1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 66 } 67 // Compute derived properties from the register classes. 68 computeRegisterProperties(Subtarget->getRegisterInfo()); 69 70 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 71 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 72 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 73 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 74 setOperationAction(ISD::BRIND, MVT::Other, Custom); 75 76 // Take the default expansion for va_arg, va_copy, and va_end. There is no 77 // default action for va_start, so we do that custom. 78 setOperationAction(ISD::VASTART, MVT::Other, Custom); 79 setOperationAction(ISD::VAARG, MVT::Other, Expand); 80 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 81 setOperationAction(ISD::VAEND, MVT::Other, Expand); 82 83 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 84 // Don't expand the floating-point types to constant pools. 85 setOperationAction(ISD::ConstantFP, T, Legal); 86 // Expand floating-point comparisons. 87 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 88 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 89 setCondCodeAction(CC, T, Expand); 90 // Expand floating-point library function operators. 91 for (auto Op : 92 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 93 setOperationAction(Op, T, Expand); 94 // Note supported floating-point library function operators that otherwise 95 // default to expand. 96 for (auto Op : 97 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 98 setOperationAction(Op, T, Legal); 99 // Support minimum and maximum, which otherwise default to expand. 100 setOperationAction(ISD::FMINIMUM, T, Legal); 101 setOperationAction(ISD::FMAXIMUM, T, Legal); 102 // WebAssembly currently has no builtin f16 support. 103 setOperationAction(ISD::FP16_TO_FP, T, Expand); 104 setOperationAction(ISD::FP_TO_FP16, T, Expand); 105 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 106 setTruncStoreAction(T, MVT::f16, Expand); 107 } 108 109 // Expand unavailable integer operations. 110 for (auto Op : 111 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 112 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 113 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 114 for (auto T : {MVT::i32, MVT::i64}) 115 setOperationAction(Op, T, Expand); 116 if (Subtarget->hasSIMD128()) 117 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 118 setOperationAction(Op, T, Expand); 119 } 120 121 // SIMD-specific configuration 122 if (Subtarget->hasSIMD128()) { 123 // Support saturating add for i8x16 and i16x8 124 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 125 for (auto T : {MVT::v16i8, MVT::v8i16}) 126 setOperationAction(Op, T, Legal); 127 128 // Support integer abs 129 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 130 setOperationAction(ISD::ABS, T, Legal); 131 132 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 133 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 134 MVT::v2f64}) 135 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 136 137 // We have custom shuffle lowering to expose the shuffle mask 138 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 139 MVT::v2f64}) 140 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 141 142 // Custom lowering since wasm shifts must have a scalar shift amount 143 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 144 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 145 setOperationAction(Op, T, Custom); 146 147 // Custom lower lane accesses to expand out variable indices 148 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 149 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 150 MVT::v2f64}) 151 setOperationAction(Op, T, Custom); 152 153 // There is no i64x2.mul instruction 154 // TODO: Actually, there is now. Implement it. 155 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 156 157 // There are no vector select instructions 158 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) 159 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 160 MVT::v2f64}) 161 setOperationAction(Op, T, Expand); 162 163 // Expand integer operations supported for scalars but not SIMD 164 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 165 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 166 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 167 setOperationAction(Op, T, Expand); 168 169 // But we do have integer min and max operations 170 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 171 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 172 setOperationAction(Op, T, Legal); 173 174 // Expand float operations supported for scalars but not SIMD 175 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 176 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 177 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 178 for (auto T : {MVT::v4f32, MVT::v2f64}) 179 setOperationAction(Op, T, Expand); 180 181 // Expand operations not supported for i64x2 vectors 182 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 183 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 184 185 // 64x2 conversions are not in the spec 186 if (!Subtarget->hasUnimplementedSIMD128()) 187 for (auto Op : 188 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 189 for (auto T : {MVT::v2i64, MVT::v2f64}) 190 setOperationAction(Op, T, Expand); 191 } 192 193 // As a special case, these operators use the type to mean the type to 194 // sign-extend from. 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 196 if (!Subtarget->hasSignExt()) { 197 // Sign extends are legal only when extending a vector extract 198 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 199 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 200 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 201 } 202 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 203 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 204 205 // Dynamic stack allocation: use the default expansion. 206 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 207 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 208 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 209 210 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 211 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 212 213 // Expand these forms; we pattern-match the forms that we can handle in isel. 214 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 215 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 216 setOperationAction(Op, T, Expand); 217 218 // We have custom switch handling. 219 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 220 221 // WebAssembly doesn't have: 222 // - Floating-point extending loads. 223 // - Floating-point truncating stores. 224 // - i1 extending loads. 225 // - truncating SIMD stores and most extending loads 226 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 227 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 228 for (auto T : MVT::integer_valuetypes()) 229 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 230 setLoadExtAction(Ext, T, MVT::i1, Promote); 231 if (Subtarget->hasSIMD128()) { 232 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 233 MVT::v2f64}) { 234 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 235 if (MVT(T) != MemT) { 236 setTruncStoreAction(T, MemT, Expand); 237 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 238 setLoadExtAction(Ext, T, MemT, Expand); 239 } 240 } 241 } 242 // But some vector extending loads are legal 243 if (Subtarget->hasUnimplementedSIMD128()) { 244 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 245 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 246 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 247 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 248 } 249 } 250 } 251 252 // Don't do anything clever with build_pairs 253 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 254 255 // Trap lowers to wasm unreachable 256 setOperationAction(ISD::TRAP, MVT::Other, Legal); 257 258 // Exception handling intrinsics 259 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 260 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 261 262 setMaxAtomicSizeInBitsSupported(64); 263 264 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 265 // consistent with the f64 and f128 names. 266 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 267 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 268 269 // Define the emscripten name for return address helper. 270 // TODO: when implementing other WASM backends, make this generic or only do 271 // this on emscripten depending on what they end up doing. 272 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 273 274 // Always convert switches to br_tables unless there is only one case, which 275 // is equivalent to a simple branch. This reduces code size for wasm, and we 276 // defer possible jump table optimizations to the VM. 277 setMinimumJumpTableEntries(2); 278 } 279 280 TargetLowering::AtomicExpansionKind 281 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 282 // We have wasm instructions for these 283 switch (AI->getOperation()) { 284 case AtomicRMWInst::Add: 285 case AtomicRMWInst::Sub: 286 case AtomicRMWInst::And: 287 case AtomicRMWInst::Or: 288 case AtomicRMWInst::Xor: 289 case AtomicRMWInst::Xchg: 290 return AtomicExpansionKind::None; 291 default: 292 break; 293 } 294 return AtomicExpansionKind::CmpXChg; 295 } 296 297 FastISel *WebAssemblyTargetLowering::createFastISel( 298 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 299 return WebAssembly::createFastISel(FuncInfo, LibInfo); 300 } 301 302 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 303 EVT VT) const { 304 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 305 if (BitWidth > 1 && BitWidth < 8) 306 BitWidth = 8; 307 308 if (BitWidth > 64) { 309 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 310 // the count to be an i32. 311 BitWidth = 32; 312 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 313 "32-bit shift counts ought to be enough for anyone"); 314 } 315 316 MVT Result = MVT::getIntegerVT(BitWidth); 317 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 318 "Unable to represent scalar shift amount type"); 319 return Result; 320 } 321 322 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 323 // undefined result on invalid/overflow, to the WebAssembly opcode, which 324 // traps on invalid/overflow. 325 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 326 MachineBasicBlock *BB, 327 const TargetInstrInfo &TII, 328 bool IsUnsigned, bool Int64, 329 bool Float64, unsigned LoweredOpcode) { 330 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 331 332 Register OutReg = MI.getOperand(0).getReg(); 333 Register InReg = MI.getOperand(1).getReg(); 334 335 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 336 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 337 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 338 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 339 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 340 unsigned Eqz = WebAssembly::EQZ_I32; 341 unsigned And = WebAssembly::AND_I32; 342 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 343 int64_t Substitute = IsUnsigned ? 0 : Limit; 344 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 345 auto &Context = BB->getParent()->getFunction().getContext(); 346 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 347 348 const BasicBlock *LLVMBB = BB->getBasicBlock(); 349 MachineFunction *F = BB->getParent(); 350 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 351 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 352 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 353 354 MachineFunction::iterator It = ++BB->getIterator(); 355 F->insert(It, FalseMBB); 356 F->insert(It, TrueMBB); 357 F->insert(It, DoneMBB); 358 359 // Transfer the remainder of BB and its successor edges to DoneMBB. 360 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 361 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 362 363 BB->addSuccessor(TrueMBB); 364 BB->addSuccessor(FalseMBB); 365 TrueMBB->addSuccessor(DoneMBB); 366 FalseMBB->addSuccessor(DoneMBB); 367 368 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 369 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 370 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 371 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 372 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 373 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 374 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 375 376 MI.eraseFromParent(); 377 // For signed numbers, we can do a single comparison to determine whether 378 // fabs(x) is within range. 379 if (IsUnsigned) { 380 Tmp0 = InReg; 381 } else { 382 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 383 } 384 BuildMI(BB, DL, TII.get(FConst), Tmp1) 385 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 386 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 387 388 // For unsigned numbers, we have to do a separate comparison with zero. 389 if (IsUnsigned) { 390 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 391 Register SecondCmpReg = 392 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 393 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 394 BuildMI(BB, DL, TII.get(FConst), Tmp1) 395 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 396 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 397 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 398 CmpReg = AndReg; 399 } 400 401 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 402 403 // Create the CFG diamond to select between doing the conversion or using 404 // the substitute value. 405 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 406 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 407 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 408 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 409 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 410 .addReg(FalseReg) 411 .addMBB(FalseMBB) 412 .addReg(TrueReg) 413 .addMBB(TrueMBB); 414 415 return DoneMBB; 416 } 417 418 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 419 DebugLoc DL, MachineBasicBlock *BB, 420 const TargetInstrInfo &TII) { 421 MachineInstr &CallParams = *CallResults.getPrevNode(); 422 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 423 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 424 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 425 426 bool IsIndirect = CallParams.getOperand(0).isReg(); 427 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 428 429 unsigned CallOp; 430 if (IsIndirect && IsRetCall) { 431 CallOp = WebAssembly::RET_CALL_INDIRECT; 432 } else if (IsIndirect) { 433 CallOp = WebAssembly::CALL_INDIRECT; 434 } else if (IsRetCall) { 435 CallOp = WebAssembly::RET_CALL; 436 } else { 437 CallOp = WebAssembly::CALL; 438 } 439 440 MachineFunction &MF = *BB->getParent(); 441 const MCInstrDesc &MCID = TII.get(CallOp); 442 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 443 444 // Move the function pointer to the end of the arguments for indirect calls 445 if (IsIndirect) { 446 auto FnPtr = CallParams.getOperand(0); 447 CallParams.RemoveOperand(0); 448 CallParams.addOperand(FnPtr); 449 } 450 451 for (auto Def : CallResults.defs()) 452 MIB.add(Def); 453 454 // Add placeholders for the type index and immediate flags 455 if (IsIndirect) { 456 MIB.addImm(0); 457 MIB.addImm(0); 458 } 459 460 for (auto Use : CallParams.uses()) 461 MIB.add(Use); 462 463 BB->insert(CallResults.getIterator(), MIB); 464 CallParams.eraseFromParent(); 465 CallResults.eraseFromParent(); 466 467 return BB; 468 } 469 470 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 471 MachineInstr &MI, MachineBasicBlock *BB) const { 472 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 473 DebugLoc DL = MI.getDebugLoc(); 474 475 switch (MI.getOpcode()) { 476 default: 477 llvm_unreachable("Unexpected instr type to insert"); 478 case WebAssembly::FP_TO_SINT_I32_F32: 479 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 480 WebAssembly::I32_TRUNC_S_F32); 481 case WebAssembly::FP_TO_UINT_I32_F32: 482 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 483 WebAssembly::I32_TRUNC_U_F32); 484 case WebAssembly::FP_TO_SINT_I64_F32: 485 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 486 WebAssembly::I64_TRUNC_S_F32); 487 case WebAssembly::FP_TO_UINT_I64_F32: 488 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 489 WebAssembly::I64_TRUNC_U_F32); 490 case WebAssembly::FP_TO_SINT_I32_F64: 491 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 492 WebAssembly::I32_TRUNC_S_F64); 493 case WebAssembly::FP_TO_UINT_I32_F64: 494 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 495 WebAssembly::I32_TRUNC_U_F64); 496 case WebAssembly::FP_TO_SINT_I64_F64: 497 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 498 WebAssembly::I64_TRUNC_S_F64); 499 case WebAssembly::FP_TO_UINT_I64_F64: 500 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 501 WebAssembly::I64_TRUNC_U_F64); 502 case WebAssembly::CALL_RESULTS: 503 case WebAssembly::RET_CALL_RESULTS: 504 return LowerCallResults(MI, DL, BB, TII); 505 } 506 } 507 508 const char * 509 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 510 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 511 case WebAssemblyISD::FIRST_NUMBER: 512 case WebAssemblyISD::FIRST_MEM_OPCODE: 513 break; 514 #define HANDLE_NODETYPE(NODE) \ 515 case WebAssemblyISD::NODE: \ 516 return "WebAssemblyISD::" #NODE; 517 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 518 #include "WebAssemblyISD.def" 519 #undef HANDLE_MEM_NODETYPE 520 #undef HANDLE_NODETYPE 521 } 522 return nullptr; 523 } 524 525 std::pair<unsigned, const TargetRegisterClass *> 526 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 527 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 528 // First, see if this is a constraint that directly corresponds to a 529 // WebAssembly register class. 530 if (Constraint.size() == 1) { 531 switch (Constraint[0]) { 532 case 'r': 533 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 534 if (Subtarget->hasSIMD128() && VT.isVector()) { 535 if (VT.getSizeInBits() == 128) 536 return std::make_pair(0U, &WebAssembly::V128RegClass); 537 } 538 if (VT.isInteger() && !VT.isVector()) { 539 if (VT.getSizeInBits() <= 32) 540 return std::make_pair(0U, &WebAssembly::I32RegClass); 541 if (VT.getSizeInBits() <= 64) 542 return std::make_pair(0U, &WebAssembly::I64RegClass); 543 } 544 break; 545 default: 546 break; 547 } 548 } 549 550 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 551 } 552 553 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 554 // Assume ctz is a relatively cheap operation. 555 return true; 556 } 557 558 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 559 // Assume clz is a relatively cheap operation. 560 return true; 561 } 562 563 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 564 const AddrMode &AM, 565 Type *Ty, unsigned AS, 566 Instruction *I) const { 567 // WebAssembly offsets are added as unsigned without wrapping. The 568 // isLegalAddressingMode gives us no way to determine if wrapping could be 569 // happening, so we approximate this by accepting only non-negative offsets. 570 if (AM.BaseOffs < 0) 571 return false; 572 573 // WebAssembly has no scale register operands. 574 if (AM.Scale != 0) 575 return false; 576 577 // Everything else is legal. 578 return true; 579 } 580 581 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 582 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 583 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 584 // WebAssembly supports unaligned accesses, though it should be declared 585 // with the p2align attribute on loads and stores which do so, and there 586 // may be a performance impact. We tell LLVM they're "fast" because 587 // for the kinds of things that LLVM uses this for (merging adjacent stores 588 // of constants, etc.), WebAssembly implementations will either want the 589 // unaligned access or they'll split anyway. 590 if (Fast) 591 *Fast = true; 592 return true; 593 } 594 595 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 596 AttributeList Attr) const { 597 // The current thinking is that wasm engines will perform this optimization, 598 // so we can save on code size. 599 return true; 600 } 601 602 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 603 if (!Subtarget->hasUnimplementedSIMD128()) 604 return false; 605 MVT ExtT = ExtVal.getSimpleValueType(); 606 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 607 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 608 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 609 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 610 } 611 612 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 613 LLVMContext &C, 614 EVT VT) const { 615 if (VT.isVector()) 616 return VT.changeVectorElementTypeToInteger(); 617 618 return TargetLowering::getSetCCResultType(DL, C, VT); 619 } 620 621 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 622 const CallInst &I, 623 MachineFunction &MF, 624 unsigned Intrinsic) const { 625 switch (Intrinsic) { 626 case Intrinsic::wasm_atomic_notify: 627 Info.opc = ISD::INTRINSIC_W_CHAIN; 628 Info.memVT = MVT::i32; 629 Info.ptrVal = I.getArgOperand(0); 630 Info.offset = 0; 631 Info.align = Align(4); 632 // atomic.notify instruction does not really load the memory specified with 633 // this argument, but MachineMemOperand should either be load or store, so 634 // we set this to a load. 635 // FIXME Volatile isn't really correct, but currently all LLVM atomic 636 // instructions are treated as volatiles in the backend, so we should be 637 // consistent. The same applies for wasm_atomic_wait intrinsics too. 638 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 639 return true; 640 case Intrinsic::wasm_atomic_wait_i32: 641 Info.opc = ISD::INTRINSIC_W_CHAIN; 642 Info.memVT = MVT::i32; 643 Info.ptrVal = I.getArgOperand(0); 644 Info.offset = 0; 645 Info.align = Align(4); 646 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 647 return true; 648 case Intrinsic::wasm_atomic_wait_i64: 649 Info.opc = ISD::INTRINSIC_W_CHAIN; 650 Info.memVT = MVT::i64; 651 Info.ptrVal = I.getArgOperand(0); 652 Info.offset = 0; 653 Info.align = Align(8); 654 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 655 return true; 656 default: 657 return false; 658 } 659 } 660 661 //===----------------------------------------------------------------------===// 662 // WebAssembly Lowering private implementation. 663 //===----------------------------------------------------------------------===// 664 665 //===----------------------------------------------------------------------===// 666 // Lowering Code 667 //===----------------------------------------------------------------------===// 668 669 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 670 MachineFunction &MF = DAG.getMachineFunction(); 671 DAG.getContext()->diagnose( 672 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 673 } 674 675 // Test whether the given calling convention is supported. 676 static bool callingConvSupported(CallingConv::ID CallConv) { 677 // We currently support the language-independent target-independent 678 // conventions. We don't yet have a way to annotate calls with properties like 679 // "cold", and we don't have any call-clobbered registers, so these are mostly 680 // all handled the same. 681 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 682 CallConv == CallingConv::Cold || 683 CallConv == CallingConv::PreserveMost || 684 CallConv == CallingConv::PreserveAll || 685 CallConv == CallingConv::CXX_FAST_TLS || 686 CallConv == CallingConv::WASM_EmscriptenInvoke || 687 CallConv == CallingConv::Swift; 688 } 689 690 SDValue 691 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 692 SmallVectorImpl<SDValue> &InVals) const { 693 SelectionDAG &DAG = CLI.DAG; 694 SDLoc DL = CLI.DL; 695 SDValue Chain = CLI.Chain; 696 SDValue Callee = CLI.Callee; 697 MachineFunction &MF = DAG.getMachineFunction(); 698 auto Layout = MF.getDataLayout(); 699 700 CallingConv::ID CallConv = CLI.CallConv; 701 if (!callingConvSupported(CallConv)) 702 fail(DL, DAG, 703 "WebAssembly doesn't support language-specific or target-specific " 704 "calling conventions yet"); 705 if (CLI.IsPatchPoint) 706 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 707 708 if (CLI.IsTailCall) { 709 auto NoTail = [&](const char *Msg) { 710 if (CLI.CB && CLI.CB->isMustTailCall()) 711 fail(DL, DAG, Msg); 712 CLI.IsTailCall = false; 713 }; 714 715 if (!Subtarget->hasTailCall()) 716 NoTail("WebAssembly 'tail-call' feature not enabled"); 717 718 // Varargs calls cannot be tail calls because the buffer is on the stack 719 if (CLI.IsVarArg) 720 NoTail("WebAssembly does not support varargs tail calls"); 721 722 // Do not tail call unless caller and callee return types match 723 const Function &F = MF.getFunction(); 724 const TargetMachine &TM = getTargetMachine(); 725 Type *RetTy = F.getReturnType(); 726 SmallVector<MVT, 4> CallerRetTys; 727 SmallVector<MVT, 4> CalleeRetTys; 728 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 729 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 730 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 731 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 732 CalleeRetTys.begin()); 733 if (!TypesMatch) 734 NoTail("WebAssembly tail call requires caller and callee return types to " 735 "match"); 736 737 // If pointers to local stack values are passed, we cannot tail call 738 if (CLI.CB) { 739 for (auto &Arg : CLI.CB->args()) { 740 Value *Val = Arg.get(); 741 // Trace the value back through pointer operations 742 while (true) { 743 Value *Src = Val->stripPointerCastsAndAliases(); 744 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 745 Src = GEP->getPointerOperand(); 746 if (Val == Src) 747 break; 748 Val = Src; 749 } 750 if (isa<AllocaInst>(Val)) { 751 NoTail( 752 "WebAssembly does not support tail calling with stack arguments"); 753 break; 754 } 755 } 756 } 757 } 758 759 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 760 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 761 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 762 763 // The generic code may have added an sret argument. If we're lowering an 764 // invoke function, the ABI requires that the function pointer be the first 765 // argument, so we may have to swap the arguments. 766 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 767 Outs[0].Flags.isSRet()) { 768 std::swap(Outs[0], Outs[1]); 769 std::swap(OutVals[0], OutVals[1]); 770 } 771 772 bool HasSwiftSelfArg = false; 773 bool HasSwiftErrorArg = false; 774 unsigned NumFixedArgs = 0; 775 for (unsigned I = 0; I < Outs.size(); ++I) { 776 const ISD::OutputArg &Out = Outs[I]; 777 SDValue &OutVal = OutVals[I]; 778 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 779 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 780 if (Out.Flags.isNest()) 781 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 782 if (Out.Flags.isInAlloca()) 783 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 784 if (Out.Flags.isInConsecutiveRegs()) 785 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 786 if (Out.Flags.isInConsecutiveRegsLast()) 787 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 788 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 789 auto &MFI = MF.getFrameInfo(); 790 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 791 Out.Flags.getNonZeroByValAlign(), 792 /*isSS=*/false); 793 SDValue SizeNode = 794 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 795 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 796 Chain = DAG.getMemcpy( 797 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 798 /*isVolatile*/ false, /*AlwaysInline=*/false, 799 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 800 OutVal = FINode; 801 } 802 // Count the number of fixed args *after* legalization. 803 NumFixedArgs += Out.IsFixed; 804 } 805 806 bool IsVarArg = CLI.IsVarArg; 807 auto PtrVT = getPointerTy(Layout); 808 809 // For swiftcc, emit additional swiftself and swifterror arguments 810 // if there aren't. These additional arguments are also added for callee 811 // signature They are necessary to match callee and caller signature for 812 // indirect call. 813 if (CallConv == CallingConv::Swift) { 814 if (!HasSwiftSelfArg) { 815 NumFixedArgs++; 816 ISD::OutputArg Arg; 817 Arg.Flags.setSwiftSelf(); 818 CLI.Outs.push_back(Arg); 819 SDValue ArgVal = DAG.getUNDEF(PtrVT); 820 CLI.OutVals.push_back(ArgVal); 821 } 822 if (!HasSwiftErrorArg) { 823 NumFixedArgs++; 824 ISD::OutputArg Arg; 825 Arg.Flags.setSwiftError(); 826 CLI.Outs.push_back(Arg); 827 SDValue ArgVal = DAG.getUNDEF(PtrVT); 828 CLI.OutVals.push_back(ArgVal); 829 } 830 } 831 832 // Analyze operands of the call, assigning locations to each operand. 833 SmallVector<CCValAssign, 16> ArgLocs; 834 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 835 836 if (IsVarArg) { 837 // Outgoing non-fixed arguments are placed in a buffer. First 838 // compute their offsets and the total amount of buffer space needed. 839 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 840 const ISD::OutputArg &Out = Outs[I]; 841 SDValue &Arg = OutVals[I]; 842 EVT VT = Arg.getValueType(); 843 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 844 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 845 unsigned Align = std::max(Out.Flags.getOrigAlign(), 846 Layout.getABITypeAlignment(Ty)); 847 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 848 Align); 849 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 850 Offset, VT.getSimpleVT(), 851 CCValAssign::Full)); 852 } 853 } 854 855 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 856 857 SDValue FINode; 858 if (IsVarArg && NumBytes) { 859 // For non-fixed arguments, next emit stores to store the argument values 860 // to the stack buffer at the offsets computed above. 861 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 862 Layout.getStackAlignment(), 863 /*isSS=*/false); 864 unsigned ValNo = 0; 865 SmallVector<SDValue, 8> Chains; 866 for (SDValue Arg : 867 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 868 assert(ArgLocs[ValNo].getValNo() == ValNo && 869 "ArgLocs should remain in order and only hold varargs args"); 870 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 871 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 872 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 873 DAG.getConstant(Offset, DL, PtrVT)); 874 Chains.push_back( 875 DAG.getStore(Chain, DL, Arg, Add, 876 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 877 } 878 if (!Chains.empty()) 879 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 880 } else if (IsVarArg) { 881 FINode = DAG.getIntPtrConstant(0, DL); 882 } 883 884 if (Callee->getOpcode() == ISD::GlobalAddress) { 885 // If the callee is a GlobalAddress node (quite common, every direct call 886 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 887 // doesn't at MO_GOT which is not needed for direct calls. 888 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 889 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 890 getPointerTy(DAG.getDataLayout()), 891 GA->getOffset()); 892 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 893 getPointerTy(DAG.getDataLayout()), Callee); 894 } 895 896 // Compute the operands for the CALLn node. 897 SmallVector<SDValue, 16> Ops; 898 Ops.push_back(Chain); 899 Ops.push_back(Callee); 900 901 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 902 // isn't reliable. 903 Ops.append(OutVals.begin(), 904 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 905 // Add a pointer to the vararg buffer. 906 if (IsVarArg) 907 Ops.push_back(FINode); 908 909 SmallVector<EVT, 8> InTys; 910 for (const auto &In : Ins) { 911 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 912 assert(!In.Flags.isNest() && "nest is not valid for return values"); 913 if (In.Flags.isInAlloca()) 914 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 915 if (In.Flags.isInConsecutiveRegs()) 916 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 917 if (In.Flags.isInConsecutiveRegsLast()) 918 fail(DL, DAG, 919 "WebAssembly hasn't implemented cons regs last return values"); 920 // Ignore In.getOrigAlign() because all our arguments are passed in 921 // registers. 922 InTys.push_back(In.VT); 923 } 924 925 if (CLI.IsTailCall) { 926 // ret_calls do not return values to the current frame 927 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 928 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 929 } 930 931 InTys.push_back(MVT::Other); 932 SDVTList InTyList = DAG.getVTList(InTys); 933 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 934 935 for (size_t I = 0; I < Ins.size(); ++I) 936 InVals.push_back(Res.getValue(I)); 937 938 // Return the chain 939 return Res.getValue(Ins.size()); 940 } 941 942 bool WebAssemblyTargetLowering::CanLowerReturn( 943 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 944 const SmallVectorImpl<ISD::OutputArg> &Outs, 945 LLVMContext & /*Context*/) const { 946 // WebAssembly can only handle returning tuples with multivalue enabled 947 return Subtarget->hasMultivalue() || Outs.size() <= 1; 948 } 949 950 SDValue WebAssemblyTargetLowering::LowerReturn( 951 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 952 const SmallVectorImpl<ISD::OutputArg> &Outs, 953 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 954 SelectionDAG &DAG) const { 955 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 956 "MVP WebAssembly can only return up to one value"); 957 if (!callingConvSupported(CallConv)) 958 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 959 960 SmallVector<SDValue, 4> RetOps(1, Chain); 961 RetOps.append(OutVals.begin(), OutVals.end()); 962 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 963 964 // Record the number and types of the return values. 965 for (const ISD::OutputArg &Out : Outs) { 966 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 967 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 968 assert(Out.IsFixed && "non-fixed return value is not valid"); 969 if (Out.Flags.isInAlloca()) 970 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 971 if (Out.Flags.isInConsecutiveRegs()) 972 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 973 if (Out.Flags.isInConsecutiveRegsLast()) 974 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 975 } 976 977 return Chain; 978 } 979 980 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 981 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 982 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 983 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 984 if (!callingConvSupported(CallConv)) 985 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 986 987 MachineFunction &MF = DAG.getMachineFunction(); 988 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 989 990 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 991 // of the incoming values before they're represented by virtual registers. 992 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 993 994 bool HasSwiftErrorArg = false; 995 bool HasSwiftSelfArg = false; 996 for (const ISD::InputArg &In : Ins) { 997 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 998 HasSwiftErrorArg |= In.Flags.isSwiftError(); 999 if (In.Flags.isInAlloca()) 1000 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1001 if (In.Flags.isNest()) 1002 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1003 if (In.Flags.isInConsecutiveRegs()) 1004 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1005 if (In.Flags.isInConsecutiveRegsLast()) 1006 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1007 // Ignore In.getOrigAlign() because all our arguments are passed in 1008 // registers. 1009 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1010 DAG.getTargetConstant(InVals.size(), 1011 DL, MVT::i32)) 1012 : DAG.getUNDEF(In.VT)); 1013 1014 // Record the number and types of arguments. 1015 MFI->addParam(In.VT); 1016 } 1017 1018 // For swiftcc, emit additional swiftself and swifterror arguments 1019 // if there aren't. These additional arguments are also added for callee 1020 // signature They are necessary to match callee and caller signature for 1021 // indirect call. 1022 auto PtrVT = getPointerTy(MF.getDataLayout()); 1023 if (CallConv == CallingConv::Swift) { 1024 if (!HasSwiftSelfArg) { 1025 MFI->addParam(PtrVT); 1026 } 1027 if (!HasSwiftErrorArg) { 1028 MFI->addParam(PtrVT); 1029 } 1030 } 1031 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1032 // the buffer is passed as an argument. 1033 if (IsVarArg) { 1034 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1035 Register VarargVreg = 1036 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1037 MFI->setVarargBufferVreg(VarargVreg); 1038 Chain = DAG.getCopyToReg( 1039 Chain, DL, VarargVreg, 1040 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1041 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1042 MFI->addParam(PtrVT); 1043 } 1044 1045 // Record the number and types of arguments and results. 1046 SmallVector<MVT, 4> Params; 1047 SmallVector<MVT, 4> Results; 1048 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1049 MF.getFunction(), DAG.getTarget(), Params, Results); 1050 for (MVT VT : Results) 1051 MFI->addResult(VT); 1052 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1053 // the param logic here with ComputeSignatureVTs 1054 assert(MFI->getParams().size() == Params.size() && 1055 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1056 Params.begin())); 1057 1058 return Chain; 1059 } 1060 1061 void WebAssemblyTargetLowering::ReplaceNodeResults( 1062 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1063 switch (N->getOpcode()) { 1064 case ISD::SIGN_EXTEND_INREG: 1065 // Do not add any results, signifying that N should not be custom lowered 1066 // after all. This happens because simd128 turns on custom lowering for 1067 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1068 // illegal type. 1069 break; 1070 default: 1071 llvm_unreachable( 1072 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1073 } 1074 } 1075 1076 //===----------------------------------------------------------------------===// 1077 // Custom lowering hooks. 1078 //===----------------------------------------------------------------------===// 1079 1080 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1081 SelectionDAG &DAG) const { 1082 SDLoc DL(Op); 1083 switch (Op.getOpcode()) { 1084 default: 1085 llvm_unreachable("unimplemented operation lowering"); 1086 return SDValue(); 1087 case ISD::FrameIndex: 1088 return LowerFrameIndex(Op, DAG); 1089 case ISD::GlobalAddress: 1090 return LowerGlobalAddress(Op, DAG); 1091 case ISD::ExternalSymbol: 1092 return LowerExternalSymbol(Op, DAG); 1093 case ISD::JumpTable: 1094 return LowerJumpTable(Op, DAG); 1095 case ISD::BR_JT: 1096 return LowerBR_JT(Op, DAG); 1097 case ISD::VASTART: 1098 return LowerVASTART(Op, DAG); 1099 case ISD::BlockAddress: 1100 case ISD::BRIND: 1101 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1102 return SDValue(); 1103 case ISD::RETURNADDR: 1104 return LowerRETURNADDR(Op, DAG); 1105 case ISD::FRAMEADDR: 1106 return LowerFRAMEADDR(Op, DAG); 1107 case ISD::CopyToReg: 1108 return LowerCopyToReg(Op, DAG); 1109 case ISD::EXTRACT_VECTOR_ELT: 1110 case ISD::INSERT_VECTOR_ELT: 1111 return LowerAccessVectorElement(Op, DAG); 1112 case ISD::INTRINSIC_VOID: 1113 case ISD::INTRINSIC_WO_CHAIN: 1114 case ISD::INTRINSIC_W_CHAIN: 1115 return LowerIntrinsic(Op, DAG); 1116 case ISD::SIGN_EXTEND_INREG: 1117 return LowerSIGN_EXTEND_INREG(Op, DAG); 1118 case ISD::BUILD_VECTOR: 1119 return LowerBUILD_VECTOR(Op, DAG); 1120 case ISD::VECTOR_SHUFFLE: 1121 return LowerVECTOR_SHUFFLE(Op, DAG); 1122 case ISD::SETCC: 1123 return LowerSETCC(Op, DAG); 1124 case ISD::SHL: 1125 case ISD::SRA: 1126 case ISD::SRL: 1127 return LowerShift(Op, DAG); 1128 } 1129 } 1130 1131 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1132 SelectionDAG &DAG) const { 1133 SDValue Src = Op.getOperand(2); 1134 if (isa<FrameIndexSDNode>(Src.getNode())) { 1135 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1136 // the FI to some LEA-like instruction, but since we don't have that, we 1137 // need to insert some kind of instruction that can take an FI operand and 1138 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1139 // local.copy between Op and its FI operand. 1140 SDValue Chain = Op.getOperand(0); 1141 SDLoc DL(Op); 1142 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1143 EVT VT = Src.getValueType(); 1144 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1145 : WebAssembly::COPY_I64, 1146 DL, VT, Src), 1147 0); 1148 return Op.getNode()->getNumValues() == 1 1149 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1150 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1151 Op.getNumOperands() == 4 ? Op.getOperand(3) 1152 : SDValue()); 1153 } 1154 return SDValue(); 1155 } 1156 1157 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1158 SelectionDAG &DAG) const { 1159 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1160 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1161 } 1162 1163 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1164 SelectionDAG &DAG) const { 1165 SDLoc DL(Op); 1166 1167 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1168 fail(DL, DAG, 1169 "Non-Emscripten WebAssembly hasn't implemented " 1170 "__builtin_return_address"); 1171 return SDValue(); 1172 } 1173 1174 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1175 return SDValue(); 1176 1177 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1178 MakeLibCallOptions CallOptions; 1179 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1180 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1181 .first; 1182 } 1183 1184 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1185 SelectionDAG &DAG) const { 1186 // Non-zero depths are not supported by WebAssembly currently. Use the 1187 // legalizer's default expansion, which is to return 0 (what this function is 1188 // documented to do). 1189 if (Op.getConstantOperandVal(0) > 0) 1190 return SDValue(); 1191 1192 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1193 EVT VT = Op.getValueType(); 1194 Register FP = 1195 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1196 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1197 } 1198 1199 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1200 SelectionDAG &DAG) const { 1201 SDLoc DL(Op); 1202 const auto *GA = cast<GlobalAddressSDNode>(Op); 1203 EVT VT = Op.getValueType(); 1204 assert(GA->getTargetFlags() == 0 && 1205 "Unexpected target flags on generic GlobalAddressSDNode"); 1206 if (GA->getAddressSpace() != 0) 1207 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1208 1209 unsigned OperandFlags = 0; 1210 if (isPositionIndependent()) { 1211 const GlobalValue *GV = GA->getGlobal(); 1212 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1213 MachineFunction &MF = DAG.getMachineFunction(); 1214 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1215 const char *BaseName; 1216 if (GV->getValueType()->isFunctionTy()) { 1217 BaseName = MF.createExternalSymbolName("__table_base"); 1218 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1219 } 1220 else { 1221 BaseName = MF.createExternalSymbolName("__memory_base"); 1222 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1223 } 1224 SDValue BaseAddr = 1225 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1226 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1227 1228 SDValue SymAddr = DAG.getNode( 1229 WebAssemblyISD::WrapperPIC, DL, VT, 1230 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1231 OperandFlags)); 1232 1233 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1234 } else { 1235 OperandFlags = WebAssemblyII::MO_GOT; 1236 } 1237 } 1238 1239 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1240 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1241 GA->getOffset(), OperandFlags)); 1242 } 1243 1244 SDValue 1245 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1246 SelectionDAG &DAG) const { 1247 SDLoc DL(Op); 1248 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1249 EVT VT = Op.getValueType(); 1250 assert(ES->getTargetFlags() == 0 && 1251 "Unexpected target flags on generic ExternalSymbolSDNode"); 1252 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1253 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1254 } 1255 1256 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1257 SelectionDAG &DAG) const { 1258 // There's no need for a Wrapper node because we always incorporate a jump 1259 // table operand into a BR_TABLE instruction, rather than ever 1260 // materializing it in a register. 1261 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1262 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1263 JT->getTargetFlags()); 1264 } 1265 1266 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1267 SelectionDAG &DAG) const { 1268 SDLoc DL(Op); 1269 SDValue Chain = Op.getOperand(0); 1270 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1271 SDValue Index = Op.getOperand(2); 1272 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1273 1274 SmallVector<SDValue, 8> Ops; 1275 Ops.push_back(Chain); 1276 Ops.push_back(Index); 1277 1278 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1279 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1280 1281 // Add an operand for each case. 1282 for (auto MBB : MBBs) 1283 Ops.push_back(DAG.getBasicBlock(MBB)); 1284 1285 // TODO: For now, we just pick something arbitrary for a default case for now. 1286 // We really want to sniff out the guard and put in the real default case (and 1287 // delete the guard). 1288 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1289 1290 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1291 } 1292 1293 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1294 SelectionDAG &DAG) const { 1295 SDLoc DL(Op); 1296 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1297 1298 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1299 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1300 1301 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1302 MFI->getVarargBufferVreg(), PtrVT); 1303 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1304 MachinePointerInfo(SV), 0); 1305 } 1306 1307 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1308 SelectionDAG &DAG) const { 1309 MachineFunction &MF = DAG.getMachineFunction(); 1310 unsigned IntNo; 1311 switch (Op.getOpcode()) { 1312 case ISD::INTRINSIC_VOID: 1313 case ISD::INTRINSIC_W_CHAIN: 1314 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1315 break; 1316 case ISD::INTRINSIC_WO_CHAIN: 1317 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1318 break; 1319 default: 1320 llvm_unreachable("Invalid intrinsic"); 1321 } 1322 SDLoc DL(Op); 1323 1324 switch (IntNo) { 1325 default: 1326 return SDValue(); // Don't custom lower most intrinsics. 1327 1328 case Intrinsic::wasm_lsda: { 1329 EVT VT = Op.getValueType(); 1330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1331 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1332 auto &Context = MF.getMMI().getContext(); 1333 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1334 Twine(MF.getFunctionNumber())); 1335 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1336 DAG.getMCSymbol(S, PtrVT)); 1337 } 1338 1339 case Intrinsic::wasm_throw: { 1340 // We only support C++ exceptions for now 1341 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1342 if (Tag != CPP_EXCEPTION) 1343 llvm_unreachable("Invalid tag!"); 1344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1345 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1346 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1347 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1348 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1349 return DAG.getNode(WebAssemblyISD::THROW, DL, 1350 MVT::Other, // outchain type 1351 { 1352 Op.getOperand(0), // inchain 1353 SymNode, // exception symbol 1354 Op.getOperand(3) // thrown value 1355 }); 1356 } 1357 } 1358 } 1359 1360 SDValue 1361 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1362 SelectionDAG &DAG) const { 1363 SDLoc DL(Op); 1364 // If sign extension operations are disabled, allow sext_inreg only if operand 1365 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1366 // extension operations, but allowing sext_inreg in this context lets us have 1367 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1368 // everywhere would be simpler in this file, but would necessitate large and 1369 // brittle patterns to undo the expansion and select extract_lane_s 1370 // instructions. 1371 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1372 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1373 return SDValue(); 1374 1375 const SDValue &Extract = Op.getOperand(0); 1376 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1377 if (VecT.getVectorElementType().getSizeInBits() > 32) 1378 return SDValue(); 1379 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1380 ->getVT() 1381 .getSimpleVT(); 1382 MVT ExtractedVecT = 1383 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1384 if (ExtractedVecT == VecT) 1385 return Op; 1386 1387 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1388 const SDValue &Index = Extract.getOperand(1); 1389 unsigned IndexVal = 1390 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1391 unsigned Scale = 1392 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1393 assert(Scale > 1); 1394 SDValue NewIndex = 1395 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1396 SDValue NewExtract = DAG.getNode( 1397 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1398 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1399 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1400 Op.getOperand(1)); 1401 } 1402 1403 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1404 SelectionDAG &DAG) const { 1405 SDLoc DL(Op); 1406 const EVT VecT = Op.getValueType(); 1407 const EVT LaneT = Op.getOperand(0).getValueType(); 1408 const size_t Lanes = Op.getNumOperands(); 1409 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8; 1410 1411 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1412 // possible number of lanes at once followed by a sequence of replace_lane 1413 // instructions to individually initialize any remaining lanes. 1414 1415 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1416 // swizzled lanes should be given greater weight. 1417 1418 // TODO: Investigate building vectors by shuffling together vectors built by 1419 // separately specialized means. 1420 1421 auto IsConstant = [](const SDValue &V) { 1422 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1423 }; 1424 1425 // Returns the source vector and index vector pair if they exist. Checks for: 1426 // (extract_vector_elt 1427 // $src, 1428 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1429 // ) 1430 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1431 auto Bail = std::make_pair(SDValue(), SDValue()); 1432 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1433 return Bail; 1434 const SDValue &SwizzleSrc = Lane->getOperand(0); 1435 const SDValue &IndexExt = Lane->getOperand(1); 1436 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1437 return Bail; 1438 const SDValue &Index = IndexExt->getOperand(0); 1439 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1440 return Bail; 1441 const SDValue &SwizzleIndices = Index->getOperand(0); 1442 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1443 SwizzleIndices.getValueType() != MVT::v16i8 || 1444 Index->getOperand(1)->getOpcode() != ISD::Constant || 1445 Index->getConstantOperandVal(1) != I) 1446 return Bail; 1447 return std::make_pair(SwizzleSrc, SwizzleIndices); 1448 }; 1449 1450 using ValueEntry = std::pair<SDValue, size_t>; 1451 SmallVector<ValueEntry, 16> SplatValueCounts; 1452 1453 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1454 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1455 1456 auto AddCount = [](auto &Counts, const auto &Val) { 1457 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1458 [&Val](auto E) { return E.first == Val; }); 1459 if (CountIt == Counts.end()) { 1460 Counts.emplace_back(Val, 1); 1461 } else { 1462 CountIt->second++; 1463 } 1464 }; 1465 1466 auto GetMostCommon = [](auto &Counts) { 1467 auto CommonIt = 1468 std::max_element(Counts.begin(), Counts.end(), 1469 [](auto A, auto B) { return A.second < B.second; }); 1470 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1471 return *CommonIt; 1472 }; 1473 1474 size_t NumConstantLanes = 0; 1475 1476 // Count eligible lanes for each type of vector creation op 1477 for (size_t I = 0; I < Lanes; ++I) { 1478 const SDValue &Lane = Op->getOperand(I); 1479 if (Lane.isUndef()) 1480 continue; 1481 1482 AddCount(SplatValueCounts, Lane); 1483 1484 if (IsConstant(Lane)) { 1485 NumConstantLanes++; 1486 } else if (CanSwizzle) { 1487 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1488 if (SwizzleSrcs.first) 1489 AddCount(SwizzleCounts, SwizzleSrcs); 1490 } 1491 } 1492 1493 SDValue SplatValue; 1494 size_t NumSplatLanes; 1495 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1496 1497 SDValue SwizzleSrc; 1498 SDValue SwizzleIndices; 1499 size_t NumSwizzleLanes = 0; 1500 if (SwizzleCounts.size()) 1501 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1502 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1503 1504 // Predicate returning true if the lane is properly initialized by the 1505 // original instruction 1506 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1507 SDValue Result; 1508 if (Subtarget->hasUnimplementedSIMD128()) { 1509 // Prefer swizzles over vector consts over splats 1510 if (NumSwizzleLanes >= NumSplatLanes && 1511 NumSwizzleLanes >= NumConstantLanes) { 1512 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1513 SwizzleIndices); 1514 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1515 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1516 return Swizzled == GetSwizzleSrcs(I, Lane); 1517 }; 1518 } else if (NumConstantLanes >= NumSplatLanes) { 1519 SmallVector<SDValue, 16> ConstLanes; 1520 for (const SDValue &Lane : Op->op_values()) { 1521 if (IsConstant(Lane)) { 1522 ConstLanes.push_back(Lane); 1523 } else if (LaneT.isFloatingPoint()) { 1524 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1525 } else { 1526 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1527 } 1528 } 1529 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1530 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1531 return IsConstant(Lane); 1532 }; 1533 } 1534 } 1535 if (!Result) { 1536 // Use a splat, but possibly a load_splat 1537 LoadSDNode *SplattedLoad; 1538 if (Subtarget->hasUnimplementedSIMD128() && 1539 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1540 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1541 Result = DAG.getMemIntrinsicNode( 1542 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1543 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1544 SplattedLoad->getOffset()}, 1545 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1546 } else { 1547 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1548 } 1549 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1550 return Lane == SplatValue; 1551 }; 1552 } 1553 1554 // Add replace_lane instructions for any unhandled values 1555 for (size_t I = 0; I < Lanes; ++I) { 1556 const SDValue &Lane = Op->getOperand(I); 1557 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1558 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1559 DAG.getConstant(I, DL, MVT::i32)); 1560 } 1561 1562 return Result; 1563 } 1564 1565 SDValue 1566 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1567 SelectionDAG &DAG) const { 1568 SDLoc DL(Op); 1569 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1570 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1571 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1572 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1573 1574 // Space for two vector args and sixteen mask indices 1575 SDValue Ops[18]; 1576 size_t OpIdx = 0; 1577 Ops[OpIdx++] = Op.getOperand(0); 1578 Ops[OpIdx++] = Op.getOperand(1); 1579 1580 // Expand mask indices to byte indices and materialize them as operands 1581 for (int M : Mask) { 1582 for (size_t J = 0; J < LaneBytes; ++J) { 1583 // Lower undefs (represented by -1 in mask) to zero 1584 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1585 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1586 } 1587 } 1588 1589 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1590 } 1591 1592 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1593 SelectionDAG &DAG) const { 1594 SDLoc DL(Op); 1595 // The legalizer does not know how to expand the comparison modes of i64x2 1596 // vectors because no comparison modes are supported. We could solve this by 1597 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1598 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1599 // comparisons here. 1600 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1601 SmallVector<SDValue, 2> LHS, RHS; 1602 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1603 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1604 const SDValue &CC = Op->getOperand(2); 1605 auto MakeLane = [&](unsigned I) { 1606 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1607 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1608 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1609 }; 1610 return DAG.getBuildVector(Op->getValueType(0), DL, 1611 {MakeLane(0), MakeLane(1)}); 1612 } 1613 1614 SDValue 1615 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1616 SelectionDAG &DAG) const { 1617 // Allow constant lane indices, expand variable lane indices 1618 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1619 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1620 return Op; 1621 else 1622 // Perform default expansion 1623 return SDValue(); 1624 } 1625 1626 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1627 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1628 // 32-bit and 64-bit unrolled shifts will have proper semantics 1629 if (LaneT.bitsGE(MVT::i32)) 1630 return DAG.UnrollVectorOp(Op.getNode()); 1631 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1632 SDLoc DL(Op); 1633 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1634 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1635 unsigned ShiftOpcode = Op.getOpcode(); 1636 SmallVector<SDValue, 16> ShiftedElements; 1637 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1638 SmallVector<SDValue, 16> ShiftElements; 1639 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1640 SmallVector<SDValue, 16> UnrolledOps; 1641 for (size_t i = 0; i < NumLanes; ++i) { 1642 SDValue MaskedShiftValue = 1643 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1644 SDValue ShiftedValue = ShiftedElements[i]; 1645 if (ShiftOpcode == ISD::SRA) 1646 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1647 ShiftedValue, DAG.getValueType(LaneT)); 1648 UnrolledOps.push_back( 1649 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1650 } 1651 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1652 } 1653 1654 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1655 SelectionDAG &DAG) const { 1656 SDLoc DL(Op); 1657 1658 // Only manually lower vector shifts 1659 assert(Op.getSimpleValueType().isVector()); 1660 1661 // Unroll non-splat vector shifts 1662 BuildVectorSDNode *ShiftVec; 1663 SDValue SplatVal; 1664 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1665 !(SplatVal = ShiftVec->getSplatValue())) 1666 return unrollVectorShift(Op, DAG); 1667 1668 // All splats except i64x2 const splats are handled by patterns 1669 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1670 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1671 return Op; 1672 1673 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1674 unsigned Opcode; 1675 switch (Op.getOpcode()) { 1676 case ISD::SHL: 1677 Opcode = WebAssemblyISD::VEC_SHL; 1678 break; 1679 case ISD::SRA: 1680 Opcode = WebAssemblyISD::VEC_SHR_S; 1681 break; 1682 case ISD::SRL: 1683 Opcode = WebAssemblyISD::VEC_SHR_U; 1684 break; 1685 default: 1686 llvm_unreachable("unexpected opcode"); 1687 } 1688 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1689 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1690 DAG.getConstant(Shift, DL, MVT::i32)); 1691 } 1692 1693 //===----------------------------------------------------------------------===// 1694 // WebAssembly Optimization Hooks 1695 //===----------------------------------------------------------------------===// 1696