1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 /// Check to see if the specified operand of the specified instruction is a
26 /// constant integer. If so, check to see if there are any bits set in the
27 /// constant that are not demanded. If so, shrink the constant and return true.
28 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
29                                    APInt Demanded) {
30   assert(I && "No instruction?");
31   assert(OpNo < I->getNumOperands() && "Operand index too large");
32 
33   // The operand must be a constant integer or splat integer.
34   Value *Op = I->getOperand(OpNo);
35   const APInt *C;
36   if (!match(Op, m_APInt(C)))
37     return false;
38 
39   // If there are no bits set that aren't demanded, nothing to do.
40   Demanded = Demanded.zextOrTrunc(C->getBitWidth());
41   if ((~Demanded & *C) == 0)
42     return false;
43 
44   // This instruction is producing bits that are not demanded. Shrink the RHS.
45   Demanded &= *C;
46   I->setOperand(OpNo, ConstantInt::get(Op->getType(), Demanded));
47 
48   return true;
49 }
50 
51 
52 
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
55 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
56   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
58   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
59 
60   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
61                                      0, &Inst);
62   if (!V) return false;
63   if (V == &Inst) return true;
64   replaceInstUsesWith(Inst, V);
65   return true;
66 }
67 
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
71 bool InstCombiner::SimplifyDemandedBits(Use &U, const APInt &DemandedMask,
72                                         APInt &KnownZero, APInt &KnownOne,
73                                         unsigned Depth) {
74   auto *UserI = dyn_cast<Instruction>(U.getUser());
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero,
76                                           KnownOne, Depth, UserI);
77   if (!NewVal) return false;
78   U = NewVal;
79   return true;
80 }
81 
82 
83 /// This function attempts to replace V with a simpler value based on the
84 /// demanded bits. When this function is called, it is known that only the bits
85 /// set in DemandedMask of the result of V are ever used downstream.
86 /// Consequently, depending on the mask and V, it may be possible to replace V
87 /// with a constant or one of its operands. In such cases, this function does
88 /// the replacement and returns true. In all other cases, it returns false after
89 /// analyzing the expression and setting KnownOne and known to be one in the
90 /// expression. KnownZero contains all the bits that are known to be zero in the
91 /// expression. These are provided to potentially allow the caller (which might
92 /// recursively be SimplifyDemandedBits itself) to simplify the expression.
93 /// KnownOne and KnownZero always follow the invariant that:
94 ///   KnownOne & KnownZero == 0.
95 /// That is, a bit can't be both 1 and 0. Note that the bits in KnownOne and
96 /// KnownZero may only be accurate for those bits set in DemandedMask. Note also
97 /// that the bitwidth of V, DemandedMask, KnownZero and KnownOne must all be the
98 /// same.
99 ///
100 /// This returns null if it did not change anything and it permits no
101 /// simplification.  This returns V itself if it did some simplification of V's
102 /// operands based on the information about what bits are demanded. This returns
103 /// some other non-null value if it found out that V is equal to another value
104 /// in the context where the specified bits are demanded, but not for all users.
105 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
106                                              APInt &KnownZero, APInt &KnownOne,
107                                              unsigned Depth,
108                                              Instruction *CxtI) {
109   assert(V != nullptr && "Null pointer of Value???");
110   assert(Depth <= 6 && "Limit Search Depth");
111   uint32_t BitWidth = DemandedMask.getBitWidth();
112   Type *VTy = V->getType();
113   assert(
114       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
115       KnownZero.getBitWidth() == BitWidth &&
116       KnownOne.getBitWidth() == BitWidth &&
117       "Value *V, DemandedMask, KnownZero and KnownOne "
118       "must have same BitWidth");
119   const APInt *C;
120   if (match(V, m_APInt(C))) {
121     // We know all of the bits for a scalar constant or a splat vector constant!
122     KnownOne = *C & DemandedMask;
123     KnownZero = ~KnownOne & DemandedMask;
124     return nullptr;
125   }
126   if (isa<ConstantPointerNull>(V)) {
127     // We know all of the bits for a constant!
128     KnownOne.clearAllBits();
129     KnownZero = DemandedMask;
130     return nullptr;
131   }
132 
133   KnownZero.clearAllBits();
134   KnownOne.clearAllBits();
135   if (DemandedMask == 0) {   // Not demanding any bits from V.
136     if (isa<UndefValue>(V))
137       return nullptr;
138     return UndefValue::get(VTy);
139   }
140 
141   if (Depth == 6)        // Limit search depth.
142     return nullptr;
143 
144   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
145   APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
146 
147   Instruction *I = dyn_cast<Instruction>(V);
148   if (!I) {
149     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
150     return nullptr;        // Only analyze instructions.
151   }
152 
153   // If there are multiple uses of this value and we aren't at the root, then
154   // we can't do any simplifications of the operands, because DemandedMask
155   // only reflects the bits demanded by *one* of the users.
156   if (Depth != 0 && !I->hasOneUse()) {
157     // Despite the fact that we can't simplify this instruction in all User's
158     // context, we can at least compute the knownzero/knownone bits, and we can
159     // do simplifications that apply to *just* the one user if we know that
160     // this instruction has a simpler value in that context.
161     if (I->getOpcode() == Instruction::And) {
162       // If either the LHS or the RHS are Zero, the result is zero.
163       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
164                        CxtI);
165       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
166                        CxtI);
167 
168       // If all of the demanded bits are known 1 on one side, return the other.
169       // These bits cannot contribute to the result of the 'and' in this
170       // context.
171       if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
172           (DemandedMask & ~LHSKnownZero))
173         return I->getOperand(0);
174       if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
175           (DemandedMask & ~RHSKnownZero))
176         return I->getOperand(1);
177 
178       // If all of the demanded bits in the inputs are known zeros, return zero.
179       if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
180         return Constant::getNullValue(VTy);
181 
182     } else if (I->getOpcode() == Instruction::Or) {
183       // We can simplify (X|Y) -> X or Y in the user's context if we know that
184       // only bits from X or Y are demanded.
185 
186       // If either the LHS or the RHS are One, the result is One.
187       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
188                        CxtI);
189       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
190                        CxtI);
191 
192       // If all of the demanded bits are known zero on one side, return the
193       // other.  These bits cannot contribute to the result of the 'or' in this
194       // context.
195       if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
196           (DemandedMask & ~LHSKnownOne))
197         return I->getOperand(0);
198       if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
199           (DemandedMask & ~RHSKnownOne))
200         return I->getOperand(1);
201 
202       // If all of the potentially set bits on one side are known to be set on
203       // the other side, just use the 'other' side.
204       if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
205           (DemandedMask & (~RHSKnownZero)))
206         return I->getOperand(0);
207       if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
208           (DemandedMask & (~LHSKnownZero)))
209         return I->getOperand(1);
210     } else if (I->getOpcode() == Instruction::Xor) {
211       // We can simplify (X^Y) -> X or Y in the user's context if we know that
212       // only bits from X or Y are demanded.
213 
214       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
215                        CxtI);
216       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
217                        CxtI);
218 
219       // If all of the demanded bits are known zero on one side, return the
220       // other.
221       if ((DemandedMask & RHSKnownZero) == DemandedMask)
222         return I->getOperand(0);
223       if ((DemandedMask & LHSKnownZero) == DemandedMask)
224         return I->getOperand(1);
225     }
226 
227     // Compute the KnownZero/KnownOne bits to simplify things downstream.
228     computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
229     return nullptr;
230   }
231 
232   // If this is the root being simplified, allow it to have multiple uses,
233   // just set the DemandedMask to all bits so that we can try to simplify the
234   // operands.  This allows visitTruncInst (for example) to simplify the
235   // operand of a trunc without duplicating all the logic below.
236   if (Depth == 0 && !V->hasOneUse())
237     DemandedMask = APInt::getAllOnesValue(BitWidth);
238 
239   switch (I->getOpcode()) {
240   default:
241     computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
242     break;
243   case Instruction::And:
244     // If either the LHS or the RHS are Zero, the result is zero.
245     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
246                              RHSKnownOne, Depth + 1) ||
247         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
248                              LHSKnownZero, LHSKnownOne, Depth + 1))
249       return I;
250     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
251     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
252 
253     // If the client is only demanding bits that we know, return the known
254     // constant.
255     if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
256                          (RHSKnownOne & LHSKnownOne))) == DemandedMask)
257       return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
258 
259     // If all of the demanded bits are known 1 on one side, return the other.
260     // These bits cannot contribute to the result of the 'and'.
261     if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
262         (DemandedMask & ~LHSKnownZero))
263       return I->getOperand(0);
264     if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
265         (DemandedMask & ~RHSKnownZero))
266       return I->getOperand(1);
267 
268     // If all of the demanded bits in the inputs are known zeros, return zero.
269     if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
270       return Constant::getNullValue(VTy);
271 
272     // If the RHS is a constant, see if we can simplify it.
273     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
274       return I;
275 
276     // Output known-1 bits are only known if set in both the LHS & RHS.
277     KnownOne = RHSKnownOne & LHSKnownOne;
278     // Output known-0 are known to be clear if zero in either the LHS | RHS.
279     KnownZero = RHSKnownZero | LHSKnownZero;
280     break;
281   case Instruction::Or:
282     // If either the LHS or the RHS are One, the result is One.
283     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
284                              RHSKnownOne, Depth + 1) ||
285         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
286                              LHSKnownZero, LHSKnownOne, Depth + 1))
287       return I;
288     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
289     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
290 
291     // If the client is only demanding bits that we know, return the known
292     // constant.
293     if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
294                          (RHSKnownOne | LHSKnownOne))) == DemandedMask)
295       return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
296 
297     // If all of the demanded bits are known zero on one side, return the other.
298     // These bits cannot contribute to the result of the 'or'.
299     if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
300         (DemandedMask & ~LHSKnownOne))
301       return I->getOperand(0);
302     if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
303         (DemandedMask & ~RHSKnownOne))
304       return I->getOperand(1);
305 
306     // If all of the potentially set bits on one side are known to be set on
307     // the other side, just use the 'other' side.
308     if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
309         (DemandedMask & (~RHSKnownZero)))
310       return I->getOperand(0);
311     if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
312         (DemandedMask & (~LHSKnownZero)))
313       return I->getOperand(1);
314 
315     // If the RHS is a constant, see if we can simplify it.
316     if (ShrinkDemandedConstant(I, 1, DemandedMask))
317       return I;
318 
319     // Output known-0 bits are only known if clear in both the LHS & RHS.
320     KnownZero = RHSKnownZero & LHSKnownZero;
321     // Output known-1 are known to be set if set in either the LHS | RHS.
322     KnownOne = RHSKnownOne | LHSKnownOne;
323     break;
324   case Instruction::Xor: {
325     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
326                              RHSKnownOne, Depth + 1) ||
327         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
328                              LHSKnownOne, Depth + 1))
329       return I;
330     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
331     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
332 
333     // Output known-0 bits are known if clear or set in both the LHS & RHS.
334     APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
335                        (RHSKnownOne & LHSKnownOne);
336     // Output known-1 are known to be set if set in only one of the LHS, RHS.
337     APInt IKnownOne =  (RHSKnownZero & LHSKnownOne) |
338                        (RHSKnownOne & LHSKnownZero);
339 
340     // If the client is only demanding bits that we know, return the known
341     // constant.
342     if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
343       return Constant::getIntegerValue(VTy, IKnownOne);
344 
345     // If all of the demanded bits are known zero on one side, return the other.
346     // These bits cannot contribute to the result of the 'xor'.
347     if ((DemandedMask & RHSKnownZero) == DemandedMask)
348       return I->getOperand(0);
349     if ((DemandedMask & LHSKnownZero) == DemandedMask)
350       return I->getOperand(1);
351 
352     // If all of the demanded bits are known to be zero on one side or the
353     // other, turn this into an *inclusive* or.
354     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
355     if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
356       Instruction *Or =
357         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
358                                  I->getName());
359       return InsertNewInstWith(Or, *I);
360     }
361 
362     // If all of the demanded bits on one side are known, and all of the set
363     // bits on that side are also known to be set on the other side, turn this
364     // into an AND, as we know the bits will be cleared.
365     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
366     if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
367       // all known
368       if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
369         Constant *AndC = Constant::getIntegerValue(VTy,
370                                                    ~RHSKnownOne & DemandedMask);
371         Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
372         return InsertNewInstWith(And, *I);
373       }
374     }
375 
376     // If the RHS is a constant, see if we can simplify it.
377     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
378     if (ShrinkDemandedConstant(I, 1, DemandedMask))
379       return I;
380 
381     // If our LHS is an 'and' and if it has one use, and if any of the bits we
382     // are flipping are known to be set, then the xor is just resetting those
383     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
384     // simplifying both of them.
385     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
386       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
387           isa<ConstantInt>(I->getOperand(1)) &&
388           isa<ConstantInt>(LHSInst->getOperand(1)) &&
389           (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
390         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
391         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
392         APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
393 
394         Constant *AndC =
395           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
396         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
397         InsertNewInstWith(NewAnd, *I);
398 
399         Constant *XorC =
400           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
401         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
402         return InsertNewInstWith(NewXor, *I);
403       }
404 
405     // Output known-0 bits are known if clear or set in both the LHS & RHS.
406     KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
407     // Output known-1 are known to be set if set in only one of the LHS, RHS.
408     KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
409     break;
410   }
411   case Instruction::Select:
412     // If this is a select as part of a min/max pattern, don't simplify any
413     // further in case we break the structure.
414     Value *LHS, *RHS;
415     if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
416       return nullptr;
417 
418     if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
419                              RHSKnownOne, Depth + 1) ||
420         SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
421                              LHSKnownOne, Depth + 1))
422       return I;
423     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
424     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
425 
426     // If the operands are constants, see if we can simplify them.
427     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
428         ShrinkDemandedConstant(I, 2, DemandedMask))
429       return I;
430 
431     // Only known if known in both the LHS and RHS.
432     KnownOne = RHSKnownOne & LHSKnownOne;
433     KnownZero = RHSKnownZero & LHSKnownZero;
434     break;
435   case Instruction::Trunc: {
436     unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
437     DemandedMask = DemandedMask.zext(truncBf);
438     KnownZero = KnownZero.zext(truncBf);
439     KnownOne = KnownOne.zext(truncBf);
440     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
441                              KnownOne, Depth + 1))
442       return I;
443     DemandedMask = DemandedMask.trunc(BitWidth);
444     KnownZero = KnownZero.trunc(BitWidth);
445     KnownOne = KnownOne.trunc(BitWidth);
446     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
447     break;
448   }
449   case Instruction::BitCast:
450     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
451       return nullptr;  // vector->int or fp->int?
452 
453     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
454       if (VectorType *SrcVTy =
455             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
456         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
457           // Don't touch a bitcast between vectors of different element counts.
458           return nullptr;
459       } else
460         // Don't touch a scalar-to-vector bitcast.
461         return nullptr;
462     } else if (I->getOperand(0)->getType()->isVectorTy())
463       // Don't touch a vector-to-scalar bitcast.
464       return nullptr;
465 
466     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
467                              KnownOne, Depth + 1))
468       return I;
469     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
470     break;
471   case Instruction::ZExt: {
472     // Compute the bits in the result that are not present in the input.
473     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
474 
475     DemandedMask = DemandedMask.trunc(SrcBitWidth);
476     KnownZero = KnownZero.trunc(SrcBitWidth);
477     KnownOne = KnownOne.trunc(SrcBitWidth);
478     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
479                              KnownOne, Depth + 1))
480       return I;
481     DemandedMask = DemandedMask.zext(BitWidth);
482     KnownZero = KnownZero.zext(BitWidth);
483     KnownOne = KnownOne.zext(BitWidth);
484     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
485     // The top bits are known to be zero.
486     KnownZero.setBitsFrom(SrcBitWidth);
487     break;
488   }
489   case Instruction::SExt: {
490     // Compute the bits in the result that are not present in the input.
491     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
492 
493     APInt InputDemandedBits = DemandedMask &
494                               APInt::getLowBitsSet(BitWidth, SrcBitWidth);
495 
496     APInt NewBits(APInt::getBitsSetFrom(BitWidth, SrcBitWidth));
497     // If any of the sign extended bits are demanded, we know that the sign
498     // bit is demanded.
499     if ((NewBits & DemandedMask) != 0)
500       InputDemandedBits.setBit(SrcBitWidth-1);
501 
502     InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
503     KnownZero = KnownZero.trunc(SrcBitWidth);
504     KnownOne = KnownOne.trunc(SrcBitWidth);
505     if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
506                              KnownOne, Depth + 1))
507       return I;
508     InputDemandedBits = InputDemandedBits.zext(BitWidth);
509     KnownZero = KnownZero.zext(BitWidth);
510     KnownOne = KnownOne.zext(BitWidth);
511     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
512 
513     // If the sign bit of the input is known set or clear, then we know the
514     // top bits of the result.
515 
516     // If the input sign bit is known zero, or if the NewBits are not demanded
517     // convert this into a zero extension.
518     if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
519       // Convert to ZExt cast
520       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
521       return InsertNewInstWith(NewCast, *I);
522     } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
523       KnownOne |= NewBits;
524     }
525     break;
526   }
527   case Instruction::Add:
528   case Instruction::Sub: {
529     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
530     /// about the high bits of the operands.
531     unsigned NLZ = DemandedMask.countLeadingZeros();
532     if (NLZ > 0) {
533       // Right fill the mask of bits for this ADD/SUB to demand the most
534       // significant bit and all those below it.
535       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
536       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
537                                LHSKnownZero, LHSKnownOne, Depth + 1) ||
538           ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
539           SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
540                                LHSKnownZero, LHSKnownOne, Depth + 1)) {
541         // Disable the nsw and nuw flags here: We can no longer guarantee that
542         // we won't wrap after simplification. Removing the nsw/nuw flags is
543         // legal here because the top bit is not demanded.
544         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
545         BinOP.setHasNoSignedWrap(false);
546         BinOP.setHasNoUnsignedWrap(false);
547         return I;
548       }
549     }
550 
551     // Otherwise just hand the add/sub off to computeKnownBits to fill in
552     // the known zeros and ones.
553     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
554     break;
555   }
556   case Instruction::Shl:
557     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
558       {
559         Value *VarX; ConstantInt *C1;
560         if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
561           Instruction *Shr = cast<Instruction>(I->getOperand(0));
562           Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
563                                                 KnownZero, KnownOne);
564           if (R)
565             return R;
566         }
567       }
568 
569       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
570       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
571 
572       // If the shift is NUW/NSW, then it does demand the high bits.
573       ShlOperator *IOp = cast<ShlOperator>(I);
574       if (IOp->hasNoSignedWrap())
575         DemandedMaskIn.setHighBits(ShiftAmt+1);
576       else if (IOp->hasNoUnsignedWrap())
577         DemandedMaskIn.setHighBits(ShiftAmt);
578 
579       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
580                                KnownOne, Depth + 1))
581         return I;
582       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
583       KnownZero <<= ShiftAmt;
584       KnownOne  <<= ShiftAmt;
585       // low bits known zero.
586       if (ShiftAmt)
587         KnownZero.setLowBits(ShiftAmt);
588     }
589     break;
590   case Instruction::LShr:
591     // For a logical shift right
592     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
593       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
594 
595       // Unsigned shift right.
596       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
597 
598       // If the shift is exact, then it does demand the low bits (and knows that
599       // they are zero).
600       if (cast<LShrOperator>(I)->isExact())
601         DemandedMaskIn.setLowBits(ShiftAmt);
602 
603       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
604                                KnownOne, Depth + 1))
605         return I;
606       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
607       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
608       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
609       if (ShiftAmt)
610         KnownZero.setHighBits(ShiftAmt);  // high bits known zero.
611     }
612     break;
613   case Instruction::AShr:
614     // If this is an arithmetic shift right and only the low-bit is set, we can
615     // always convert this into a logical shr, even if the shift amount is
616     // variable.  The low bit of the shift cannot be an input sign bit unless
617     // the shift amount is >= the size of the datatype, which is undefined.
618     if (DemandedMask == 1) {
619       // Perform the logical shift right.
620       Instruction *NewVal = BinaryOperator::CreateLShr(
621                         I->getOperand(0), I->getOperand(1), I->getName());
622       return InsertNewInstWith(NewVal, *I);
623     }
624 
625     // If the sign bit is the only bit demanded by this ashr, then there is no
626     // need to do it, the shift doesn't change the high bit.
627     if (DemandedMask.isSignBit())
628       return I->getOperand(0);
629 
630     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
631       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
632 
633       // Signed shift right.
634       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
635       // If any of the "high bits" are demanded, we should set the sign bit as
636       // demanded.
637       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
638         DemandedMaskIn.setBit(BitWidth-1);
639 
640       // If the shift is exact, then it does demand the low bits (and knows that
641       // they are zero).
642       if (cast<AShrOperator>(I)->isExact())
643         DemandedMaskIn.setLowBits(ShiftAmt);
644 
645       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
646                                KnownOne, Depth + 1))
647         return I;
648       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
649       // Compute the new bits that are at the top now.
650       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
651       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
652       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
653 
654       // Handle the sign bits.
655       APInt SignBit(APInt::getSignBit(BitWidth));
656       // Adjust to where it is now in the mask.
657       SignBit = APIntOps::lshr(SignBit, ShiftAmt);
658 
659       // If the input sign bit is known to be zero, or if none of the top bits
660       // are demanded, turn this into an unsigned shift right.
661       if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
662           (HighBits & ~DemandedMask) == HighBits) {
663         // Perform the logical shift right.
664         BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
665                                                             SA, I->getName());
666         NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
667         return InsertNewInstWith(NewVal, *I);
668       } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
669         KnownOne |= HighBits;
670       }
671     }
672     break;
673   case Instruction::SRem:
674     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
675       // X % -1 demands all the bits because we don't want to introduce
676       // INT_MIN % -1 (== undef) by accident.
677       if (Rem->isAllOnesValue())
678         break;
679       APInt RA = Rem->getValue().abs();
680       if (RA.isPowerOf2()) {
681         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
682           return I->getOperand(0);
683 
684         APInt LowBits = RA - 1;
685         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
686         if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
687                                  LHSKnownOne, Depth + 1))
688           return I;
689 
690         // The low bits of LHS are unchanged by the srem.
691         KnownZero = LHSKnownZero & LowBits;
692         KnownOne = LHSKnownOne & LowBits;
693 
694         // If LHS is non-negative or has all low bits zero, then the upper bits
695         // are all zero.
696         if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
697           KnownZero |= ~LowBits;
698 
699         // If LHS is negative and not all low bits are zero, then the upper bits
700         // are all one.
701         if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
702           KnownOne |= ~LowBits;
703 
704         assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
705       }
706     }
707 
708     // The sign bit is the LHS's sign bit, except when the result of the
709     // remainder is zero.
710     if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
711       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
712       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
713                        CxtI);
714       // If it's known zero, our sign bit is also zero.
715       if (LHSKnownZero.isNegative())
716         KnownZero.setSignBit();
717     }
718     break;
719   case Instruction::URem: {
720     APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
721     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
722     if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
723                              KnownOne2, Depth + 1) ||
724         SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
725                              KnownOne2, Depth + 1))
726       return I;
727 
728     unsigned Leaders = KnownZero2.countLeadingOnes();
729     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
730     break;
731   }
732   case Instruction::Call:
733     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
734       switch (II->getIntrinsicID()) {
735       default: break;
736       case Intrinsic::bswap: {
737         // If the only bits demanded come from one byte of the bswap result,
738         // just shift the input byte into position to eliminate the bswap.
739         unsigned NLZ = DemandedMask.countLeadingZeros();
740         unsigned NTZ = DemandedMask.countTrailingZeros();
741 
742         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
743         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
744         // have 14 leading zeros, round to 8.
745         NLZ &= ~7;
746         NTZ &= ~7;
747         // If we need exactly one byte, we can do this transformation.
748         if (BitWidth-NLZ-NTZ == 8) {
749           unsigned ResultBit = NTZ;
750           unsigned InputBit = BitWidth-NTZ-8;
751 
752           // Replace this with either a left or right shift to get the byte into
753           // the right place.
754           Instruction *NewVal;
755           if (InputBit > ResultBit)
756             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
757                     ConstantInt::get(I->getType(), InputBit-ResultBit));
758           else
759             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
760                     ConstantInt::get(I->getType(), ResultBit-InputBit));
761           NewVal->takeName(I);
762           return InsertNewInstWith(NewVal, *I);
763         }
764 
765         // TODO: Could compute known zero/one bits based on the input.
766         break;
767       }
768       case Intrinsic::x86_mmx_pmovmskb:
769       case Intrinsic::x86_sse_movmsk_ps:
770       case Intrinsic::x86_sse2_movmsk_pd:
771       case Intrinsic::x86_sse2_pmovmskb_128:
772       case Intrinsic::x86_avx_movmsk_ps_256:
773       case Intrinsic::x86_avx_movmsk_pd_256:
774       case Intrinsic::x86_avx2_pmovmskb: {
775         // MOVMSK copies the vector elements' sign bits to the low bits
776         // and zeros the high bits.
777         unsigned ArgWidth;
778         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
779           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
780         } else {
781           auto Arg = II->getArgOperand(0);
782           auto ArgType = cast<VectorType>(Arg->getType());
783           ArgWidth = ArgType->getNumElements();
784         }
785 
786         // If we don't need any of low bits then return zero,
787         // we know that DemandedMask is non-zero already.
788         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
789         if (DemandedElts == 0)
790           return ConstantInt::getNullValue(VTy);
791 
792         // We know that the upper bits are set to zero.
793         KnownZero.setBitsFrom(ArgWidth);
794         return nullptr;
795       }
796       case Intrinsic::x86_sse42_crc32_64_64:
797         KnownZero.setBitsFrom(32);
798         return nullptr;
799       }
800     }
801     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
802     break;
803   }
804 
805   // If the client is only demanding bits that we know, return the known
806   // constant.
807   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
808     return Constant::getIntegerValue(VTy, KnownOne);
809   return nullptr;
810 }
811 
812 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
813 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
814 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
815 /// of "C2-C1".
816 ///
817 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
818 /// ..., bn}, without considering the specific value X is holding.
819 /// This transformation is legal iff one of following conditions is hold:
820 ///  1) All the bit in S are 0, in this case E1 == E2.
821 ///  2) We don't care those bits in S, per the input DemandedMask.
822 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
823 ///     rest bits.
824 ///
825 /// Currently we only test condition 2).
826 ///
827 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
828 /// not successful.
829 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
830                                                 Instruction *Shl,
831                                                 const APInt &DemandedMask,
832                                                 APInt &KnownZero,
833                                                 APInt &KnownOne) {
834 
835   const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
836   const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
837   if (!ShlOp1 || !ShrOp1)
838       return nullptr; // Noop.
839 
840   Value *VarX = Shr->getOperand(0);
841   Type *Ty = VarX->getType();
842   unsigned BitWidth = Ty->getIntegerBitWidth();
843   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
844     return nullptr; // Undef.
845 
846   unsigned ShlAmt = ShlOp1.getZExtValue();
847   unsigned ShrAmt = ShrOp1.getZExtValue();
848 
849   KnownOne.clearAllBits();
850   KnownZero.setLowBits(ShlAmt - 1);
851   KnownZero &= DemandedMask;
852 
853   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
854   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
855 
856   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
857   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
858                       (BitMask1.ashr(ShrAmt) << ShlAmt);
859 
860   if (ShrAmt <= ShlAmt) {
861     BitMask2 <<= (ShlAmt - ShrAmt);
862   } else {
863     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
864                         BitMask2.ashr(ShrAmt - ShlAmt);
865   }
866 
867   // Check if condition-2 (see the comment to this function) is satified.
868   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
869     if (ShrAmt == ShlAmt)
870       return VarX;
871 
872     if (!Shr->hasOneUse())
873       return nullptr;
874 
875     BinaryOperator *New;
876     if (ShrAmt < ShlAmt) {
877       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
878       New = BinaryOperator::CreateShl(VarX, Amt);
879       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
880       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
881       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
882     } else {
883       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
884       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
885                      BinaryOperator::CreateAShr(VarX, Amt);
886       if (cast<BinaryOperator>(Shr)->isExact())
887         New->setIsExact(true);
888     }
889 
890     return InsertNewInstWith(New, *Shl);
891   }
892 
893   return nullptr;
894 }
895 
896 /// The specified value produces a vector with any number of elements.
897 /// DemandedElts contains the set of elements that are actually used by the
898 /// caller. This method analyzes which elements of the operand are undef and
899 /// returns that information in UndefElts.
900 ///
901 /// If the information about demanded elements can be used to simplify the
902 /// operation, the operation is simplified, then the resultant value is
903 /// returned.  This returns null if no change was made.
904 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
905                                                 APInt &UndefElts,
906                                                 unsigned Depth) {
907   unsigned VWidth = V->getType()->getVectorNumElements();
908   APInt EltMask(APInt::getAllOnesValue(VWidth));
909   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
910 
911   if (isa<UndefValue>(V)) {
912     // If the entire vector is undefined, just return this info.
913     UndefElts = EltMask;
914     return nullptr;
915   }
916 
917   if (DemandedElts == 0) { // If nothing is demanded, provide undef.
918     UndefElts = EltMask;
919     return UndefValue::get(V->getType());
920   }
921 
922   UndefElts = 0;
923 
924   // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
925   if (Constant *C = dyn_cast<Constant>(V)) {
926     // Check if this is identity. If so, return 0 since we are not simplifying
927     // anything.
928     if (DemandedElts.isAllOnesValue())
929       return nullptr;
930 
931     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
932     Constant *Undef = UndefValue::get(EltTy);
933 
934     SmallVector<Constant*, 16> Elts;
935     for (unsigned i = 0; i != VWidth; ++i) {
936       if (!DemandedElts[i]) {   // If not demanded, set to undef.
937         Elts.push_back(Undef);
938         UndefElts.setBit(i);
939         continue;
940       }
941 
942       Constant *Elt = C->getAggregateElement(i);
943       if (!Elt) return nullptr;
944 
945       if (isa<UndefValue>(Elt)) {   // Already undef.
946         Elts.push_back(Undef);
947         UndefElts.setBit(i);
948       } else {                               // Otherwise, defined.
949         Elts.push_back(Elt);
950       }
951     }
952 
953     // If we changed the constant, return it.
954     Constant *NewCV = ConstantVector::get(Elts);
955     return NewCV != C ? NewCV : nullptr;
956   }
957 
958   // Limit search depth.
959   if (Depth == 10)
960     return nullptr;
961 
962   // If multiple users are using the root value, proceed with
963   // simplification conservatively assuming that all elements
964   // are needed.
965   if (!V->hasOneUse()) {
966     // Quit if we find multiple users of a non-root value though.
967     // They'll be handled when it's their turn to be visited by
968     // the main instcombine process.
969     if (Depth != 0)
970       // TODO: Just compute the UndefElts information recursively.
971       return nullptr;
972 
973     // Conservatively assume that all elements are needed.
974     DemandedElts = EltMask;
975   }
976 
977   Instruction *I = dyn_cast<Instruction>(V);
978   if (!I) return nullptr;        // Only analyze instructions.
979 
980   bool MadeChange = false;
981   APInt UndefElts2(VWidth, 0);
982   APInt UndefElts3(VWidth, 0);
983   Value *TmpV;
984   switch (I->getOpcode()) {
985   default: break;
986 
987   case Instruction::InsertElement: {
988     // If this is a variable index, we don't know which element it overwrites.
989     // demand exactly the same input as we produce.
990     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
991     if (!Idx) {
992       // Note that we can't propagate undef elt info, because we don't know
993       // which elt is getting updated.
994       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
995                                         UndefElts2, Depth + 1);
996       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
997       break;
998     }
999 
1000     // If this is inserting an element that isn't demanded, remove this
1001     // insertelement.
1002     unsigned IdxNo = Idx->getZExtValue();
1003     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1004       Worklist.Add(I);
1005       return I->getOperand(0);
1006     }
1007 
1008     // Otherwise, the element inserted overwrites whatever was there, so the
1009     // input demanded set is simpler than the output set.
1010     APInt DemandedElts2 = DemandedElts;
1011     DemandedElts2.clearBit(IdxNo);
1012     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1013                                       UndefElts, Depth + 1);
1014     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1015 
1016     // The inserted element is defined.
1017     UndefElts.clearBit(IdxNo);
1018     break;
1019   }
1020   case Instruction::ShuffleVector: {
1021     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1022     unsigned LHSVWidth =
1023       Shuffle->getOperand(0)->getType()->getVectorNumElements();
1024     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1025     for (unsigned i = 0; i < VWidth; i++) {
1026       if (DemandedElts[i]) {
1027         unsigned MaskVal = Shuffle->getMaskValue(i);
1028         if (MaskVal != -1u) {
1029           assert(MaskVal < LHSVWidth * 2 &&
1030                  "shufflevector mask index out of range!");
1031           if (MaskVal < LHSVWidth)
1032             LeftDemanded.setBit(MaskVal);
1033           else
1034             RightDemanded.setBit(MaskVal - LHSVWidth);
1035         }
1036       }
1037     }
1038 
1039     APInt LHSUndefElts(LHSVWidth, 0);
1040     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1041                                       LHSUndefElts, Depth + 1);
1042     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1043 
1044     APInt RHSUndefElts(LHSVWidth, 0);
1045     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1046                                       RHSUndefElts, Depth + 1);
1047     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1048 
1049     bool NewUndefElts = false;
1050     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1051     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1052     bool LHSUniform = true;
1053     bool RHSUniform = true;
1054     for (unsigned i = 0; i < VWidth; i++) {
1055       unsigned MaskVal = Shuffle->getMaskValue(i);
1056       if (MaskVal == -1u) {
1057         UndefElts.setBit(i);
1058       } else if (!DemandedElts[i]) {
1059         NewUndefElts = true;
1060         UndefElts.setBit(i);
1061       } else if (MaskVal < LHSVWidth) {
1062         if (LHSUndefElts[MaskVal]) {
1063           NewUndefElts = true;
1064           UndefElts.setBit(i);
1065         } else {
1066           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1067           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1068           LHSUniform = LHSUniform && (MaskVal == i);
1069         }
1070       } else {
1071         if (RHSUndefElts[MaskVal - LHSVWidth]) {
1072           NewUndefElts = true;
1073           UndefElts.setBit(i);
1074         } else {
1075           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1076           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1077           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1078         }
1079       }
1080     }
1081 
1082     // Try to transform shuffle with constant vector and single element from
1083     // this constant vector to single insertelement instruction.
1084     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1085     // insertelement V, C[ci], ci-n
1086     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1087       Value *Op = nullptr;
1088       Constant *Value = nullptr;
1089       unsigned Idx = -1u;
1090 
1091       // Find constant vector with the single element in shuffle (LHS or RHS).
1092       if (LHSIdx < LHSVWidth && RHSUniform) {
1093         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1094           Op = Shuffle->getOperand(1);
1095           Value = CV->getOperand(LHSValIdx);
1096           Idx = LHSIdx;
1097         }
1098       }
1099       if (RHSIdx < LHSVWidth && LHSUniform) {
1100         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1101           Op = Shuffle->getOperand(0);
1102           Value = CV->getOperand(RHSValIdx);
1103           Idx = RHSIdx;
1104         }
1105       }
1106       // Found constant vector with single element - convert to insertelement.
1107       if (Op && Value) {
1108         Instruction *New = InsertElementInst::Create(
1109             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1110             Shuffle->getName());
1111         InsertNewInstWith(New, *Shuffle);
1112         return New;
1113       }
1114     }
1115     if (NewUndefElts) {
1116       // Add additional discovered undefs.
1117       SmallVector<Constant*, 16> Elts;
1118       for (unsigned i = 0; i < VWidth; ++i) {
1119         if (UndefElts[i])
1120           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1121         else
1122           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1123                                           Shuffle->getMaskValue(i)));
1124       }
1125       I->setOperand(2, ConstantVector::get(Elts));
1126       MadeChange = true;
1127     }
1128     break;
1129   }
1130   case Instruction::Select: {
1131     APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1132     if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1133       for (unsigned i = 0; i < VWidth; i++) {
1134         Constant *CElt = CV->getAggregateElement(i);
1135         // Method isNullValue always returns false when called on a
1136         // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1137         // to avoid propagating incorrect information.
1138         if (isa<ConstantExpr>(CElt))
1139           continue;
1140         if (CElt->isNullValue())
1141           LeftDemanded.clearBit(i);
1142         else
1143           RightDemanded.clearBit(i);
1144       }
1145     }
1146 
1147     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1148                                       Depth + 1);
1149     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1150 
1151     TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1152                                       UndefElts2, Depth + 1);
1153     if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1154 
1155     // Output elements are undefined if both are undefined.
1156     UndefElts &= UndefElts2;
1157     break;
1158   }
1159   case Instruction::BitCast: {
1160     // Vector->vector casts only.
1161     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1162     if (!VTy) break;
1163     unsigned InVWidth = VTy->getNumElements();
1164     APInt InputDemandedElts(InVWidth, 0);
1165     UndefElts2 = APInt(InVWidth, 0);
1166     unsigned Ratio;
1167 
1168     if (VWidth == InVWidth) {
1169       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1170       // elements as are demanded of us.
1171       Ratio = 1;
1172       InputDemandedElts = DemandedElts;
1173     } else if ((VWidth % InVWidth) == 0) {
1174       // If the number of elements in the output is a multiple of the number of
1175       // elements in the input then an input element is live if any of the
1176       // corresponding output elements are live.
1177       Ratio = VWidth / InVWidth;
1178       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1179         if (DemandedElts[OutIdx])
1180           InputDemandedElts.setBit(OutIdx / Ratio);
1181     } else if ((InVWidth % VWidth) == 0) {
1182       // If the number of elements in the input is a multiple of the number of
1183       // elements in the output then an input element is live if the
1184       // corresponding output element is live.
1185       Ratio = InVWidth / VWidth;
1186       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1187         if (DemandedElts[InIdx / Ratio])
1188           InputDemandedElts.setBit(InIdx);
1189     } else {
1190       // Unsupported so far.
1191       break;
1192     }
1193 
1194     // div/rem demand all inputs, because they don't want divide by zero.
1195     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1196                                       UndefElts2, Depth + 1);
1197     if (TmpV) {
1198       I->setOperand(0, TmpV);
1199       MadeChange = true;
1200     }
1201 
1202     if (VWidth == InVWidth) {
1203       UndefElts = UndefElts2;
1204     } else if ((VWidth % InVWidth) == 0) {
1205       // If the number of elements in the output is a multiple of the number of
1206       // elements in the input then an output element is undef if the
1207       // corresponding input element is undef.
1208       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1209         if (UndefElts2[OutIdx / Ratio])
1210           UndefElts.setBit(OutIdx);
1211     } else if ((InVWidth % VWidth) == 0) {
1212       // If the number of elements in the input is a multiple of the number of
1213       // elements in the output then an output element is undef if all of the
1214       // corresponding input elements are undef.
1215       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1216         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1217         if (SubUndef.countPopulation() == Ratio)
1218           UndefElts.setBit(OutIdx);
1219       }
1220     } else {
1221       llvm_unreachable("Unimp");
1222     }
1223     break;
1224   }
1225   case Instruction::And:
1226   case Instruction::Or:
1227   case Instruction::Xor:
1228   case Instruction::Add:
1229   case Instruction::Sub:
1230   case Instruction::Mul:
1231     // div/rem demand all inputs, because they don't want divide by zero.
1232     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1233                                       Depth + 1);
1234     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1235     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1236                                       UndefElts2, Depth + 1);
1237     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1238 
1239     // Output elements are undefined if both are undefined.  Consider things
1240     // like undef&0.  The result is known zero, not undef.
1241     UndefElts &= UndefElts2;
1242     break;
1243   case Instruction::FPTrunc:
1244   case Instruction::FPExt:
1245     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1246                                       Depth + 1);
1247     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1248     break;
1249 
1250   case Instruction::Call: {
1251     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1252     if (!II) break;
1253     switch (II->getIntrinsicID()) {
1254     default: break;
1255 
1256     case Intrinsic::x86_xop_vfrcz_ss:
1257     case Intrinsic::x86_xop_vfrcz_sd:
1258       // The instructions for these intrinsics are speced to zero upper bits not
1259       // pass them through like other scalar intrinsics. So we shouldn't just
1260       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1261       // Instead we should return a zero vector.
1262       if (!DemandedElts[0]) {
1263         Worklist.Add(II);
1264         return ConstantAggregateZero::get(II->getType());
1265       }
1266 
1267       // Only the lower element is used.
1268       DemandedElts = 1;
1269       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1270                                         UndefElts, Depth + 1);
1271       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1272 
1273       // Only the lower element is undefined. The high elements are zero.
1274       UndefElts = UndefElts[0];
1275       break;
1276 
1277     // Unary scalar-as-vector operations that work column-wise.
1278     case Intrinsic::x86_sse_rcp_ss:
1279     case Intrinsic::x86_sse_rsqrt_ss:
1280     case Intrinsic::x86_sse_sqrt_ss:
1281     case Intrinsic::x86_sse2_sqrt_sd:
1282       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1283                                         UndefElts, Depth + 1);
1284       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1285 
1286       // If lowest element of a scalar op isn't used then use Arg0.
1287       if (!DemandedElts[0]) {
1288         Worklist.Add(II);
1289         return II->getArgOperand(0);
1290       }
1291       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1292       // checks).
1293       break;
1294 
1295     // Binary scalar-as-vector operations that work column-wise. The high
1296     // elements come from operand 0. The low element is a function of both
1297     // operands.
1298     case Intrinsic::x86_sse_min_ss:
1299     case Intrinsic::x86_sse_max_ss:
1300     case Intrinsic::x86_sse_cmp_ss:
1301     case Intrinsic::x86_sse2_min_sd:
1302     case Intrinsic::x86_sse2_max_sd:
1303     case Intrinsic::x86_sse2_cmp_sd: {
1304       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1305                                         UndefElts, Depth + 1);
1306       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1307 
1308       // If lowest element of a scalar op isn't used then use Arg0.
1309       if (!DemandedElts[0]) {
1310         Worklist.Add(II);
1311         return II->getArgOperand(0);
1312       }
1313 
1314       // Only lower element is used for operand 1.
1315       DemandedElts = 1;
1316       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1317                                         UndefElts2, Depth + 1);
1318       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1319 
1320       // Lower element is undefined if both lower elements are undefined.
1321       // Consider things like undef&0.  The result is known zero, not undef.
1322       if (!UndefElts2[0])
1323         UndefElts.clearBit(0);
1324 
1325       break;
1326     }
1327 
1328     // Binary scalar-as-vector operations that work column-wise. The high
1329     // elements come from operand 0 and the low element comes from operand 1.
1330     case Intrinsic::x86_sse41_round_ss:
1331     case Intrinsic::x86_sse41_round_sd: {
1332       // Don't use the low element of operand 0.
1333       APInt DemandedElts2 = DemandedElts;
1334       DemandedElts2.clearBit(0);
1335       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
1336                                         UndefElts, Depth + 1);
1337       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1338 
1339       // If lowest element of a scalar op isn't used then use Arg0.
1340       if (!DemandedElts[0]) {
1341         Worklist.Add(II);
1342         return II->getArgOperand(0);
1343       }
1344 
1345       // Only lower element is used for operand 1.
1346       DemandedElts = 1;
1347       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1348                                         UndefElts2, Depth + 1);
1349       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1350 
1351       // Take the high undef elements from operand 0 and take the lower element
1352       // from operand 1.
1353       UndefElts.clearBit(0);
1354       UndefElts |= UndefElts2[0];
1355       break;
1356     }
1357 
1358     // Three input scalar-as-vector operations that work column-wise. The high
1359     // elements come from operand 0 and the low element is a function of all
1360     // three inputs.
1361     case Intrinsic::x86_avx512_mask_add_ss_round:
1362     case Intrinsic::x86_avx512_mask_div_ss_round:
1363     case Intrinsic::x86_avx512_mask_mul_ss_round:
1364     case Intrinsic::x86_avx512_mask_sub_ss_round:
1365     case Intrinsic::x86_avx512_mask_max_ss_round:
1366     case Intrinsic::x86_avx512_mask_min_ss_round:
1367     case Intrinsic::x86_avx512_mask_add_sd_round:
1368     case Intrinsic::x86_avx512_mask_div_sd_round:
1369     case Intrinsic::x86_avx512_mask_mul_sd_round:
1370     case Intrinsic::x86_avx512_mask_sub_sd_round:
1371     case Intrinsic::x86_avx512_mask_max_sd_round:
1372     case Intrinsic::x86_avx512_mask_min_sd_round:
1373     case Intrinsic::x86_fma_vfmadd_ss:
1374     case Intrinsic::x86_fma_vfmsub_ss:
1375     case Intrinsic::x86_fma_vfnmadd_ss:
1376     case Intrinsic::x86_fma_vfnmsub_ss:
1377     case Intrinsic::x86_fma_vfmadd_sd:
1378     case Intrinsic::x86_fma_vfmsub_sd:
1379     case Intrinsic::x86_fma_vfnmadd_sd:
1380     case Intrinsic::x86_fma_vfnmsub_sd:
1381     case Intrinsic::x86_avx512_mask_vfmadd_ss:
1382     case Intrinsic::x86_avx512_mask_vfmadd_sd:
1383     case Intrinsic::x86_avx512_maskz_vfmadd_ss:
1384     case Intrinsic::x86_avx512_maskz_vfmadd_sd:
1385       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1386                                         UndefElts, Depth + 1);
1387       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1388 
1389       // If lowest element of a scalar op isn't used then use Arg0.
1390       if (!DemandedElts[0]) {
1391         Worklist.Add(II);
1392         return II->getArgOperand(0);
1393       }
1394 
1395       // Only lower element is used for operand 1 and 2.
1396       DemandedElts = 1;
1397       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1398                                         UndefElts2, Depth + 1);
1399       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1400       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1401                                         UndefElts3, Depth + 1);
1402       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1403 
1404       // Lower element is undefined if all three lower elements are undefined.
1405       // Consider things like undef&0.  The result is known zero, not undef.
1406       if (!UndefElts2[0] || !UndefElts3[0])
1407         UndefElts.clearBit(0);
1408 
1409       break;
1410 
1411     case Intrinsic::x86_avx512_mask3_vfmadd_ss:
1412     case Intrinsic::x86_avx512_mask3_vfmadd_sd:
1413     case Intrinsic::x86_avx512_mask3_vfmsub_ss:
1414     case Intrinsic::x86_avx512_mask3_vfmsub_sd:
1415     case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
1416     case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
1417       // These intrinsics get the passthru bits from operand 2.
1418       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1419                                         UndefElts, Depth + 1);
1420       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1421 
1422       // If lowest element of a scalar op isn't used then use Arg2.
1423       if (!DemandedElts[0]) {
1424         Worklist.Add(II);
1425         return II->getArgOperand(2);
1426       }
1427 
1428       // Only lower element is used for operand 0 and 1.
1429       DemandedElts = 1;
1430       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1431                                         UndefElts2, Depth + 1);
1432       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1433       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1434                                         UndefElts3, Depth + 1);
1435       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1436 
1437       // Lower element is undefined if all three lower elements are undefined.
1438       // Consider things like undef&0.  The result is known zero, not undef.
1439       if (!UndefElts2[0] || !UndefElts3[0])
1440         UndefElts.clearBit(0);
1441 
1442       break;
1443 
1444     case Intrinsic::x86_sse2_pmulu_dq:
1445     case Intrinsic::x86_sse41_pmuldq:
1446     case Intrinsic::x86_avx2_pmul_dq:
1447     case Intrinsic::x86_avx2_pmulu_dq:
1448     case Intrinsic::x86_avx512_pmul_dq_512:
1449     case Intrinsic::x86_avx512_pmulu_dq_512: {
1450       Value *Op0 = II->getArgOperand(0);
1451       Value *Op1 = II->getArgOperand(1);
1452       unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
1453       assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
1454 
1455       APInt InnerDemandedElts(InnerVWidth, 0);
1456       for (unsigned i = 0; i != VWidth; ++i)
1457         if (DemandedElts[i])
1458           InnerDemandedElts.setBit(i * 2);
1459 
1460       UndefElts2 = APInt(InnerVWidth, 0);
1461       TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
1462                                         Depth + 1);
1463       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1464 
1465       UndefElts3 = APInt(InnerVWidth, 0);
1466       TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
1467                                         Depth + 1);
1468       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1469 
1470       break;
1471     }
1472 
1473     case Intrinsic::x86_sse2_packssdw_128:
1474     case Intrinsic::x86_sse2_packsswb_128:
1475     case Intrinsic::x86_sse2_packuswb_128:
1476     case Intrinsic::x86_sse41_packusdw:
1477     case Intrinsic::x86_avx2_packssdw:
1478     case Intrinsic::x86_avx2_packsswb:
1479     case Intrinsic::x86_avx2_packusdw:
1480     case Intrinsic::x86_avx2_packuswb:
1481     case Intrinsic::x86_avx512_packssdw_512:
1482     case Intrinsic::x86_avx512_packsswb_512:
1483     case Intrinsic::x86_avx512_packusdw_512:
1484     case Intrinsic::x86_avx512_packuswb_512: {
1485       auto *Ty0 = II->getArgOperand(0)->getType();
1486       unsigned InnerVWidth = Ty0->getVectorNumElements();
1487       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1488 
1489       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1490       unsigned VWidthPerLane = VWidth / NumLanes;
1491       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1492 
1493       // Per lane, pack the elements of the first input and then the second.
1494       // e.g.
1495       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1496       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1497       for (int OpNum = 0; OpNum != 2; ++OpNum) {
1498         APInt OpDemandedElts(InnerVWidth, 0);
1499         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1500           unsigned LaneIdx = Lane * VWidthPerLane;
1501           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1502             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1503             if (DemandedElts[Idx])
1504               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1505           }
1506         }
1507 
1508         // Demand elements from the operand.
1509         auto *Op = II->getArgOperand(OpNum);
1510         APInt OpUndefElts(InnerVWidth, 0);
1511         TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1512                                           Depth + 1);
1513         if (TmpV) {
1514           II->setArgOperand(OpNum, TmpV);
1515           MadeChange = true;
1516         }
1517 
1518         // Pack the operand's UNDEF elements, one lane at a time.
1519         OpUndefElts = OpUndefElts.zext(VWidth);
1520         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1521           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1522           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1523           LaneElts = LaneElts.shl(InnerVWidthPerLane * (2 * Lane + OpNum));
1524           UndefElts |= LaneElts;
1525         }
1526       }
1527       break;
1528     }
1529 
1530     // PSHUFB
1531     case Intrinsic::x86_ssse3_pshuf_b_128:
1532     case Intrinsic::x86_avx2_pshuf_b:
1533     case Intrinsic::x86_avx512_pshuf_b_512:
1534     // PERMILVAR
1535     case Intrinsic::x86_avx_vpermilvar_ps:
1536     case Intrinsic::x86_avx_vpermilvar_ps_256:
1537     case Intrinsic::x86_avx512_vpermilvar_ps_512:
1538     case Intrinsic::x86_avx_vpermilvar_pd:
1539     case Intrinsic::x86_avx_vpermilvar_pd_256:
1540     case Intrinsic::x86_avx512_vpermilvar_pd_512:
1541     // PERMV
1542     case Intrinsic::x86_avx2_permd:
1543     case Intrinsic::x86_avx2_permps: {
1544       Value *Op1 = II->getArgOperand(1);
1545       TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1546                                         Depth + 1);
1547       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1548       break;
1549     }
1550 
1551     // SSE4A instructions leave the upper 64-bits of the 128-bit result
1552     // in an undefined state.
1553     case Intrinsic::x86_sse4a_extrq:
1554     case Intrinsic::x86_sse4a_extrqi:
1555     case Intrinsic::x86_sse4a_insertq:
1556     case Intrinsic::x86_sse4a_insertqi:
1557       UndefElts.setHighBits(VWidth / 2);
1558       break;
1559     case Intrinsic::amdgcn_buffer_load:
1560     case Intrinsic::amdgcn_buffer_load_format: {
1561       if (VWidth == 1 || !APIntOps::isMask(DemandedElts))
1562         return nullptr;
1563 
1564       // TODO: Handle 3 vectors when supported in code gen.
1565       unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes());
1566       if (NewNumElts == VWidth)
1567         return nullptr;
1568 
1569       Module *M = II->getParent()->getParent()->getParent();
1570       Type *EltTy = V->getType()->getVectorElementType();
1571 
1572       Type *NewTy = (NewNumElts == 1) ? EltTy :
1573         VectorType::get(EltTy, NewNumElts);
1574 
1575       Function *NewIntrin = Intrinsic::getDeclaration(M, II->getIntrinsicID(),
1576                                                       NewTy);
1577 
1578       SmallVector<Value *, 5> Args;
1579       for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1580         Args.push_back(II->getArgOperand(I));
1581 
1582       IRBuilderBase::InsertPointGuard Guard(*Builder);
1583       Builder->SetInsertPoint(II);
1584 
1585       CallInst *NewCall = Builder->CreateCall(NewIntrin, Args);
1586       NewCall->takeName(II);
1587       NewCall->copyMetadata(*II);
1588       if (NewNumElts == 1) {
1589         return Builder->CreateInsertElement(UndefValue::get(V->getType()),
1590                                             NewCall, static_cast<uint64_t>(0));
1591       }
1592 
1593       SmallVector<uint32_t, 8> EltMask;
1594       for (unsigned I = 0; I < VWidth; ++I)
1595         EltMask.push_back(I);
1596 
1597       Value *Shuffle = Builder->CreateShuffleVector(
1598         NewCall, UndefValue::get(NewTy), EltMask);
1599 
1600       MadeChange = true;
1601       return Shuffle;
1602     }
1603     }
1604     break;
1605   }
1606   }
1607   return MadeChange ? I : nullptr;
1608 }
1609