(SA))) { 654 // If the shift is exact, then it does demand the low bits. 655 if (cast<UDivOperator>(I)->isExact()) 656 break; 657 658 // FIXME: Take the demanded mask of the result into account. 659 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 660 APInt DemandedMaskIn = 661 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 662 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 663 return I; 664 665 // Propagate zero bits from the input. 666 Known.Zero.setHighBits(std::min( 667 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 668 } else { 669 computeKnownBits(I, Known, Depth, CxtI); 670 } 671 break; 672 } 673 case Instruction::SRem: { 674 ConstantInt *Rem; 675 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 676 // X % -1 demands all the bits because we don't want to introduce 677 // INT_MIN % -1 (== undef) by accident. 678 if (Rem->isMinusOne()) 679 break; 680 APInt RA = Rem->getValue().abs(); 681 if (RA.isPowerOf2()) { 682 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 683 return I->getOperand(0); 684 685 APInt LowBits = RA - 1; 686 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 687 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 688 return I; 689 690 // The low bits of LHS are unchanged by the srem. 691 Known.Zero = LHSKnown.Zero & LowBits; 692 Known.One = LHSKnown.One & LowBits; 693 694 // If LHS is non-negative or has all low bits zero, then the upper bits 695 // are all zero. 696 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 697 Known.Zero |= ~LowBits; 698 699 // If LHS is negative and not all low bits are zero, then the upper bits 700 // are all one. 701 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 702 Known.One |= ~LowBits; 703 704 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 705 break; 706 } 707 } 708 709 // The sign bit is the LHS's sign bit, except when the result of the 710 // remainder is zero. 711 if (DemandedMask.isSignBitSet()) { 712 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 713 // If it's known zero, our sign bit is also zero. 714 if (LHSKnown.isNonNegative()) 715 Known.makeNonNegative(); 716 } 717 break; 718 } 719 case Instruction::URem: { 720 KnownBits Known2(BitWidth); 721 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 722 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 723 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 724 return I; 725 726 unsigned Leaders = Known2.countMinLeadingZeros(); 727 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 728 break; 729 } 730 case Instruction::Call: { 731 bool KnownBitsComputed = false; 732 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 733 switch (II->getIntrinsicID()) { 734 case Intrinsic::bswap: { 735 // If the only bits demanded come from one byte of the bswap result, 736 // just shift the input byte into position to eliminate the bswap. 737 unsigned NLZ = DemandedMask.countLeadingZeros(); 738 unsigned NTZ = DemandedMask.countTrailingZeros(); 739 740 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 741 // we need all the bits down to bit 8. Likewise, round NLZ. If we 742 // have 14 leading zeros, round to 8. 743 NLZ &= ~7; 744 NTZ &= ~7; 745 // If we need exactly one byte, we can do this transformation. 746 if (BitWidth-NLZ-NTZ == 8) { 747 unsigned ResultBit = NTZ; 748 unsigned InputBit = BitWidth-NTZ-8; 749 750 // Replace this with either a left or right shift to get the byte into 751 // the right place. 752 Instruction *NewVal; 753 if (InputBit > ResultBit) 754 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 755 ConstantInt::get(I->getType(), InputBit-ResultBit)); 756 else 757 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 758 ConstantInt::get(I->getType(), ResultBit-InputBit)); 759 NewVal->takeName(I); 760 return InsertNewInstWith(NewVal, *I); 761 } 762 break; 763 } 764 case Intrinsic::fshr: 765 case Intrinsic::fshl: { 766 const APInt *SA; 767 if (!match(I->getOperand(2), m_APInt(SA))) 768 break; 769 770 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 771 // defined, so no need to special-case zero shifts here. 772 uint64_t ShiftAmt = SA->urem(BitWidth); 773 if (II->getIntrinsicID() == Intrinsic::fshr) 774 ShiftAmt = BitWidth - ShiftAmt; 775 776 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 777 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 778 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 779 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 780 return I; 781 782 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 783 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 784 Known.One = LHSKnown.One.shl(ShiftAmt) | 785 RHSKnown.One.lshr(BitWidth - ShiftAmt); 786 KnownBitsComputed = true; 787 break; 788 } 789 default: { 790 // Handle target specific intrinsics 791 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 792 *II, DemandedMask, Known, KnownBitsComputed); 793 if (V.hasValue()) 794 return V.getValue(); 795 break; 796 } 797 } 798 } 799 800 if (!KnownBitsComputed) 801 computeKnownBits(V, Known, Depth, CxtI); 802 break; 803 } 804 } 805 806 // If the client is only demanding bits that we know, return the known 807 // constant. 808 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 809 return Constant::getIntegerValue(VTy, Known.One); 810 return nullptr; 811 } 812 813 /// Helper routine of SimplifyDemandedUseBits. It computes Known 814 /// bits. It also tries to handle simplifications that can be done based on 815 /// DemandedMask, but without modifying the Instruction. 816 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 817 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 818 Instruction *CxtI) { 819 unsigned BitWidth = DemandedMask.getBitWidth(); 820 Type *ITy = I->getType(); 821 822 KnownBits LHSKnown(BitWidth); 823 KnownBits RHSKnown(BitWidth); 824 825 // Despite the fact that we can't simplify this instruction in all User's 826 // context, we can at least compute the known bits, and we can 827 // do simplifications that apply to *just* the one user if we know that 828 // this instruction has a simpler value in that context. 829 switch (I->getOpcode()) { 830 case Instruction::And: { 831 // If either the LHS or the RHS are Zero, the result is zero. 832 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 833 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 834 CxtI); 835 836 Known = LHSKnown & RHSKnown; 837 838 // If the client is only demanding bits that we know, return the known 839 // constant. 840 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 841 return Constant::getIntegerValue(ITy, Known.One); 842 843 // If all of the demanded bits are known 1 on one side, return the other. 844 // These bits cannot contribute to the result of the 'and' in this 845 // context. 846 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 847 return I->getOperand(0); 848 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 849 return I->getOperand(1); 850 851 break; 852 } 853 case Instruction::Or: { 854 // We can simplify (X|Y) -> X or Y in the user's context if we know that 855 // only bits from X or Y are demanded. 856 857 // If either the LHS or the RHS are One, the result is One. 858 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 859 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 860 CxtI); 861 862 Known = LHSKnown | RHSKnown; 863 864 // If the client is only demanding bits that we know, return the known 865 // constant. 866 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 867 return Constant::getIntegerValue(ITy, Known.One); 868 869 // If all of the demanded bits are known zero on one side, return the 870 // other. These bits cannot contribute to the result of the 'or' in this 871 // context. 872 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 873 return I->getOperand(0); 874 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 875 return I->getOperand(1); 876 877 break; 878 } 879 case Instruction::Xor: { 880 // We can simplify (X^Y) -> X or Y in the user's context if we know that 881 // only bits from X or Y are demanded. 882 883 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 884 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 885 CxtI); 886 887 Known = LHSKnown ^ RHSKnown; 888 889 // If the client is only demanding bits that we know, return the known 890 // constant. 891 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 892 return Constant::getIntegerValue(ITy, Known.One); 893 894 // If all of the demanded bits are known zero on one side, return the 895 // other. 896 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 897 return I->getOperand(0); 898 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 899 return I->getOperand(1); 900 901 break; 902 } 903 default: 904 // Compute the Known bits to simplify things downstream. 905 computeKnownBits(I, Known, Depth, CxtI); 906 907 // If this user is only demanding bits that we know, return the known 908 // constant. 909 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 910 return Constant::getIntegerValue(ITy, Known.One); 911 912 break; 913 } 914 915 return nullptr; 916 } 917 918 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 919 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 920 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 921 /// of "C2-C1". 922 /// 923 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 924 /// ..., bn}, without considering the specific value X is holding. 925 /// This transformation is legal iff one of following conditions is hold: 926 /// 1) All the bit in S are 0, in this case E1 == E2. 927 /// 2) We don't care those bits in S, per the input DemandedMask. 928 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 929 /// rest bits. 930 /// 931 /// Currently we only test condition 2). 932 /// 933 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 934 /// not successful. 935 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 936 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 937 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 938 if (!ShlOp1 || !ShrOp1) 939 return nullptr; // No-op. 940 941 Value *VarX = Shr->getOperand(0); 942 Type *Ty = VarX->getType(); 943 unsigned BitWidth = Ty->getScalarSizeInBits(); 944 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 945 return nullptr; // Undef. 946 947 unsigned ShlAmt = ShlOp1.getZExtValue(); 948 unsigned ShrAmt = ShrOp1.getZExtValue(); 949 950 Known.One.clearAllBits(); 951 Known.Zero.setLowBits(ShlAmt - 1); 952 Known.Zero &= DemandedMask; 953 954 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 955 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 956 957 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 958 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 959 (BitMask1.ashr(ShrAmt) << ShlAmt); 960 961 if (ShrAmt <= ShlAmt) { 962 BitMask2 <<= (ShlAmt - ShrAmt); 963 } else { 964 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 965 BitMask2.ashr(ShrAmt - ShlAmt); 966 } 967 968 // Check if condition-2 (see the comment to this function) is satified. 969 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 970 if (ShrAmt == ShlAmt) 971 return VarX; 972 973 if (!Shr->hasOneUse()) 974 return nullptr; 975 976 BinaryOperator *New; 977 if (ShrAmt < ShlAmt) { 978 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 979 New = BinaryOperator::CreateShl(VarX, Amt); 980 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 981 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 982 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 983 } else { 984 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 985 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 986 BinaryOperator::CreateAShr(VarX, Amt); 987 if (cast<BinaryOperator>(Shr)->isExact()) 988 New->setIsExact(true); 989 } 990 991 return InsertNewInstWith(New, *Shl); 992 } 993 994 return nullptr; 995 } 996 997 /// The specified value produces a vector with any number of elements. 998 /// This method analyzes which elements of the operand are undef and returns 999 /// that information in UndefElts. 1000 /// 1001 /// DemandedElts contains the set of elements that are actually used by the 1002 /// caller, and by default (AllowMultipleUsers equals false) the value is 1003 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1004 /// to true, DemandedElts refers to the union of sets of elements that are 1005 /// used by all callers. 1006 /// 1007 /// If the information about demanded elements can be used to simplify the 1008 /// operation, the operation is simplified, then the resultant value is 1009 /// returned. This returns null if no change was made. 1010 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1011 APInt DemandedElts, 1012 APInt &UndefElts, 1013 unsigned Depth, 1014 bool AllowMultipleUsers) { 1015 // Cannot analyze scalable type. The number of vector elements is not a 1016 // compile-time constant. 1017 if (isa<ScalableVectorType>(V->getType())) 1018 return nullptr; 1019 1020 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1021 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1022 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1023 1024 if (isa<UndefValue>(V)) { 1025 // If the entire vector is undefined, just return this info. 1026 UndefElts = EltMask; 1027 return nullptr; 1028 } 1029 1030 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1031 UndefElts = EltMask; 1032 return UndefValue::get(V->getType()); 1033 } 1034 1035 UndefElts = 0; 1036 1037 if (auto *C = dyn_cast<Constant>(V)) { 1038 // Check if this is identity. If so, return 0 since we are not simplifying 1039 // anything. 1040 if (DemandedElts.isAllOnesValue()) 1041 return nullptr; 1042 1043 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1044 Constant *Undef = UndefValue::get(EltTy); 1045 SmallVector<Constant*, 16> Elts; 1046 for (unsigned i = 0; i != VWidth; ++i) { 1047 if (!DemandedElts[i]) { // If not demanded, set to undef. 1048 Elts.push_back(Undef); 1049 UndefElts.setBit(i); 1050 continue; 1051 } 1052 1053 Constant *Elt = C->getAggregateElement(i); 1054 if (!Elt) return nullptr; 1055 1056 if (isa<UndefValue>(Elt)) { // Already undef. 1057 Elts.push_back(Undef); 1058 UndefElts.setBit(i); 1059 } else { // Otherwise, defined. 1060 Elts.push_back(Elt); 1061 } 1062 } 1063 1064 // If we changed the constant, return it. 1065 Constant *NewCV = ConstantVector::get(Elts); 1066 return NewCV != C ? NewCV : nullptr; 1067 } 1068 1069 // Limit search depth. 1070 if (Depth == 10) 1071 return nullptr; 1072 1073 if (!AllowMultipleUsers) { 1074 // If multiple users are using the root value, proceed with 1075 // simplification conservatively assuming that all elements 1076 // are needed. 1077 if (!V->hasOneUse()) { 1078 // Quit if we find multiple users of a non-root value though. 1079 // They'll be handled when it's their turn to be visited by 1080 // the main instcombine process. 1081 if (Depth != 0) 1082 // TODO: Just compute the UndefElts information recursively. 1083 return nullptr; 1084 1085 // Conservatively assume that all elements are needed. 1086 DemandedElts = EltMask; 1087 } 1088 } 1089 1090 Instruction *I = dyn_cast<Instruction>(V); 1091 if (!I) return nullptr; // Only analyze instructions. 1092 1093 bool MadeChange = false; 1094 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1095 APInt Demanded, APInt &Undef) { 1096 auto *II = dyn_cast<IntrinsicInst>(Inst); 1097 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1098 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1099 replaceOperand(*Inst, OpNum, V); 1100 MadeChange = true; 1101 } 1102 }; 1103 1104 APInt UndefElts2(VWidth, 0); 1105 APInt UndefElts3(VWidth, 0); 1106 switch (I->getOpcode()) { 1107 default: break; 1108 1109 case Instruction::GetElementPtr: { 1110 // The LangRef requires that struct geps have all constant indices. As 1111 // such, we can't convert any operand to partial undef. 1112 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1113 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1114 I != E; I++) 1115 if (I.isStruct()) 1116 return true;; 1117 return false; 1118 }; 1119 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1120 break; 1121 1122 // Conservatively track the demanded elements back through any vector 1123 // operands we may have. We know there must be at least one, or we 1124 // wouldn't have a vector result to get here. Note that we intentionally 1125 // merge the undef bits here since gepping with either an undef base or 1126 // index results in undef. 1127 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1128 if (isa<UndefValue>(I->getOperand(i))) { 1129 // If the entire vector is undefined, just return this info. 1130 UndefElts = EltMask; 1131 return nullptr; 1132 } 1133 if (I->getOperand(i)->getType()->isVectorTy()) { 1134 APInt UndefEltsOp(VWidth, 0); 1135 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1136 UndefElts |= UndefEltsOp; 1137 } 1138 } 1139 1140 break; 1141 } 1142 case Instruction::InsertElement: { 1143 // If this is a variable index, we don't know which element it overwrites. 1144 // demand exactly the same input as we produce. 1145 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1146 if (!Idx) { 1147 // Note that we can't propagate undef elt info, because we don't know 1148 // which elt is getting updated. 1149 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1150 break; 1151 } 1152 1153 // The element inserted overwrites whatever was there, so the input demanded 1154 // set is simpler than the output set. 1155 unsigned IdxNo = Idx->getZExtValue(); 1156 APInt PreInsertDemandedElts = DemandedElts; 1157 if (IdxNo < VWidth) 1158 PreInsertDemandedElts.clearBit(IdxNo); 1159 1160 // If we only demand the element that is being inserted and that element 1161 // was extracted from the same index in another vector with the same type, 1162 // replace this insert with that other vector. 1163 // Note: This is attempted before the call to simplifyAndSetOp because that 1164 // may change UndefElts to a value that does not match with Vec. 1165 Value *Vec; 1166 if (PreInsertDemandedElts == 0 && 1167 match(I->getOperand(1), 1168 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1169 Vec->getType() == I->getType()) { 1170 return Vec; 1171 } 1172 1173 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1174 1175 // If this is inserting an element that isn't demanded, remove this 1176 // insertelement. 1177 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1178 Worklist.push(I); 1179 return I->getOperand(0); 1180 } 1181 1182 // The inserted element is defined. 1183 UndefElts.clearBit(IdxNo); 1184 break; 1185 } 1186 case Instruction::ShuffleVector: { 1187 auto *Shuffle = cast<ShuffleVectorInst>(I); 1188 assert(Shuffle->getOperand(0)->getType() == 1189 Shuffle->getOperand(1)->getType() && 1190 "Expected shuffle operands to have same type"); 1191 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1192 ->getNumElements(); 1193 // Handle trivial case of a splat. Only check the first element of LHS 1194 // operand. 1195 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1196 DemandedElts.isAllOnesValue()) { 1197 if (!isa<UndefValue>(I->getOperand(1))) { 1198 I->setOperand(1, UndefValue::get(I->getOperand(1)->getType())); 1199 MadeChange = true; 1200 } 1201 APInt LeftDemanded(OpWidth, 1); 1202 APInt LHSUndefElts(OpWidth, 0); 1203 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1204 if (LHSUndefElts[0]) 1205 UndefElts = EltMask; 1206 else 1207 UndefElts.clearAllBits(); 1208 break; 1209 } 1210 1211 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1212 for (unsigned i = 0; i < VWidth; i++) { 1213 if (DemandedElts[i]) { 1214 unsigned MaskVal = Shuffle->getMaskValue(i); 1215 if (MaskVal != -1u) { 1216 assert(MaskVal < OpWidth * 2 && 1217 "shufflevector mask index out of range!"); 1218 if (MaskVal < OpWidth) 1219 LeftDemanded.setBit(MaskVal); 1220 else 1221 RightDemanded.setBit(MaskVal - OpWidth); 1222 } 1223 } 1224 } 1225 1226 APInt LHSUndefElts(OpWidth, 0); 1227 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1228 1229 APInt RHSUndefElts(OpWidth, 0); 1230 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1231 1232 // If this shuffle does not change the vector length and the elements 1233 // demanded by this shuffle are an identity mask, then this shuffle is 1234 // unnecessary. 1235 // 1236 // We are assuming canonical form for the mask, so the source vector is 1237 // operand 0 and operand 1 is not used. 1238 // 1239 // Note that if an element is demanded and this shuffle mask is undefined 1240 // for that element, then the shuffle is not considered an identity 1241 // operation. The shuffle prevents poison from the operand vector from 1242 // leaking to the result by replacing poison with an undefined value. 1243 if (VWidth == OpWidth) { 1244 bool IsIdentityShuffle = true; 1245 for (unsigned i = 0; i < VWidth; i++) { 1246 unsigned MaskVal = Shuffle->getMaskValue(i); 1247 if (DemandedElts[i] && i != MaskVal) { 1248 IsIdentityShuffle = false; 1249 break; 1250 } 1251 } 1252 if (IsIdentityShuffle) 1253 return Shuffle->getOperand(0); 1254 } 1255 1256 bool NewUndefElts = false; 1257 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1258 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1259 bool LHSUniform = true; 1260 bool RHSUniform = true; 1261 for (unsigned i = 0; i < VWidth; i++) { 1262 unsigned MaskVal = Shuffle->getMaskValue(i); 1263 if (MaskVal == -1u) { 1264 UndefElts.setBit(i); 1265 } else if (!DemandedElts[i]) { 1266 NewUndefElts = true; 1267 UndefElts.setBit(i); 1268 } else if (MaskVal < OpWidth) { 1269 if (LHSUndefElts[MaskVal]) { 1270 NewUndefElts = true; 1271 UndefElts.setBit(i); 1272 } else { 1273 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1274 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1275 LHSUniform = LHSUniform && (MaskVal == i); 1276 } 1277 } else { 1278 if (RHSUndefElts[MaskVal - OpWidth]) { 1279 NewUndefElts = true; 1280 UndefElts.setBit(i); 1281 } else { 1282 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1283 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1284 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1285 } 1286 } 1287 } 1288 1289 // Try to transform shuffle with constant vector and single element from 1290 // this constant vector to single insertelement instruction. 1291 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1292 // insertelement V, C[ci], ci-n 1293 if (OpWidth == 1294 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1295 Value *Op = nullptr; 1296 Constant *Value = nullptr; 1297 unsigned Idx = -1u; 1298 1299 // Find constant vector with the single element in shuffle (LHS or RHS). 1300 if (LHSIdx < OpWidth && RHSUniform) { 1301 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1302 Op = Shuffle->getOperand(1); 1303 Value = CV->getOperand(LHSValIdx); 1304 Idx = LHSIdx; 1305 } 1306 } 1307 if (RHSIdx < OpWidth && LHSUniform) { 1308 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1309 Op = Shuffle->getOperand(0); 1310 Value = CV->getOperand(RHSValIdx); 1311 Idx = RHSIdx; 1312 } 1313 } 1314 // Found constant vector with single element - convert to insertelement. 1315 if (Op && Value) { 1316 Instruction *New = InsertElementInst::Create( 1317 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1318 Shuffle->getName()); 1319 InsertNewInstWith(New, *Shuffle); 1320 return New; 1321 } 1322 } 1323 if (NewUndefElts) { 1324 // Add additional discovered undefs. 1325 SmallVector<int, 16> Elts; 1326 for (unsigned i = 0; i < VWidth; ++i) { 1327 if (UndefElts[i]) 1328 Elts.push_back(UndefMaskElem); 1329 else 1330 Elts.push_back(Shuffle->getMaskValue(i)); 1331 } 1332 Shuffle->setShuffleMask(Elts); 1333 MadeChange = true; 1334 } 1335 break; 1336 } 1337 case Instruction::Select: { 1338 // If this is a vector select, try to transform the select condition based 1339 // on the current demanded elements. 1340 SelectInst *Sel = cast<SelectInst>(I); 1341 if (Sel->getCondition()->getType()->isVectorTy()) { 1342 // TODO: We are not doing anything with UndefElts based on this call. 1343 // It is overwritten below based on the other select operands. If an 1344 // element of the select condition is known undef, then we are free to 1345 // choose the output value from either arm of the select. If we know that 1346 // one of those values is undef, then the output can be undef. 1347 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1348 } 1349 1350 // Next, see if we can transform the arms of the select. 1351 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1352 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1353 for (unsigned i = 0; i < VWidth; i++) { 1354 // isNullValue() always returns false when called on a ConstantExpr. 1355 // Skip constant expressions to avoid propagating incorrect information. 1356 Constant *CElt = CV->getAggregateElement(i); 1357 if (isa<ConstantExpr>(CElt)) 1358 continue; 1359 // TODO: If a select condition element is undef, we can demand from 1360 // either side. If one side is known undef, choosing that side would 1361 // propagate undef. 1362 if (CElt->isNullValue()) 1363 DemandedLHS.clearBit(i); 1364 else 1365 DemandedRHS.clearBit(i); 1366 } 1367 } 1368 1369 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1370 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1371 1372 // Output elements are undefined if the element from each arm is undefined. 1373 // TODO: This can be improved. See comment in select condition handling. 1374 UndefElts = UndefElts2 & UndefElts3; 1375 break; 1376 } 1377 case Instruction::BitCast: { 1378 // Vector->vector casts only. 1379 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1380 if (!VTy) break; 1381 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1382 APInt InputDemandedElts(InVWidth, 0); 1383 UndefElts2 = APInt(InVWidth, 0); 1384 unsigned Ratio; 1385 1386 if (VWidth == InVWidth) { 1387 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1388 // elements as are demanded of us. 1389 Ratio = 1; 1390 InputDemandedElts = DemandedElts; 1391 } else if ((VWidth % InVWidth) == 0) { 1392 // If the number of elements in the output is a multiple of the number of 1393 // elements in the input then an input element is live if any of the 1394 // corresponding output elements are live. 1395 Ratio = VWidth / InVWidth; 1396 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1397 if (DemandedElts[OutIdx]) 1398 InputDemandedElts.setBit(OutIdx / Ratio); 1399 } else if ((InVWidth % VWidth) == 0) { 1400 // If the number of elements in the input is a multiple of the number of 1401 // elements in the output then an input element is live if the 1402 // corresponding output element is live. 1403 Ratio = InVWidth / VWidth; 1404 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1405 if (DemandedElts[InIdx / Ratio]) 1406 InputDemandedElts.setBit(InIdx); 1407 } else { 1408 // Unsupported so far. 1409 break; 1410 } 1411 1412 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1413 1414 if (VWidth == InVWidth) { 1415 UndefElts = UndefElts2; 1416 } else if ((VWidth % InVWidth) == 0) { 1417 // If the number of elements in the output is a multiple of the number of 1418 // elements in the input then an output element is undef if the 1419 // corresponding input element is undef. 1420 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1421 if (UndefElts2[OutIdx / Ratio]) 1422 UndefElts.setBit(OutIdx); 1423 } else if ((InVWidth % VWidth) == 0) { 1424 // If the number of elements in the input is a multiple of the number of 1425 // elements in the output then an output element is undef if all of the 1426 // corresponding input elements are undef. 1427 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1428 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1429 if (SubUndef.countPopulation() == Ratio) 1430 UndefElts.setBit(OutIdx); 1431 } 1432 } else { 1433 llvm_unreachable("Unimp"); 1434 } 1435 break; 1436 } 1437 case Instruction::FPTrunc: 1438 case Instruction::FPExt: 1439 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1440 break; 1441 1442 case Instruction::Call: { 1443 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1444 if (!II) break; 1445 switch (II->getIntrinsicID()) { 1446 case Intrinsic::masked_gather: // fallthrough 1447 case Intrinsic::masked_load: { 1448 // Subtlety: If we load from a pointer, the pointer must be valid 1449 // regardless of whether the element is demanded. Doing otherwise risks 1450 // segfaults which didn't exist in the original program. 1451 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1452 DemandedPassThrough(DemandedElts); 1453 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1454 for (unsigned i = 0; i < VWidth; i++) { 1455 Constant *CElt = CV->getAggregateElement(i); 1456 if (CElt->isNullValue()) 1457 DemandedPtrs.clearBit(i); 1458 else if (CElt->isAllOnesValue()) 1459 DemandedPassThrough.clearBit(i); 1460 } 1461 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1462 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1463 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1464 1465 // Output elements are undefined if the element from both sources are. 1466 // TODO: can strengthen via mask as well. 1467 UndefElts = UndefElts2 & UndefElts3; 1468 break; 1469 } 1470 default: { 1471 // Handle target specific intrinsics 1472 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1473 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1474 simplifyAndSetOp); 1475 if (V.hasValue()) 1476 return V.getValue(); 1477 break; 1478 } 1479 } // switch on IntrinsicID 1480 break; 1481 } // case Call 1482 } // switch on Opcode 1483 1484 // TODO: We bail completely on integer div/rem and shifts because they have 1485 // UB/poison potential, but that should be refined. 1486 BinaryOperator *BO; 1487 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1488 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1489 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1490 1491 // Any change to an instruction with potential poison must clear those flags 1492 // because we can not guarantee those constraints now. Other analysis may 1493 // determine that it is safe to re-apply the flags. 1494 if (MadeChange) 1495 BO->dropPoisonGeneratingFlags(); 1496 1497 // Output elements are undefined if both are undefined. Consider things 1498 // like undef & 0. The result is known zero, not undef. 1499 UndefElts &= UndefElts2; 1500 } 1501 1502 // If we've proven all of the lanes undef, return an undef value. 1503 // TODO: Intersect w/demanded lanes 1504 if (UndefElts.isAllOnesValue()) 1505 return UndefValue::get(I->getType());; 1506 1507 return MadeChange ? I : nullptr; 1508 } 1509