1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // We don't know the microarchitecture here, so just reduce register pressure. 49 setSchedulingPreference(Sched::RegPressure); 50 // Tell ISel that we have a stack pointer. 51 setStackPointerRegisterToSaveRestore( 52 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 53 // Set up the register classes. 54 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 55 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 56 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 57 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 58 if (Subtarget->hasSIMD128()) { 59 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 60 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 63 } 64 if (Subtarget->hasUnimplementedSIMD128()) { 65 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 67 } 68 // Compute derived properties from the register classes. 69 computeRegisterProperties(Subtarget->getRegisterInfo()); 70 71 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 72 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 73 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 74 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 75 setOperationAction(ISD::BRIND, MVT::Other, Custom); 76 77 // Take the default expansion for va_arg, va_copy, and va_end. There is no 78 // default action for va_start, so we do that custom. 79 setOperationAction(ISD::VASTART, MVT::Other, Custom); 80 setOperationAction(ISD::VAARG, MVT::Other, Expand); 81 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 82 setOperationAction(ISD::VAEND, MVT::Other, Expand); 83 84 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 85 // Don't expand the floating-point types to constant pools. 86 setOperationAction(ISD::ConstantFP, T, Legal); 87 // Expand floating-point comparisons. 88 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 89 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 90 setCondCodeAction(CC, T, Expand); 91 // Expand floating-point library function operators. 92 for (auto Op : 93 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 94 setOperationAction(Op, T, Expand); 95 // Note supported floating-point library function operators that otherwise 96 // default to expand. 97 for (auto Op : 98 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 99 setOperationAction(Op, T, Legal); 100 // Support minimum and maximum, which otherwise default to expand. 101 setOperationAction(ISD::FMINIMUM, T, Legal); 102 setOperationAction(ISD::FMAXIMUM, T, Legal); 103 // WebAssembly currently has no builtin f16 support. 104 setOperationAction(ISD::FP16_TO_FP, T, Expand); 105 setOperationAction(ISD::FP_TO_FP16, T, Expand); 106 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 107 setTruncStoreAction(T, MVT::f16, Expand); 108 } 109 110 // Expand unavailable integer operations. 111 for (auto Op : 112 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 113 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 114 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 115 for (auto T : {MVT::i32, MVT::i64}) 116 setOperationAction(Op, T, Expand); 117 if (Subtarget->hasSIMD128()) 118 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasUnimplementedSIMD128()) 121 setOperationAction(Op, MVT::v2i64, Expand); 122 } 123 124 // SIMD-specific configuration 125 if (Subtarget->hasSIMD128()) { 126 // Support saturating add for i8x16 and i16x8 127 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 128 for (auto T : {MVT::v16i8, MVT::v8i16}) 129 setOperationAction(Op, T, Legal); 130 131 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 132 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 133 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 134 if (Subtarget->hasUnimplementedSIMD128()) 135 for (auto T : {MVT::v2i64, MVT::v2f64}) 136 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 137 138 // We have custom shuffle lowering to expose the shuffle mask 139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 140 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 141 if (Subtarget->hasUnimplementedSIMD128()) 142 for (auto T: {MVT::v2i64, MVT::v2f64}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 145 // Custom lowering since wasm shifts must have a scalar shift amount 146 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 148 setOperationAction(Op, T, Custom); 149 if (Subtarget->hasUnimplementedSIMD128()) 150 setOperationAction(Op, MVT::v2i64, Custom); 151 } 152 153 // Custom lower lane accesses to expand out variable indices 154 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 155 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 156 setOperationAction(Op, T, Custom); 157 if (Subtarget->hasUnimplementedSIMD128()) 158 for (auto T : {MVT::v2i64, MVT::v2f64}) 159 setOperationAction(Op, T, Custom); 160 } 161 162 // There is no i64x2.mul instruction 163 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 164 165 // There are no vector select instructions 166 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 168 setOperationAction(Op, T, Expand); 169 if (Subtarget->hasUnimplementedSIMD128()) 170 for (auto T : {MVT::v2i64, MVT::v2f64}) 171 setOperationAction(Op, T, Expand); 172 } 173 174 // Expand integer operations supported for scalars but not SIMD 175 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 176 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 177 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 178 setOperationAction(Op, T, Expand); 179 if (Subtarget->hasUnimplementedSIMD128()) 180 setOperationAction(Op, MVT::v2i64, Expand); 181 } 182 183 // Expand float operations supported for scalars but not SIMD 184 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 185 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 186 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) { 187 setOperationAction(Op, MVT::v4f32, Expand); 188 if (Subtarget->hasUnimplementedSIMD128()) 189 setOperationAction(Op, MVT::v2f64, Expand); 190 } 191 192 // Expand operations not supported for i64x2 vectors 193 if (Subtarget->hasUnimplementedSIMD128()) 194 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 195 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 196 197 // Expand additional SIMD ops that V8 hasn't implemented yet 198 if (!Subtarget->hasUnimplementedSIMD128()) { 199 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 200 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 201 } 202 } 203 204 // As a special case, these operators use the type to mean the type to 205 // sign-extend from. 206 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 207 if (!Subtarget->hasSignExt()) { 208 // Sign extends are legal only when extending a vector extract 209 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 210 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 211 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 212 } 213 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 214 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 215 216 // Dynamic stack allocation: use the default expansion. 217 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 218 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 219 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 220 221 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 222 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 223 224 // Expand these forms; we pattern-match the forms that we can handle in isel. 225 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 226 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 227 setOperationAction(Op, T, Expand); 228 229 // We have custom switch handling. 230 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 231 232 // WebAssembly doesn't have: 233 // - Floating-point extending loads. 234 // - Floating-point truncating stores. 235 // - i1 extending loads. 236 // - truncating SIMD stores and most extending loads 237 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 238 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 239 for (auto T : MVT::integer_valuetypes()) 240 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 241 setLoadExtAction(Ext, T, MVT::i1, Promote); 242 if (Subtarget->hasSIMD128()) { 243 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 244 MVT::v2f64}) { 245 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 246 if (MVT(T) != MemT) { 247 setTruncStoreAction(T, MemT, Expand); 248 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 249 setLoadExtAction(Ext, T, MemT, Expand); 250 } 251 } 252 } 253 // But some vector extending loads are legal 254 if (Subtarget->hasUnimplementedSIMD128()) { 255 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 256 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 257 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 258 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 259 } 260 } 261 } 262 263 // Don't do anything clever with build_pairs 264 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 265 266 // Trap lowers to wasm unreachable 267 setOperationAction(ISD::TRAP, MVT::Other, Legal); 268 269 // Exception handling intrinsics 270 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 271 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 272 273 setMaxAtomicSizeInBitsSupported(64); 274 275 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 276 // consistent with the f64 and f128 names. 277 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 278 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 279 280 // Define the emscripten name for return address helper. 281 // TODO: when implementing other WASM backends, make this generic or only do 282 // this on emscripten depending on what they end up doing. 283 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 284 285 // Always convert switches to br_tables unless there is only one case, which 286 // is equivalent to a simple branch. This reduces code size for wasm, and we 287 // defer possible jump table optimizations to the VM. 288 setMinimumJumpTableEntries(2); 289 } 290 291 TargetLowering::AtomicExpansionKind 292 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 293 // We have wasm instructions for these 294 switch (AI->getOperation()) { 295 case AtomicRMWInst::Add: 296 case AtomicRMWInst::Sub: 297 case AtomicRMWInst::And: 298 case AtomicRMWInst::Or: 299 case AtomicRMWInst::Xor: 300 case AtomicRMWInst::Xchg: 301 return AtomicExpansionKind::None; 302 default: 303 break; 304 } 305 return AtomicExpansionKind::CmpXChg; 306 } 307 308 FastISel *WebAssemblyTargetLowering::createFastISel( 309 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 310 return WebAssembly::createFastISel(FuncInfo, LibInfo); 311 } 312 313 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 314 EVT VT) const { 315 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 316 if (BitWidth > 1 && BitWidth < 8) 317 BitWidth = 8; 318 319 if (BitWidth > 64) { 320 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 321 // the count to be an i32. 322 BitWidth = 32; 323 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 324 "32-bit shift counts ought to be enough for anyone"); 325 } 326 327 MVT Result = MVT::getIntegerVT(BitWidth); 328 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 329 "Unable to represent scalar shift amount type"); 330 return Result; 331 } 332 333 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 334 // undefined result on invalid/overflow, to the WebAssembly opcode, which 335 // traps on invalid/overflow. 336 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 337 MachineBasicBlock *BB, 338 const TargetInstrInfo &TII, 339 bool IsUnsigned, bool Int64, 340 bool Float64, unsigned LoweredOpcode) { 341 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 342 343 Register OutReg = MI.getOperand(0).getReg(); 344 Register InReg = MI.getOperand(1).getReg(); 345 346 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 347 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 348 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 349 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 350 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 351 unsigned Eqz = WebAssembly::EQZ_I32; 352 unsigned And = WebAssembly::AND_I32; 353 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 354 int64_t Substitute = IsUnsigned ? 0 : Limit; 355 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 356 auto &Context = BB->getParent()->getFunction().getContext(); 357 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 358 359 const BasicBlock *LLVMBB = BB->getBasicBlock(); 360 MachineFunction *F = BB->getParent(); 361 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 362 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 363 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 364 365 MachineFunction::iterator It = ++BB->getIterator(); 366 F->insert(It, FalseMBB); 367 F->insert(It, TrueMBB); 368 F->insert(It, DoneMBB); 369 370 // Transfer the remainder of BB and its successor edges to DoneMBB. 371 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 372 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 373 374 BB->addSuccessor(TrueMBB); 375 BB->addSuccessor(FalseMBB); 376 TrueMBB->addSuccessor(DoneMBB); 377 FalseMBB->addSuccessor(DoneMBB); 378 379 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 380 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 381 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 382 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 383 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 384 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 385 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 386 387 MI.eraseFromParent(); 388 // For signed numbers, we can do a single comparison to determine whether 389 // fabs(x) is within range. 390 if (IsUnsigned) { 391 Tmp0 = InReg; 392 } else { 393 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 394 } 395 BuildMI(BB, DL, TII.get(FConst), Tmp1) 396 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 397 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 398 399 // For unsigned numbers, we have to do a separate comparison with zero. 400 if (IsUnsigned) { 401 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 402 Register SecondCmpReg = 403 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 404 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 405 BuildMI(BB, DL, TII.get(FConst), Tmp1) 406 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 407 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 408 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 409 CmpReg = AndReg; 410 } 411 412 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 413 414 // Create the CFG diamond to select between doing the conversion or using 415 // the substitute value. 416 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 417 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 418 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 419 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 420 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 421 .addReg(FalseReg) 422 .addMBB(FalseMBB) 423 .addReg(TrueReg) 424 .addMBB(TrueMBB); 425 426 return DoneMBB; 427 } 428 429 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 430 MachineInstr &MI, MachineBasicBlock *BB) const { 431 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 432 DebugLoc DL = MI.getDebugLoc(); 433 434 switch (MI.getOpcode()) { 435 default: 436 llvm_unreachable("Unexpected instr type to insert"); 437 case WebAssembly::FP_TO_SINT_I32_F32: 438 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 439 WebAssembly::I32_TRUNC_S_F32); 440 case WebAssembly::FP_TO_UINT_I32_F32: 441 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 442 WebAssembly::I32_TRUNC_U_F32); 443 case WebAssembly::FP_TO_SINT_I64_F32: 444 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 445 WebAssembly::I64_TRUNC_S_F32); 446 case WebAssembly::FP_TO_UINT_I64_F32: 447 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 448 WebAssembly::I64_TRUNC_U_F32); 449 case WebAssembly::FP_TO_SINT_I32_F64: 450 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 451 WebAssembly::I32_TRUNC_S_F64); 452 case WebAssembly::FP_TO_UINT_I32_F64: 453 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 454 WebAssembly::I32_TRUNC_U_F64); 455 case WebAssembly::FP_TO_SINT_I64_F64: 456 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 457 WebAssembly::I64_TRUNC_S_F64); 458 case WebAssembly::FP_TO_UINT_I64_F64: 459 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 460 WebAssembly::I64_TRUNC_U_F64); 461 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 462 } 463 } 464 465 const char * 466 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 467 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 468 case WebAssemblyISD::FIRST_NUMBER: 469 case WebAssemblyISD::FIRST_MEM_OPCODE: 470 break; 471 #define HANDLE_NODETYPE(NODE) \ 472 case WebAssemblyISD::NODE: \ 473 return "WebAssemblyISD::" #NODE; 474 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 475 #include "WebAssemblyISD.def" 476 #undef HANDLE_MEM_NODETYPE 477 #undef HANDLE_NODETYPE 478 } 479 return nullptr; 480 } 481 482 std::pair<unsigned, const TargetRegisterClass *> 483 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 484 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 485 // First, see if this is a constraint that directly corresponds to a 486 // WebAssembly register class. 487 if (Constraint.size() == 1) { 488 switch (Constraint[0]) { 489 case 'r': 490 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 491 if (Subtarget->hasSIMD128() && VT.isVector()) { 492 if (VT.getSizeInBits() == 128) 493 return std::make_pair(0U, &WebAssembly::V128RegClass); 494 } 495 if (VT.isInteger() && !VT.isVector()) { 496 if (VT.getSizeInBits() <= 32) 497 return std::make_pair(0U, &WebAssembly::I32RegClass); 498 if (VT.getSizeInBits() <= 64) 499 return std::make_pair(0U, &WebAssembly::I64RegClass); 500 } 501 break; 502 default: 503 break; 504 } 505 } 506 507 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 508 } 509 510 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 511 // Assume ctz is a relatively cheap operation. 512 return true; 513 } 514 515 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 516 // Assume clz is a relatively cheap operation. 517 return true; 518 } 519 520 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 521 const AddrMode &AM, 522 Type *Ty, unsigned AS, 523 Instruction *I) const { 524 // WebAssembly offsets are added as unsigned without wrapping. The 525 // isLegalAddressingMode gives us no way to determine if wrapping could be 526 // happening, so we approximate this by accepting only non-negative offsets. 527 if (AM.BaseOffs < 0) 528 return false; 529 530 // WebAssembly has no scale register operands. 531 if (AM.Scale != 0) 532 return false; 533 534 // Everything else is legal. 535 return true; 536 } 537 538 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 539 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 540 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 541 // WebAssembly supports unaligned accesses, though it should be declared 542 // with the p2align attribute on loads and stores which do so, and there 543 // may be a performance impact. We tell LLVM they're "fast" because 544 // for the kinds of things that LLVM uses this for (merging adjacent stores 545 // of constants, etc.), WebAssembly implementations will either want the 546 // unaligned access or they'll split anyway. 547 if (Fast) 548 *Fast = true; 549 return true; 550 } 551 552 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 553 AttributeList Attr) const { 554 // The current thinking is that wasm engines will perform this optimization, 555 // so we can save on code size. 556 return true; 557 } 558 559 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 560 if (!Subtarget->hasUnimplementedSIMD128()) 561 return false; 562 MVT ExtT = ExtVal.getSimpleValueType(); 563 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 564 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 565 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 566 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 567 } 568 569 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 570 LLVMContext &C, 571 EVT VT) const { 572 if (VT.isVector()) 573 return VT.changeVectorElementTypeToInteger(); 574 575 return TargetLowering::getSetCCResultType(DL, C, VT); 576 } 577 578 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 579 const CallInst &I, 580 MachineFunction &MF, 581 unsigned Intrinsic) const { 582 switch (Intrinsic) { 583 case Intrinsic::wasm_atomic_notify: 584 Info.opc = ISD::INTRINSIC_W_CHAIN; 585 Info.memVT = MVT::i32; 586 Info.ptrVal = I.getArgOperand(0); 587 Info.offset = 0; 588 Info.align = Align(4); 589 // atomic.notify instruction does not really load the memory specified with 590 // this argument, but MachineMemOperand should either be load or store, so 591 // we set this to a load. 592 // FIXME Volatile isn't really correct, but currently all LLVM atomic 593 // instructions are treated as volatiles in the backend, so we should be 594 // consistent. The same applies for wasm_atomic_wait intrinsics too. 595 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 596 return true; 597 case Intrinsic::wasm_atomic_wait_i32: 598 Info.opc = ISD::INTRINSIC_W_CHAIN; 599 Info.memVT = MVT::i32; 600 Info.ptrVal = I.getArgOperand(0); 601 Info.offset = 0; 602 Info.align = Align(4); 603 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 604 return true; 605 case Intrinsic::wasm_atomic_wait_i64: 606 Info.opc = ISD::INTRINSIC_W_CHAIN; 607 Info.memVT = MVT::i64; 608 Info.ptrVal = I.getArgOperand(0); 609 Info.offset = 0; 610 Info.align = Align(8); 611 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 612 return true; 613 default: 614 return false; 615 } 616 } 617 618 //===----------------------------------------------------------------------===// 619 // WebAssembly Lowering private implementation. 620 //===----------------------------------------------------------------------===// 621 622 //===----------------------------------------------------------------------===// 623 // Lowering Code 624 //===----------------------------------------------------------------------===// 625 626 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 627 MachineFunction &MF = DAG.getMachineFunction(); 628 DAG.getContext()->diagnose( 629 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 630 } 631 632 // Test whether the given calling convention is supported. 633 static bool callingConvSupported(CallingConv::ID CallConv) { 634 // We currently support the language-independent target-independent 635 // conventions. We don't yet have a way to annotate calls with properties like 636 // "cold", and we don't have any call-clobbered registers, so these are mostly 637 // all handled the same. 638 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 639 CallConv == CallingConv::Cold || 640 CallConv == CallingConv::PreserveMost || 641 CallConv == CallingConv::PreserveAll || 642 CallConv == CallingConv::CXX_FAST_TLS || 643 CallConv == CallingConv::WASM_EmscriptenInvoke; 644 } 645 646 SDValue 647 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 648 SmallVectorImpl<SDValue> &InVals) const { 649 SelectionDAG &DAG = CLI.DAG; 650 SDLoc DL = CLI.DL; 651 SDValue Chain = CLI.Chain; 652 SDValue Callee = CLI.Callee; 653 MachineFunction &MF = DAG.getMachineFunction(); 654 auto Layout = MF.getDataLayout(); 655 656 CallingConv::ID CallConv = CLI.CallConv; 657 if (!callingConvSupported(CallConv)) 658 fail(DL, DAG, 659 "WebAssembly doesn't support language-specific or target-specific " 660 "calling conventions yet"); 661 if (CLI.IsPatchPoint) 662 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 663 664 if (CLI.IsTailCall) { 665 bool MustTail = CLI.CS && CLI.CS.isMustTailCall(); 666 if (Subtarget->hasTailCall() && !CLI.IsVarArg) { 667 // Do not tail call unless caller and callee return types match 668 const Function &F = MF.getFunction(); 669 const TargetMachine &TM = getTargetMachine(); 670 Type *RetTy = F.getReturnType(); 671 SmallVector<MVT, 4> CallerRetTys; 672 SmallVector<MVT, 4> CalleeRetTys; 673 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 674 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 675 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 676 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 677 CalleeRetTys.begin()); 678 if (!TypesMatch) { 679 // musttail in this case would be an LLVM IR validation failure 680 assert(!MustTail); 681 CLI.IsTailCall = false; 682 } 683 } else { 684 CLI.IsTailCall = false; 685 if (MustTail) { 686 if (CLI.IsVarArg) { 687 // The return would pop the argument buffer 688 fail(DL, DAG, "WebAssembly does not support varargs tail calls"); 689 } else { 690 fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled"); 691 } 692 } 693 } 694 } 695 696 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 697 if (Ins.size() > 1) 698 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 699 700 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 701 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 702 703 // The generic code may have added an sret argument. If we're lowering an 704 // invoke function, the ABI requires that the function pointer be the first 705 // argument, so we may have to swap the arguments. 706 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 707 Outs[0].Flags.isSRet()) { 708 std::swap(Outs[0], Outs[1]); 709 std::swap(OutVals[0], OutVals[1]); 710 } 711 712 unsigned NumFixedArgs = 0; 713 for (unsigned I = 0; I < Outs.size(); ++I) { 714 const ISD::OutputArg &Out = Outs[I]; 715 SDValue &OutVal = OutVals[I]; 716 if (Out.Flags.isNest()) 717 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 718 if (Out.Flags.isInAlloca()) 719 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 720 if (Out.Flags.isInConsecutiveRegs()) 721 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 722 if (Out.Flags.isInConsecutiveRegsLast()) 723 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 724 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 725 auto &MFI = MF.getFrameInfo(); 726 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 727 Out.Flags.getByValAlign(), 728 /*isSS=*/false); 729 SDValue SizeNode = 730 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 731 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 732 Chain = DAG.getMemcpy( 733 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 734 /*isVolatile*/ false, /*AlwaysInline=*/false, 735 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 736 OutVal = FINode; 737 } 738 // Count the number of fixed args *after* legalization. 739 NumFixedArgs += Out.IsFixed; 740 } 741 742 bool IsVarArg = CLI.IsVarArg; 743 auto PtrVT = getPointerTy(Layout); 744 745 // Analyze operands of the call, assigning locations to each operand. 746 SmallVector<CCValAssign, 16> ArgLocs; 747 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 748 749 if (IsVarArg) { 750 // Outgoing non-fixed arguments are placed in a buffer. First 751 // compute their offsets and the total amount of buffer space needed. 752 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 753 const ISD::OutputArg &Out = Outs[I]; 754 SDValue &Arg = OutVals[I]; 755 EVT VT = Arg.getValueType(); 756 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 757 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 758 unsigned Align = std::max(Out.Flags.getOrigAlign(), 759 Layout.getABITypeAlignment(Ty)); 760 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 761 Align); 762 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 763 Offset, VT.getSimpleVT(), 764 CCValAssign::Full)); 765 } 766 } 767 768 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 769 770 SDValue FINode; 771 if (IsVarArg && NumBytes) { 772 // For non-fixed arguments, next emit stores to store the argument values 773 // to the stack buffer at the offsets computed above. 774 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 775 Layout.getStackAlignment(), 776 /*isSS=*/false); 777 unsigned ValNo = 0; 778 SmallVector<SDValue, 8> Chains; 779 for (SDValue Arg : 780 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 781 assert(ArgLocs[ValNo].getValNo() == ValNo && 782 "ArgLocs should remain in order and only hold varargs args"); 783 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 784 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 785 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 786 DAG.getConstant(Offset, DL, PtrVT)); 787 Chains.push_back( 788 DAG.getStore(Chain, DL, Arg, Add, 789 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 790 } 791 if (!Chains.empty()) 792 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 793 } else if (IsVarArg) { 794 FINode = DAG.getIntPtrConstant(0, DL); 795 } 796 797 if (Callee->getOpcode() == ISD::GlobalAddress) { 798 // If the callee is a GlobalAddress node (quite common, every direct call 799 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 800 // doesn't at MO_GOT which is not needed for direct calls. 801 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 802 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 803 getPointerTy(DAG.getDataLayout()), 804 GA->getOffset()); 805 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 806 getPointerTy(DAG.getDataLayout()), Callee); 807 } 808 809 // Compute the operands for the CALLn node. 810 SmallVector<SDValue, 16> Ops; 811 Ops.push_back(Chain); 812 Ops.push_back(Callee); 813 814 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 815 // isn't reliable. 816 Ops.append(OutVals.begin(), 817 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 818 // Add a pointer to the vararg buffer. 819 if (IsVarArg) 820 Ops.push_back(FINode); 821 822 SmallVector<EVT, 8> InTys; 823 for (const auto &In : Ins) { 824 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 825 assert(!In.Flags.isNest() && "nest is not valid for return values"); 826 if (In.Flags.isInAlloca()) 827 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 828 if (In.Flags.isInConsecutiveRegs()) 829 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 830 if (In.Flags.isInConsecutiveRegsLast()) 831 fail(DL, DAG, 832 "WebAssembly hasn't implemented cons regs last return values"); 833 // Ignore In.getOrigAlign() because all our arguments are passed in 834 // registers. 835 InTys.push_back(In.VT); 836 } 837 838 if (CLI.IsTailCall) { 839 // ret_calls do not return values to the current frame 840 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 841 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 842 } 843 844 InTys.push_back(MVT::Other); 845 SDVTList InTyList = DAG.getVTList(InTys); 846 SDValue Res = 847 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 848 DL, InTyList, Ops); 849 if (Ins.empty()) { 850 Chain = Res; 851 } else { 852 InVals.push_back(Res); 853 Chain = Res.getValue(1); 854 } 855 856 return Chain; 857 } 858 859 bool WebAssemblyTargetLowering::CanLowerReturn( 860 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 861 const SmallVectorImpl<ISD::OutputArg> &Outs, 862 LLVMContext & /*Context*/) const { 863 // WebAssembly can only handle returning tuples with multivalue enabled 864 return Subtarget->hasMultivalue() || Outs.size() <= 1; 865 } 866 867 SDValue WebAssemblyTargetLowering::LowerReturn( 868 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 869 const SmallVectorImpl<ISD::OutputArg> &Outs, 870 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 871 SelectionDAG &DAG) const { 872 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 873 "MVP WebAssembly can only return up to one value"); 874 if (!callingConvSupported(CallConv)) 875 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 876 877 SmallVector<SDValue, 4> RetOps(1, Chain); 878 RetOps.append(OutVals.begin(), OutVals.end()); 879 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 880 881 // Record the number and types of the return values. 882 for (const ISD::OutputArg &Out : Outs) { 883 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 884 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 885 assert(Out.IsFixed && "non-fixed return value is not valid"); 886 if (Out.Flags.isInAlloca()) 887 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 888 if (Out.Flags.isInConsecutiveRegs()) 889 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 890 if (Out.Flags.isInConsecutiveRegsLast()) 891 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 892 } 893 894 return Chain; 895 } 896 897 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 898 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 899 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 900 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 901 if (!callingConvSupported(CallConv)) 902 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 903 904 MachineFunction &MF = DAG.getMachineFunction(); 905 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 906 907 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 908 // of the incoming values before they're represented by virtual registers. 909 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 910 911 for (const ISD::InputArg &In : Ins) { 912 if (In.Flags.isInAlloca()) 913 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 914 if (In.Flags.isNest()) 915 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 916 if (In.Flags.isInConsecutiveRegs()) 917 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 918 if (In.Flags.isInConsecutiveRegsLast()) 919 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 920 // Ignore In.getOrigAlign() because all our arguments are passed in 921 // registers. 922 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 923 DAG.getTargetConstant(InVals.size(), 924 DL, MVT::i32)) 925 : DAG.getUNDEF(In.VT)); 926 927 // Record the number and types of arguments. 928 MFI->addParam(In.VT); 929 } 930 931 // Varargs are copied into a buffer allocated by the caller, and a pointer to 932 // the buffer is passed as an argument. 933 if (IsVarArg) { 934 MVT PtrVT = getPointerTy(MF.getDataLayout()); 935 Register VarargVreg = 936 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 937 MFI->setVarargBufferVreg(VarargVreg); 938 Chain = DAG.getCopyToReg( 939 Chain, DL, VarargVreg, 940 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 941 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 942 MFI->addParam(PtrVT); 943 } 944 945 // Record the number and types of arguments and results. 946 SmallVector<MVT, 4> Params; 947 SmallVector<MVT, 4> Results; 948 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 949 DAG.getTarget(), Params, Results); 950 for (MVT VT : Results) 951 MFI->addResult(VT); 952 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 953 // the param logic here with ComputeSignatureVTs 954 assert(MFI->getParams().size() == Params.size() && 955 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 956 Params.begin())); 957 958 return Chain; 959 } 960 961 void WebAssemblyTargetLowering::ReplaceNodeResults( 962 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 963 switch (N->getOpcode()) { 964 case ISD::SIGN_EXTEND_INREG: 965 // Do not add any results, signifying that N should not be custom lowered 966 // after all. This happens because simd128 turns on custom lowering for 967 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 968 // illegal type. 969 break; 970 default: 971 llvm_unreachable( 972 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 973 } 974 } 975 976 //===----------------------------------------------------------------------===// 977 // Custom lowering hooks. 978 //===----------------------------------------------------------------------===// 979 980 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 981 SelectionDAG &DAG) const { 982 SDLoc DL(Op); 983 switch (Op.getOpcode()) { 984 default: 985 llvm_unreachable("unimplemented operation lowering"); 986 return SDValue(); 987 case ISD::FrameIndex: 988 return LowerFrameIndex(Op, DAG); 989 case ISD::GlobalAddress: 990 return LowerGlobalAddress(Op, DAG); 991 case ISD::ExternalSymbol: 992 return LowerExternalSymbol(Op, DAG); 993 case ISD::JumpTable: 994 return LowerJumpTable(Op, DAG); 995 case ISD::BR_JT: 996 return LowerBR_JT(Op, DAG); 997 case ISD::VASTART: 998 return LowerVASTART(Op, DAG); 999 case ISD::BlockAddress: 1000 case ISD::BRIND: 1001 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1002 return SDValue(); 1003 case ISD::RETURNADDR: 1004 return LowerRETURNADDR(Op, DAG); 1005 case ISD::FRAMEADDR: 1006 return LowerFRAMEADDR(Op, DAG); 1007 case ISD::CopyToReg: 1008 return LowerCopyToReg(Op, DAG); 1009 case ISD::EXTRACT_VECTOR_ELT: 1010 case ISD::INSERT_VECTOR_ELT: 1011 return LowerAccessVectorElement(Op, DAG); 1012 case ISD::INTRINSIC_VOID: 1013 case ISD::INTRINSIC_WO_CHAIN: 1014 case ISD::INTRINSIC_W_CHAIN: 1015 return LowerIntrinsic(Op, DAG); 1016 case ISD::SIGN_EXTEND_INREG: 1017 return LowerSIGN_EXTEND_INREG(Op, DAG); 1018 case ISD::BUILD_VECTOR: 1019 return LowerBUILD_VECTOR(Op, DAG); 1020 case ISD::VECTOR_SHUFFLE: 1021 return LowerVECTOR_SHUFFLE(Op, DAG); 1022 case ISD::SETCC: 1023 return LowerSETCC(Op, DAG); 1024 case ISD::SHL: 1025 case ISD::SRA: 1026 case ISD::SRL: 1027 return LowerShift(Op, DAG); 1028 } 1029 } 1030 1031 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1032 SelectionDAG &DAG) const { 1033 SDValue Src = Op.getOperand(2); 1034 if (isa<FrameIndexSDNode>(Src.getNode())) { 1035 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1036 // the FI to some LEA-like instruction, but since we don't have that, we 1037 // need to insert some kind of instruction that can take an FI operand and 1038 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1039 // local.copy between Op and its FI operand. 1040 SDValue Chain = Op.getOperand(0); 1041 SDLoc DL(Op); 1042 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1043 EVT VT = Src.getValueType(); 1044 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1045 : WebAssembly::COPY_I64, 1046 DL, VT, Src), 1047 0); 1048 return Op.getNode()->getNumValues() == 1 1049 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1050 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1051 Op.getNumOperands() == 4 ? Op.getOperand(3) 1052 : SDValue()); 1053 } 1054 return SDValue(); 1055 } 1056 1057 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1058 SelectionDAG &DAG) const { 1059 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1060 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1061 } 1062 1063 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1064 SelectionDAG &DAG) const { 1065 SDLoc DL(Op); 1066 1067 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1068 fail(DL, DAG, 1069 "Non-Emscripten WebAssembly hasn't implemented " 1070 "__builtin_return_address"); 1071 return SDValue(); 1072 } 1073 1074 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1075 return SDValue(); 1076 1077 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1078 MakeLibCallOptions CallOptions; 1079 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1080 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1081 .first; 1082 } 1083 1084 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1085 SelectionDAG &DAG) const { 1086 // Non-zero depths are not supported by WebAssembly currently. Use the 1087 // legalizer's default expansion, which is to return 0 (what this function is 1088 // documented to do). 1089 if (Op.getConstantOperandVal(0) > 0) 1090 return SDValue(); 1091 1092 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1093 EVT VT = Op.getValueType(); 1094 Register FP = 1095 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1096 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1097 } 1098 1099 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1100 SelectionDAG &DAG) const { 1101 SDLoc DL(Op); 1102 const auto *GA = cast<GlobalAddressSDNode>(Op); 1103 EVT VT = Op.getValueType(); 1104 assert(GA->getTargetFlags() == 0 && 1105 "Unexpected target flags on generic GlobalAddressSDNode"); 1106 if (GA->getAddressSpace() != 0) 1107 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1108 1109 unsigned OperandFlags = 0; 1110 if (isPositionIndependent()) { 1111 const GlobalValue *GV = GA->getGlobal(); 1112 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1113 MachineFunction &MF = DAG.getMachineFunction(); 1114 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1115 const char *BaseName; 1116 if (GV->getValueType()->isFunctionTy()) { 1117 BaseName = MF.createExternalSymbolName("__table_base"); 1118 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1119 } 1120 else { 1121 BaseName = MF.createExternalSymbolName("__memory_base"); 1122 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1123 } 1124 SDValue BaseAddr = 1125 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1126 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1127 1128 SDValue SymAddr = DAG.getNode( 1129 WebAssemblyISD::WrapperPIC, DL, VT, 1130 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1131 OperandFlags)); 1132 1133 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1134 } else { 1135 OperandFlags = WebAssemblyII::MO_GOT; 1136 } 1137 } 1138 1139 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1140 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1141 GA->getOffset(), OperandFlags)); 1142 } 1143 1144 SDValue 1145 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1146 SelectionDAG &DAG) const { 1147 SDLoc DL(Op); 1148 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1149 EVT VT = Op.getValueType(); 1150 assert(ES->getTargetFlags() == 0 && 1151 "Unexpected target flags on generic ExternalSymbolSDNode"); 1152 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1153 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1154 } 1155 1156 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1157 SelectionDAG &DAG) const { 1158 // There's no need for a Wrapper node because we always incorporate a jump 1159 // table operand into a BR_TABLE instruction, rather than ever 1160 // materializing it in a register. 1161 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1162 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1163 JT->getTargetFlags()); 1164 } 1165 1166 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1167 SelectionDAG &DAG) const { 1168 SDLoc DL(Op); 1169 SDValue Chain = Op.getOperand(0); 1170 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1171 SDValue Index = Op.getOperand(2); 1172 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1173 1174 SmallVector<SDValue, 8> Ops; 1175 Ops.push_back(Chain); 1176 Ops.push_back(Index); 1177 1178 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1179 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1180 1181 // Add an operand for each case. 1182 for (auto MBB : MBBs) 1183 Ops.push_back(DAG.getBasicBlock(MBB)); 1184 1185 // TODO: For now, we just pick something arbitrary for a default case for now. 1186 // We really want to sniff out the guard and put in the real default case (and 1187 // delete the guard). 1188 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1189 1190 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1191 } 1192 1193 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1194 SelectionDAG &DAG) const { 1195 SDLoc DL(Op); 1196 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1197 1198 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1199 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1200 1201 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1202 MFI->getVarargBufferVreg(), PtrVT); 1203 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1204 MachinePointerInfo(SV), 0); 1205 } 1206 1207 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1208 SelectionDAG &DAG) const { 1209 MachineFunction &MF = DAG.getMachineFunction(); 1210 unsigned IntNo; 1211 switch (Op.getOpcode()) { 1212 case ISD::INTRINSIC_VOID: 1213 case ISD::INTRINSIC_W_CHAIN: 1214 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1215 break; 1216 case ISD::INTRINSIC_WO_CHAIN: 1217 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1218 break; 1219 default: 1220 llvm_unreachable("Invalid intrinsic"); 1221 } 1222 SDLoc DL(Op); 1223 1224 switch (IntNo) { 1225 default: 1226 return SDValue(); // Don't custom lower most intrinsics. 1227 1228 case Intrinsic::wasm_lsda: { 1229 EVT VT = Op.getValueType(); 1230 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1231 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1232 auto &Context = MF.getMMI().getContext(); 1233 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1234 Twine(MF.getFunctionNumber())); 1235 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1236 DAG.getMCSymbol(S, PtrVT)); 1237 } 1238 1239 case Intrinsic::wasm_throw: { 1240 // We only support C++ exceptions for now 1241 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1242 if (Tag != CPP_EXCEPTION) 1243 llvm_unreachable("Invalid tag!"); 1244 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1245 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1246 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1247 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1248 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1249 return DAG.getNode(WebAssemblyISD::THROW, DL, 1250 MVT::Other, // outchain type 1251 { 1252 Op.getOperand(0), // inchain 1253 SymNode, // exception symbol 1254 Op.getOperand(3) // thrown value 1255 }); 1256 } 1257 } 1258 } 1259 1260 SDValue 1261 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1262 SelectionDAG &DAG) const { 1263 SDLoc DL(Op); 1264 // If sign extension operations are disabled, allow sext_inreg only if operand 1265 // is a vector extract. SIMD does not depend on sign extension operations, but 1266 // allowing sext_inreg in this context lets us have simple patterns to select 1267 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1268 // simpler in this file, but would necessitate large and brittle patterns to 1269 // undo the expansion and select extract_lane_s instructions. 1270 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1271 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1272 const SDValue &Extract = Op.getOperand(0); 1273 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1274 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1275 ->getVT() 1276 .getSimpleVT(); 1277 MVT ExtractedVecT = 1278 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1279 if (ExtractedVecT == VecT) 1280 return Op; 1281 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1282 const SDValue &Index = Extract.getOperand(1); 1283 unsigned IndexVal = 1284 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1285 unsigned Scale = 1286 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1287 assert(Scale > 1); 1288 SDValue NewIndex = 1289 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1290 SDValue NewExtract = DAG.getNode( 1291 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1292 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1293 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), 1294 NewExtract, Op.getOperand(1)); 1295 } 1296 // Otherwise expand 1297 return SDValue(); 1298 } 1299 1300 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1301 SelectionDAG &DAG) const { 1302 SDLoc DL(Op); 1303 const EVT VecT = Op.getValueType(); 1304 const EVT LaneT = Op.getOperand(0).getValueType(); 1305 const size_t Lanes = Op.getNumOperands(); 1306 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8; 1307 1308 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1309 // possible number of lanes at once followed by a sequence of replace_lane 1310 // instructions to individually initialize any remaining lanes. 1311 1312 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1313 // swizzled lanes should be given greater weight. 1314 1315 // TODO: Investigate building vectors by shuffling together vectors built by 1316 // separately specialized means. 1317 1318 auto IsConstant = [](const SDValue &V) { 1319 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1320 }; 1321 1322 // Returns the source vector and index vector pair if they exist. Checks for: 1323 // (extract_vector_elt 1324 // $src, 1325 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1326 // ) 1327 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1328 auto Bail = std::make_pair(SDValue(), SDValue()); 1329 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1330 return Bail; 1331 const SDValue &SwizzleSrc = Lane->getOperand(0); 1332 const SDValue &IndexExt = Lane->getOperand(1); 1333 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1334 return Bail; 1335 const SDValue &Index = IndexExt->getOperand(0); 1336 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1337 return Bail; 1338 const SDValue &SwizzleIndices = Index->getOperand(0); 1339 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1340 SwizzleIndices.getValueType() != MVT::v16i8 || 1341 Index->getOperand(1)->getOpcode() != ISD::Constant || 1342 Index->getConstantOperandVal(1) != I) 1343 return Bail; 1344 return std::make_pair(SwizzleSrc, SwizzleIndices); 1345 }; 1346 1347 using ValueEntry = std::pair<SDValue, size_t>; 1348 SmallVector<ValueEntry, 16> SplatValueCounts; 1349 1350 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1351 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1352 1353 auto AddCount = [](auto &Counts, const auto &Val) { 1354 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1355 [&Val](auto E) { return E.first == Val; }); 1356 if (CountIt == Counts.end()) { 1357 Counts.emplace_back(Val, 1); 1358 } else { 1359 CountIt->second++; 1360 } 1361 }; 1362 1363 auto GetMostCommon = [](auto &Counts) { 1364 auto CommonIt = 1365 std::max_element(Counts.begin(), Counts.end(), 1366 [](auto A, auto B) { return A.second < B.second; }); 1367 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1368 return *CommonIt; 1369 }; 1370 1371 size_t NumConstantLanes = 0; 1372 1373 // Count eligible lanes for each type of vector creation op 1374 for (size_t I = 0; I < Lanes; ++I) { 1375 const SDValue &Lane = Op->getOperand(I); 1376 if (Lane.isUndef()) 1377 continue; 1378 1379 AddCount(SplatValueCounts, Lane); 1380 1381 if (IsConstant(Lane)) { 1382 NumConstantLanes++; 1383 } else if (CanSwizzle) { 1384 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1385 if (SwizzleSrcs.first) 1386 AddCount(SwizzleCounts, SwizzleSrcs); 1387 } 1388 } 1389 1390 SDValue SplatValue; 1391 size_t NumSplatLanes; 1392 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1393 1394 SDValue SwizzleSrc; 1395 SDValue SwizzleIndices; 1396 size_t NumSwizzleLanes = 0; 1397 if (SwizzleCounts.size()) 1398 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1399 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1400 1401 // Predicate returning true if the lane is properly initialized by the 1402 // original instruction 1403 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1404 SDValue Result; 1405 if (Subtarget->hasUnimplementedSIMD128()) { 1406 // Prefer swizzles over vector consts over splats 1407 if (NumSwizzleLanes >= NumSplatLanes && 1408 NumSwizzleLanes >= NumConstantLanes) { 1409 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1410 SwizzleIndices); 1411 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1412 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1413 return Swizzled == GetSwizzleSrcs(I, Lane); 1414 }; 1415 } else if (NumConstantLanes >= NumSplatLanes) { 1416 SmallVector<SDValue, 16> ConstLanes; 1417 for (const SDValue &Lane : Op->op_values()) { 1418 if (IsConstant(Lane)) { 1419 ConstLanes.push_back(Lane); 1420 } else if (LaneT.isFloatingPoint()) { 1421 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1422 } else { 1423 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1424 } 1425 } 1426 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1427 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1428 return IsConstant(Lane); 1429 }; 1430 } 1431 } 1432 if (!Result) { 1433 // Use a splat, but possibly a load_splat 1434 LoadSDNode *SplattedLoad; 1435 if (Subtarget->hasUnimplementedSIMD128() && 1436 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1437 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1438 Result = DAG.getMemIntrinsicNode( 1439 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1440 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1441 SplattedLoad->getOffset()}, 1442 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1443 } else { 1444 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1445 } 1446 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1447 return Lane == SplatValue; 1448 }; 1449 } 1450 1451 // Add replace_lane instructions for any unhandled values 1452 for (size_t I = 0; I < Lanes; ++I) { 1453 const SDValue &Lane = Op->getOperand(I); 1454 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1455 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1456 DAG.getConstant(I, DL, MVT::i32)); 1457 } 1458 1459 return Result; 1460 } 1461 1462 SDValue 1463 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1464 SelectionDAG &DAG) const { 1465 SDLoc DL(Op); 1466 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1467 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1468 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1469 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1470 1471 // Space for two vector args and sixteen mask indices 1472 SDValue Ops[18]; 1473 size_t OpIdx = 0; 1474 Ops[OpIdx++] = Op.getOperand(0); 1475 Ops[OpIdx++] = Op.getOperand(1); 1476 1477 // Expand mask indices to byte indices and materialize them as operands 1478 for (int M : Mask) { 1479 for (size_t J = 0; J < LaneBytes; ++J) { 1480 // Lower undefs (represented by -1 in mask) to zero 1481 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1482 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1483 } 1484 } 1485 1486 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1487 } 1488 1489 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1490 SelectionDAG &DAG) const { 1491 SDLoc DL(Op); 1492 // The legalizer does not know how to expand the comparison modes of i64x2 1493 // vectors because no comparison modes are supported. We could solve this by 1494 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1495 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1496 // comparisons here. 1497 assert(Subtarget->hasUnimplementedSIMD128()); 1498 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1499 SmallVector<SDValue, 2> LHS, RHS; 1500 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1501 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1502 const SDValue &CC = Op->getOperand(2); 1503 auto MakeLane = [&](unsigned I) { 1504 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1505 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1506 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1507 }; 1508 return DAG.getBuildVector(Op->getValueType(0), DL, 1509 {MakeLane(0), MakeLane(1)}); 1510 } 1511 1512 SDValue 1513 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1514 SelectionDAG &DAG) const { 1515 // Allow constant lane indices, expand variable lane indices 1516 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1517 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1518 return Op; 1519 else 1520 // Perform default expansion 1521 return SDValue(); 1522 } 1523 1524 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1525 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1526 // 32-bit and 64-bit unrolled shifts will have proper semantics 1527 if (LaneT.bitsGE(MVT::i32)) 1528 return DAG.UnrollVectorOp(Op.getNode()); 1529 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1530 SDLoc DL(Op); 1531 SDValue ShiftVal = Op.getOperand(1); 1532 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1533 SDValue MaskedShiftVal = DAG.getNode( 1534 ISD::AND, // mask opcode 1535 DL, ShiftVal.getValueType(), // masked value type 1536 ShiftVal, // original shift value operand 1537 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1538 ); 1539 1540 return DAG.UnrollVectorOp( 1541 DAG.getNode(Op.getOpcode(), // original shift opcode 1542 DL, Op.getValueType(), // original return type 1543 Op.getOperand(0), // original vector operand, 1544 MaskedShiftVal // new masked shift value operand 1545 ) 1546 .getNode()); 1547 } 1548 1549 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1550 SelectionDAG &DAG) const { 1551 SDLoc DL(Op); 1552 1553 // Only manually lower vector shifts 1554 assert(Op.getSimpleValueType().isVector()); 1555 1556 // Unroll non-splat vector shifts 1557 BuildVectorSDNode *ShiftVec; 1558 SDValue SplatVal; 1559 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1560 !(SplatVal = ShiftVec->getSplatValue())) 1561 return unrollVectorShift(Op, DAG); 1562 1563 // All splats except i64x2 const splats are handled by patterns 1564 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1565 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1566 return Op; 1567 1568 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1569 unsigned Opcode; 1570 switch (Op.getOpcode()) { 1571 case ISD::SHL: 1572 Opcode = WebAssemblyISD::VEC_SHL; 1573 break; 1574 case ISD::SRA: 1575 Opcode = WebAssemblyISD::VEC_SHR_S; 1576 break; 1577 case ISD::SRL: 1578 Opcode = WebAssemblyISD::VEC_SHR_U; 1579 break; 1580 default: 1581 llvm_unreachable("unexpected opcode"); 1582 } 1583 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1584 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1585 DAG.getConstant(Shift, DL, MVT::i32)); 1586 } 1587 1588 //===----------------------------------------------------------------------===// 1589 // WebAssembly Optimization Hooks 1590 //===----------------------------------------------------------------------===// 1591