1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 66 } 67 // Compute derived properties from the register classes. 68 computeRegisterProperties(Subtarget->getRegisterInfo()); 69 70 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 71 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 72 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 73 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 74 setOperationAction(ISD::BRIND, MVT::Other, Custom); 75 76 // Take the default expansion for va_arg, va_copy, and va_end. There is no 77 // default action for va_start, so we do that custom. 78 setOperationAction(ISD::VASTART, MVT::Other, Custom); 79 setOperationAction(ISD::VAARG, MVT::Other, Expand); 80 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 81 setOperationAction(ISD::VAEND, MVT::Other, Expand); 82 83 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 84 // Don't expand the floating-point types to constant pools. 85 setOperationAction(ISD::ConstantFP, T, Legal); 86 // Expand floating-point comparisons. 87 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 88 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 89 setCondCodeAction(CC, T, Expand); 90 // Expand floating-point library function operators. 91 for (auto Op : 92 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 93 setOperationAction(Op, T, Expand); 94 // Note supported floating-point library function operators that otherwise 95 // default to expand. 96 for (auto Op : 97 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 98 setOperationAction(Op, T, Legal); 99 // Support minimum and maximum, which otherwise default to expand. 100 setOperationAction(ISD::FMINIMUM, T, Legal); 101 setOperationAction(ISD::FMAXIMUM, T, Legal); 102 // WebAssembly currently has no builtin f16 support. 103 setOperationAction(ISD::FP16_TO_FP, T, Expand); 104 setOperationAction(ISD::FP_TO_FP16, T, Expand); 105 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 106 setTruncStoreAction(T, MVT::f16, Expand); 107 } 108 109 // Expand unavailable integer operations. 110 for (auto Op : 111 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 112 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 113 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 114 for (auto T : {MVT::i32, MVT::i64}) 115 setOperationAction(Op, T, Expand); 116 if (Subtarget->hasSIMD128()) 117 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 118 setOperationAction(Op, T, Expand); 119 } 120 121 // SIMD-specific configuration 122 if (Subtarget->hasSIMD128()) { 123 // Support saturating add for i8x16 and i16x8 124 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 125 for (auto T : {MVT::v16i8, MVT::v8i16}) 126 setOperationAction(Op, T, Legal); 127 128 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 129 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 130 MVT::v2f64}) 131 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 132 133 // We have custom shuffle lowering to expose the shuffle mask 134 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 135 MVT::v2f64}) 136 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 137 138 // Custom lowering since wasm shifts must have a scalar shift amount 139 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 140 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 141 setOperationAction(Op, T, Custom); 142 143 // Custom lower lane accesses to expand out variable indices 144 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 145 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 146 MVT::v2f64}) 147 setOperationAction(Op, T, Custom); 148 149 // There is no i64x2.mul instruction 150 // TODO: Actually, there is now. Implement it. 151 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 152 153 // There are no vector select instructions 154 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) 155 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 156 MVT::v2f64}) 157 setOperationAction(Op, T, Expand); 158 159 // Expand integer operations supported for scalars but not SIMD 160 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 161 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 162 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 163 setOperationAction(Op, T, Expand); 164 165 // But we do have integer min and max operations 166 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 168 setOperationAction(Op, T, Legal); 169 170 // Expand float operations supported for scalars but not SIMD 171 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 172 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 173 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 174 for (auto T : {MVT::v4f32, MVT::v2f64}) 175 setOperationAction(Op, T, Expand); 176 177 // Expand operations not supported for i64x2 vectors 178 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 179 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 180 181 // 64x2 conversions are not in the spec 182 if (!Subtarget->hasUnimplementedSIMD128()) 183 for (auto Op : 184 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 185 for (auto T : {MVT::v2i64, MVT::v2f64}) 186 setOperationAction(Op, T, Expand); 187 } 188 189 // As a special case, these operators use the type to mean the type to 190 // sign-extend from. 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget->hasSignExt()) { 193 // Sign extends are legal only when extending a vector extract 194 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 195 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 196 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 197 } 198 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 199 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 200 201 // Dynamic stack allocation: use the default expansion. 202 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 203 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 204 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 205 206 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 207 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 208 209 // Expand these forms; we pattern-match the forms that we can handle in isel. 210 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 211 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 212 setOperationAction(Op, T, Expand); 213 214 // We have custom switch handling. 215 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 216 217 // WebAssembly doesn't have: 218 // - Floating-point extending loads. 219 // - Floating-point truncating stores. 220 // - i1 extending loads. 221 // - truncating SIMD stores and most extending loads 222 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 223 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 224 for (auto T : MVT::integer_valuetypes()) 225 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 226 setLoadExtAction(Ext, T, MVT::i1, Promote); 227 if (Subtarget->hasSIMD128()) { 228 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 229 MVT::v2f64}) { 230 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 231 if (MVT(T) != MemT) { 232 setTruncStoreAction(T, MemT, Expand); 233 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 234 setLoadExtAction(Ext, T, MemT, Expand); 235 } 236 } 237 } 238 // But some vector extending loads are legal 239 if (Subtarget->hasUnimplementedSIMD128()) { 240 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 241 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 242 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 243 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 244 } 245 } 246 } 247 248 // Don't do anything clever with build_pairs 249 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 250 251 // Trap lowers to wasm unreachable 252 setOperationAction(ISD::TRAP, MVT::Other, Legal); 253 254 // Exception handling intrinsics 255 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 256 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 257 258 setMaxAtomicSizeInBitsSupported(64); 259 260 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 261 // consistent with the f64 and f128 names. 262 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 263 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 264 265 // Define the emscripten name for return address helper. 266 // TODO: when implementing other WASM backends, make this generic or only do 267 // this on emscripten depending on what they end up doing. 268 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 269 270 // Always convert switches to br_tables unless there is only one case, which 271 // is equivalent to a simple branch. This reduces code size for wasm, and we 272 // defer possible jump table optimizations to the VM. 273 setMinimumJumpTableEntries(2); 274 } 275 276 TargetLowering::AtomicExpansionKind 277 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 278 // We have wasm instructions for these 279 switch (AI->getOperation()) { 280 case AtomicRMWInst::Add: 281 case AtomicRMWInst::Sub: 282 case AtomicRMWInst::And: 283 case AtomicRMWInst::Or: 284 case AtomicRMWInst::Xor: 285 case AtomicRMWInst::Xchg: 286 return AtomicExpansionKind::None; 287 default: 288 break; 289 } 290 return AtomicExpansionKind::CmpXChg; 291 } 292 293 FastISel *WebAssemblyTargetLowering::createFastISel( 294 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 295 return WebAssembly::createFastISel(FuncInfo, LibInfo); 296 } 297 298 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 299 EVT VT) const { 300 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 301 if (BitWidth > 1 && BitWidth < 8) 302 BitWidth = 8; 303 304 if (BitWidth > 64) { 305 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 306 // the count to be an i32. 307 BitWidth = 32; 308 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 309 "32-bit shift counts ought to be enough for anyone"); 310 } 311 312 MVT Result = MVT::getIntegerVT(BitWidth); 313 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 314 "Unable to represent scalar shift amount type"); 315 return Result; 316 } 317 318 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 319 // undefined result on invalid/overflow, to the WebAssembly opcode, which 320 // traps on invalid/overflow. 321 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 322 MachineBasicBlock *BB, 323 const TargetInstrInfo &TII, 324 bool IsUnsigned, bool Int64, 325 bool Float64, unsigned LoweredOpcode) { 326 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 327 328 Register OutReg = MI.getOperand(0).getReg(); 329 Register InReg = MI.getOperand(1).getReg(); 330 331 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 332 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 333 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 334 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 335 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 336 unsigned Eqz = WebAssembly::EQZ_I32; 337 unsigned And = WebAssembly::AND_I32; 338 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 339 int64_t Substitute = IsUnsigned ? 0 : Limit; 340 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 341 auto &Context = BB->getParent()->getFunction().getContext(); 342 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 343 344 const BasicBlock *LLVMBB = BB->getBasicBlock(); 345 MachineFunction *F = BB->getParent(); 346 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 347 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 348 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 349 350 MachineFunction::iterator It = ++BB->getIterator(); 351 F->insert(It, FalseMBB); 352 F->insert(It, TrueMBB); 353 F->insert(It, DoneMBB); 354 355 // Transfer the remainder of BB and its successor edges to DoneMBB. 356 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 357 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 358 359 BB->addSuccessor(TrueMBB); 360 BB->addSuccessor(FalseMBB); 361 TrueMBB->addSuccessor(DoneMBB); 362 FalseMBB->addSuccessor(DoneMBB); 363 364 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 365 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 366 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 367 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 368 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 369 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 370 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 371 372 MI.eraseFromParent(); 373 // For signed numbers, we can do a single comparison to determine whether 374 // fabs(x) is within range. 375 if (IsUnsigned) { 376 Tmp0 = InReg; 377 } else { 378 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 379 } 380 BuildMI(BB, DL, TII.get(FConst), Tmp1) 381 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 382 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 383 384 // For unsigned numbers, we have to do a separate comparison with zero. 385 if (IsUnsigned) { 386 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 387 Register SecondCmpReg = 388 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 389 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 390 BuildMI(BB, DL, TII.get(FConst), Tmp1) 391 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 392 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 393 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 394 CmpReg = AndReg; 395 } 396 397 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 398 399 // Create the CFG diamond to select between doing the conversion or using 400 // the substitute value. 401 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 402 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 403 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 404 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 405 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 406 .addReg(FalseReg) 407 .addMBB(FalseMBB) 408 .addReg(TrueReg) 409 .addMBB(TrueMBB); 410 411 return DoneMBB; 412 } 413 414 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 415 DebugLoc DL, MachineBasicBlock *BB, 416 const TargetInstrInfo &TII) { 417 MachineInstr &CallParams = *CallResults.getPrevNode(); 418 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 419 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 420 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 421 422 bool IsIndirect = CallParams.getOperand(0).isReg(); 423 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 424 425 unsigned CallOp; 426 if (IsIndirect && IsRetCall) { 427 CallOp = WebAssembly::RET_CALL_INDIRECT; 428 } else if (IsIndirect) { 429 CallOp = WebAssembly::CALL_INDIRECT; 430 } else if (IsRetCall) { 431 CallOp = WebAssembly::RET_CALL; 432 } else { 433 CallOp = WebAssembly::CALL; 434 } 435 436 MachineFunction &MF = *BB->getParent(); 437 const MCInstrDesc &MCID = TII.get(CallOp); 438 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 439 440 // Move the function pointer to the end of the arguments for indirect calls 441 if (IsIndirect) { 442 auto FnPtr = CallParams.getOperand(0); 443 CallParams.RemoveOperand(0); 444 CallParams.addOperand(FnPtr); 445 } 446 447 for (auto Def : CallResults.defs()) 448 MIB.add(Def); 449 450 // Add placeholders for the type index and immediate flags 451 if (IsIndirect) { 452 MIB.addImm(0); 453 MIB.addImm(0); 454 } 455 456 for (auto Use : CallParams.uses()) 457 MIB.add(Use); 458 459 BB->insert(CallResults.getIterator(), MIB); 460 CallParams.eraseFromParent(); 461 CallResults.eraseFromParent(); 462 463 return BB; 464 } 465 466 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 467 MachineInstr &MI, MachineBasicBlock *BB) const { 468 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 469 DebugLoc DL = MI.getDebugLoc(); 470 471 switch (MI.getOpcode()) { 472 default: 473 llvm_unreachable("Unexpected instr type to insert"); 474 case WebAssembly::FP_TO_SINT_I32_F32: 475 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 476 WebAssembly::I32_TRUNC_S_F32); 477 case WebAssembly::FP_TO_UINT_I32_F32: 478 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 479 WebAssembly::I32_TRUNC_U_F32); 480 case WebAssembly::FP_TO_SINT_I64_F32: 481 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 482 WebAssembly::I64_TRUNC_S_F32); 483 case WebAssembly::FP_TO_UINT_I64_F32: 484 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 485 WebAssembly::I64_TRUNC_U_F32); 486 case WebAssembly::FP_TO_SINT_I32_F64: 487 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 488 WebAssembly::I32_TRUNC_S_F64); 489 case WebAssembly::FP_TO_UINT_I32_F64: 490 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 491 WebAssembly::I32_TRUNC_U_F64); 492 case WebAssembly::FP_TO_SINT_I64_F64: 493 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 494 WebAssembly::I64_TRUNC_S_F64); 495 case WebAssembly::FP_TO_UINT_I64_F64: 496 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 497 WebAssembly::I64_TRUNC_U_F64); 498 case WebAssembly::CALL_RESULTS: 499 case WebAssembly::RET_CALL_RESULTS: 500 return LowerCallResults(MI, DL, BB, TII); 501 } 502 } 503 504 const char * 505 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 506 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 507 case WebAssemblyISD::FIRST_NUMBER: 508 case WebAssemblyISD::FIRST_MEM_OPCODE: 509 break; 510 #define HANDLE_NODETYPE(NODE) \ 511 case WebAssemblyISD::NODE: \ 512 return "WebAssemblyISD::" #NODE; 513 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 514 #include "WebAssemblyISD.def" 515 #undef HANDLE_MEM_NODETYPE 516 #undef HANDLE_NODETYPE 517 } 518 return nullptr; 519 } 520 521 std::pair<unsigned, const TargetRegisterClass *> 522 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 523 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 524 // First, see if this is a constraint that directly corresponds to a 525 // WebAssembly register class. 526 if (Constraint.size() == 1) { 527 switch (Constraint[0]) { 528 case 'r': 529 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 530 if (Subtarget->hasSIMD128() && VT.isVector()) { 531 if (VT.getSizeInBits() == 128) 532 return std::make_pair(0U, &WebAssembly::V128RegClass); 533 } 534 if (VT.isInteger() && !VT.isVector()) { 535 if (VT.getSizeInBits() <= 32) 536 return std::make_pair(0U, &WebAssembly::I32RegClass); 537 if (VT.getSizeInBits() <= 64) 538 return std::make_pair(0U, &WebAssembly::I64RegClass); 539 } 540 break; 541 default: 542 break; 543 } 544 } 545 546 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 547 } 548 549 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 550 // Assume ctz is a relatively cheap operation. 551 return true; 552 } 553 554 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 555 // Assume clz is a relatively cheap operation. 556 return true; 557 } 558 559 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 560 const AddrMode &AM, 561 Type *Ty, unsigned AS, 562 Instruction *I) const { 563 // WebAssembly offsets are added as unsigned without wrapping. The 564 // isLegalAddressingMode gives us no way to determine if wrapping could be 565 // happening, so we approximate this by accepting only non-negative offsets. 566 if (AM.BaseOffs < 0) 567 return false; 568 569 // WebAssembly has no scale register operands. 570 if (AM.Scale != 0) 571 return false; 572 573 // Everything else is legal. 574 return true; 575 } 576 577 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 578 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 579 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 580 // WebAssembly supports unaligned accesses, though it should be declared 581 // with the p2align attribute on loads and stores which do so, and there 582 // may be a performance impact. We tell LLVM they're "fast" because 583 // for the kinds of things that LLVM uses this for (merging adjacent stores 584 // of constants, etc.), WebAssembly implementations will either want the 585 // unaligned access or they'll split anyway. 586 if (Fast) 587 *Fast = true; 588 return true; 589 } 590 591 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 592 AttributeList Attr) const { 593 // The current thinking is that wasm engines will perform this optimization, 594 // so we can save on code size. 595 return true; 596 } 597 598 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 599 if (!Subtarget->hasUnimplementedSIMD128()) 600 return false; 601 MVT ExtT = ExtVal.getSimpleValueType(); 602 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 603 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 604 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 605 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 606 } 607 608 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 609 LLVMContext &C, 610 EVT VT) const { 611 if (VT.isVector()) 612 return VT.changeVectorElementTypeToInteger(); 613 614 return TargetLowering::getSetCCResultType(DL, C, VT); 615 } 616 617 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 618 const CallInst &I, 619 MachineFunction &MF, 620 unsigned Intrinsic) const { 621 switch (Intrinsic) { 622 case Intrinsic::wasm_atomic_notify: 623 Info.opc = ISD::INTRINSIC_W_CHAIN; 624 Info.memVT = MVT::i32; 625 Info.ptrVal = I.getArgOperand(0); 626 Info.offset = 0; 627 Info.align = Align(4); 628 // atomic.notify instruction does not really load the memory specified with 629 // this argument, but MachineMemOperand should either be load or store, so 630 // we set this to a load. 631 // FIXME Volatile isn't really correct, but currently all LLVM atomic 632 // instructions are treated as volatiles in the backend, so we should be 633 // consistent. The same applies for wasm_atomic_wait intrinsics too. 634 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 635 return true; 636 case Intrinsic::wasm_atomic_wait_i32: 637 Info.opc = ISD::INTRINSIC_W_CHAIN; 638 Info.memVT = MVT::i32; 639 Info.ptrVal = I.getArgOperand(0); 640 Info.offset = 0; 641 Info.align = Align(4); 642 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 643 return true; 644 case Intrinsic::wasm_atomic_wait_i64: 645 Info.opc = ISD::INTRINSIC_W_CHAIN; 646 Info.memVT = MVT::i64; 647 Info.ptrVal = I.getArgOperand(0); 648 Info.offset = 0; 649 Info.align = Align(8); 650 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 651 return true; 652 default: 653 return false; 654 } 655 } 656 657 //===----------------------------------------------------------------------===// 658 // WebAssembly Lowering private implementation. 659 //===----------------------------------------------------------------------===// 660 661 //===----------------------------------------------------------------------===// 662 // Lowering Code 663 //===----------------------------------------------------------------------===// 664 665 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 666 MachineFunction &MF = DAG.getMachineFunction(); 667 DAG.getContext()->diagnose( 668 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 669 } 670 671 // Test whether the given calling convention is supported. 672 static bool callingConvSupported(CallingConv::ID CallConv) { 673 // We currently support the language-independent target-independent 674 // conventions. We don't yet have a way to annotate calls with properties like 675 // "cold", and we don't have any call-clobbered registers, so these are mostly 676 // all handled the same. 677 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 678 CallConv == CallingConv::Cold || 679 CallConv == CallingConv::PreserveMost || 680 CallConv == CallingConv::PreserveAll || 681 CallConv == CallingConv::CXX_FAST_TLS || 682 CallConv == CallingConv::WASM_EmscriptenInvoke || 683 CallConv == CallingConv::Swift; 684 } 685 686 SDValue 687 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 688 SmallVectorImpl<SDValue> &InVals) const { 689 SelectionDAG &DAG = CLI.DAG; 690 SDLoc DL = CLI.DL; 691 SDValue Chain = CLI.Chain; 692 SDValue Callee = CLI.Callee; 693 MachineFunction &MF = DAG.getMachineFunction(); 694 auto Layout = MF.getDataLayout(); 695 696 CallingConv::ID CallConv = CLI.CallConv; 697 if (!callingConvSupported(CallConv)) 698 fail(DL, DAG, 699 "WebAssembly doesn't support language-specific or target-specific " 700 "calling conventions yet"); 701 if (CLI.IsPatchPoint) 702 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 703 704 if (CLI.IsTailCall) { 705 auto NoTail = [&](const char *Msg) { 706 if (CLI.CS && CLI.CS.isMustTailCall()) 707 fail(DL, DAG, Msg); 708 CLI.IsTailCall = false; 709 }; 710 711 if (!Subtarget->hasTailCall()) 712 NoTail("WebAssembly 'tail-call' feature not enabled"); 713 714 // Varargs calls cannot be tail calls because the buffer is on the stack 715 if (CLI.IsVarArg) 716 NoTail("WebAssembly does not support varargs tail calls"); 717 718 // Do not tail call unless caller and callee return types match 719 const Function &F = MF.getFunction(); 720 const TargetMachine &TM = getTargetMachine(); 721 Type *RetTy = F.getReturnType(); 722 SmallVector<MVT, 4> CallerRetTys; 723 SmallVector<MVT, 4> CalleeRetTys; 724 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 725 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 726 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 727 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 728 CalleeRetTys.begin()); 729 if (!TypesMatch) 730 NoTail("WebAssembly tail call requires caller and callee return types to " 731 "match"); 732 733 // If pointers to local stack values are passed, we cannot tail call 734 if (CLI.CS) { 735 for (auto &Arg : CLI.CS.args()) { 736 Value *Val = Arg.get(); 737 // Trace the value back through pointer operations 738 while (true) { 739 Value *Src = Val->stripPointerCastsAndAliases(); 740 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 741 Src = GEP->getPointerOperand(); 742 if (Val == Src) 743 break; 744 Val = Src; 745 } 746 if (isa<AllocaInst>(Val)) { 747 NoTail( 748 "WebAssembly does not support tail calling with stack arguments"); 749 break; 750 } 751 } 752 } 753 } 754 755 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 756 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 757 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 758 759 // The generic code may have added an sret argument. If we're lowering an 760 // invoke function, the ABI requires that the function pointer be the first 761 // argument, so we may have to swap the arguments. 762 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 763 Outs[0].Flags.isSRet()) { 764 std::swap(Outs[0], Outs[1]); 765 std::swap(OutVals[0], OutVals[1]); 766 } 767 768 unsigned NumFixedArgs = 0; 769 for (unsigned I = 0; I < Outs.size(); ++I) { 770 const ISD::OutputArg &Out = Outs[I]; 771 SDValue &OutVal = OutVals[I]; 772 if (Out.Flags.isNest()) 773 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 774 if (Out.Flags.isInAlloca()) 775 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 776 if (Out.Flags.isInConsecutiveRegs()) 777 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 778 if (Out.Flags.isInConsecutiveRegsLast()) 779 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 780 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 781 auto &MFI = MF.getFrameInfo(); 782 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 783 Out.Flags.getNonZeroByValAlign(), 784 /*isSS=*/false); 785 SDValue SizeNode = 786 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 787 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 788 Chain = DAG.getMemcpy( 789 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 790 /*isVolatile*/ false, /*AlwaysInline=*/false, 791 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 792 OutVal = FINode; 793 } 794 // Count the number of fixed args *after* legalization. 795 NumFixedArgs += Out.IsFixed; 796 } 797 798 bool IsVarArg = CLI.IsVarArg; 799 auto PtrVT = getPointerTy(Layout); 800 801 // Analyze operands of the call, assigning locations to each operand. 802 SmallVector<CCValAssign, 16> ArgLocs; 803 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 804 805 if (IsVarArg) { 806 // Outgoing non-fixed arguments are placed in a buffer. First 807 // compute their offsets and the total amount of buffer space needed. 808 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 809 const ISD::OutputArg &Out = Outs[I]; 810 SDValue &Arg = OutVals[I]; 811 EVT VT = Arg.getValueType(); 812 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 813 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 814 unsigned Align = std::max(Out.Flags.getOrigAlign(), 815 Layout.getABITypeAlignment(Ty)); 816 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 817 Align); 818 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 819 Offset, VT.getSimpleVT(), 820 CCValAssign::Full)); 821 } 822 } 823 824 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 825 826 SDValue FINode; 827 if (IsVarArg && NumBytes) { 828 // For non-fixed arguments, next emit stores to store the argument values 829 // to the stack buffer at the offsets computed above. 830 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 831 Layout.getStackAlignment(), 832 /*isSS=*/false); 833 unsigned ValNo = 0; 834 SmallVector<SDValue, 8> Chains; 835 for (SDValue Arg : 836 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 837 assert(ArgLocs[ValNo].getValNo() == ValNo && 838 "ArgLocs should remain in order and only hold varargs args"); 839 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 840 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 841 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 842 DAG.getConstant(Offset, DL, PtrVT)); 843 Chains.push_back( 844 DAG.getStore(Chain, DL, Arg, Add, 845 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 846 } 847 if (!Chains.empty()) 848 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 849 } else if (IsVarArg) { 850 FINode = DAG.getIntPtrConstant(0, DL); 851 } 852 853 if (Callee->getOpcode() == ISD::GlobalAddress) { 854 // If the callee is a GlobalAddress node (quite common, every direct call 855 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 856 // doesn't at MO_GOT which is not needed for direct calls. 857 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 858 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 859 getPointerTy(DAG.getDataLayout()), 860 GA->getOffset()); 861 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 862 getPointerTy(DAG.getDataLayout()), Callee); 863 } 864 865 // Compute the operands for the CALLn node. 866 SmallVector<SDValue, 16> Ops; 867 Ops.push_back(Chain); 868 Ops.push_back(Callee); 869 870 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 871 // isn't reliable. 872 Ops.append(OutVals.begin(), 873 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 874 // Add a pointer to the vararg buffer. 875 if (IsVarArg) 876 Ops.push_back(FINode); 877 878 SmallVector<EVT, 8> InTys; 879 for (const auto &In : Ins) { 880 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 881 assert(!In.Flags.isNest() && "nest is not valid for return values"); 882 if (In.Flags.isInAlloca()) 883 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 884 if (In.Flags.isInConsecutiveRegs()) 885 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 886 if (In.Flags.isInConsecutiveRegsLast()) 887 fail(DL, DAG, 888 "WebAssembly hasn't implemented cons regs last return values"); 889 // Ignore In.getOrigAlign() because all our arguments are passed in 890 // registers. 891 InTys.push_back(In.VT); 892 } 893 894 if (CLI.IsTailCall) { 895 // ret_calls do not return values to the current frame 896 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 897 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 898 } 899 900 InTys.push_back(MVT::Other); 901 SDVTList InTyList = DAG.getVTList(InTys); 902 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 903 904 for (size_t I = 0; I < Ins.size(); ++I) 905 InVals.push_back(Res.getValue(I)); 906 907 // Return the chain 908 return Res.getValue(Ins.size()); 909 } 910 911 bool WebAssemblyTargetLowering::CanLowerReturn( 912 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 913 const SmallVectorImpl<ISD::OutputArg> &Outs, 914 LLVMContext & /*Context*/) const { 915 // WebAssembly can only handle returning tuples with multivalue enabled 916 return Subtarget->hasMultivalue() || Outs.size() <= 1; 917 } 918 919 SDValue WebAssemblyTargetLowering::LowerReturn( 920 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 921 const SmallVectorImpl<ISD::OutputArg> &Outs, 922 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 923 SelectionDAG &DAG) const { 924 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 925 "MVP WebAssembly can only return up to one value"); 926 if (!callingConvSupported(CallConv)) 927 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 928 929 SmallVector<SDValue, 4> RetOps(1, Chain); 930 RetOps.append(OutVals.begin(), OutVals.end()); 931 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 932 933 // Record the number and types of the return values. 934 for (const ISD::OutputArg &Out : Outs) { 935 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 936 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 937 assert(Out.IsFixed && "non-fixed return value is not valid"); 938 if (Out.Flags.isInAlloca()) 939 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 940 if (Out.Flags.isInConsecutiveRegs()) 941 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 942 if (Out.Flags.isInConsecutiveRegsLast()) 943 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 944 } 945 946 return Chain; 947 } 948 949 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 950 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 951 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 952 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 953 if (!callingConvSupported(CallConv)) 954 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 955 956 MachineFunction &MF = DAG.getMachineFunction(); 957 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 958 959 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 960 // of the incoming values before they're represented by virtual registers. 961 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 962 963 for (const ISD::InputArg &In : Ins) { 964 if (In.Flags.isInAlloca()) 965 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 966 if (In.Flags.isNest()) 967 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 968 if (In.Flags.isInConsecutiveRegs()) 969 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 970 if (In.Flags.isInConsecutiveRegsLast()) 971 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 972 // Ignore In.getOrigAlign() because all our arguments are passed in 973 // registers. 974 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 975 DAG.getTargetConstant(InVals.size(), 976 DL, MVT::i32)) 977 : DAG.getUNDEF(In.VT)); 978 979 // Record the number and types of arguments. 980 MFI->addParam(In.VT); 981 } 982 983 // Varargs are copied into a buffer allocated by the caller, and a pointer to 984 // the buffer is passed as an argument. 985 if (IsVarArg) { 986 MVT PtrVT = getPointerTy(MF.getDataLayout()); 987 Register VarargVreg = 988 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 989 MFI->setVarargBufferVreg(VarargVreg); 990 Chain = DAG.getCopyToReg( 991 Chain, DL, VarargVreg, 992 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 993 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 994 MFI->addParam(PtrVT); 995 } 996 997 // Record the number and types of arguments and results. 998 SmallVector<MVT, 4> Params; 999 SmallVector<MVT, 4> Results; 1000 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 1001 DAG.getTarget(), Params, Results); 1002 for (MVT VT : Results) 1003 MFI->addResult(VT); 1004 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1005 // the param logic here with ComputeSignatureVTs 1006 assert(MFI->getParams().size() == Params.size() && 1007 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1008 Params.begin())); 1009 1010 return Chain; 1011 } 1012 1013 void WebAssemblyTargetLowering::ReplaceNodeResults( 1014 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1015 switch (N->getOpcode()) { 1016 case ISD::SIGN_EXTEND_INREG: 1017 // Do not add any results, signifying that N should not be custom lowered 1018 // after all. This happens because simd128 turns on custom lowering for 1019 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1020 // illegal type. 1021 break; 1022 default: 1023 llvm_unreachable( 1024 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1025 } 1026 } 1027 1028 //===----------------------------------------------------------------------===// 1029 // Custom lowering hooks. 1030 //===----------------------------------------------------------------------===// 1031 1032 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1033 SelectionDAG &DAG) const { 1034 SDLoc DL(Op); 1035 switch (Op.getOpcode()) { 1036 default: 1037 llvm_unreachable("unimplemented operation lowering"); 1038 return SDValue(); 1039 case ISD::FrameIndex: 1040 return LowerFrameIndex(Op, DAG); 1041 case ISD::GlobalAddress: 1042 return LowerGlobalAddress(Op, DAG); 1043 case ISD::ExternalSymbol: 1044 return LowerExternalSymbol(Op, DAG); 1045 case ISD::JumpTable: 1046 return LowerJumpTable(Op, DAG); 1047 case ISD::BR_JT: 1048 return LowerBR_JT(Op, DAG); 1049 case ISD::VASTART: 1050 return LowerVASTART(Op, DAG); 1051 case ISD::BlockAddress: 1052 case ISD::BRIND: 1053 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1054 return SDValue(); 1055 case ISD::RETURNADDR: 1056 return LowerRETURNADDR(Op, DAG); 1057 case ISD::FRAMEADDR: 1058 return LowerFRAMEADDR(Op, DAG); 1059 case ISD::CopyToReg: 1060 return LowerCopyToReg(Op, DAG); 1061 case ISD::EXTRACT_VECTOR_ELT: 1062 case ISD::INSERT_VECTOR_ELT: 1063 return LowerAccessVectorElement(Op, DAG); 1064 case ISD::INTRINSIC_VOID: 1065 case ISD::INTRINSIC_WO_CHAIN: 1066 case ISD::INTRINSIC_W_CHAIN: 1067 return LowerIntrinsic(Op, DAG); 1068 case ISD::SIGN_EXTEND_INREG: 1069 return LowerSIGN_EXTEND_INREG(Op, DAG); 1070 case ISD::BUILD_VECTOR: 1071 return LowerBUILD_VECTOR(Op, DAG); 1072 case ISD::VECTOR_SHUFFLE: 1073 return LowerVECTOR_SHUFFLE(Op, DAG); 1074 case ISD::SETCC: 1075 return LowerSETCC(Op, DAG); 1076 case ISD::SHL: 1077 case ISD::SRA: 1078 case ISD::SRL: 1079 return LowerShift(Op, DAG); 1080 } 1081 } 1082 1083 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1084 SelectionDAG &DAG) const { 1085 SDValue Src = Op.getOperand(2); 1086 if (isa<FrameIndexSDNode>(Src.getNode())) { 1087 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1088 // the FI to some LEA-like instruction, but since we don't have that, we 1089 // need to insert some kind of instruction that can take an FI operand and 1090 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1091 // local.copy between Op and its FI operand. 1092 SDValue Chain = Op.getOperand(0); 1093 SDLoc DL(Op); 1094 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1095 EVT VT = Src.getValueType(); 1096 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1097 : WebAssembly::COPY_I64, 1098 DL, VT, Src), 1099 0); 1100 return Op.getNode()->getNumValues() == 1 1101 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1102 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1103 Op.getNumOperands() == 4 ? Op.getOperand(3) 1104 : SDValue()); 1105 } 1106 return SDValue(); 1107 } 1108 1109 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1110 SelectionDAG &DAG) const { 1111 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1112 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1113 } 1114 1115 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1116 SelectionDAG &DAG) const { 1117 SDLoc DL(Op); 1118 1119 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1120 fail(DL, DAG, 1121 "Non-Emscripten WebAssembly hasn't implemented " 1122 "__builtin_return_address"); 1123 return SDValue(); 1124 } 1125 1126 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1127 return SDValue(); 1128 1129 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1130 MakeLibCallOptions CallOptions; 1131 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1132 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1133 .first; 1134 } 1135 1136 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1137 SelectionDAG &DAG) const { 1138 // Non-zero depths are not supported by WebAssembly currently. Use the 1139 // legalizer's default expansion, which is to return 0 (what this function is 1140 // documented to do). 1141 if (Op.getConstantOperandVal(0) > 0) 1142 return SDValue(); 1143 1144 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1145 EVT VT = Op.getValueType(); 1146 Register FP = 1147 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1148 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1149 } 1150 1151 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1152 SelectionDAG &DAG) const { 1153 SDLoc DL(Op); 1154 const auto *GA = cast<GlobalAddressSDNode>(Op); 1155 EVT VT = Op.getValueType(); 1156 assert(GA->getTargetFlags() == 0 && 1157 "Unexpected target flags on generic GlobalAddressSDNode"); 1158 if (GA->getAddressSpace() != 0) 1159 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1160 1161 unsigned OperandFlags = 0; 1162 if (isPositionIndependent()) { 1163 const GlobalValue *GV = GA->getGlobal(); 1164 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1165 MachineFunction &MF = DAG.getMachineFunction(); 1166 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1167 const char *BaseName; 1168 if (GV->getValueType()->isFunctionTy()) { 1169 BaseName = MF.createExternalSymbolName("__table_base"); 1170 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1171 } 1172 else { 1173 BaseName = MF.createExternalSymbolName("__memory_base"); 1174 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1175 } 1176 SDValue BaseAddr = 1177 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1178 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1179 1180 SDValue SymAddr = DAG.getNode( 1181 WebAssemblyISD::WrapperPIC, DL, VT, 1182 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1183 OperandFlags)); 1184 1185 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1186 } else { 1187 OperandFlags = WebAssemblyII::MO_GOT; 1188 } 1189 } 1190 1191 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1192 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1193 GA->getOffset(), OperandFlags)); 1194 } 1195 1196 SDValue 1197 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1198 SelectionDAG &DAG) const { 1199 SDLoc DL(Op); 1200 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1201 EVT VT = Op.getValueType(); 1202 assert(ES->getTargetFlags() == 0 && 1203 "Unexpected target flags on generic ExternalSymbolSDNode"); 1204 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1205 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1206 } 1207 1208 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1209 SelectionDAG &DAG) const { 1210 // There's no need for a Wrapper node because we always incorporate a jump 1211 // table operand into a BR_TABLE instruction, rather than ever 1212 // materializing it in a register. 1213 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1214 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1215 JT->getTargetFlags()); 1216 } 1217 1218 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1219 SelectionDAG &DAG) const { 1220 SDLoc DL(Op); 1221 SDValue Chain = Op.getOperand(0); 1222 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1223 SDValue Index = Op.getOperand(2); 1224 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1225 1226 SmallVector<SDValue, 8> Ops; 1227 Ops.push_back(Chain); 1228 Ops.push_back(Index); 1229 1230 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1231 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1232 1233 // Add an operand for each case. 1234 for (auto MBB : MBBs) 1235 Ops.push_back(DAG.getBasicBlock(MBB)); 1236 1237 // TODO: For now, we just pick something arbitrary for a default case for now. 1238 // We really want to sniff out the guard and put in the real default case (and 1239 // delete the guard). 1240 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1241 1242 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1243 } 1244 1245 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1246 SelectionDAG &DAG) const { 1247 SDLoc DL(Op); 1248 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1249 1250 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1251 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1252 1253 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1254 MFI->getVarargBufferVreg(), PtrVT); 1255 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1256 MachinePointerInfo(SV), 0); 1257 } 1258 1259 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1260 SelectionDAG &DAG) const { 1261 MachineFunction &MF = DAG.getMachineFunction(); 1262 unsigned IntNo; 1263 switch (Op.getOpcode()) { 1264 case ISD::INTRINSIC_VOID: 1265 case ISD::INTRINSIC_W_CHAIN: 1266 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1267 break; 1268 case ISD::INTRINSIC_WO_CHAIN: 1269 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1270 break; 1271 default: 1272 llvm_unreachable("Invalid intrinsic"); 1273 } 1274 SDLoc DL(Op); 1275 1276 switch (IntNo) { 1277 default: 1278 return SDValue(); // Don't custom lower most intrinsics. 1279 1280 case Intrinsic::wasm_lsda: { 1281 EVT VT = Op.getValueType(); 1282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1283 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1284 auto &Context = MF.getMMI().getContext(); 1285 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1286 Twine(MF.getFunctionNumber())); 1287 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1288 DAG.getMCSymbol(S, PtrVT)); 1289 } 1290 1291 case Intrinsic::wasm_throw: { 1292 // We only support C++ exceptions for now 1293 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1294 if (Tag != CPP_EXCEPTION) 1295 llvm_unreachable("Invalid tag!"); 1296 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1297 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1298 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1299 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1300 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1301 return DAG.getNode(WebAssemblyISD::THROW, DL, 1302 MVT::Other, // outchain type 1303 { 1304 Op.getOperand(0), // inchain 1305 SymNode, // exception symbol 1306 Op.getOperand(3) // thrown value 1307 }); 1308 } 1309 } 1310 } 1311 1312 SDValue 1313 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1314 SelectionDAG &DAG) const { 1315 SDLoc DL(Op); 1316 // If sign extension operations are disabled, allow sext_inreg only if operand 1317 // is a vector extract. SIMD does not depend on sign extension operations, but 1318 // allowing sext_inreg in this context lets us have simple patterns to select 1319 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1320 // simpler in this file, but would necessitate large and brittle patterns to 1321 // undo the expansion and select extract_lane_s instructions. 1322 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1323 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1324 const SDValue &Extract = Op.getOperand(0); 1325 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1326 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1327 ->getVT() 1328 .getSimpleVT(); 1329 MVT ExtractedVecT = 1330 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1331 if (ExtractedVecT == VecT) 1332 return Op; 1333 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1334 const SDValue &Index = Extract.getOperand(1); 1335 unsigned IndexVal = 1336 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1337 unsigned Scale = 1338 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1339 assert(Scale > 1); 1340 SDValue NewIndex = 1341 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1342 SDValue NewExtract = DAG.getNode( 1343 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1344 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1345 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), 1346 NewExtract, Op.getOperand(1)); 1347 } 1348 // Otherwise expand 1349 return SDValue(); 1350 } 1351 1352 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1353 SelectionDAG &DAG) const { 1354 SDLoc DL(Op); 1355 const EVT VecT = Op.getValueType(); 1356 const EVT LaneT = Op.getOperand(0).getValueType(); 1357 const size_t Lanes = Op.getNumOperands(); 1358 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8; 1359 1360 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1361 // possible number of lanes at once followed by a sequence of replace_lane 1362 // instructions to individually initialize any remaining lanes. 1363 1364 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1365 // swizzled lanes should be given greater weight. 1366 1367 // TODO: Investigate building vectors by shuffling together vectors built by 1368 // separately specialized means. 1369 1370 auto IsConstant = [](const SDValue &V) { 1371 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1372 }; 1373 1374 // Returns the source vector and index vector pair if they exist. Checks for: 1375 // (extract_vector_elt 1376 // $src, 1377 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1378 // ) 1379 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1380 auto Bail = std::make_pair(SDValue(), SDValue()); 1381 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1382 return Bail; 1383 const SDValue &SwizzleSrc = Lane->getOperand(0); 1384 const SDValue &IndexExt = Lane->getOperand(1); 1385 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1386 return Bail; 1387 const SDValue &Index = IndexExt->getOperand(0); 1388 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1389 return Bail; 1390 const SDValue &SwizzleIndices = Index->getOperand(0); 1391 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1392 SwizzleIndices.getValueType() != MVT::v16i8 || 1393 Index->getOperand(1)->getOpcode() != ISD::Constant || 1394 Index->getConstantOperandVal(1) != I) 1395 return Bail; 1396 return std::make_pair(SwizzleSrc, SwizzleIndices); 1397 }; 1398 1399 using ValueEntry = std::pair<SDValue, size_t>; 1400 SmallVector<ValueEntry, 16> SplatValueCounts; 1401 1402 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1403 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1404 1405 auto AddCount = [](auto &Counts, const auto &Val) { 1406 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1407 [&Val](auto E) { return E.first == Val; }); 1408 if (CountIt == Counts.end()) { 1409 Counts.emplace_back(Val, 1); 1410 } else { 1411 CountIt->second++; 1412 } 1413 }; 1414 1415 auto GetMostCommon = [](auto &Counts) { 1416 auto CommonIt = 1417 std::max_element(Counts.begin(), Counts.end(), 1418 [](auto A, auto B) { return A.second < B.second; }); 1419 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1420 return *CommonIt; 1421 }; 1422 1423 size_t NumConstantLanes = 0; 1424 1425 // Count eligible lanes for each type of vector creation op 1426 for (size_t I = 0; I < Lanes; ++I) { 1427 const SDValue &Lane = Op->getOperand(I); 1428 if (Lane.isUndef()) 1429 continue; 1430 1431 AddCount(SplatValueCounts, Lane); 1432 1433 if (IsConstant(Lane)) { 1434 NumConstantLanes++; 1435 } else if (CanSwizzle) { 1436 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1437 if (SwizzleSrcs.first) 1438 AddCount(SwizzleCounts, SwizzleSrcs); 1439 } 1440 } 1441 1442 SDValue SplatValue; 1443 size_t NumSplatLanes; 1444 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1445 1446 SDValue SwizzleSrc; 1447 SDValue SwizzleIndices; 1448 size_t NumSwizzleLanes = 0; 1449 if (SwizzleCounts.size()) 1450 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1451 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1452 1453 // Predicate returning true if the lane is properly initialized by the 1454 // original instruction 1455 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1456 SDValue Result; 1457 if (Subtarget->hasUnimplementedSIMD128()) { 1458 // Prefer swizzles over vector consts over splats 1459 if (NumSwizzleLanes >= NumSplatLanes && 1460 NumSwizzleLanes >= NumConstantLanes) { 1461 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1462 SwizzleIndices); 1463 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1464 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1465 return Swizzled == GetSwizzleSrcs(I, Lane); 1466 }; 1467 } else if (NumConstantLanes >= NumSplatLanes) { 1468 SmallVector<SDValue, 16> ConstLanes; 1469 for (const SDValue &Lane : Op->op_values()) { 1470 if (IsConstant(Lane)) { 1471 ConstLanes.push_back(Lane); 1472 } else if (LaneT.isFloatingPoint()) { 1473 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1474 } else { 1475 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1476 } 1477 } 1478 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1479 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1480 return IsConstant(Lane); 1481 }; 1482 } 1483 } 1484 if (!Result) { 1485 // Use a splat, but possibly a load_splat 1486 LoadSDNode *SplattedLoad; 1487 if (Subtarget->hasUnimplementedSIMD128() && 1488 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1489 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1490 Result = DAG.getMemIntrinsicNode( 1491 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1492 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1493 SplattedLoad->getOffset()}, 1494 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1495 } else { 1496 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1497 } 1498 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1499 return Lane == SplatValue; 1500 }; 1501 } 1502 1503 // Add replace_lane instructions for any unhandled values 1504 for (size_t I = 0; I < Lanes; ++I) { 1505 const SDValue &Lane = Op->getOperand(I); 1506 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1507 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1508 DAG.getConstant(I, DL, MVT::i32)); 1509 } 1510 1511 return Result; 1512 } 1513 1514 SDValue 1515 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1516 SelectionDAG &DAG) const { 1517 SDLoc DL(Op); 1518 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1519 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1520 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1521 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1522 1523 // Space for two vector args and sixteen mask indices 1524 SDValue Ops[18]; 1525 size_t OpIdx = 0; 1526 Ops[OpIdx++] = Op.getOperand(0); 1527 Ops[OpIdx++] = Op.getOperand(1); 1528 1529 // Expand mask indices to byte indices and materialize them as operands 1530 for (int M : Mask) { 1531 for (size_t J = 0; J < LaneBytes; ++J) { 1532 // Lower undefs (represented by -1 in mask) to zero 1533 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1534 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1535 } 1536 } 1537 1538 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1539 } 1540 1541 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1542 SelectionDAG &DAG) const { 1543 SDLoc DL(Op); 1544 // The legalizer does not know how to expand the comparison modes of i64x2 1545 // vectors because no comparison modes are supported. We could solve this by 1546 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1547 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1548 // comparisons here. 1549 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1550 SmallVector<SDValue, 2> LHS, RHS; 1551 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1552 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1553 const SDValue &CC = Op->getOperand(2); 1554 auto MakeLane = [&](unsigned I) { 1555 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1556 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1557 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1558 }; 1559 return DAG.getBuildVector(Op->getValueType(0), DL, 1560 {MakeLane(0), MakeLane(1)}); 1561 } 1562 1563 SDValue 1564 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1565 SelectionDAG &DAG) const { 1566 // Allow constant lane indices, expand variable lane indices 1567 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1568 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1569 return Op; 1570 else 1571 // Perform default expansion 1572 return SDValue(); 1573 } 1574 1575 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1576 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1577 // 32-bit and 64-bit unrolled shifts will have proper semantics 1578 if (LaneT.bitsGE(MVT::i32)) 1579 return DAG.UnrollVectorOp(Op.getNode()); 1580 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1581 SDLoc DL(Op); 1582 SDValue ShiftVal = Op.getOperand(1); 1583 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1584 SDValue MaskedShiftVal = DAG.getNode( 1585 ISD::AND, // mask opcode 1586 DL, ShiftVal.getValueType(), // masked value type 1587 ShiftVal, // original shift value operand 1588 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1589 ); 1590 1591 return DAG.UnrollVectorOp( 1592 DAG.getNode(Op.getOpcode(), // original shift opcode 1593 DL, Op.getValueType(), // original return type 1594 Op.getOperand(0), // original vector operand, 1595 MaskedShiftVal // new masked shift value operand 1596 ) 1597 .getNode()); 1598 } 1599 1600 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1601 SelectionDAG &DAG) const { 1602 SDLoc DL(Op); 1603 1604 // Only manually lower vector shifts 1605 assert(Op.getSimpleValueType().isVector()); 1606 1607 // Unroll non-splat vector shifts 1608 BuildVectorSDNode *ShiftVec; 1609 SDValue SplatVal; 1610 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1611 !(SplatVal = ShiftVec->getSplatValue())) 1612 return unrollVectorShift(Op, DAG); 1613 1614 // All splats except i64x2 const splats are handled by patterns 1615 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1616 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1617 return Op; 1618 1619 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1620 unsigned Opcode; 1621 switch (Op.getOpcode()) { 1622 case ISD::SHL: 1623 Opcode = WebAssemblyISD::VEC_SHL; 1624 break; 1625 case ISD::SRA: 1626 Opcode = WebAssemblyISD::VEC_SHR_S; 1627 break; 1628 case ISD::SRL: 1629 Opcode = WebAssemblyISD::VEC_SHR_U; 1630 break; 1631 default: 1632 llvm_unreachable("unexpected opcode"); 1633 } 1634 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1635 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1636 DAG.getConstant(Shift, DL, MVT::i32)); 1637 } 1638 1639 //===----------------------------------------------------------------------===// 1640 // WebAssembly Optimization Hooks 1641 //===----------------------------------------------------------------------===// 1642