1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssemblyMachineFunctionInfo.h"
19 #include "WebAssemblySubtarget.h"
20 #include "WebAssemblyTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsWebAssembly.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetOptions.h"
41 using namespace llvm;
42
43 #define DEBUG_TYPE "wasm-lower"
44
WebAssemblyTargetLowering(const TargetMachine & TM,const WebAssemblySubtarget & STI)45 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
46 const TargetMachine &TM, const WebAssemblySubtarget &STI)
47 : TargetLowering(TM), Subtarget(&STI) {
48 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
49
50 // Booleans always contain 0 or 1.
51 setBooleanContents(ZeroOrOneBooleanContent);
52 // Except in SIMD vectors
53 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
54 // We don't know the microarchitecture here, so just reduce register pressure.
55 setSchedulingPreference(Sched::RegPressure);
56 // Tell ISel that we have a stack pointer.
57 setStackPointerRegisterToSaveRestore(
58 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
59 // Set up the register classes.
60 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
61 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
62 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
63 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
64 if (Subtarget->hasSIMD128()) {
65 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
66 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
67 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
68 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
69 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
70 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
71 }
72 if (Subtarget->hasReferenceTypes()) {
73 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
74 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
75 }
76 // Compute derived properties from the register classes.
77 computeRegisterProperties(Subtarget->getRegisterInfo());
78
79 // Transform loads and stores to pointers in address space 1 to loads and
80 // stores to WebAssembly global variables, outside linear memory.
81 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
82 setOperationAction(ISD::LOAD, T, Custom);
83 setOperationAction(ISD::STORE, T, Custom);
84 }
85 if (Subtarget->hasSIMD128()) {
86 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
87 MVT::v2f64}) {
88 setOperationAction(ISD::LOAD, T, Custom);
89 setOperationAction(ISD::STORE, T, Custom);
90 }
91 }
92 if (Subtarget->hasReferenceTypes()) {
93 // We need custom load and store lowering for both externref, funcref and
94 // Other. The MVT::Other here represents tables of reference types.
95 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
96 setOperationAction(ISD::LOAD, T, Custom);
97 setOperationAction(ISD::STORE, T, Custom);
98 }
99 }
100
101 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
102 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
103 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
104 setOperationAction(ISD::JumpTable, MVTPtr, Custom);
105 setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
106 setOperationAction(ISD::BRIND, MVT::Other, Custom);
107
108 // Take the default expansion for va_arg, va_copy, and va_end. There is no
109 // default action for va_start, so we do that custom.
110 setOperationAction(ISD::VASTART, MVT::Other, Custom);
111 setOperationAction(ISD::VAARG, MVT::Other, Expand);
112 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
113 setOperationAction(ISD::VAEND, MVT::Other, Expand);
114
115 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
116 // Don't expand the floating-point types to constant pools.
117 setOperationAction(ISD::ConstantFP, T, Legal);
118 // Expand floating-point comparisons.
119 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
120 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
121 setCondCodeAction(CC, T, Expand);
122 // Expand floating-point library function operators.
123 for (auto Op :
124 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
125 setOperationAction(Op, T, Expand);
126 // Note supported floating-point library function operators that otherwise
127 // default to expand.
128 for (auto Op :
129 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
130 setOperationAction(Op, T, Legal);
131 // Support minimum and maximum, which otherwise default to expand.
132 setOperationAction(ISD::FMINIMUM, T, Legal);
133 setOperationAction(ISD::FMAXIMUM, T, Legal);
134 // WebAssembly currently has no builtin f16 support.
135 setOperationAction(ISD::FP16_TO_FP, T, Expand);
136 setOperationAction(ISD::FP_TO_FP16, T, Expand);
137 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
138 setTruncStoreAction(T, MVT::f16, Expand);
139 }
140
141 // Expand unavailable integer operations.
142 for (auto Op :
143 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
144 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
145 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
146 for (auto T : {MVT::i32, MVT::i64})
147 setOperationAction(Op, T, Expand);
148 if (Subtarget->hasSIMD128())
149 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
150 setOperationAction(Op, T, Expand);
151 }
152
153 if (Subtarget->hasNontrappingFPToInt())
154 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
155 for (auto T : {MVT::i32, MVT::i64})
156 setOperationAction(Op, T, Custom);
157
158 // SIMD-specific configuration
159 if (Subtarget->hasSIMD128()) {
160 // Hoist bitcasts out of shuffles
161 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
162
163 // Combine extends of extract_subvectors into widening ops
164 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND});
165
166 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
167 // conversions ops
168 setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND,
169 ISD::EXTRACT_SUBVECTOR});
170
171 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
172 // into conversion ops
173 setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
174 ISD::FP_ROUND, ISD::CONCAT_VECTORS});
175
176 setTargetDAGCombine(ISD::TRUNCATE);
177
178 // Support saturating add for i8x16 and i16x8
179 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
180 for (auto T : {MVT::v16i8, MVT::v8i16})
181 setOperationAction(Op, T, Legal);
182
183 // Support integer abs
184 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
185 setOperationAction(ISD::ABS, T, Legal);
186
187 // Custom lower BUILD_VECTORs to minimize number of replace_lanes
188 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
189 MVT::v2f64})
190 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
191
192 // We have custom shuffle lowering to expose the shuffle mask
193 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
194 MVT::v2f64})
195 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
196
197 // Custom lowering since wasm shifts must have a scalar shift amount
198 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
199 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
200 setOperationAction(Op, T, Custom);
201
202 // Custom lower lane accesses to expand out variable indices
203 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
204 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
205 MVT::v2f64})
206 setOperationAction(Op, T, Custom);
207
208 // There is no i8x16.mul instruction
209 setOperationAction(ISD::MUL, MVT::v16i8, Expand);
210
211 // There is no vector conditional select instruction
212 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
213 MVT::v2f64})
214 setOperationAction(ISD::SELECT_CC, T, Expand);
215
216 // Expand integer operations supported for scalars but not SIMD
217 for (auto Op :
218 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
219 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
220 setOperationAction(Op, T, Expand);
221
222 // But we do have integer min and max operations
223 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
224 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
225 setOperationAction(Op, T, Legal);
226
227 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
228 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
229 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
230 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
231
232 // Custom lower bit counting operations for other types to scalarize them.
233 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
234 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
235 setOperationAction(Op, T, Custom);
236
237 // Expand float operations supported for scalars but not SIMD
238 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
239 ISD::FEXP, ISD::FEXP2, ISD::FRINT})
240 for (auto T : {MVT::v4f32, MVT::v2f64})
241 setOperationAction(Op, T, Expand);
242
243 // Unsigned comparison operations are unavailable for i64x2 vectors.
244 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
245 setCondCodeAction(CC, MVT::v2i64, Custom);
246
247 // 64x2 conversions are not in the spec
248 for (auto Op :
249 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
250 for (auto T : {MVT::v2i64, MVT::v2f64})
251 setOperationAction(Op, T, Expand);
252
253 // But saturating fp_to_int converstions are
254 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
255 setOperationAction(Op, MVT::v4i32, Custom);
256 }
257
258 // As a special case, these operators use the type to mean the type to
259 // sign-extend from.
260 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
261 if (!Subtarget->hasSignExt()) {
262 // Sign extends are legal only when extending a vector extract
263 auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
264 for (auto T : {MVT::i8, MVT::i16, MVT::i32})
265 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
266 }
267 for (auto T : MVT::integer_fixedlen_vector_valuetypes())
268 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
269
270 // Dynamic stack allocation: use the default expansion.
271 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
272 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
273 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
274
275 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
276 setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
277 setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
278
279 // Expand these forms; we pattern-match the forms that we can handle in isel.
280 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
281 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
282 setOperationAction(Op, T, Expand);
283
284 // We have custom switch handling.
285 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
286
287 // WebAssembly doesn't have:
288 // - Floating-point extending loads.
289 // - Floating-point truncating stores.
290 // - i1 extending loads.
291 // - truncating SIMD stores and most extending loads
292 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
293 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
294 for (auto T : MVT::integer_valuetypes())
295 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
296 setLoadExtAction(Ext, T, MVT::i1, Promote);
297 if (Subtarget->hasSIMD128()) {
298 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
299 MVT::v2f64}) {
300 for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
301 if (MVT(T) != MemT) {
302 setTruncStoreAction(T, MemT, Expand);
303 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
304 setLoadExtAction(Ext, T, MemT, Expand);
305 }
306 }
307 }
308 // But some vector extending loads are legal
309 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
310 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
311 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
312 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
313 }
314 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
315 }
316
317 // Don't do anything clever with build_pairs
318 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
319
320 // Trap lowers to wasm unreachable
321 setOperationAction(ISD::TRAP, MVT::Other, Legal);
322 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
323
324 // Exception handling intrinsics
325 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
326 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
327 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
328
329 setMaxAtomicSizeInBitsSupported(64);
330
331 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
332 // consistent with the f64 and f128 names.
333 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
334 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
335
336 // Define the emscripten name for return address helper.
337 // TODO: when implementing other Wasm backends, make this generic or only do
338 // this on emscripten depending on what they end up doing.
339 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
340
341 // Always convert switches to br_tables unless there is only one case, which
342 // is equivalent to a simple branch. This reduces code size for wasm, and we
343 // defer possible jump table optimizations to the VM.
344 setMinimumJumpTableEntries(2);
345 }
346
getPointerTy(const DataLayout & DL,uint32_t AS) const347 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
348 uint32_t AS) const {
349 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
350 return MVT::externref;
351 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
352 return MVT::funcref;
353 return TargetLowering::getPointerTy(DL, AS);
354 }
355
getPointerMemTy(const DataLayout & DL,uint32_t AS) const356 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
357 uint32_t AS) const {
358 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
359 return MVT::externref;
360 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
361 return MVT::funcref;
362 return TargetLowering::getPointerMemTy(DL, AS);
363 }
364
365 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const366 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
367 // We have wasm instructions for these
368 switch (AI->getOperation()) {
369 case AtomicRMWInst::Add:
370 case AtomicRMWInst::Sub:
371 case AtomicRMWInst::And:
372 case AtomicRMWInst::Or:
373 case AtomicRMWInst::Xor:
374 case AtomicRMWInst::Xchg:
375 return AtomicExpansionKind::None;
376 default:
377 break;
378 }
379 return AtomicExpansionKind::CmpXChg;
380 }
381
shouldScalarizeBinop(SDValue VecOp) const382 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
383 // Implementation copied from X86TargetLowering.
384 unsigned Opc = VecOp.getOpcode();
385
386 // Assume target opcodes can't be scalarized.
387 // TODO - do we have any exceptions?
388 if (Opc >= ISD::BUILTIN_OP_END)
389 return false;
390
391 // If the vector op is not supported, try to convert to scalar.
392 EVT VecVT = VecOp.getValueType();
393 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
394 return true;
395
396 // If the vector op is supported, but the scalar op is not, the transform may
397 // not be worthwhile.
398 EVT ScalarVT = VecVT.getScalarType();
399 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
400 }
401
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo) const402 FastISel *WebAssemblyTargetLowering::createFastISel(
403 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
404 return WebAssembly::createFastISel(FuncInfo, LibInfo);
405 }
406
getScalarShiftAmountTy(const DataLayout &,EVT VT) const407 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
408 EVT VT) const {
409 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
410 if (BitWidth > 1 && BitWidth < 8)
411 BitWidth = 8;
412
413 if (BitWidth > 64) {
414 // The shift will be lowered to a libcall, and compiler-rt libcalls expect
415 // the count to be an i32.
416 BitWidth = 32;
417 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
418 "32-bit shift counts ought to be enough for anyone");
419 }
420
421 MVT Result = MVT::getIntegerVT(BitWidth);
422 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
423 "Unable to represent scalar shift amount type");
424 return Result;
425 }
426
427 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
428 // undefined result on invalid/overflow, to the WebAssembly opcode, which
429 // traps on invalid/overflow.
LowerFPToInt(MachineInstr & MI,DebugLoc DL,MachineBasicBlock * BB,const TargetInstrInfo & TII,bool IsUnsigned,bool Int64,bool Float64,unsigned LoweredOpcode)430 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
431 MachineBasicBlock *BB,
432 const TargetInstrInfo &TII,
433 bool IsUnsigned, bool Int64,
434 bool Float64, unsigned LoweredOpcode) {
435 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
436
437 Register OutReg = MI.getOperand(0).getReg();
438 Register InReg = MI.getOperand(1).getReg();
439
440 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
441 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
442 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
443 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
444 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
445 unsigned Eqz = WebAssembly::EQZ_I32;
446 unsigned And = WebAssembly::AND_I32;
447 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
448 int64_t Substitute = IsUnsigned ? 0 : Limit;
449 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
450 auto &Context = BB->getParent()->getFunction().getContext();
451 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
452
453 const BasicBlock *LLVMBB = BB->getBasicBlock();
454 MachineFunction *F = BB->getParent();
455 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
456 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
457 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
458
459 MachineFunction::iterator It = ++BB->getIterator();
460 F->insert(It, FalseMBB);
461 F->insert(It, TrueMBB);
462 F->insert(It, DoneMBB);
463
464 // Transfer the remainder of BB and its successor edges to DoneMBB.
465 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
466 DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
467
468 BB->addSuccessor(TrueMBB);
469 BB->addSuccessor(FalseMBB);
470 TrueMBB->addSuccessor(DoneMBB);
471 FalseMBB->addSuccessor(DoneMBB);
472
473 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
474 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
475 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
476 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
477 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
478 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
479 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
480
481 MI.eraseFromParent();
482 // For signed numbers, we can do a single comparison to determine whether
483 // fabs(x) is within range.
484 if (IsUnsigned) {
485 Tmp0 = InReg;
486 } else {
487 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
488 }
489 BuildMI(BB, DL, TII.get(FConst), Tmp1)
490 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
491 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
492
493 // For unsigned numbers, we have to do a separate comparison with zero.
494 if (IsUnsigned) {
495 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
496 Register SecondCmpReg =
497 MRI.createVirtualRegister(&WebAssembly::I32RegClass);
498 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
499 BuildMI(BB, DL, TII.get(FConst), Tmp1)
500 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
501 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
502 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
503 CmpReg = AndReg;
504 }
505
506 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
507
508 // Create the CFG diamond to select between doing the conversion or using
509 // the substitute value.
510 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
511 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
512 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
513 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
514 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
515 .addReg(FalseReg)
516 .addMBB(FalseMBB)
517 .addReg(TrueReg)
518 .addMBB(TrueMBB);
519
520 return DoneMBB;
521 }
522
523 static MachineBasicBlock *
LowerCallResults(MachineInstr & CallResults,DebugLoc DL,MachineBasicBlock * BB,const WebAssemblySubtarget * Subtarget,const TargetInstrInfo & TII)524 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
525 const WebAssemblySubtarget *Subtarget,
526 const TargetInstrInfo &TII) {
527 MachineInstr &CallParams = *CallResults.getPrevNode();
528 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
529 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
530 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
531
532 bool IsIndirect = CallParams.getOperand(0).isReg();
533 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
534
535 bool IsFuncrefCall = false;
536 if (IsIndirect) {
537 Register Reg = CallParams.getOperand(0).getReg();
538 const MachineFunction *MF = BB->getParent();
539 const MachineRegisterInfo &MRI = MF->getRegInfo();
540 const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
541 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
542 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
543 }
544
545 unsigned CallOp;
546 if (IsIndirect && IsRetCall) {
547 CallOp = WebAssembly::RET_CALL_INDIRECT;
548 } else if (IsIndirect) {
549 CallOp = WebAssembly::CALL_INDIRECT;
550 } else if (IsRetCall) {
551 CallOp = WebAssembly::RET_CALL;
552 } else {
553 CallOp = WebAssembly::CALL;
554 }
555
556 MachineFunction &MF = *BB->getParent();
557 const MCInstrDesc &MCID = TII.get(CallOp);
558 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
559
560 // See if we must truncate the function pointer.
561 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
562 // as 64-bit for uniformity with other pointer types.
563 // See also: WebAssemblyFastISel::selectCall
564 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
565 Register Reg32 =
566 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
567 auto &FnPtr = CallParams.getOperand(0);
568 BuildMI(*BB, CallResults.getIterator(), DL,
569 TII.get(WebAssembly::I32_WRAP_I64), Reg32)
570 .addReg(FnPtr.getReg());
571 FnPtr.setReg(Reg32);
572 }
573
574 // Move the function pointer to the end of the arguments for indirect calls
575 if (IsIndirect) {
576 auto FnPtr = CallParams.getOperand(0);
577 CallParams.removeOperand(0);
578
579 // For funcrefs, call_indirect is done through __funcref_call_table and the
580 // funcref is always installed in slot 0 of the table, therefore instead of
581 // having the function pointer added at the end of the params list, a zero
582 // (the index in
583 // __funcref_call_table is added).
584 if (IsFuncrefCall) {
585 Register RegZero =
586 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
587 MachineInstrBuilder MIBC0 =
588 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
589
590 BB->insert(CallResults.getIterator(), MIBC0);
591 MachineInstrBuilder(MF, CallParams).addReg(RegZero);
592 } else
593 CallParams.addOperand(FnPtr);
594 }
595
596 for (auto Def : CallResults.defs())
597 MIB.add(Def);
598
599 if (IsIndirect) {
600 // Placeholder for the type index.
601 MIB.addImm(0);
602 // The table into which this call_indirect indexes.
603 MCSymbolWasm *Table = IsFuncrefCall
604 ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
605 MF.getContext(), Subtarget)
606 : WebAssembly::getOrCreateFunctionTableSymbol(
607 MF.getContext(), Subtarget);
608 if (Subtarget->hasReferenceTypes()) {
609 MIB.addSym(Table);
610 } else {
611 // For the MVP there is at most one table whose number is 0, but we can't
612 // write a table symbol or issue relocations. Instead we just ensure the
613 // table is live and write a zero.
614 Table->setNoStrip();
615 MIB.addImm(0);
616 }
617 }
618
619 for (auto Use : CallParams.uses())
620 MIB.add(Use);
621
622 BB->insert(CallResults.getIterator(), MIB);
623 CallParams.eraseFromParent();
624 CallResults.eraseFromParent();
625
626 // If this is a funcref call, to avoid hidden GC roots, we need to clear the
627 // table slot with ref.null upon call_indirect return.
628 //
629 // This generates the following code, which comes right after a call_indirect
630 // of a funcref:
631 //
632 // i32.const 0
633 // ref.null func
634 // table.set __funcref_call_table
635 if (IsIndirect && IsFuncrefCall) {
636 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
637 MF.getContext(), Subtarget);
638 Register RegZero =
639 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
640 MachineInstr *Const0 =
641 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
642 BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
643
644 Register RegFuncref =
645 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
646 MachineInstr *RefNull =
647 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
648 BB->insertAfter(Const0->getIterator(), RefNull);
649
650 MachineInstr *TableSet =
651 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
652 .addSym(Table)
653 .addReg(RegZero)
654 .addReg(RegFuncref);
655 BB->insertAfter(RefNull->getIterator(), TableSet);
656 }
657
658 return BB;
659 }
660
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const661 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
662 MachineInstr &MI, MachineBasicBlock *BB) const {
663 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
664 DebugLoc DL = MI.getDebugLoc();
665
666 switch (MI.getOpcode()) {
667 default:
668 llvm_unreachable("Unexpected instr type to insert");
669 case WebAssembly::FP_TO_SINT_I32_F32:
670 return LowerFPToInt(MI, DL, BB, TII, false, false, false,
671 WebAssembly::I32_TRUNC_S_F32);
672 case WebAssembly::FP_TO_UINT_I32_F32:
673 return LowerFPToInt(MI, DL, BB, TII, true, false, false,
674 WebAssembly::I32_TRUNC_U_F32);
675 case WebAssembly::FP_TO_SINT_I64_F32:
676 return LowerFPToInt(MI, DL, BB, TII, false, true, false,
677 WebAssembly::I64_TRUNC_S_F32);
678 case WebAssembly::FP_TO_UINT_I64_F32:
679 return LowerFPToInt(MI, DL, BB, TII, true, true, false,
680 WebAssembly::I64_TRUNC_U_F32);
681 case WebAssembly::FP_TO_SINT_I32_F64:
682 return LowerFPToInt(MI, DL, BB, TII, false, false, true,
683 WebAssembly::I32_TRUNC_S_F64);
684 case WebAssembly::FP_TO_UINT_I32_F64:
685 return LowerFPToInt(MI, DL, BB, TII, true, false, true,
686 WebAssembly::I32_TRUNC_U_F64);
687 case WebAssembly::FP_TO_SINT_I64_F64:
688 return LowerFPToInt(MI, DL, BB, TII, false, true, true,
689 WebAssembly::I64_TRUNC_S_F64);
690 case WebAssembly::FP_TO_UINT_I64_F64:
691 return LowerFPToInt(MI, DL, BB, TII, true, true, true,
692 WebAssembly::I64_TRUNC_U_F64);
693 case WebAssembly::CALL_RESULTS:
694 case WebAssembly::RET_CALL_RESULTS:
695 return LowerCallResults(MI, DL, BB, Subtarget, TII);
696 }
697 }
698
699 const char *
getTargetNodeName(unsigned Opcode) const700 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
701 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
702 case WebAssemblyISD::FIRST_NUMBER:
703 case WebAssemblyISD::FIRST_MEM_OPCODE:
704 break;
705 #define HANDLE_NODETYPE(NODE) \
706 case WebAssemblyISD::NODE: \
707 return "WebAssemblyISD::" #NODE;
708 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
709 #include "WebAssemblyISD.def"
710 #undef HANDLE_MEM_NODETYPE
711 #undef HANDLE_NODETYPE
712 }
713 return nullptr;
714 }
715
716 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const717 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
718 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
719 // First, see if this is a constraint that directly corresponds to a
720 // WebAssembly register class.
721 if (Constraint.size() == 1) {
722 switch (Constraint[0]) {
723 case 'r':
724 assert(VT != MVT::iPTR && "Pointer MVT not expected here");
725 if (Subtarget->hasSIMD128() && VT.isVector()) {
726 if (VT.getSizeInBits() == 128)
727 return std::make_pair(0U, &WebAssembly::V128RegClass);
728 }
729 if (VT.isInteger() && !VT.isVector()) {
730 if (VT.getSizeInBits() <= 32)
731 return std::make_pair(0U, &WebAssembly::I32RegClass);
732 if (VT.getSizeInBits() <= 64)
733 return std::make_pair(0U, &WebAssembly::I64RegClass);
734 }
735 if (VT.isFloatingPoint() && !VT.isVector()) {
736 switch (VT.getSizeInBits()) {
737 case 32:
738 return std::make_pair(0U, &WebAssembly::F32RegClass);
739 case 64:
740 return std::make_pair(0U, &WebAssembly::F64RegClass);
741 default:
742 break;
743 }
744 }
745 break;
746 default:
747 break;
748 }
749 }
750
751 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
752 }
753
isCheapToSpeculateCttz() const754 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
755 // Assume ctz is a relatively cheap operation.
756 return true;
757 }
758
isCheapToSpeculateCtlz() const759 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
760 // Assume clz is a relatively cheap operation.
761 return true;
762 }
763
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const764 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
765 const AddrMode &AM,
766 Type *Ty, unsigned AS,
767 Instruction *I) const {
768 // WebAssembly offsets are added as unsigned without wrapping. The
769 // isLegalAddressingMode gives us no way to determine if wrapping could be
770 // happening, so we approximate this by accepting only non-negative offsets.
771 if (AM.BaseOffs < 0)
772 return false;
773
774 // WebAssembly has no scale register operands.
775 if (AM.Scale != 0)
776 return false;
777
778 // Everything else is legal.
779 return true;
780 }
781
allowsMisalignedMemoryAccesses(EVT,unsigned,Align,MachineMemOperand::Flags,bool * Fast) const782 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
783 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
784 MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
785 // WebAssembly supports unaligned accesses, though it should be declared
786 // with the p2align attribute on loads and stores which do so, and there
787 // may be a performance impact. We tell LLVM they're "fast" because
788 // for the kinds of things that LLVM uses this for (merging adjacent stores
789 // of constants, etc.), WebAssembly implementations will either want the
790 // unaligned access or they'll split anyway.
791 if (Fast)
792 *Fast = true;
793 return true;
794 }
795
isIntDivCheap(EVT VT,AttributeList Attr) const796 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
797 AttributeList Attr) const {
798 // The current thinking is that wasm engines will perform this optimization,
799 // so we can save on code size.
800 return true;
801 }
802
isVectorLoadExtDesirable(SDValue ExtVal) const803 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
804 EVT ExtT = ExtVal.getValueType();
805 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
806 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
807 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
808 (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
809 }
810
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const811 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
812 const GlobalAddressSDNode *GA) const {
813 // Wasm doesn't support function addresses with offsets
814 const GlobalValue *GV = GA->getGlobal();
815 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
816 }
817
getSetCCResultType(const DataLayout & DL,LLVMContext & C,EVT VT) const818 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
819 LLVMContext &C,
820 EVT VT) const {
821 if (VT.isVector())
822 return VT.changeVectorElementTypeToInteger();
823
824 // So far, all branch instructions in Wasm take an I32 condition.
825 // The default TargetLowering::getSetCCResultType returns the pointer size,
826 // which would be useful to reduce instruction counts when testing
827 // against 64-bit pointers/values if at some point Wasm supports that.
828 return EVT::getIntegerVT(C, 32);
829 }
830
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const831 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
832 const CallInst &I,
833 MachineFunction &MF,
834 unsigned Intrinsic) const {
835 switch (Intrinsic) {
836 case Intrinsic::wasm_memory_atomic_notify:
837 Info.opc = ISD::INTRINSIC_W_CHAIN;
838 Info.memVT = MVT::i32;
839 Info.ptrVal = I.getArgOperand(0);
840 Info.offset = 0;
841 Info.align = Align(4);
842 // atomic.notify instruction does not really load the memory specified with
843 // this argument, but MachineMemOperand should either be load or store, so
844 // we set this to a load.
845 // FIXME Volatile isn't really correct, but currently all LLVM atomic
846 // instructions are treated as volatiles in the backend, so we should be
847 // consistent. The same applies for wasm_atomic_wait intrinsics too.
848 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
849 return true;
850 case Intrinsic::wasm_memory_atomic_wait32:
851 Info.opc = ISD::INTRINSIC_W_CHAIN;
852 Info.memVT = MVT::i32;
853 Info.ptrVal = I.getArgOperand(0);
854 Info.offset = 0;
855 Info.align = Align(4);
856 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
857 return true;
858 case Intrinsic::wasm_memory_atomic_wait64:
859 Info.opc = ISD::INTRINSIC_W_CHAIN;
860 Info.memVT = MVT::i64;
861 Info.ptrVal = I.getArgOperand(0);
862 Info.offset = 0;
863 Info.align = Align(8);
864 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
865 return true;
866 default:
867 return false;
868 }
869 }
870
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const871 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
872 const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
873 const SelectionDAG &DAG, unsigned Depth) const {
874 switch (Op.getOpcode()) {
875 default:
876 break;
877 case ISD::INTRINSIC_WO_CHAIN: {
878 unsigned IntNo = Op.getConstantOperandVal(0);
879 switch (IntNo) {
880 default:
881 break;
882 case Intrinsic::wasm_bitmask: {
883 unsigned BitWidth = Known.getBitWidth();
884 EVT VT = Op.getOperand(1).getSimpleValueType();
885 unsigned PossibleBits = VT.getVectorNumElements();
886 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
887 Known.Zero |= ZeroMask;
888 break;
889 }
890 }
891 }
892 }
893 }
894
895 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const896 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
897 if (VT.isFixedLengthVector()) {
898 MVT EltVT = VT.getVectorElementType();
899 // We have legal vector types with these lane types, so widening the
900 // vector would let us use some of the lanes directly without having to
901 // extend or truncate values.
902 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
903 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
904 return TypeWidenVector;
905 }
906
907 return TargetLoweringBase::getPreferredVectorAction(VT);
908 }
909
shouldSimplifyDemandedVectorElts(SDValue Op,const TargetLoweringOpt & TLO) const910 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
911 SDValue Op, const TargetLoweringOpt &TLO) const {
912 // ISel process runs DAGCombiner after legalization; this step is called
913 // SelectionDAG optimization phase. This post-legalization combining process
914 // runs DAGCombiner on each node, and if there was a change to be made,
915 // re-runs legalization again on it and its user nodes to make sure
916 // everythiing is in a legalized state.
917 //
918 // The legalization calls lowering routines, and we do our custom lowering for
919 // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements
920 // into zeros. But there is a set of routines in DAGCombiner that turns unused
921 // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts
922 // turns unused vector elements into undefs. But this routine does not work
923 // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This
924 // combination can result in a infinite loop, in which undefs are converted to
925 // zeros in legalization and back to undefs in combining.
926 //
927 // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from
928 // running for build_vectors.
929 if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys)
930 return false;
931 return true;
932 }
933
934 //===----------------------------------------------------------------------===//
935 // WebAssembly Lowering private implementation.
936 //===----------------------------------------------------------------------===//
937
938 //===----------------------------------------------------------------------===//
939 // Lowering Code
940 //===----------------------------------------------------------------------===//
941
fail(const SDLoc & DL,SelectionDAG & DAG,const char * Msg)942 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
943 MachineFunction &MF = DAG.getMachineFunction();
944 DAG.getContext()->diagnose(
945 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
946 }
947
948 // Test whether the given calling convention is supported.
callingConvSupported(CallingConv::ID CallConv)949 static bool callingConvSupported(CallingConv::ID CallConv) {
950 // We currently support the language-independent target-independent
951 // conventions. We don't yet have a way to annotate calls with properties like
952 // "cold", and we don't have any call-clobbered registers, so these are mostly
953 // all handled the same.
954 return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
955 CallConv == CallingConv::Cold ||
956 CallConv == CallingConv::PreserveMost ||
957 CallConv == CallingConv::PreserveAll ||
958 CallConv == CallingConv::CXX_FAST_TLS ||
959 CallConv == CallingConv::WASM_EmscriptenInvoke ||
960 CallConv == CallingConv::Swift;
961 }
962
963 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const964 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
965 SmallVectorImpl<SDValue> &InVals) const {
966 SelectionDAG &DAG = CLI.DAG;
967 SDLoc DL = CLI.DL;
968 SDValue Chain = CLI.Chain;
969 SDValue Callee = CLI.Callee;
970 MachineFunction &MF = DAG.getMachineFunction();
971 auto Layout = MF.getDataLayout();
972
973 CallingConv::ID CallConv = CLI.CallConv;
974 if (!callingConvSupported(CallConv))
975 fail(DL, DAG,
976 "WebAssembly doesn't support language-specific or target-specific "
977 "calling conventions yet");
978 if (CLI.IsPatchPoint)
979 fail(DL, DAG, "WebAssembly doesn't support patch point yet");
980
981 if (CLI.IsTailCall) {
982 auto NoTail = [&](const char *Msg) {
983 if (CLI.CB && CLI.CB->isMustTailCall())
984 fail(DL, DAG, Msg);
985 CLI.IsTailCall = false;
986 };
987
988 if (!Subtarget->hasTailCall())
989 NoTail("WebAssembly 'tail-call' feature not enabled");
990
991 // Varargs calls cannot be tail calls because the buffer is on the stack
992 if (CLI.IsVarArg)
993 NoTail("WebAssembly does not support varargs tail calls");
994
995 // Do not tail call unless caller and callee return types match
996 const Function &F = MF.getFunction();
997 const TargetMachine &TM = getTargetMachine();
998 Type *RetTy = F.getReturnType();
999 SmallVector<MVT, 4> CallerRetTys;
1000 SmallVector<MVT, 4> CalleeRetTys;
1001 computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
1002 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
1003 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
1004 std::equal(CallerRetTys.begin(), CallerRetTys.end(),
1005 CalleeRetTys.begin());
1006 if (!TypesMatch)
1007 NoTail("WebAssembly tail call requires caller and callee return types to "
1008 "match");
1009
1010 // If pointers to local stack values are passed, we cannot tail call
1011 if (CLI.CB) {
1012 for (auto &Arg : CLI.CB->args()) {
1013 Value *Val = Arg.get();
1014 // Trace the value back through pointer operations
1015 while (true) {
1016 Value *Src = Val->stripPointerCastsAndAliases();
1017 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
1018 Src = GEP->getPointerOperand();
1019 if (Val == Src)
1020 break;
1021 Val = Src;
1022 }
1023 if (isa<AllocaInst>(Val)) {
1024 NoTail(
1025 "WebAssembly does not support tail calling with stack arguments");
1026 break;
1027 }
1028 }
1029 }
1030 }
1031
1032 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1033 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1034 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1035
1036 // The generic code may have added an sret argument. If we're lowering an
1037 // invoke function, the ABI requires that the function pointer be the first
1038 // argument, so we may have to swap the arguments.
1039 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1040 Outs[0].Flags.isSRet()) {
1041 std::swap(Outs[0], Outs[1]);
1042 std::swap(OutVals[0], OutVals[1]);
1043 }
1044
1045 bool HasSwiftSelfArg = false;
1046 bool HasSwiftErrorArg = false;
1047 unsigned NumFixedArgs = 0;
1048 for (unsigned I = 0; I < Outs.size(); ++I) {
1049 const ISD::OutputArg &Out = Outs[I];
1050 SDValue &OutVal = OutVals[I];
1051 HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1052 HasSwiftErrorArg |= Out.Flags.isSwiftError();
1053 if (Out.Flags.isNest())
1054 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1055 if (Out.Flags.isInAlloca())
1056 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1057 if (Out.Flags.isInConsecutiveRegs())
1058 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1059 if (Out.Flags.isInConsecutiveRegsLast())
1060 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1061 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1062 auto &MFI = MF.getFrameInfo();
1063 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1064 Out.Flags.getNonZeroByValAlign(),
1065 /*isSS=*/false);
1066 SDValue SizeNode =
1067 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1068 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1069 Chain = DAG.getMemcpy(
1070 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
1071 /*isVolatile*/ false, /*AlwaysInline=*/false,
1072 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
1073 OutVal = FINode;
1074 }
1075 // Count the number of fixed args *after* legalization.
1076 NumFixedArgs += Out.IsFixed;
1077 }
1078
1079 bool IsVarArg = CLI.IsVarArg;
1080 auto PtrVT = getPointerTy(Layout);
1081
1082 // For swiftcc, emit additional swiftself and swifterror arguments
1083 // if there aren't. These additional arguments are also added for callee
1084 // signature They are necessary to match callee and caller signature for
1085 // indirect call.
1086 if (CallConv == CallingConv::Swift) {
1087 if (!HasSwiftSelfArg) {
1088 NumFixedArgs++;
1089 ISD::OutputArg Arg;
1090 Arg.Flags.setSwiftSelf();
1091 CLI.Outs.push_back(Arg);
1092 SDValue ArgVal = DAG.getUNDEF(PtrVT);
1093 CLI.OutVals.push_back(ArgVal);
1094 }
1095 if (!HasSwiftErrorArg) {
1096 NumFixedArgs++;
1097 ISD::OutputArg Arg;
1098 Arg.Flags.setSwiftError();
1099 CLI.Outs.push_back(Arg);
1100 SDValue ArgVal = DAG.getUNDEF(PtrVT);
1101 CLI.OutVals.push_back(ArgVal);
1102 }
1103 }
1104
1105 // Analyze operands of the call, assigning locations to each operand.
1106 SmallVector<CCValAssign, 16> ArgLocs;
1107 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1108
1109 if (IsVarArg) {
1110 // Outgoing non-fixed arguments are placed in a buffer. First
1111 // compute their offsets and the total amount of buffer space needed.
1112 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1113 const ISD::OutputArg &Out = Outs[I];
1114 SDValue &Arg = OutVals[I];
1115 EVT VT = Arg.getValueType();
1116 assert(VT != MVT::iPTR && "Legalized args should be concrete");
1117 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1118 Align Alignment =
1119 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1120 unsigned Offset =
1121 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1122 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1123 Offset, VT.getSimpleVT(),
1124 CCValAssign::Full));
1125 }
1126 }
1127
1128 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1129
1130 SDValue FINode;
1131 if (IsVarArg && NumBytes) {
1132 // For non-fixed arguments, next emit stores to store the argument values
1133 // to the stack buffer at the offsets computed above.
1134 int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1135 Layout.getStackAlignment(),
1136 /*isSS=*/false);
1137 unsigned ValNo = 0;
1138 SmallVector<SDValue, 8> Chains;
1139 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1140 assert(ArgLocs[ValNo].getValNo() == ValNo &&
1141 "ArgLocs should remain in order and only hold varargs args");
1142 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1143 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1144 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1145 DAG.getConstant(Offset, DL, PtrVT));
1146 Chains.push_back(
1147 DAG.getStore(Chain, DL, Arg, Add,
1148 MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1149 }
1150 if (!Chains.empty())
1151 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1152 } else if (IsVarArg) {
1153 FINode = DAG.getIntPtrConstant(0, DL);
1154 }
1155
1156 if (Callee->getOpcode() == ISD::GlobalAddress) {
1157 // If the callee is a GlobalAddress node (quite common, every direct call
1158 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1159 // doesn't at MO_GOT which is not needed for direct calls.
1160 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee);
1161 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1162 getPointerTy(DAG.getDataLayout()),
1163 GA->getOffset());
1164 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1165 getPointerTy(DAG.getDataLayout()), Callee);
1166 }
1167
1168 // Compute the operands for the CALLn node.
1169 SmallVector<SDValue, 16> Ops;
1170 Ops.push_back(Chain);
1171 Ops.push_back(Callee);
1172
1173 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1174 // isn't reliable.
1175 Ops.append(OutVals.begin(),
1176 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1177 // Add a pointer to the vararg buffer.
1178 if (IsVarArg)
1179 Ops.push_back(FINode);
1180
1181 SmallVector<EVT, 8> InTys;
1182 for (const auto &In : Ins) {
1183 assert(!In.Flags.isByVal() && "byval is not valid for return values");
1184 assert(!In.Flags.isNest() && "nest is not valid for return values");
1185 if (In.Flags.isInAlloca())
1186 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1187 if (In.Flags.isInConsecutiveRegs())
1188 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1189 if (In.Flags.isInConsecutiveRegsLast())
1190 fail(DL, DAG,
1191 "WebAssembly hasn't implemented cons regs last return values");
1192 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1193 // registers.
1194 InTys.push_back(In.VT);
1195 }
1196
1197 // Lastly, if this is a call to a funcref we need to add an instruction
1198 // table.set to the chain and transform the call.
1199 if (CLI.CB &&
1200 WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
1201 // In the absence of function references proposal where a funcref call is
1202 // lowered to call_ref, using reference types we generate a table.set to set
1203 // the funcref to a special table used solely for this purpose, followed by
1204 // a call_indirect. Here we just generate the table set, and return the
1205 // SDValue of the table.set so that LowerCall can finalize the lowering by
1206 // generating the call_indirect.
1207 SDValue Chain = Ops[0];
1208
1209 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1210 MF.getContext(), Subtarget);
1211 SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1212 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1213 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1214 SDValue TableSet = DAG.getMemIntrinsicNode(
1215 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1216 MVT::funcref,
1217 // Machine Mem Operand args
1218 MachinePointerInfo(
1219 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1220 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1221 MachineMemOperand::MOStore);
1222
1223 Ops[0] = TableSet; // The new chain is the TableSet itself
1224 }
1225
1226 if (CLI.IsTailCall) {
1227 // ret_calls do not return values to the current frame
1228 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1229 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1230 }
1231
1232 InTys.push_back(MVT::Other);
1233 SDVTList InTyList = DAG.getVTList(InTys);
1234 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1235
1236 for (size_t I = 0; I < Ins.size(); ++I)
1237 InVals.push_back(Res.getValue(I));
1238
1239 // Return the chain
1240 return Res.getValue(Ins.size());
1241 }
1242
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext &) const1243 bool WebAssemblyTargetLowering::CanLowerReturn(
1244 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1245 const SmallVectorImpl<ISD::OutputArg> &Outs,
1246 LLVMContext & /*Context*/) const {
1247 // WebAssembly can only handle returning tuples with multivalue enabled
1248 return Subtarget->hasMultivalue() || Outs.size() <= 1;
1249 }
1250
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1251 SDValue WebAssemblyTargetLowering::LowerReturn(
1252 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1253 const SmallVectorImpl<ISD::OutputArg> &Outs,
1254 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1255 SelectionDAG &DAG) const {
1256 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1257 "MVP WebAssembly can only return up to one value");
1258 if (!callingConvSupported(CallConv))
1259 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1260
1261 SmallVector<SDValue, 4> RetOps(1, Chain);
1262 RetOps.append(OutVals.begin(), OutVals.end());
1263 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1264
1265 // Record the number and types of the return values.
1266 for (const ISD::OutputArg &Out : Outs) {
1267 assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1268 assert(!Out.Flags.isNest() && "nest is not valid for return values");
1269 assert(Out.IsFixed && "non-fixed return value is not valid");
1270 if (Out.Flags.isInAlloca())
1271 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1272 if (Out.Flags.isInConsecutiveRegs())
1273 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1274 if (Out.Flags.isInConsecutiveRegsLast())
1275 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1276 }
1277
1278 return Chain;
1279 }
1280
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1281 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1282 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1283 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1284 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1285 if (!callingConvSupported(CallConv))
1286 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1287
1288 MachineFunction &MF = DAG.getMachineFunction();
1289 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1290
1291 // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1292 // of the incoming values before they're represented by virtual registers.
1293 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1294
1295 bool HasSwiftErrorArg = false;
1296 bool HasSwiftSelfArg = false;
1297 for (const ISD::InputArg &In : Ins) {
1298 HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1299 HasSwiftErrorArg |= In.Flags.isSwiftError();
1300 if (In.Flags.isInAlloca())
1301 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1302 if (In.Flags.isNest())
1303 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1304 if (In.Flags.isInConsecutiveRegs())
1305 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1306 if (In.Flags.isInConsecutiveRegsLast())
1307 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1308 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1309 // registers.
1310 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1311 DAG.getTargetConstant(InVals.size(),
1312 DL, MVT::i32))
1313 : DAG.getUNDEF(In.VT));
1314
1315 // Record the number and types of arguments.
1316 MFI->addParam(In.VT);
1317 }
1318
1319 // For swiftcc, emit additional swiftself and swifterror arguments
1320 // if there aren't. These additional arguments are also added for callee
1321 // signature They are necessary to match callee and caller signature for
1322 // indirect call.
1323 auto PtrVT = getPointerTy(MF.getDataLayout());
1324 if (CallConv == CallingConv::Swift) {
1325 if (!HasSwiftSelfArg) {
1326 MFI->addParam(PtrVT);
1327 }
1328 if (!HasSwiftErrorArg) {
1329 MFI->addParam(PtrVT);
1330 }
1331 }
1332 // Varargs are copied into a buffer allocated by the caller, and a pointer to
1333 // the buffer is passed as an argument.
1334 if (IsVarArg) {
1335 MVT PtrVT = getPointerTy(MF.getDataLayout());
1336 Register VarargVreg =
1337 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1338 MFI->setVarargBufferVreg(VarargVreg);
1339 Chain = DAG.getCopyToReg(
1340 Chain, DL, VarargVreg,
1341 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1342 DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1343 MFI->addParam(PtrVT);
1344 }
1345
1346 // Record the number and types of arguments and results.
1347 SmallVector<MVT, 4> Params;
1348 SmallVector<MVT, 4> Results;
1349 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1350 MF.getFunction(), DAG.getTarget(), Params, Results);
1351 for (MVT VT : Results)
1352 MFI->addResult(VT);
1353 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1354 // the param logic here with ComputeSignatureVTs
1355 assert(MFI->getParams().size() == Params.size() &&
1356 std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1357 Params.begin()));
1358
1359 return Chain;
1360 }
1361
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const1362 void WebAssemblyTargetLowering::ReplaceNodeResults(
1363 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1364 switch (N->getOpcode()) {
1365 case ISD::SIGN_EXTEND_INREG:
1366 // Do not add any results, signifying that N should not be custom lowered
1367 // after all. This happens because simd128 turns on custom lowering for
1368 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1369 // illegal type.
1370 break;
1371 default:
1372 llvm_unreachable(
1373 "ReplaceNodeResults not implemented for this op for WebAssembly!");
1374 }
1375 }
1376
1377 //===----------------------------------------------------------------------===//
1378 // Custom lowering hooks.
1379 //===----------------------------------------------------------------------===//
1380
LowerOperation(SDValue Op,SelectionDAG & DAG) const1381 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1382 SelectionDAG &DAG) const {
1383 SDLoc DL(Op);
1384 switch (Op.getOpcode()) {
1385 default:
1386 llvm_unreachable("unimplemented operation lowering");
1387 return SDValue();
1388 case ISD::FrameIndex:
1389 return LowerFrameIndex(Op, DAG);
1390 case ISD::GlobalAddress:
1391 return LowerGlobalAddress(Op, DAG);
1392 case ISD::GlobalTLSAddress:
1393 return LowerGlobalTLSAddress(Op, DAG);
1394 case ISD::ExternalSymbol:
1395 return LowerExternalSymbol(Op, DAG);
1396 case ISD::JumpTable:
1397 return LowerJumpTable(Op, DAG);
1398 case ISD::BR_JT:
1399 return LowerBR_JT(Op, DAG);
1400 case ISD::VASTART:
1401 return LowerVASTART(Op, DAG);
1402 case ISD::BlockAddress:
1403 case ISD::BRIND:
1404 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1405 return SDValue();
1406 case ISD::RETURNADDR:
1407 return LowerRETURNADDR(Op, DAG);
1408 case ISD::FRAMEADDR:
1409 return LowerFRAMEADDR(Op, DAG);
1410 case ISD::CopyToReg:
1411 return LowerCopyToReg(Op, DAG);
1412 case ISD::EXTRACT_VECTOR_ELT:
1413 case ISD::INSERT_VECTOR_ELT:
1414 return LowerAccessVectorElement(Op, DAG);
1415 case ISD::INTRINSIC_VOID:
1416 case ISD::INTRINSIC_WO_CHAIN:
1417 case ISD::INTRINSIC_W_CHAIN:
1418 return LowerIntrinsic(Op, DAG);
1419 case ISD::SIGN_EXTEND_INREG:
1420 return LowerSIGN_EXTEND_INREG(Op, DAG);
1421 case ISD::BUILD_VECTOR:
1422 return LowerBUILD_VECTOR(Op, DAG);
1423 case ISD::VECTOR_SHUFFLE:
1424 return LowerVECTOR_SHUFFLE(Op, DAG);
1425 case ISD::SETCC:
1426 return LowerSETCC(Op, DAG);
1427 case ISD::SHL:
1428 case ISD::SRA:
1429 case ISD::SRL:
1430 return LowerShift(Op, DAG);
1431 case ISD::FP_TO_SINT_SAT:
1432 case ISD::FP_TO_UINT_SAT:
1433 return LowerFP_TO_INT_SAT(Op, DAG);
1434 case ISD::LOAD:
1435 return LowerLoad(Op, DAG);
1436 case ISD::STORE:
1437 return LowerStore(Op, DAG);
1438 case ISD::CTPOP:
1439 case ISD::CTLZ:
1440 case ISD::CTTZ:
1441 return DAG.UnrollVectorOp(Op.getNode());
1442 }
1443 }
1444
IsWebAssemblyGlobal(SDValue Op)1445 static bool IsWebAssemblyGlobal(SDValue Op) {
1446 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1447 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1448
1449 return false;
1450 }
1451
IsWebAssemblyLocal(SDValue Op,SelectionDAG & DAG)1452 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
1453 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1454 if (!FI)
1455 return None;
1456
1457 auto &MF = DAG.getMachineFunction();
1458 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1459 }
1460
IsWebAssemblyTable(SDValue Op)1461 static bool IsWebAssemblyTable(SDValue Op) {
1462 const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1463 if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) {
1464 const GlobalValue *Value = GA->getGlobal();
1465 const Type *Ty = Value->getValueType();
1466
1467 if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType()))
1468 return true;
1469 }
1470 return false;
1471 }
1472
1473 // This function will accept as Op any access to a table, so Op can
1474 // be the actual table or an offset into the table.
IsWebAssemblyTableWithOffset(SDValue Op)1475 static bool IsWebAssemblyTableWithOffset(SDValue Op) {
1476 if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2)
1477 return (Op->getOperand(1).getSimpleValueType() == MVT::i32 &&
1478 IsWebAssemblyTableWithOffset(Op->getOperand(0))) ||
1479 (Op->getOperand(0).getSimpleValueType() == MVT::i32 &&
1480 IsWebAssemblyTableWithOffset(Op->getOperand(1)));
1481
1482 return IsWebAssemblyTable(Op);
1483 }
1484
1485 // Helper for table pattern matching used in LowerStore and LowerLoad
MatchTableForLowering(SelectionDAG & DAG,const SDLoc & DL,const SDValue & Base,GlobalAddressSDNode * & GA,SDValue & Idx) const1486 bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG,
1487 const SDLoc &DL,
1488 const SDValue &Base,
1489 GlobalAddressSDNode *&GA,
1490 SDValue &Idx) const {
1491 // We expect the following graph for a load of the form:
1492 // table[<var> + <constant offset>]
1493 //
1494 // Case 1:
1495 // externref = load t1
1496 // t1: i32 = add t2, i32:<constant offset>
1497 // t2: i32 = add tX, table
1498 //
1499 // This is in some cases simplified to just:
1500 // Case 2:
1501 // externref = load t1
1502 // t1: i32 = add t2, i32:tX
1503 //
1504 // So, unfortunately we need to check for both cases and if we are in the
1505 // first case extract the table GlobalAddressNode and build a new node tY
1506 // that's tY: i32 = add i32:<constant offset>, i32:tX
1507 //
1508 if (IsWebAssemblyTable(Base)) {
1509 GA = cast<GlobalAddressSDNode>(Base);
1510 Idx = DAG.getConstant(0, DL, MVT::i32);
1511 } else {
1512 GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0));
1513 if (GA) {
1514 // We are in Case 2 above.
1515 Idx = Base->getOperand(1);
1516 assert(GA->getNumValues() == 1);
1517 } else {
1518 // This might be Case 1 above (or an error)
1519 SDValue V = Base->getOperand(0);
1520 GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1));
1521
1522 if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA)
1523 return false;
1524
1525 SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1),
1526 V->getOperand(0));
1527 Idx = IdxV;
1528 }
1529 }
1530
1531 return true;
1532 }
1533
LowerStore(SDValue Op,SelectionDAG & DAG) const1534 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1535 SelectionDAG &DAG) const {
1536 SDLoc DL(Op);
1537 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1538 const SDValue &Value = SN->getValue();
1539 const SDValue &Base = SN->getBasePtr();
1540 const SDValue &Offset = SN->getOffset();
1541
1542 if (IsWebAssemblyTableWithOffset(Base)) {
1543 if (!Offset->isUndef())
1544 report_fatal_error(
1545 "unexpected offset when loading from webassembly table", false);
1546
1547 SDValue Idx;
1548 GlobalAddressSDNode *GA;
1549
1550 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx))
1551 report_fatal_error("failed pattern matching for lowering table store",
1552 false);
1553
1554 SDVTList Tys = DAG.getVTList(MVT::Other);
1555 SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value};
1556 SDValue TableSet =
1557 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps,
1558 SN->getMemoryVT(), SN->getMemOperand());
1559 return TableSet;
1560 }
1561
1562 if (IsWebAssemblyGlobal(Base)) {
1563 if (!Offset->isUndef())
1564 report_fatal_error("unexpected offset when storing to webassembly global",
1565 false);
1566
1567 SDVTList Tys = DAG.getVTList(MVT::Other);
1568 SDValue Ops[] = {SN->getChain(), Value, Base};
1569 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1570 SN->getMemoryVT(), SN->getMemOperand());
1571 }
1572
1573 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1574 if (!Offset->isUndef())
1575 report_fatal_error("unexpected offset when storing to webassembly local",
1576 false);
1577
1578 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1579 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1580 SDValue Ops[] = {SN->getChain(), Idx, Value};
1581 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1582 }
1583
1584 return Op;
1585 }
1586
LowerLoad(SDValue Op,SelectionDAG & DAG) const1587 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1588 SelectionDAG &DAG) const {
1589 SDLoc DL(Op);
1590 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1591 const SDValue &Base = LN->getBasePtr();
1592 const SDValue &Offset = LN->getOffset();
1593
1594 if (IsWebAssemblyTableWithOffset(Base)) {
1595 if (!Offset->isUndef())
1596 report_fatal_error(
1597 "unexpected offset when loading from webassembly table", false);
1598
1599 GlobalAddressSDNode *GA;
1600 SDValue Idx;
1601
1602 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx))
1603 report_fatal_error("failed pattern matching for lowering table load",
1604 false);
1605
1606 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1607 SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx};
1608 SDValue TableGet =
1609 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps,
1610 LN->getMemoryVT(), LN->getMemOperand());
1611 return TableGet;
1612 }
1613
1614 if (IsWebAssemblyGlobal(Base)) {
1615 if (!Offset->isUndef())
1616 report_fatal_error(
1617 "unexpected offset when loading from webassembly global", false);
1618
1619 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1620 SDValue Ops[] = {LN->getChain(), Base};
1621 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1622 LN->getMemoryVT(), LN->getMemOperand());
1623 }
1624
1625 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1626 if (!Offset->isUndef())
1627 report_fatal_error(
1628 "unexpected offset when loading from webassembly local", false);
1629
1630 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1631 EVT LocalVT = LN->getValueType(0);
1632 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1633 {LN->getChain(), Idx});
1634 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1635 assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1636 return Result;
1637 }
1638
1639 return Op;
1640 }
1641
LowerCopyToReg(SDValue Op,SelectionDAG & DAG) const1642 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1643 SelectionDAG &DAG) const {
1644 SDValue Src = Op.getOperand(2);
1645 if (isa<FrameIndexSDNode>(Src.getNode())) {
1646 // CopyToReg nodes don't support FrameIndex operands. Other targets select
1647 // the FI to some LEA-like instruction, but since we don't have that, we
1648 // need to insert some kind of instruction that can take an FI operand and
1649 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1650 // local.copy between Op and its FI operand.
1651 SDValue Chain = Op.getOperand(0);
1652 SDLoc DL(Op);
1653 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1654 EVT VT = Src.getValueType();
1655 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1656 : WebAssembly::COPY_I64,
1657 DL, VT, Src),
1658 0);
1659 return Op.getNode()->getNumValues() == 1
1660 ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1661 : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1662 Op.getNumOperands() == 4 ? Op.getOperand(3)
1663 : SDValue());
1664 }
1665 return SDValue();
1666 }
1667
LowerFrameIndex(SDValue Op,SelectionDAG & DAG) const1668 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1669 SelectionDAG &DAG) const {
1670 int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1671 return DAG.getTargetFrameIndex(FI, Op.getValueType());
1672 }
1673
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1674 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1675 SelectionDAG &DAG) const {
1676 SDLoc DL(Op);
1677
1678 if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1679 fail(DL, DAG,
1680 "Non-Emscripten WebAssembly hasn't implemented "
1681 "__builtin_return_address");
1682 return SDValue();
1683 }
1684
1685 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1686 return SDValue();
1687
1688 unsigned Depth = Op.getConstantOperandVal(0);
1689 MakeLibCallOptions CallOptions;
1690 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1691 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1692 .first;
1693 }
1694
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1695 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1696 SelectionDAG &DAG) const {
1697 // Non-zero depths are not supported by WebAssembly currently. Use the
1698 // legalizer's default expansion, which is to return 0 (what this function is
1699 // documented to do).
1700 if (Op.getConstantOperandVal(0) > 0)
1701 return SDValue();
1702
1703 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1704 EVT VT = Op.getValueType();
1705 Register FP =
1706 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1707 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1708 }
1709
1710 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const1711 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1712 SelectionDAG &DAG) const {
1713 SDLoc DL(Op);
1714 const auto *GA = cast<GlobalAddressSDNode>(Op);
1715
1716 MachineFunction &MF = DAG.getMachineFunction();
1717 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1718 report_fatal_error("cannot use thread-local storage without bulk memory",
1719 false);
1720
1721 const GlobalValue *GV = GA->getGlobal();
1722
1723 // Currently only Emscripten supports dynamic linking with threads. Therefore,
1724 // on other targets, if we have thread-local storage, only the local-exec
1725 // model is possible.
1726 auto model = Subtarget->getTargetTriple().isOSEmscripten()
1727 ? GV->getThreadLocalMode()
1728 : GlobalValue::LocalExecTLSModel;
1729
1730 // Unsupported TLS modes
1731 assert(model != GlobalValue::NotThreadLocal);
1732 assert(model != GlobalValue::InitialExecTLSModel);
1733
1734 if (model == GlobalValue::LocalExecTLSModel ||
1735 model == GlobalValue::LocalDynamicTLSModel ||
1736 (model == GlobalValue::GeneralDynamicTLSModel &&
1737 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
1738 // For DSO-local TLS variables we use offset from __tls_base
1739
1740 MVT PtrVT = getPointerTy(DAG.getDataLayout());
1741 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1742 : WebAssembly::GLOBAL_GET_I32;
1743 const char *BaseName = MF.createExternalSymbolName("__tls_base");
1744
1745 SDValue BaseAddr(
1746 DAG.getMachineNode(GlobalGet, DL, PtrVT,
1747 DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1748 0);
1749
1750 SDValue TLSOffset = DAG.getTargetGlobalAddress(
1751 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1752 SDValue SymOffset =
1753 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1754
1755 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1756 }
1757
1758 assert(model == GlobalValue::GeneralDynamicTLSModel);
1759
1760 EVT VT = Op.getValueType();
1761 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1762 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1763 GA->getOffset(),
1764 WebAssemblyII::MO_GOT_TLS));
1765 }
1766
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1767 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1768 SelectionDAG &DAG) const {
1769 SDLoc DL(Op);
1770 const auto *GA = cast<GlobalAddressSDNode>(Op);
1771 EVT VT = Op.getValueType();
1772 assert(GA->getTargetFlags() == 0 &&
1773 "Unexpected target flags on generic GlobalAddressSDNode");
1774 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1775 fail(DL, DAG, "Invalid address space for WebAssembly target");
1776
1777 unsigned OperandFlags = 0;
1778 if (isPositionIndependent()) {
1779 const GlobalValue *GV = GA->getGlobal();
1780 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1781 MachineFunction &MF = DAG.getMachineFunction();
1782 MVT PtrVT = getPointerTy(MF.getDataLayout());
1783 const char *BaseName;
1784 if (GV->getValueType()->isFunctionTy()) {
1785 BaseName = MF.createExternalSymbolName("__table_base");
1786 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1787 } else {
1788 BaseName = MF.createExternalSymbolName("__memory_base");
1789 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1790 }
1791 SDValue BaseAddr =
1792 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1793 DAG.getTargetExternalSymbol(BaseName, PtrVT));
1794
1795 SDValue SymAddr = DAG.getNode(
1796 WebAssemblyISD::WrapperREL, DL, VT,
1797 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1798 OperandFlags));
1799
1800 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1801 }
1802 OperandFlags = WebAssemblyII::MO_GOT;
1803 }
1804
1805 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1806 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1807 GA->getOffset(), OperandFlags));
1808 }
1809
1810 SDValue
LowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const1811 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1812 SelectionDAG &DAG) const {
1813 SDLoc DL(Op);
1814 const auto *ES = cast<ExternalSymbolSDNode>(Op);
1815 EVT VT = Op.getValueType();
1816 assert(ES->getTargetFlags() == 0 &&
1817 "Unexpected target flags on generic ExternalSymbolSDNode");
1818 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1819 DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1820 }
1821
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1822 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1823 SelectionDAG &DAG) const {
1824 // There's no need for a Wrapper node because we always incorporate a jump
1825 // table operand into a BR_TABLE instruction, rather than ever
1826 // materializing it in a register.
1827 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1828 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1829 JT->getTargetFlags());
1830 }
1831
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const1832 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1833 SelectionDAG &DAG) const {
1834 SDLoc DL(Op);
1835 SDValue Chain = Op.getOperand(0);
1836 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1837 SDValue Index = Op.getOperand(2);
1838 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1839
1840 SmallVector<SDValue, 8> Ops;
1841 Ops.push_back(Chain);
1842 Ops.push_back(Index);
1843
1844 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1845 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1846
1847 // Add an operand for each case.
1848 for (auto MBB : MBBs)
1849 Ops.push_back(DAG.getBasicBlock(MBB));
1850
1851 // Add the first MBB as a dummy default target for now. This will be replaced
1852 // with the proper default target (and the preceding range check eliminated)
1853 // if possible by WebAssemblyFixBrTableDefaults.
1854 Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1855 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1856 }
1857
LowerVASTART(SDValue Op,SelectionDAG & DAG) const1858 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1859 SelectionDAG &DAG) const {
1860 SDLoc DL(Op);
1861 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1862
1863 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1864 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1865
1866 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1867 MFI->getVarargBufferVreg(), PtrVT);
1868 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1869 MachinePointerInfo(SV));
1870 }
1871
LowerIntrinsic(SDValue Op,SelectionDAG & DAG) const1872 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1873 SelectionDAG &DAG) const {
1874 MachineFunction &MF = DAG.getMachineFunction();
1875 unsigned IntNo;
1876 switch (Op.getOpcode()) {
1877 case ISD::INTRINSIC_VOID:
1878 case ISD::INTRINSIC_W_CHAIN:
1879 IntNo = Op.getConstantOperandVal(1);
1880 break;
1881 case ISD::INTRINSIC_WO_CHAIN:
1882 IntNo = Op.getConstantOperandVal(0);
1883 break;
1884 default:
1885 llvm_unreachable("Invalid intrinsic");
1886 }
1887 SDLoc DL(Op);
1888
1889 switch (IntNo) {
1890 default:
1891 return SDValue(); // Don't custom lower most intrinsics.
1892
1893 case Intrinsic::wasm_lsda: {
1894 auto PtrVT = getPointerTy(MF.getDataLayout());
1895 const char *SymName = MF.createExternalSymbolName(
1896 "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
1897 if (isPositionIndependent()) {
1898 SDValue Node = DAG.getTargetExternalSymbol(
1899 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
1900 const char *BaseName = MF.createExternalSymbolName("__memory_base");
1901 SDValue BaseAddr =
1902 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1903 DAG.getTargetExternalSymbol(BaseName, PtrVT));
1904 SDValue SymAddr =
1905 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
1906 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1907 }
1908 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
1909 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
1910 }
1911
1912 case Intrinsic::wasm_shuffle: {
1913 // Drop in-chain and replace undefs, but otherwise pass through unchanged
1914 SDValue Ops[18];
1915 size_t OpIdx = 0;
1916 Ops[OpIdx++] = Op.getOperand(1);
1917 Ops[OpIdx++] = Op.getOperand(2);
1918 while (OpIdx < 18) {
1919 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1920 if (MaskIdx.isUndef() ||
1921 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1922 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1923 } else {
1924 Ops[OpIdx++] = MaskIdx;
1925 }
1926 }
1927 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1928 }
1929 }
1930 }
1931
1932 SDValue
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const1933 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1934 SelectionDAG &DAG) const {
1935 SDLoc DL(Op);
1936 // If sign extension operations are disabled, allow sext_inreg only if operand
1937 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1938 // extension operations, but allowing sext_inreg in this context lets us have
1939 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1940 // everywhere would be simpler in this file, but would necessitate large and
1941 // brittle patterns to undo the expansion and select extract_lane_s
1942 // instructions.
1943 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1944 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1945 return SDValue();
1946
1947 const SDValue &Extract = Op.getOperand(0);
1948 MVT VecT = Extract.getOperand(0).getSimpleValueType();
1949 if (VecT.getVectorElementType().getSizeInBits() > 32)
1950 return SDValue();
1951 MVT ExtractedLaneT =
1952 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1953 MVT ExtractedVecT =
1954 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1955 if (ExtractedVecT == VecT)
1956 return Op;
1957
1958 // Bitcast vector to appropriate type to ensure ISel pattern coverage
1959 const SDNode *Index = Extract.getOperand(1).getNode();
1960 if (!isa<ConstantSDNode>(Index))
1961 return SDValue();
1962 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1963 unsigned Scale =
1964 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1965 assert(Scale > 1);
1966 SDValue NewIndex =
1967 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1968 SDValue NewExtract = DAG.getNode(
1969 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1970 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1971 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1972 Op.getOperand(1));
1973 }
1974
LowerConvertLow(SDValue Op,SelectionDAG & DAG)1975 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1976 SDLoc DL(Op);
1977 if (Op.getValueType() != MVT::v2f64)
1978 return SDValue();
1979
1980 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1981 unsigned &Index) -> bool {
1982 switch (Op.getOpcode()) {
1983 case ISD::SINT_TO_FP:
1984 Opcode = WebAssemblyISD::CONVERT_LOW_S;
1985 break;
1986 case ISD::UINT_TO_FP:
1987 Opcode = WebAssemblyISD::CONVERT_LOW_U;
1988 break;
1989 case ISD::FP_EXTEND:
1990 Opcode = WebAssemblyISD::PROMOTE_LOW;
1991 break;
1992 default:
1993 return false;
1994 }
1995
1996 auto ExtractVector = Op.getOperand(0);
1997 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1998 return false;
1999
2000 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
2001 return false;
2002
2003 SrcVec = ExtractVector.getOperand(0);
2004 Index = ExtractVector.getConstantOperandVal(1);
2005 return true;
2006 };
2007
2008 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
2009 SDValue LHSSrcVec, RHSSrcVec;
2010 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
2011 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
2012 return SDValue();
2013
2014 if (LHSOpcode != RHSOpcode)
2015 return SDValue();
2016
2017 MVT ExpectedSrcVT;
2018 switch (LHSOpcode) {
2019 case WebAssemblyISD::CONVERT_LOW_S:
2020 case WebAssemblyISD::CONVERT_LOW_U:
2021 ExpectedSrcVT = MVT::v4i32;
2022 break;
2023 case WebAssemblyISD::PROMOTE_LOW:
2024 ExpectedSrcVT = MVT::v4f32;
2025 break;
2026 }
2027 if (LHSSrcVec.getValueType() != ExpectedSrcVT)
2028 return SDValue();
2029
2030 auto Src = LHSSrcVec;
2031 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2032 // Shuffle the source vector so that the converted lanes are the low lanes.
2033 Src = DAG.getVectorShuffle(
2034 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
2035 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
2036 }
2037 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
2038 }
2039
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const2040 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2041 SelectionDAG &DAG) const {
2042 if (auto ConvertLow = LowerConvertLow(Op, DAG))
2043 return ConvertLow;
2044
2045 SDLoc DL(Op);
2046 const EVT VecT = Op.getValueType();
2047 const EVT LaneT = Op.getOperand(0).getValueType();
2048 const size_t Lanes = Op.getNumOperands();
2049 bool CanSwizzle = VecT == MVT::v16i8;
2050
2051 // BUILD_VECTORs are lowered to the instruction that initializes the highest
2052 // possible number of lanes at once followed by a sequence of replace_lane
2053 // instructions to individually initialize any remaining lanes.
2054
2055 // TODO: Tune this. For example, lanewise swizzling is very expensive, so
2056 // swizzled lanes should be given greater weight.
2057
2058 // TODO: Investigate looping rather than always extracting/replacing specific
2059 // lanes to fill gaps.
2060
2061 auto IsConstant = [](const SDValue &V) {
2062 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
2063 };
2064
2065 // Returns the source vector and index vector pair if they exist. Checks for:
2066 // (extract_vector_elt
2067 // $src,
2068 // (sign_extend_inreg (extract_vector_elt $indices, $i))
2069 // )
2070 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
2071 auto Bail = std::make_pair(SDValue(), SDValue());
2072 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2073 return Bail;
2074 const SDValue &SwizzleSrc = Lane->getOperand(0);
2075 const SDValue &IndexExt = Lane->getOperand(1);
2076 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
2077 return Bail;
2078 const SDValue &Index = IndexExt->getOperand(0);
2079 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2080 return Bail;
2081 const SDValue &SwizzleIndices = Index->getOperand(0);
2082 if (SwizzleSrc.getValueType() != MVT::v16i8 ||
2083 SwizzleIndices.getValueType() != MVT::v16i8 ||
2084 Index->getOperand(1)->getOpcode() != ISD::Constant ||
2085 Index->getConstantOperandVal(1) != I)
2086 return Bail;
2087 return std::make_pair(SwizzleSrc, SwizzleIndices);
2088 };
2089
2090 // If the lane is extracted from another vector at a constant index, return
2091 // that vector. The source vector must not have more lanes than the dest
2092 // because the shufflevector indices are in terms of the destination lanes and
2093 // would not be able to address the smaller individual source lanes.
2094 auto GetShuffleSrc = [&](const SDValue &Lane) {
2095 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2096 return SDValue();
2097 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2098 return SDValue();
2099 if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2100 VecT.getVectorNumElements())
2101 return SDValue();
2102 return Lane->getOperand(0);
2103 };
2104
2105 using ValueEntry = std::pair<SDValue, size_t>;
2106 SmallVector<ValueEntry, 16> SplatValueCounts;
2107
2108 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2109 SmallVector<SwizzleEntry, 16> SwizzleCounts;
2110
2111 using ShuffleEntry = std::pair<SDValue, size_t>;
2112 SmallVector<ShuffleEntry, 16> ShuffleCounts;
2113
2114 auto AddCount = [](auto &Counts, const auto &Val) {
2115 auto CountIt =
2116 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2117 if (CountIt == Counts.end()) {
2118 Counts.emplace_back(Val, 1);
2119 } else {
2120 CountIt->second++;
2121 }
2122 };
2123
2124 auto GetMostCommon = [](auto &Counts) {
2125 auto CommonIt =
2126 std::max_element(Counts.begin(), Counts.end(), llvm::less_second());
2127 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2128 return *CommonIt;
2129 };
2130
2131 size_t NumConstantLanes = 0;
2132
2133 // Count eligible lanes for each type of vector creation op
2134 for (size_t I = 0; I < Lanes; ++I) {
2135 const SDValue &Lane = Op->getOperand(I);
2136 if (Lane.isUndef())
2137 continue;
2138
2139 AddCount(SplatValueCounts, Lane);
2140
2141 if (IsConstant(Lane))
2142 NumConstantLanes++;
2143 if (auto ShuffleSrc = GetShuffleSrc(Lane))
2144 AddCount(ShuffleCounts, ShuffleSrc);
2145 if (CanSwizzle) {
2146 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2147 if (SwizzleSrcs.first)
2148 AddCount(SwizzleCounts, SwizzleSrcs);
2149 }
2150 }
2151
2152 SDValue SplatValue;
2153 size_t NumSplatLanes;
2154 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2155
2156 SDValue SwizzleSrc;
2157 SDValue SwizzleIndices;
2158 size_t NumSwizzleLanes = 0;
2159 if (SwizzleCounts.size())
2160 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2161 NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2162
2163 // Shuffles can draw from up to two vectors, so find the two most common
2164 // sources.
2165 SDValue ShuffleSrc1, ShuffleSrc2;
2166 size_t NumShuffleLanes = 0;
2167 if (ShuffleCounts.size()) {
2168 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2169 llvm::erase_if(ShuffleCounts,
2170 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2171 }
2172 if (ShuffleCounts.size()) {
2173 size_t AdditionalShuffleLanes;
2174 std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2175 GetMostCommon(ShuffleCounts);
2176 NumShuffleLanes += AdditionalShuffleLanes;
2177 }
2178
2179 // Predicate returning true if the lane is properly initialized by the
2180 // original instruction
2181 std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2182 SDValue Result;
2183 // Prefer swizzles over shuffles over vector consts over splats
2184 if (NumSwizzleLanes >= NumShuffleLanes &&
2185 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2186 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2187 SwizzleIndices);
2188 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2189 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2190 return Swizzled == GetSwizzleSrcs(I, Lane);
2191 };
2192 } else if (NumShuffleLanes >= NumConstantLanes &&
2193 NumShuffleLanes >= NumSplatLanes) {
2194 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2195 size_t DestLaneCount = VecT.getVectorNumElements();
2196 size_t Scale1 = 1;
2197 size_t Scale2 = 1;
2198 SDValue Src1 = ShuffleSrc1;
2199 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2200 if (Src1.getValueType() != VecT) {
2201 size_t LaneSize =
2202 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2203 assert(LaneSize > DestLaneSize);
2204 Scale1 = LaneSize / DestLaneSize;
2205 Src1 = DAG.getBitcast(VecT, Src1);
2206 }
2207 if (Src2.getValueType() != VecT) {
2208 size_t LaneSize =
2209 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2210 assert(LaneSize > DestLaneSize);
2211 Scale2 = LaneSize / DestLaneSize;
2212 Src2 = DAG.getBitcast(VecT, Src2);
2213 }
2214
2215 int Mask[16];
2216 assert(DestLaneCount <= 16);
2217 for (size_t I = 0; I < DestLaneCount; ++I) {
2218 const SDValue &Lane = Op->getOperand(I);
2219 SDValue Src = GetShuffleSrc(Lane);
2220 if (Src == ShuffleSrc1) {
2221 Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2222 } else if (Src && Src == ShuffleSrc2) {
2223 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2224 } else {
2225 Mask[I] = -1;
2226 }
2227 }
2228 ArrayRef<int> MaskRef(Mask, DestLaneCount);
2229 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2230 IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2231 auto Src = GetShuffleSrc(Lane);
2232 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2233 };
2234 } else if (NumConstantLanes >= NumSplatLanes) {
2235 SmallVector<SDValue, 16> ConstLanes;
2236 for (const SDValue &Lane : Op->op_values()) {
2237 if (IsConstant(Lane)) {
2238 // Values may need to be fixed so that they will sign extend to be
2239 // within the expected range during ISel. Check whether the value is in
2240 // bounds based on the lane bit width and if it is out of bounds, lop
2241 // off the extra bits and subtract 2^n to reflect giving the high bit
2242 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2243 // cannot possibly be out of range.
2244 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2245 int64_t Val = Const ? Const->getSExtValue() : 0;
2246 uint64_t LaneBits = 128 / Lanes;
2247 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2248 "Unexpected out of bounds negative value");
2249 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2250 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits);
2251 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2252 } else {
2253 ConstLanes.push_back(Lane);
2254 }
2255 } else if (LaneT.isFloatingPoint()) {
2256 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2257 } else {
2258 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2259 }
2260 }
2261 Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2262 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2263 return IsConstant(Lane);
2264 };
2265 } else {
2266 // Use a splat, but possibly a load_splat
2267 LoadSDNode *SplattedLoad;
2268 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
2269 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
2270 Result = DAG.getMemIntrinsicNode(
2271 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
2272 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
2273 SplattedLoad->getOffset()},
2274 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
2275 } else {
2276 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2277 }
2278 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2279 return Lane == SplatValue;
2280 };
2281 }
2282
2283 assert(Result);
2284 assert(IsLaneConstructed);
2285
2286 // Add replace_lane instructions for any unhandled values
2287 for (size_t I = 0; I < Lanes; ++I) {
2288 const SDValue &Lane = Op->getOperand(I);
2289 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2290 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2291 DAG.getConstant(I, DL, MVT::i32));
2292 }
2293
2294 return Result;
2295 }
2296
2297 SDValue
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const2298 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2299 SelectionDAG &DAG) const {
2300 SDLoc DL(Op);
2301 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2302 MVT VecType = Op.getOperand(0).getSimpleValueType();
2303 assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2304 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2305
2306 // Space for two vector args and sixteen mask indices
2307 SDValue Ops[18];
2308 size_t OpIdx = 0;
2309 Ops[OpIdx++] = Op.getOperand(0);
2310 Ops[OpIdx++] = Op.getOperand(1);
2311
2312 // Expand mask indices to byte indices and materialize them as operands
2313 for (int M : Mask) {
2314 for (size_t J = 0; J < LaneBytes; ++J) {
2315 // Lower undefs (represented by -1 in mask) to zero
2316 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
2317 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2318 }
2319 }
2320
2321 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2322 }
2323
LowerSETCC(SDValue Op,SelectionDAG & DAG) const2324 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2325 SelectionDAG &DAG) const {
2326 SDLoc DL(Op);
2327 // The legalizer does not know how to expand the unsupported comparison modes
2328 // of i64x2 vectors, so we manually unroll them here.
2329 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2330 SmallVector<SDValue, 2> LHS, RHS;
2331 DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2332 DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2333 const SDValue &CC = Op->getOperand(2);
2334 auto MakeLane = [&](unsigned I) {
2335 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2336 DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2337 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2338 };
2339 return DAG.getBuildVector(Op->getValueType(0), DL,
2340 {MakeLane(0), MakeLane(1)});
2341 }
2342
2343 SDValue
LowerAccessVectorElement(SDValue Op,SelectionDAG & DAG) const2344 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2345 SelectionDAG &DAG) const {
2346 // Allow constant lane indices, expand variable lane indices
2347 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2348 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
2349 return Op;
2350 else
2351 // Perform default expansion
2352 return SDValue();
2353 }
2354
unrollVectorShift(SDValue Op,SelectionDAG & DAG)2355 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2356 EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2357 // 32-bit and 64-bit unrolled shifts will have proper semantics
2358 if (LaneT.bitsGE(MVT::i32))
2359 return DAG.UnrollVectorOp(Op.getNode());
2360 // Otherwise mask the shift value to get proper semantics from 32-bit shift
2361 SDLoc DL(Op);
2362 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2363 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2364 unsigned ShiftOpcode = Op.getOpcode();
2365 SmallVector<SDValue, 16> ShiftedElements;
2366 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2367 SmallVector<SDValue, 16> ShiftElements;
2368 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2369 SmallVector<SDValue, 16> UnrolledOps;
2370 for (size_t i = 0; i < NumLanes; ++i) {
2371 SDValue MaskedShiftValue =
2372 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2373 SDValue ShiftedValue = ShiftedElements[i];
2374 if (ShiftOpcode == ISD::SRA)
2375 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2376 ShiftedValue, DAG.getValueType(LaneT));
2377 UnrolledOps.push_back(
2378 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2379 }
2380 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2381 }
2382
LowerShift(SDValue Op,SelectionDAG & DAG) const2383 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2384 SelectionDAG &DAG) const {
2385 SDLoc DL(Op);
2386
2387 // Only manually lower vector shifts
2388 assert(Op.getSimpleValueType().isVector());
2389
2390 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2391 if (!ShiftVal)
2392 return unrollVectorShift(Op, DAG);
2393
2394 // Use anyext because none of the high bits can affect the shift
2395 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2396
2397 unsigned Opcode;
2398 switch (Op.getOpcode()) {
2399 case ISD::SHL:
2400 Opcode = WebAssemblyISD::VEC_SHL;
2401 break;
2402 case ISD::SRA:
2403 Opcode = WebAssemblyISD::VEC_SHR_S;
2404 break;
2405 case ISD::SRL:
2406 Opcode = WebAssemblyISD::VEC_SHR_U;
2407 break;
2408 default:
2409 llvm_unreachable("unexpected opcode");
2410 }
2411
2412 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2413 }
2414
LowerFP_TO_INT_SAT(SDValue Op,SelectionDAG & DAG) const2415 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2416 SelectionDAG &DAG) const {
2417 SDLoc DL(Op);
2418 EVT ResT = Op.getValueType();
2419 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2420
2421 if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2422 (SatVT == MVT::i32 || SatVT == MVT::i64))
2423 return Op;
2424
2425 if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2426 return Op;
2427
2428 return SDValue();
2429 }
2430
2431 //===----------------------------------------------------------------------===//
2432 // Custom DAG combine hooks
2433 //===----------------------------------------------------------------------===//
2434 static SDValue
performVECTOR_SHUFFLECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2435 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2436 auto &DAG = DCI.DAG;
2437 auto Shuffle = cast<ShuffleVectorSDNode>(N);
2438
2439 // Hoist vector bitcasts that don't change the number of lanes out of unary
2440 // shuffles, where they are less likely to get in the way of other combines.
2441 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2442 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2443 SDValue Bitcast = N->getOperand(0);
2444 if (Bitcast.getOpcode() != ISD::BITCAST)
2445 return SDValue();
2446 if (!N->getOperand(1).isUndef())
2447 return SDValue();
2448 SDValue CastOp = Bitcast.getOperand(0);
2449 MVT SrcType = CastOp.getSimpleValueType();
2450 MVT DstType = Bitcast.getSimpleValueType();
2451 if (!SrcType.is128BitVector() ||
2452 SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2453 return SDValue();
2454 SDValue NewShuffle = DAG.getVectorShuffle(
2455 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2456 return DAG.getBitcast(DstType, NewShuffle);
2457 }
2458
2459 static SDValue
performVectorExtendCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2460 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2461 auto &DAG = DCI.DAG;
2462 assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2463 N->getOpcode() == ISD::ZERO_EXTEND);
2464
2465 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2466 // possible before the extract_subvector can be expanded.
2467 auto Extract = N->getOperand(0);
2468 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2469 return SDValue();
2470 auto Source = Extract.getOperand(0);
2471 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2472 if (IndexNode == nullptr)
2473 return SDValue();
2474 auto Index = IndexNode->getZExtValue();
2475
2476 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2477 // extracted subvector is the low or high half of its source.
2478 EVT ResVT = N->getValueType(0);
2479 if (ResVT == MVT::v8i16) {
2480 if (Extract.getValueType() != MVT::v8i8 ||
2481 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2482 return SDValue();
2483 } else if (ResVT == MVT::v4i32) {
2484 if (Extract.getValueType() != MVT::v4i16 ||
2485 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2486 return SDValue();
2487 } else if (ResVT == MVT::v2i64) {
2488 if (Extract.getValueType() != MVT::v2i32 ||
2489 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2490 return SDValue();
2491 } else {
2492 return SDValue();
2493 }
2494
2495 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2496 bool IsLow = Index == 0;
2497
2498 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2499 : WebAssemblyISD::EXTEND_HIGH_S)
2500 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2501 : WebAssemblyISD::EXTEND_HIGH_U);
2502
2503 return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2504 }
2505
2506 static SDValue
performVectorTruncZeroCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2507 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2508 auto &DAG = DCI.DAG;
2509
2510 auto GetWasmConversionOp = [](unsigned Op) {
2511 switch (Op) {
2512 case ISD::FP_TO_SINT_SAT:
2513 return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2514 case ISD::FP_TO_UINT_SAT:
2515 return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2516 case ISD::FP_ROUND:
2517 return WebAssemblyISD::DEMOTE_ZERO;
2518 }
2519 llvm_unreachable("unexpected op");
2520 };
2521
2522 auto IsZeroSplat = [](SDValue SplatVal) {
2523 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2524 APInt SplatValue, SplatUndef;
2525 unsigned SplatBitSize;
2526 bool HasAnyUndefs;
2527 return Splat &&
2528 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2529 HasAnyUndefs) &&
2530 SplatValue == 0;
2531 };
2532
2533 if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2534 // Combine this:
2535 //
2536 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2537 //
2538 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2539 //
2540 // Or this:
2541 //
2542 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2543 //
2544 // into (f32x4.demote_zero_f64x2 $x).
2545 EVT ResVT;
2546 EVT ExpectedConversionType;
2547 auto Conversion = N->getOperand(0);
2548 auto ConversionOp = Conversion.getOpcode();
2549 switch (ConversionOp) {
2550 case ISD::FP_TO_SINT_SAT:
2551 case ISD::FP_TO_UINT_SAT:
2552 ResVT = MVT::v4i32;
2553 ExpectedConversionType = MVT::v2i32;
2554 break;
2555 case ISD::FP_ROUND:
2556 ResVT = MVT::v4f32;
2557 ExpectedConversionType = MVT::v2f32;
2558 break;
2559 default:
2560 return SDValue();
2561 }
2562
2563 if (N->getValueType(0) != ResVT)
2564 return SDValue();
2565
2566 if (Conversion.getValueType() != ExpectedConversionType)
2567 return SDValue();
2568
2569 auto Source = Conversion.getOperand(0);
2570 if (Source.getValueType() != MVT::v2f64)
2571 return SDValue();
2572
2573 if (!IsZeroSplat(N->getOperand(1)) ||
2574 N->getOperand(1).getValueType() != ExpectedConversionType)
2575 return SDValue();
2576
2577 unsigned Op = GetWasmConversionOp(ConversionOp);
2578 return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2579 }
2580
2581 // Combine this:
2582 //
2583 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2584 //
2585 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2586 //
2587 // Or this:
2588 //
2589 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2590 //
2591 // into (f32x4.demote_zero_f64x2 $x).
2592 EVT ResVT;
2593 auto ConversionOp = N->getOpcode();
2594 switch (ConversionOp) {
2595 case ISD::FP_TO_SINT_SAT:
2596 case ISD::FP_TO_UINT_SAT:
2597 ResVT = MVT::v4i32;
2598 break;
2599 case ISD::FP_ROUND:
2600 ResVT = MVT::v4f32;
2601 break;
2602 default:
2603 llvm_unreachable("unexpected op");
2604 }
2605
2606 if (N->getValueType(0) != ResVT)
2607 return SDValue();
2608
2609 auto Concat = N->getOperand(0);
2610 if (Concat.getValueType() != MVT::v4f64)
2611 return SDValue();
2612
2613 auto Source = Concat.getOperand(0);
2614 if (Source.getValueType() != MVT::v2f64)
2615 return SDValue();
2616
2617 if (!IsZeroSplat(Concat.getOperand(1)) ||
2618 Concat.getOperand(1).getValueType() != MVT::v2f64)
2619 return SDValue();
2620
2621 unsigned Op = GetWasmConversionOp(ConversionOp);
2622 return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2623 }
2624
2625 // Helper to extract VectorWidth bits from Vec, starting from IdxVal.
extractSubVector(SDValue Vec,unsigned IdxVal,SelectionDAG & DAG,const SDLoc & DL,unsigned VectorWidth)2626 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2627 const SDLoc &DL, unsigned VectorWidth) {
2628 EVT VT = Vec.getValueType();
2629 EVT ElVT = VT.getVectorElementType();
2630 unsigned Factor = VT.getSizeInBits() / VectorWidth;
2631 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2632 VT.getVectorNumElements() / Factor);
2633
2634 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR
2635 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2636 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2637
2638 // This is the index of the first element of the VectorWidth-bit chunk
2639 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2640 IdxVal &= ~(ElemsPerChunk - 1);
2641
2642 // If the input is a buildvector just emit a smaller one.
2643 if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2644 return DAG.getBuildVector(ResultVT, DL,
2645 Vec->ops().slice(IdxVal, ElemsPerChunk));
2646
2647 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2648 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2649 }
2650
2651 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2652 // is the expected destination value type after recursion. In is the initial
2653 // input. Note that the input should have enough leading zero bits to prevent
2654 // NARROW_U from saturating results.
truncateVectorWithNARROW(EVT DstVT,SDValue In,const SDLoc & DL,SelectionDAG & DAG)2655 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2656 SelectionDAG &DAG) {
2657 EVT SrcVT = In.getValueType();
2658
2659 // No truncation required, we might get here due to recursive calls.
2660 if (SrcVT == DstVT)
2661 return In;
2662
2663 unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2664 unsigned NumElems = SrcVT.getVectorNumElements();
2665 if (!isPowerOf2_32(NumElems))
2666 return SDValue();
2667 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2668 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2669
2670 LLVMContext &Ctx = *DAG.getContext();
2671 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2672
2673 // Narrow to the largest type possible:
2674 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2675 EVT InVT = MVT::i16, OutVT = MVT::i8;
2676 if (SrcVT.getScalarSizeInBits() > 16) {
2677 InVT = MVT::i32;
2678 OutVT = MVT::i16;
2679 }
2680 unsigned SubSizeInBits = SrcSizeInBits / 2;
2681 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2682 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2683
2684 // Split lower/upper subvectors.
2685 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2686 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2687
2688 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2689 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2690 Lo = DAG.getBitcast(InVT, Lo);
2691 Hi = DAG.getBitcast(InVT, Hi);
2692 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2693 return DAG.getBitcast(DstVT, Res);
2694 }
2695
2696 // Recursively narrow lower/upper subvectors, concat result and narrow again.
2697 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2698 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2699 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2700
2701 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2702 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2703 return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2704 }
2705
performTruncateCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2706 static SDValue performTruncateCombine(SDNode *N,
2707 TargetLowering::DAGCombinerInfo &DCI) {
2708 auto &DAG = DCI.DAG;
2709
2710 SDValue In = N->getOperand(0);
2711 EVT InVT = In.getValueType();
2712 if (!InVT.isSimple())
2713 return SDValue();
2714
2715 EVT OutVT = N->getValueType(0);
2716 if (!OutVT.isVector())
2717 return SDValue();
2718
2719 EVT OutSVT = OutVT.getVectorElementType();
2720 EVT InSVT = InVT.getVectorElementType();
2721 // Currently only cover truncate to v16i8 or v8i16.
2722 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
2723 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
2724 return SDValue();
2725
2726 SDLoc DL(N);
2727 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
2728 OutVT.getScalarSizeInBits());
2729 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
2730 return truncateVectorWithNARROW(OutVT, In, DL, DAG);
2731 }
2732
2733 SDValue
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2734 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2735 DAGCombinerInfo &DCI) const {
2736 switch (N->getOpcode()) {
2737 default:
2738 return SDValue();
2739 case ISD::VECTOR_SHUFFLE:
2740 return performVECTOR_SHUFFLECombine(N, DCI);
2741 case ISD::SIGN_EXTEND:
2742 case ISD::ZERO_EXTEND:
2743 return performVectorExtendCombine(N, DCI);
2744 case ISD::FP_TO_SINT_SAT:
2745 case ISD::FP_TO_UINT_SAT:
2746 case ISD::FP_ROUND:
2747 case ISD::CONCAT_VECTORS:
2748 return performVectorTruncZeroCombine(N, DCI);
2749 case ISD::TRUNCATE:
2750 return performTruncateCombine(N, DCI);
2751 }
2752 }
2753