1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "WebAssemblyUtilities.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 73 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 74 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 75 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 76 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 77 setOperationAction(ISD::BRIND, MVT::Other, Custom); 78 79 // Take the default expansion for va_arg, va_copy, and va_end. There is no 80 // default action for va_start, so we do that custom. 81 setOperationAction(ISD::VASTART, MVT::Other, Custom); 82 setOperationAction(ISD::VAARG, MVT::Other, Expand); 83 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 84 setOperationAction(ISD::VAEND, MVT::Other, Expand); 85 86 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 87 // Don't expand the floating-point types to constant pools. 88 setOperationAction(ISD::ConstantFP, T, Legal); 89 // Expand floating-point comparisons. 90 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 91 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 92 setCondCodeAction(CC, T, Expand); 93 // Expand floating-point library function operators. 94 for (auto Op : 95 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 96 setOperationAction(Op, T, Expand); 97 // Note supported floating-point library function operators that otherwise 98 // default to expand. 99 for (auto Op : 100 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 101 setOperationAction(Op, T, Legal); 102 // Support minimum and maximum, which otherwise default to expand. 103 setOperationAction(ISD::FMINIMUM, T, Legal); 104 setOperationAction(ISD::FMAXIMUM, T, Legal); 105 // WebAssembly currently has no builtin f16 support. 106 setOperationAction(ISD::FP16_TO_FP, T, Expand); 107 setOperationAction(ISD::FP_TO_FP16, T, Expand); 108 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 109 setTruncStoreAction(T, MVT::f16, Expand); 110 } 111 112 // Expand unavailable integer operations. 113 for (auto Op : 114 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 115 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 116 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 117 for (auto T : {MVT::i32, MVT::i64}) 118 setOperationAction(Op, T, Expand); 119 if (Subtarget->hasSIMD128()) 120 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 121 setOperationAction(Op, T, Expand); 122 } 123 124 // SIMD-specific configuration 125 if (Subtarget->hasSIMD128()) { 126 // Hoist bitcasts out of shuffles 127 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 128 129 // Combine extends of extract_subvectors into widening ops 130 setTargetDAGCombine(ISD::SIGN_EXTEND); 131 setTargetDAGCombine(ISD::ZERO_EXTEND); 132 133 // Support saturating add for i8x16 and i16x8 134 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 135 for (auto T : {MVT::v16i8, MVT::v8i16}) 136 setOperationAction(Op, T, Legal); 137 138 // Support integer abs 139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 140 setOperationAction(ISD::ABS, T, Legal); 141 142 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 143 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 144 MVT::v2f64}) 145 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 146 147 // We have custom shuffle lowering to expose the shuffle mask 148 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 149 MVT::v2f64}) 150 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 151 152 // Custom lowering since wasm shifts must have a scalar shift amount 153 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 154 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 155 setOperationAction(Op, T, Custom); 156 157 // Custom lower lane accesses to expand out variable indices 158 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 159 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 160 MVT::v2f64}) 161 setOperationAction(Op, T, Custom); 162 163 // There is no i8x16.mul instruction 164 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 165 166 // There is no vector conditional select instruction 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 168 MVT::v2f64}) 169 setOperationAction(ISD::SELECT_CC, T, Expand); 170 171 // Expand integer operations supported for scalars but not SIMD 172 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 173 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 174 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 175 setOperationAction(Op, T, Expand); 176 177 // But we do have integer min and max operations 178 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 179 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 180 setOperationAction(Op, T, Legal); 181 182 // Expand float operations supported for scalars but not SIMD 183 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 184 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 185 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 186 for (auto T : {MVT::v4f32, MVT::v2f64}) 187 setOperationAction(Op, T, Expand); 188 189 // Expand operations not supported for i64x2 vectors 190 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 191 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 192 193 // 64x2 conversions are not in the spec 194 for (auto Op : 195 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 196 for (auto T : {MVT::v2i64, MVT::v2f64}) 197 setOperationAction(Op, T, Expand); 198 } 199 200 // As a special case, these operators use the type to mean the type to 201 // sign-extend from. 202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 203 if (!Subtarget->hasSignExt()) { 204 // Sign extends are legal only when extending a vector extract 205 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 206 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 207 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 208 } 209 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 210 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 211 212 // Dynamic stack allocation: use the default expansion. 213 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 214 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 215 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 216 217 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 218 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 219 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 220 221 // Expand these forms; we pattern-match the forms that we can handle in isel. 222 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 223 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 224 setOperationAction(Op, T, Expand); 225 226 // We have custom switch handling. 227 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 228 229 // WebAssembly doesn't have: 230 // - Floating-point extending loads. 231 // - Floating-point truncating stores. 232 // - i1 extending loads. 233 // - truncating SIMD stores and most extending loads 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 235 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 236 for (auto T : MVT::integer_valuetypes()) 237 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 238 setLoadExtAction(Ext, T, MVT::i1, Promote); 239 if (Subtarget->hasSIMD128()) { 240 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 241 MVT::v2f64}) { 242 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 243 if (MVT(T) != MemT) { 244 setTruncStoreAction(T, MemT, Expand); 245 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 246 setLoadExtAction(Ext, T, MemT, Expand); 247 } 248 } 249 } 250 // But some vector extending loads are legal 251 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 252 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 253 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 254 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 255 } 256 // And some truncating stores are legal as well 257 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 258 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 259 } 260 261 // Don't do anything clever with build_pairs 262 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 263 264 // Trap lowers to wasm unreachable 265 setOperationAction(ISD::TRAP, MVT::Other, Legal); 266 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 267 268 // Exception handling intrinsics 269 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 270 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 271 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 272 273 setMaxAtomicSizeInBitsSupported(64); 274 275 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 276 // consistent with the f64 and f128 names. 277 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 278 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 279 280 // Define the emscripten name for return address helper. 281 // TODO: when implementing other Wasm backends, make this generic or only do 282 // this on emscripten depending on what they end up doing. 283 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 284 285 // Always convert switches to br_tables unless there is only one case, which 286 // is equivalent to a simple branch. This reduces code size for wasm, and we 287 // defer possible jump table optimizations to the VM. 288 setMinimumJumpTableEntries(2); 289 } 290 291 TargetLowering::AtomicExpansionKind 292 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 293 // We have wasm instructions for these 294 switch (AI->getOperation()) { 295 case AtomicRMWInst::Add: 296 case AtomicRMWInst::Sub: 297 case AtomicRMWInst::And: 298 case AtomicRMWInst::Or: 299 case AtomicRMWInst::Xor: 300 case AtomicRMWInst::Xchg: 301 return AtomicExpansionKind::None; 302 default: 303 break; 304 } 305 return AtomicExpansionKind::CmpXChg; 306 } 307 308 FastISel *WebAssemblyTargetLowering::createFastISel( 309 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 310 return WebAssembly::createFastISel(FuncInfo, LibInfo); 311 } 312 313 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 314 EVT VT) const { 315 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 316 if (BitWidth > 1 && BitWidth < 8) 317 BitWidth = 8; 318 319 if (BitWidth > 64) { 320 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 321 // the count to be an i32. 322 BitWidth = 32; 323 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 324 "32-bit shift counts ought to be enough for anyone"); 325 } 326 327 MVT Result = MVT::getIntegerVT(BitWidth); 328 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 329 "Unable to represent scalar shift amount type"); 330 return Result; 331 } 332 333 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 334 // undefined result on invalid/overflow, to the WebAssembly opcode, which 335 // traps on invalid/overflow. 336 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 337 MachineBasicBlock *BB, 338 const TargetInstrInfo &TII, 339 bool IsUnsigned, bool Int64, 340 bool Float64, unsigned LoweredOpcode) { 341 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 342 343 Register OutReg = MI.getOperand(0).getReg(); 344 Register InReg = MI.getOperand(1).getReg(); 345 346 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 347 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 348 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 349 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 350 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 351 unsigned Eqz = WebAssembly::EQZ_I32; 352 unsigned And = WebAssembly::AND_I32; 353 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 354 int64_t Substitute = IsUnsigned ? 0 : Limit; 355 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 356 auto &Context = BB->getParent()->getFunction().getContext(); 357 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 358 359 const BasicBlock *LLVMBB = BB->getBasicBlock(); 360 MachineFunction *F = BB->getParent(); 361 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 362 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 363 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 364 365 MachineFunction::iterator It = ++BB->getIterator(); 366 F->insert(It, FalseMBB); 367 F->insert(It, TrueMBB); 368 F->insert(It, DoneMBB); 369 370 // Transfer the remainder of BB and its successor edges to DoneMBB. 371 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 372 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 373 374 BB->addSuccessor(TrueMBB); 375 BB->addSuccessor(FalseMBB); 376 TrueMBB->addSuccessor(DoneMBB); 377 FalseMBB->addSuccessor(DoneMBB); 378 379 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 380 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 381 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 382 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 383 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 384 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 385 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 386 387 MI.eraseFromParent(); 388 // For signed numbers, we can do a single comparison to determine whether 389 // fabs(x) is within range. 390 if (IsUnsigned) { 391 Tmp0 = InReg; 392 } else { 393 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 394 } 395 BuildMI(BB, DL, TII.get(FConst), Tmp1) 396 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 397 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 398 399 // For unsigned numbers, we have to do a separate comparison with zero. 400 if (IsUnsigned) { 401 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 402 Register SecondCmpReg = 403 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 404 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 405 BuildMI(BB, DL, TII.get(FConst), Tmp1) 406 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 407 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 408 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 409 CmpReg = AndReg; 410 } 411 412 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 413 414 // Create the CFG diamond to select between doing the conversion or using 415 // the substitute value. 416 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 417 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 418 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 419 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 420 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 421 .addReg(FalseReg) 422 .addMBB(FalseMBB) 423 .addReg(TrueReg) 424 .addMBB(TrueMBB); 425 426 return DoneMBB; 427 } 428 429 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 430 DebugLoc DL, MachineBasicBlock *BB, 431 const TargetInstrInfo &TII) { 432 MachineInstr &CallParams = *CallResults.getPrevNode(); 433 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 434 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 435 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 436 437 bool IsIndirect = CallParams.getOperand(0).isReg(); 438 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 439 440 unsigned CallOp; 441 if (IsIndirect && IsRetCall) { 442 CallOp = WebAssembly::RET_CALL_INDIRECT; 443 } else if (IsIndirect) { 444 CallOp = WebAssembly::CALL_INDIRECT; 445 } else if (IsRetCall) { 446 CallOp = WebAssembly::RET_CALL; 447 } else { 448 CallOp = WebAssembly::CALL; 449 } 450 451 MachineFunction &MF = *BB->getParent(); 452 const MCInstrDesc &MCID = TII.get(CallOp); 453 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 454 455 // See if we must truncate the function pointer. 456 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 457 // as 64-bit for uniformity with other pointer types. 458 // See also: WebAssemblyFastISel::selectCall 459 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 460 Register Reg32 = 461 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 462 auto &FnPtr = CallParams.getOperand(0); 463 BuildMI(*BB, CallResults.getIterator(), DL, 464 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 465 .addReg(FnPtr.getReg()); 466 FnPtr.setReg(Reg32); 467 } 468 469 // Move the function pointer to the end of the arguments for indirect calls 470 if (IsIndirect) { 471 auto FnPtr = CallParams.getOperand(0); 472 CallParams.RemoveOperand(0); 473 CallParams.addOperand(FnPtr); 474 } 475 476 for (auto Def : CallResults.defs()) 477 MIB.add(Def); 478 479 // Add placeholders for the type index and immediate flags 480 if (IsIndirect) { 481 MIB.addImm(0); 482 MIB.addImm(0); 483 484 // Ensure that the object file has a __indirect_function_table import, as we 485 // call_indirect against it. 486 MCSymbolWasm *Sym = WebAssembly::getOrCreateFunctionTableSymbol( 487 MF.getContext(), "__indirect_function_table"); 488 // Until call_indirect emits TABLE_NUMBER relocs against this symbol, mark 489 // it as NO_STRIP so as to ensure that the indirect function table makes it 490 // to linked output. 491 Sym->setNoStrip(); 492 } 493 494 for (auto Use : CallParams.uses()) 495 MIB.add(Use); 496 497 BB->insert(CallResults.getIterator(), MIB); 498 CallParams.eraseFromParent(); 499 CallResults.eraseFromParent(); 500 501 return BB; 502 } 503 504 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 505 MachineInstr &MI, MachineBasicBlock *BB) const { 506 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 507 DebugLoc DL = MI.getDebugLoc(); 508 509 switch (MI.getOpcode()) { 510 default: 511 llvm_unreachable("Unexpected instr type to insert"); 512 case WebAssembly::FP_TO_SINT_I32_F32: 513 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 514 WebAssembly::I32_TRUNC_S_F32); 515 case WebAssembly::FP_TO_UINT_I32_F32: 516 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 517 WebAssembly::I32_TRUNC_U_F32); 518 case WebAssembly::FP_TO_SINT_I64_F32: 519 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 520 WebAssembly::I64_TRUNC_S_F32); 521 case WebAssembly::FP_TO_UINT_I64_F32: 522 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 523 WebAssembly::I64_TRUNC_U_F32); 524 case WebAssembly::FP_TO_SINT_I32_F64: 525 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 526 WebAssembly::I32_TRUNC_S_F64); 527 case WebAssembly::FP_TO_UINT_I32_F64: 528 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 529 WebAssembly::I32_TRUNC_U_F64); 530 case WebAssembly::FP_TO_SINT_I64_F64: 531 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 532 WebAssembly::I64_TRUNC_S_F64); 533 case WebAssembly::FP_TO_UINT_I64_F64: 534 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 535 WebAssembly::I64_TRUNC_U_F64); 536 case WebAssembly::CALL_RESULTS: 537 case WebAssembly::RET_CALL_RESULTS: 538 return LowerCallResults(MI, DL, BB, TII); 539 } 540 } 541 542 const char * 543 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 544 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 545 case WebAssemblyISD::FIRST_NUMBER: 546 case WebAssemblyISD::FIRST_MEM_OPCODE: 547 break; 548 #define HANDLE_NODETYPE(NODE) \ 549 case WebAssemblyISD::NODE: \ 550 return "WebAssemblyISD::" #NODE; 551 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 552 #include "WebAssemblyISD.def" 553 #undef HANDLE_MEM_NODETYPE 554 #undef HANDLE_NODETYPE 555 } 556 return nullptr; 557 } 558 559 std::pair<unsigned, const TargetRegisterClass *> 560 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 561 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 562 // First, see if this is a constraint that directly corresponds to a 563 // WebAssembly register class. 564 if (Constraint.size() == 1) { 565 switch (Constraint[0]) { 566 case 'r': 567 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 568 if (Subtarget->hasSIMD128() && VT.isVector()) { 569 if (VT.getSizeInBits() == 128) 570 return std::make_pair(0U, &WebAssembly::V128RegClass); 571 } 572 if (VT.isInteger() && !VT.isVector()) { 573 if (VT.getSizeInBits() <= 32) 574 return std::make_pair(0U, &WebAssembly::I32RegClass); 575 if (VT.getSizeInBits() <= 64) 576 return std::make_pair(0U, &WebAssembly::I64RegClass); 577 } 578 if (VT.isFloatingPoint() && !VT.isVector()) { 579 switch (VT.getSizeInBits()) { 580 case 32: 581 return std::make_pair(0U, &WebAssembly::F32RegClass); 582 case 64: 583 return std::make_pair(0U, &WebAssembly::F64RegClass); 584 default: 585 break; 586 } 587 } 588 break; 589 default: 590 break; 591 } 592 } 593 594 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 595 } 596 597 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 598 // Assume ctz is a relatively cheap operation. 599 return true; 600 } 601 602 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 603 // Assume clz is a relatively cheap operation. 604 return true; 605 } 606 607 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 608 const AddrMode &AM, 609 Type *Ty, unsigned AS, 610 Instruction *I) const { 611 // WebAssembly offsets are added as unsigned without wrapping. The 612 // isLegalAddressingMode gives us no way to determine if wrapping could be 613 // happening, so we approximate this by accepting only non-negative offsets. 614 if (AM.BaseOffs < 0) 615 return false; 616 617 // WebAssembly has no scale register operands. 618 if (AM.Scale != 0) 619 return false; 620 621 // Everything else is legal. 622 return true; 623 } 624 625 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 626 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 627 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 628 // WebAssembly supports unaligned accesses, though it should be declared 629 // with the p2align attribute on loads and stores which do so, and there 630 // may be a performance impact. We tell LLVM they're "fast" because 631 // for the kinds of things that LLVM uses this for (merging adjacent stores 632 // of constants, etc.), WebAssembly implementations will either want the 633 // unaligned access or they'll split anyway. 634 if (Fast) 635 *Fast = true; 636 return true; 637 } 638 639 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 640 AttributeList Attr) const { 641 // The current thinking is that wasm engines will perform this optimization, 642 // so we can save on code size. 643 return true; 644 } 645 646 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 647 EVT ExtT = ExtVal.getValueType(); 648 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 649 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 650 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 651 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 652 } 653 654 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 655 LLVMContext &C, 656 EVT VT) const { 657 if (VT.isVector()) 658 return VT.changeVectorElementTypeToInteger(); 659 660 // So far, all branch instructions in Wasm take an I32 condition. 661 // The default TargetLowering::getSetCCResultType returns the pointer size, 662 // which would be useful to reduce instruction counts when testing 663 // against 64-bit pointers/values if at some point Wasm supports that. 664 return EVT::getIntegerVT(C, 32); 665 } 666 667 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 668 const CallInst &I, 669 MachineFunction &MF, 670 unsigned Intrinsic) const { 671 switch (Intrinsic) { 672 case Intrinsic::wasm_memory_atomic_notify: 673 Info.opc = ISD::INTRINSIC_W_CHAIN; 674 Info.memVT = MVT::i32; 675 Info.ptrVal = I.getArgOperand(0); 676 Info.offset = 0; 677 Info.align = Align(4); 678 // atomic.notify instruction does not really load the memory specified with 679 // this argument, but MachineMemOperand should either be load or store, so 680 // we set this to a load. 681 // FIXME Volatile isn't really correct, but currently all LLVM atomic 682 // instructions are treated as volatiles in the backend, so we should be 683 // consistent. The same applies for wasm_atomic_wait intrinsics too. 684 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 685 return true; 686 case Intrinsic::wasm_memory_atomic_wait32: 687 Info.opc = ISD::INTRINSIC_W_CHAIN; 688 Info.memVT = MVT::i32; 689 Info.ptrVal = I.getArgOperand(0); 690 Info.offset = 0; 691 Info.align = Align(4); 692 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 693 return true; 694 case Intrinsic::wasm_memory_atomic_wait64: 695 Info.opc = ISD::INTRINSIC_W_CHAIN; 696 Info.memVT = MVT::i64; 697 Info.ptrVal = I.getArgOperand(0); 698 Info.offset = 0; 699 Info.align = Align(8); 700 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 701 return true; 702 case Intrinsic::wasm_load32_zero: 703 case Intrinsic::wasm_load64_zero: 704 Info.opc = ISD::INTRINSIC_W_CHAIN; 705 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 706 Info.ptrVal = I.getArgOperand(0); 707 Info.offset = 0; 708 Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8); 709 Info.flags = MachineMemOperand::MOLoad; 710 return true; 711 case Intrinsic::wasm_load8_lane: 712 case Intrinsic::wasm_load16_lane: 713 case Intrinsic::wasm_load32_lane: 714 case Intrinsic::wasm_load64_lane: 715 case Intrinsic::wasm_store8_lane: 716 case Intrinsic::wasm_store16_lane: 717 case Intrinsic::wasm_store32_lane: 718 case Intrinsic::wasm_store64_lane: { 719 MVT MemVT; 720 Align MemAlign; 721 switch (Intrinsic) { 722 case Intrinsic::wasm_load8_lane: 723 case Intrinsic::wasm_store8_lane: 724 MemVT = MVT::i8; 725 MemAlign = Align(1); 726 break; 727 case Intrinsic::wasm_load16_lane: 728 case Intrinsic::wasm_store16_lane: 729 MemVT = MVT::i16; 730 MemAlign = Align(2); 731 break; 732 case Intrinsic::wasm_load32_lane: 733 case Intrinsic::wasm_store32_lane: 734 MemVT = MVT::i32; 735 MemAlign = Align(4); 736 break; 737 case Intrinsic::wasm_load64_lane: 738 case Intrinsic::wasm_store64_lane: 739 MemVT = MVT::i64; 740 MemAlign = Align(8); 741 break; 742 default: 743 llvm_unreachable("unexpected intrinsic"); 744 } 745 if (Intrinsic == Intrinsic::wasm_load8_lane || 746 Intrinsic == Intrinsic::wasm_load16_lane || 747 Intrinsic == Intrinsic::wasm_load32_lane || 748 Intrinsic == Intrinsic::wasm_load64_lane) { 749 Info.opc = ISD::INTRINSIC_W_CHAIN; 750 Info.flags = MachineMemOperand::MOLoad; 751 } else { 752 Info.opc = ISD::INTRINSIC_VOID; 753 Info.flags = MachineMemOperand::MOStore; 754 } 755 Info.ptrVal = I.getArgOperand(0); 756 Info.memVT = MemVT; 757 Info.offset = 0; 758 Info.align = MemAlign; 759 return true; 760 } 761 case Intrinsic::wasm_prefetch_t: 762 case Intrinsic::wasm_prefetch_nt: { 763 Info.opc = ISD::INTRINSIC_VOID; 764 Info.memVT = MVT::i8; 765 Info.ptrVal = I.getArgOperand(0); 766 Info.offset = 0; 767 Info.align = Align(1); 768 Info.flags = MachineMemOperand::MOLoad; 769 return true; 770 } 771 default: 772 return false; 773 } 774 } 775 776 //===----------------------------------------------------------------------===// 777 // WebAssembly Lowering private implementation. 778 //===----------------------------------------------------------------------===// 779 780 //===----------------------------------------------------------------------===// 781 // Lowering Code 782 //===----------------------------------------------------------------------===// 783 784 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 785 MachineFunction &MF = DAG.getMachineFunction(); 786 DAG.getContext()->diagnose( 787 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 788 } 789 790 // Test whether the given calling convention is supported. 791 static bool callingConvSupported(CallingConv::ID CallConv) { 792 // We currently support the language-independent target-independent 793 // conventions. We don't yet have a way to annotate calls with properties like 794 // "cold", and we don't have any call-clobbered registers, so these are mostly 795 // all handled the same. 796 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 797 CallConv == CallingConv::Cold || 798 CallConv == CallingConv::PreserveMost || 799 CallConv == CallingConv::PreserveAll || 800 CallConv == CallingConv::CXX_FAST_TLS || 801 CallConv == CallingConv::WASM_EmscriptenInvoke || 802 CallConv == CallingConv::Swift; 803 } 804 805 SDValue 806 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 807 SmallVectorImpl<SDValue> &InVals) const { 808 SelectionDAG &DAG = CLI.DAG; 809 SDLoc DL = CLI.DL; 810 SDValue Chain = CLI.Chain; 811 SDValue Callee = CLI.Callee; 812 MachineFunction &MF = DAG.getMachineFunction(); 813 auto Layout = MF.getDataLayout(); 814 815 CallingConv::ID CallConv = CLI.CallConv; 816 if (!callingConvSupported(CallConv)) 817 fail(DL, DAG, 818 "WebAssembly doesn't support language-specific or target-specific " 819 "calling conventions yet"); 820 if (CLI.IsPatchPoint) 821 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 822 823 if (CLI.IsTailCall) { 824 auto NoTail = [&](const char *Msg) { 825 if (CLI.CB && CLI.CB->isMustTailCall()) 826 fail(DL, DAG, Msg); 827 CLI.IsTailCall = false; 828 }; 829 830 if (!Subtarget->hasTailCall()) 831 NoTail("WebAssembly 'tail-call' feature not enabled"); 832 833 // Varargs calls cannot be tail calls because the buffer is on the stack 834 if (CLI.IsVarArg) 835 NoTail("WebAssembly does not support varargs tail calls"); 836 837 // Do not tail call unless caller and callee return types match 838 const Function &F = MF.getFunction(); 839 const TargetMachine &TM = getTargetMachine(); 840 Type *RetTy = F.getReturnType(); 841 SmallVector<MVT, 4> CallerRetTys; 842 SmallVector<MVT, 4> CalleeRetTys; 843 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 844 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 845 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 846 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 847 CalleeRetTys.begin()); 848 if (!TypesMatch) 849 NoTail("WebAssembly tail call requires caller and callee return types to " 850 "match"); 851 852 // If pointers to local stack values are passed, we cannot tail call 853 if (CLI.CB) { 854 for (auto &Arg : CLI.CB->args()) { 855 Value *Val = Arg.get(); 856 // Trace the value back through pointer operations 857 while (true) { 858 Value *Src = Val->stripPointerCastsAndAliases(); 859 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 860 Src = GEP->getPointerOperand(); 861 if (Val == Src) 862 break; 863 Val = Src; 864 } 865 if (isa<AllocaInst>(Val)) { 866 NoTail( 867 "WebAssembly does not support tail calling with stack arguments"); 868 break; 869 } 870 } 871 } 872 } 873 874 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 875 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 876 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 877 878 // The generic code may have added an sret argument. If we're lowering an 879 // invoke function, the ABI requires that the function pointer be the first 880 // argument, so we may have to swap the arguments. 881 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 882 Outs[0].Flags.isSRet()) { 883 std::swap(Outs[0], Outs[1]); 884 std::swap(OutVals[0], OutVals[1]); 885 } 886 887 bool HasSwiftSelfArg = false; 888 bool HasSwiftErrorArg = false; 889 unsigned NumFixedArgs = 0; 890 for (unsigned I = 0; I < Outs.size(); ++I) { 891 const ISD::OutputArg &Out = Outs[I]; 892 SDValue &OutVal = OutVals[I]; 893 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 894 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 895 if (Out.Flags.isNest()) 896 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 897 if (Out.Flags.isInAlloca()) 898 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 899 if (Out.Flags.isInConsecutiveRegs()) 900 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 901 if (Out.Flags.isInConsecutiveRegsLast()) 902 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 903 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 904 auto &MFI = MF.getFrameInfo(); 905 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 906 Out.Flags.getNonZeroByValAlign(), 907 /*isSS=*/false); 908 SDValue SizeNode = 909 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 910 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 911 Chain = DAG.getMemcpy( 912 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 913 /*isVolatile*/ false, /*AlwaysInline=*/false, 914 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 915 OutVal = FINode; 916 } 917 // Count the number of fixed args *after* legalization. 918 NumFixedArgs += Out.IsFixed; 919 } 920 921 bool IsVarArg = CLI.IsVarArg; 922 auto PtrVT = getPointerTy(Layout); 923 924 // For swiftcc, emit additional swiftself and swifterror arguments 925 // if there aren't. These additional arguments are also added for callee 926 // signature They are necessary to match callee and caller signature for 927 // indirect call. 928 if (CallConv == CallingConv::Swift) { 929 if (!HasSwiftSelfArg) { 930 NumFixedArgs++; 931 ISD::OutputArg Arg; 932 Arg.Flags.setSwiftSelf(); 933 CLI.Outs.push_back(Arg); 934 SDValue ArgVal = DAG.getUNDEF(PtrVT); 935 CLI.OutVals.push_back(ArgVal); 936 } 937 if (!HasSwiftErrorArg) { 938 NumFixedArgs++; 939 ISD::OutputArg Arg; 940 Arg.Flags.setSwiftError(); 941 CLI.Outs.push_back(Arg); 942 SDValue ArgVal = DAG.getUNDEF(PtrVT); 943 CLI.OutVals.push_back(ArgVal); 944 } 945 } 946 947 // Analyze operands of the call, assigning locations to each operand. 948 SmallVector<CCValAssign, 16> ArgLocs; 949 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 950 951 if (IsVarArg) { 952 // Outgoing non-fixed arguments are placed in a buffer. First 953 // compute their offsets and the total amount of buffer space needed. 954 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 955 const ISD::OutputArg &Out = Outs[I]; 956 SDValue &Arg = OutVals[I]; 957 EVT VT = Arg.getValueType(); 958 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 959 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 960 Align Alignment = 961 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 962 unsigned Offset = 963 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 964 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 965 Offset, VT.getSimpleVT(), 966 CCValAssign::Full)); 967 } 968 } 969 970 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 971 972 SDValue FINode; 973 if (IsVarArg && NumBytes) { 974 // For non-fixed arguments, next emit stores to store the argument values 975 // to the stack buffer at the offsets computed above. 976 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 977 Layout.getStackAlignment(), 978 /*isSS=*/false); 979 unsigned ValNo = 0; 980 SmallVector<SDValue, 8> Chains; 981 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 982 assert(ArgLocs[ValNo].getValNo() == ValNo && 983 "ArgLocs should remain in order and only hold varargs args"); 984 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 985 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 986 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 987 DAG.getConstant(Offset, DL, PtrVT)); 988 Chains.push_back( 989 DAG.getStore(Chain, DL, Arg, Add, 990 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 991 } 992 if (!Chains.empty()) 993 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 994 } else if (IsVarArg) { 995 FINode = DAG.getIntPtrConstant(0, DL); 996 } 997 998 if (Callee->getOpcode() == ISD::GlobalAddress) { 999 // If the callee is a GlobalAddress node (quite common, every direct call 1000 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1001 // doesn't at MO_GOT which is not needed for direct calls. 1002 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1003 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1004 getPointerTy(DAG.getDataLayout()), 1005 GA->getOffset()); 1006 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1007 getPointerTy(DAG.getDataLayout()), Callee); 1008 } 1009 1010 // Compute the operands for the CALLn node. 1011 SmallVector<SDValue, 16> Ops; 1012 Ops.push_back(Chain); 1013 Ops.push_back(Callee); 1014 1015 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1016 // isn't reliable. 1017 Ops.append(OutVals.begin(), 1018 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1019 // Add a pointer to the vararg buffer. 1020 if (IsVarArg) 1021 Ops.push_back(FINode); 1022 1023 SmallVector<EVT, 8> InTys; 1024 for (const auto &In : Ins) { 1025 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1026 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1027 if (In.Flags.isInAlloca()) 1028 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1029 if (In.Flags.isInConsecutiveRegs()) 1030 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1031 if (In.Flags.isInConsecutiveRegsLast()) 1032 fail(DL, DAG, 1033 "WebAssembly hasn't implemented cons regs last return values"); 1034 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1035 // registers. 1036 InTys.push_back(In.VT); 1037 } 1038 1039 if (CLI.IsTailCall) { 1040 // ret_calls do not return values to the current frame 1041 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1042 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1043 } 1044 1045 InTys.push_back(MVT::Other); 1046 SDVTList InTyList = DAG.getVTList(InTys); 1047 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1048 1049 for (size_t I = 0; I < Ins.size(); ++I) 1050 InVals.push_back(Res.getValue(I)); 1051 1052 // Return the chain 1053 return Res.getValue(Ins.size()); 1054 } 1055 1056 bool WebAssemblyTargetLowering::CanLowerReturn( 1057 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1058 const SmallVectorImpl<ISD::OutputArg> &Outs, 1059 LLVMContext & /*Context*/) const { 1060 // WebAssembly can only handle returning tuples with multivalue enabled 1061 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1062 } 1063 1064 SDValue WebAssemblyTargetLowering::LowerReturn( 1065 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1066 const SmallVectorImpl<ISD::OutputArg> &Outs, 1067 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1068 SelectionDAG &DAG) const { 1069 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1070 "MVP WebAssembly can only return up to one value"); 1071 if (!callingConvSupported(CallConv)) 1072 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1073 1074 SmallVector<SDValue, 4> RetOps(1, Chain); 1075 RetOps.append(OutVals.begin(), OutVals.end()); 1076 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1077 1078 // Record the number and types of the return values. 1079 for (const ISD::OutputArg &Out : Outs) { 1080 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1081 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1082 assert(Out.IsFixed && "non-fixed return value is not valid"); 1083 if (Out.Flags.isInAlloca()) 1084 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1085 if (Out.Flags.isInConsecutiveRegs()) 1086 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1087 if (Out.Flags.isInConsecutiveRegsLast()) 1088 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1089 } 1090 1091 return Chain; 1092 } 1093 1094 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1095 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1096 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1097 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1098 if (!callingConvSupported(CallConv)) 1099 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1100 1101 MachineFunction &MF = DAG.getMachineFunction(); 1102 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1103 1104 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1105 // of the incoming values before they're represented by virtual registers. 1106 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1107 1108 bool HasSwiftErrorArg = false; 1109 bool HasSwiftSelfArg = false; 1110 for (const ISD::InputArg &In : Ins) { 1111 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1112 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1113 if (In.Flags.isInAlloca()) 1114 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1115 if (In.Flags.isNest()) 1116 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1117 if (In.Flags.isInConsecutiveRegs()) 1118 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1119 if (In.Flags.isInConsecutiveRegsLast()) 1120 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1121 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1122 // registers. 1123 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1124 DAG.getTargetConstant(InVals.size(), 1125 DL, MVT::i32)) 1126 : DAG.getUNDEF(In.VT)); 1127 1128 // Record the number and types of arguments. 1129 MFI->addParam(In.VT); 1130 } 1131 1132 // For swiftcc, emit additional swiftself and swifterror arguments 1133 // if there aren't. These additional arguments are also added for callee 1134 // signature They are necessary to match callee and caller signature for 1135 // indirect call. 1136 auto PtrVT = getPointerTy(MF.getDataLayout()); 1137 if (CallConv == CallingConv::Swift) { 1138 if (!HasSwiftSelfArg) { 1139 MFI->addParam(PtrVT); 1140 } 1141 if (!HasSwiftErrorArg) { 1142 MFI->addParam(PtrVT); 1143 } 1144 } 1145 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1146 // the buffer is passed as an argument. 1147 if (IsVarArg) { 1148 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1149 Register VarargVreg = 1150 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1151 MFI->setVarargBufferVreg(VarargVreg); 1152 Chain = DAG.getCopyToReg( 1153 Chain, DL, VarargVreg, 1154 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1155 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1156 MFI->addParam(PtrVT); 1157 } 1158 1159 // Record the number and types of arguments and results. 1160 SmallVector<MVT, 4> Params; 1161 SmallVector<MVT, 4> Results; 1162 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1163 MF.getFunction(), DAG.getTarget(), Params, Results); 1164 for (MVT VT : Results) 1165 MFI->addResult(VT); 1166 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1167 // the param logic here with ComputeSignatureVTs 1168 assert(MFI->getParams().size() == Params.size() && 1169 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1170 Params.begin())); 1171 1172 return Chain; 1173 } 1174 1175 void WebAssemblyTargetLowering::ReplaceNodeResults( 1176 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1177 switch (N->getOpcode()) { 1178 case ISD::SIGN_EXTEND_INREG: 1179 // Do not add any results, signifying that N should not be custom lowered 1180 // after all. This happens because simd128 turns on custom lowering for 1181 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1182 // illegal type. 1183 break; 1184 default: 1185 llvm_unreachable( 1186 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1187 } 1188 } 1189 1190 //===----------------------------------------------------------------------===// 1191 // Custom lowering hooks. 1192 //===----------------------------------------------------------------------===// 1193 1194 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1195 SelectionDAG &DAG) const { 1196 SDLoc DL(Op); 1197 switch (Op.getOpcode()) { 1198 default: 1199 llvm_unreachable("unimplemented operation lowering"); 1200 return SDValue(); 1201 case ISD::FrameIndex: 1202 return LowerFrameIndex(Op, DAG); 1203 case ISD::GlobalAddress: 1204 return LowerGlobalAddress(Op, DAG); 1205 case ISD::GlobalTLSAddress: 1206 return LowerGlobalTLSAddress(Op, DAG); 1207 case ISD::ExternalSymbol: 1208 return LowerExternalSymbol(Op, DAG); 1209 case ISD::JumpTable: 1210 return LowerJumpTable(Op, DAG); 1211 case ISD::BR_JT: 1212 return LowerBR_JT(Op, DAG); 1213 case ISD::VASTART: 1214 return LowerVASTART(Op, DAG); 1215 case ISD::BlockAddress: 1216 case ISD::BRIND: 1217 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1218 return SDValue(); 1219 case ISD::RETURNADDR: 1220 return LowerRETURNADDR(Op, DAG); 1221 case ISD::FRAMEADDR: 1222 return LowerFRAMEADDR(Op, DAG); 1223 case ISD::CopyToReg: 1224 return LowerCopyToReg(Op, DAG); 1225 case ISD::EXTRACT_VECTOR_ELT: 1226 case ISD::INSERT_VECTOR_ELT: 1227 return LowerAccessVectorElement(Op, DAG); 1228 case ISD::INTRINSIC_VOID: 1229 case ISD::INTRINSIC_WO_CHAIN: 1230 case ISD::INTRINSIC_W_CHAIN: 1231 return LowerIntrinsic(Op, DAG); 1232 case ISD::SIGN_EXTEND_INREG: 1233 return LowerSIGN_EXTEND_INREG(Op, DAG); 1234 case ISD::BUILD_VECTOR: 1235 return LowerBUILD_VECTOR(Op, DAG); 1236 case ISD::VECTOR_SHUFFLE: 1237 return LowerVECTOR_SHUFFLE(Op, DAG); 1238 case ISD::SETCC: 1239 return LowerSETCC(Op, DAG); 1240 case ISD::SHL: 1241 case ISD::SRA: 1242 case ISD::SRL: 1243 return LowerShift(Op, DAG); 1244 } 1245 } 1246 1247 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1248 SelectionDAG &DAG) const { 1249 SDValue Src = Op.getOperand(2); 1250 if (isa<FrameIndexSDNode>(Src.getNode())) { 1251 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1252 // the FI to some LEA-like instruction, but since we don't have that, we 1253 // need to insert some kind of instruction that can take an FI operand and 1254 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1255 // local.copy between Op and its FI operand. 1256 SDValue Chain = Op.getOperand(0); 1257 SDLoc DL(Op); 1258 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1259 EVT VT = Src.getValueType(); 1260 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1261 : WebAssembly::COPY_I64, 1262 DL, VT, Src), 1263 0); 1264 return Op.getNode()->getNumValues() == 1 1265 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1266 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1267 Op.getNumOperands() == 4 ? Op.getOperand(3) 1268 : SDValue()); 1269 } 1270 return SDValue(); 1271 } 1272 1273 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1274 SelectionDAG &DAG) const { 1275 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1276 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1277 } 1278 1279 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1280 SelectionDAG &DAG) const { 1281 SDLoc DL(Op); 1282 1283 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1284 fail(DL, DAG, 1285 "Non-Emscripten WebAssembly hasn't implemented " 1286 "__builtin_return_address"); 1287 return SDValue(); 1288 } 1289 1290 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1291 return SDValue(); 1292 1293 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1294 MakeLibCallOptions CallOptions; 1295 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1296 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1297 .first; 1298 } 1299 1300 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1301 SelectionDAG &DAG) const { 1302 // Non-zero depths are not supported by WebAssembly currently. Use the 1303 // legalizer's default expansion, which is to return 0 (what this function is 1304 // documented to do). 1305 if (Op.getConstantOperandVal(0) > 0) 1306 return SDValue(); 1307 1308 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1309 EVT VT = Op.getValueType(); 1310 Register FP = 1311 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1312 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1313 } 1314 1315 SDValue 1316 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1317 SelectionDAG &DAG) const { 1318 SDLoc DL(Op); 1319 const auto *GA = cast<GlobalAddressSDNode>(Op); 1320 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1321 1322 MachineFunction &MF = DAG.getMachineFunction(); 1323 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1324 report_fatal_error("cannot use thread-local storage without bulk memory", 1325 false); 1326 1327 const GlobalValue *GV = GA->getGlobal(); 1328 1329 // Currently Emscripten does not support dynamic linking with threads. 1330 // Therefore, if we have thread-local storage, only the local-exec model 1331 // is possible. 1332 // TODO: remove this and implement proper TLS models once Emscripten 1333 // supports dynamic linking with threads. 1334 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1335 !Subtarget->getTargetTriple().isOSEmscripten()) { 1336 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1337 "non-Emscripten OSes: variable " + 1338 GV->getName(), 1339 false); 1340 } 1341 1342 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1343 : WebAssembly::GLOBAL_GET_I32; 1344 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1345 1346 SDValue BaseAddr( 1347 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1348 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1349 0); 1350 1351 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1352 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1353 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1354 1355 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1356 } 1357 1358 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1359 SelectionDAG &DAG) const { 1360 SDLoc DL(Op); 1361 const auto *GA = cast<GlobalAddressSDNode>(Op); 1362 EVT VT = Op.getValueType(); 1363 assert(GA->getTargetFlags() == 0 && 1364 "Unexpected target flags on generic GlobalAddressSDNode"); 1365 if (GA->getAddressSpace() != 0) 1366 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1367 1368 unsigned OperandFlags = 0; 1369 if (isPositionIndependent()) { 1370 const GlobalValue *GV = GA->getGlobal(); 1371 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1372 MachineFunction &MF = DAG.getMachineFunction(); 1373 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1374 const char *BaseName; 1375 if (GV->getValueType()->isFunctionTy()) { 1376 BaseName = MF.createExternalSymbolName("__table_base"); 1377 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1378 } 1379 else { 1380 BaseName = MF.createExternalSymbolName("__memory_base"); 1381 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1382 } 1383 SDValue BaseAddr = 1384 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1385 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1386 1387 SDValue SymAddr = DAG.getNode( 1388 WebAssemblyISD::WrapperPIC, DL, VT, 1389 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1390 OperandFlags)); 1391 1392 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1393 } else { 1394 OperandFlags = WebAssemblyII::MO_GOT; 1395 } 1396 } 1397 1398 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1399 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1400 GA->getOffset(), OperandFlags)); 1401 } 1402 1403 SDValue 1404 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1405 SelectionDAG &DAG) const { 1406 SDLoc DL(Op); 1407 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1408 EVT VT = Op.getValueType(); 1409 assert(ES->getTargetFlags() == 0 && 1410 "Unexpected target flags on generic ExternalSymbolSDNode"); 1411 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1412 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1413 } 1414 1415 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1416 SelectionDAG &DAG) const { 1417 // There's no need for a Wrapper node because we always incorporate a jump 1418 // table operand into a BR_TABLE instruction, rather than ever 1419 // materializing it in a register. 1420 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1421 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1422 JT->getTargetFlags()); 1423 } 1424 1425 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1426 SelectionDAG &DAG) const { 1427 SDLoc DL(Op); 1428 SDValue Chain = Op.getOperand(0); 1429 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1430 SDValue Index = Op.getOperand(2); 1431 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1432 1433 SmallVector<SDValue, 8> Ops; 1434 Ops.push_back(Chain); 1435 Ops.push_back(Index); 1436 1437 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1438 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1439 1440 // Add an operand for each case. 1441 for (auto MBB : MBBs) 1442 Ops.push_back(DAG.getBasicBlock(MBB)); 1443 1444 // Add the first MBB as a dummy default target for now. This will be replaced 1445 // with the proper default target (and the preceding range check eliminated) 1446 // if possible by WebAssemblyFixBrTableDefaults. 1447 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1448 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1449 } 1450 1451 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1452 SelectionDAG &DAG) const { 1453 SDLoc DL(Op); 1454 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1455 1456 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1457 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1458 1459 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1460 MFI->getVarargBufferVreg(), PtrVT); 1461 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1462 MachinePointerInfo(SV)); 1463 } 1464 1465 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1466 SelectionDAG &DAG) { 1467 // We only support C++ exceptions for now 1468 int Tag = 1469 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1470 if (Tag != WebAssembly::CPP_EXCEPTION) 1471 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1472 auto &MF = DAG.getMachineFunction(); 1473 const auto &TLI = DAG.getTargetLoweringInfo(); 1474 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1475 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1476 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1477 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1478 } 1479 1480 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1481 SelectionDAG &DAG) const { 1482 MachineFunction &MF = DAG.getMachineFunction(); 1483 unsigned IntNo; 1484 switch (Op.getOpcode()) { 1485 case ISD::INTRINSIC_VOID: 1486 case ISD::INTRINSIC_W_CHAIN: 1487 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1488 break; 1489 case ISD::INTRINSIC_WO_CHAIN: 1490 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1491 break; 1492 default: 1493 llvm_unreachable("Invalid intrinsic"); 1494 } 1495 SDLoc DL(Op); 1496 1497 switch (IntNo) { 1498 default: 1499 return SDValue(); // Don't custom lower most intrinsics. 1500 1501 case Intrinsic::wasm_lsda: { 1502 EVT VT = Op.getValueType(); 1503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1504 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1505 auto &Context = MF.getMMI().getContext(); 1506 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1507 Twine(MF.getFunctionNumber())); 1508 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1509 DAG.getMCSymbol(S, PtrVT)); 1510 } 1511 1512 case Intrinsic::wasm_throw: { 1513 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1514 return DAG.getNode(WebAssemblyISD::THROW, DL, 1515 MVT::Other, // outchain type 1516 { 1517 Op.getOperand(0), // inchain 1518 SymNode, // exception symbol 1519 Op.getOperand(3) // thrown value 1520 }); 1521 } 1522 1523 case Intrinsic::wasm_catch: { 1524 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1525 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1526 { 1527 MVT::i32, // outchain type 1528 MVT::Other // return value 1529 }, 1530 { 1531 Op.getOperand(0), // inchain 1532 SymNode // exception symbol 1533 }); 1534 } 1535 1536 case Intrinsic::wasm_shuffle: { 1537 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1538 SDValue Ops[18]; 1539 size_t OpIdx = 0; 1540 Ops[OpIdx++] = Op.getOperand(1); 1541 Ops[OpIdx++] = Op.getOperand(2); 1542 while (OpIdx < 18) { 1543 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1544 if (MaskIdx.isUndef() || 1545 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1546 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1547 } else { 1548 Ops[OpIdx++] = MaskIdx; 1549 } 1550 } 1551 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1552 } 1553 } 1554 } 1555 1556 SDValue 1557 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1558 SelectionDAG &DAG) const { 1559 SDLoc DL(Op); 1560 // If sign extension operations are disabled, allow sext_inreg only if operand 1561 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1562 // extension operations, but allowing sext_inreg in this context lets us have 1563 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1564 // everywhere would be simpler in this file, but would necessitate large and 1565 // brittle patterns to undo the expansion and select extract_lane_s 1566 // instructions. 1567 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1568 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1569 return SDValue(); 1570 1571 const SDValue &Extract = Op.getOperand(0); 1572 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1573 if (VecT.getVectorElementType().getSizeInBits() > 32) 1574 return SDValue(); 1575 MVT ExtractedLaneT = 1576 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1577 MVT ExtractedVecT = 1578 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1579 if (ExtractedVecT == VecT) 1580 return Op; 1581 1582 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1583 const SDNode *Index = Extract.getOperand(1).getNode(); 1584 if (!isa<ConstantSDNode>(Index)) 1585 return SDValue(); 1586 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1587 unsigned Scale = 1588 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1589 assert(Scale > 1); 1590 SDValue NewIndex = 1591 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1592 SDValue NewExtract = DAG.getNode( 1593 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1594 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1595 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1596 Op.getOperand(1)); 1597 } 1598 1599 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1600 SelectionDAG &DAG) const { 1601 SDLoc DL(Op); 1602 const EVT VecT = Op.getValueType(); 1603 const EVT LaneT = Op.getOperand(0).getValueType(); 1604 const size_t Lanes = Op.getNumOperands(); 1605 bool CanSwizzle = VecT == MVT::v16i8; 1606 1607 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1608 // possible number of lanes at once followed by a sequence of replace_lane 1609 // instructions to individually initialize any remaining lanes. 1610 1611 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1612 // swizzled lanes should be given greater weight. 1613 1614 // TODO: Investigate building vectors by shuffling together vectors built by 1615 // separately specialized means. 1616 1617 auto IsConstant = [](const SDValue &V) { 1618 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1619 }; 1620 1621 // Returns the source vector and index vector pair if they exist. Checks for: 1622 // (extract_vector_elt 1623 // $src, 1624 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1625 // ) 1626 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1627 auto Bail = std::make_pair(SDValue(), SDValue()); 1628 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1629 return Bail; 1630 const SDValue &SwizzleSrc = Lane->getOperand(0); 1631 const SDValue &IndexExt = Lane->getOperand(1); 1632 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1633 return Bail; 1634 const SDValue &Index = IndexExt->getOperand(0); 1635 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1636 return Bail; 1637 const SDValue &SwizzleIndices = Index->getOperand(0); 1638 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1639 SwizzleIndices.getValueType() != MVT::v16i8 || 1640 Index->getOperand(1)->getOpcode() != ISD::Constant || 1641 Index->getConstantOperandVal(1) != I) 1642 return Bail; 1643 return std::make_pair(SwizzleSrc, SwizzleIndices); 1644 }; 1645 1646 using ValueEntry = std::pair<SDValue, size_t>; 1647 SmallVector<ValueEntry, 16> SplatValueCounts; 1648 1649 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1650 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1651 1652 auto AddCount = [](auto &Counts, const auto &Val) { 1653 auto CountIt = 1654 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1655 if (CountIt == Counts.end()) { 1656 Counts.emplace_back(Val, 1); 1657 } else { 1658 CountIt->second++; 1659 } 1660 }; 1661 1662 auto GetMostCommon = [](auto &Counts) { 1663 auto CommonIt = 1664 std::max_element(Counts.begin(), Counts.end(), 1665 [](auto A, auto B) { return A.second < B.second; }); 1666 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1667 return *CommonIt; 1668 }; 1669 1670 size_t NumConstantLanes = 0; 1671 1672 // Count eligible lanes for each type of vector creation op 1673 for (size_t I = 0; I < Lanes; ++I) { 1674 const SDValue &Lane = Op->getOperand(I); 1675 if (Lane.isUndef()) 1676 continue; 1677 1678 AddCount(SplatValueCounts, Lane); 1679 1680 if (IsConstant(Lane)) { 1681 NumConstantLanes++; 1682 } else if (CanSwizzle) { 1683 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1684 if (SwizzleSrcs.first) 1685 AddCount(SwizzleCounts, SwizzleSrcs); 1686 } 1687 } 1688 1689 SDValue SplatValue; 1690 size_t NumSplatLanes; 1691 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1692 1693 SDValue SwizzleSrc; 1694 SDValue SwizzleIndices; 1695 size_t NumSwizzleLanes = 0; 1696 if (SwizzleCounts.size()) 1697 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1698 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1699 1700 // Predicate returning true if the lane is properly initialized by the 1701 // original instruction 1702 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1703 SDValue Result; 1704 // Prefer swizzles over vector consts over splats 1705 if (NumSwizzleLanes >= NumSplatLanes && 1706 (!Subtarget->hasUnimplementedSIMD128() || 1707 NumSwizzleLanes >= NumConstantLanes)) { 1708 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1709 SwizzleIndices); 1710 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1711 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1712 return Swizzled == GetSwizzleSrcs(I, Lane); 1713 }; 1714 } else if (NumConstantLanes >= NumSplatLanes && 1715 Subtarget->hasUnimplementedSIMD128()) { 1716 // If we support v128.const, emit it directly 1717 SmallVector<SDValue, 16> ConstLanes; 1718 for (const SDValue &Lane : Op->op_values()) { 1719 if (IsConstant(Lane)) { 1720 ConstLanes.push_back(Lane); 1721 } else if (LaneT.isFloatingPoint()) { 1722 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1723 } else { 1724 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1725 } 1726 } 1727 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1728 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1729 return IsConstant(Lane); 1730 }; 1731 } else if (NumConstantLanes >= NumSplatLanes && VecT.isInteger()) { 1732 // Otherwise, if this is an integer vector, pack the lane values together so 1733 // we can construct the 128-bit constant from a pair of i64s using a splat 1734 // followed by at most one i64x2.replace_lane. Also keep track of the lanes 1735 // that actually matter so we can avoid the replace_lane in more cases. 1736 std::array<uint64_t, 2> I64s{{0, 0}}; 1737 std::array<uint64_t, 2> ConstLaneMasks{{0, 0}}; 1738 size_t LaneBits = 128 / Lanes; 1739 size_t HalfLanes = Lanes / 2; 1740 for (size_t I = 0; I < Lanes; ++I) { 1741 const SDValue &Lane = Op.getOperand(I); 1742 if (IsConstant(Lane)) { 1743 // How much we need to shift Val to position it in an i64 1744 auto Shift = LaneBits * (I % HalfLanes); 1745 auto Mask = maskTrailingOnes<uint64_t>(LaneBits); 1746 auto Val = cast<ConstantSDNode>(Lane.getNode())->getZExtValue() & Mask; 1747 I64s[I / HalfLanes] |= Val << Shift; 1748 ConstLaneMasks[I / HalfLanes] |= Mask << Shift; 1749 } 1750 } 1751 // Check whether all constant lanes in the second half of the vector are 1752 // equivalent in the first half or vice versa to determine whether splatting 1753 // either side will be sufficient to materialize the constant. As a special 1754 // case, if the first and second halves have no constant lanes in common, we 1755 // can just combine them. 1756 bool FirstHalfSufficient = (I64s[0] & ConstLaneMasks[1]) == I64s[1]; 1757 bool SecondHalfSufficient = (I64s[1] & ConstLaneMasks[0]) == I64s[0]; 1758 bool CombinedSufficient = (ConstLaneMasks[0] & ConstLaneMasks[1]) == 0; 1759 1760 uint64_t Splatted; 1761 if (SecondHalfSufficient) { 1762 Splatted = I64s[1]; 1763 } else if (CombinedSufficient) { 1764 Splatted = I64s[0] | I64s[1]; 1765 } else { 1766 Splatted = I64s[0]; 1767 } 1768 1769 Result = DAG.getSplatBuildVector(MVT::v2i64, DL, 1770 DAG.getConstant(Splatted, DL, MVT::i64)); 1771 if (!FirstHalfSufficient && !SecondHalfSufficient && !CombinedSufficient) { 1772 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i64, Result, 1773 DAG.getConstant(I64s[1], DL, MVT::i64), 1774 DAG.getConstant(1, DL, MVT::i32)); 1775 } 1776 Result = DAG.getBitcast(VecT, Result); 1777 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1778 return IsConstant(Lane); 1779 }; 1780 } else { 1781 // Use a splat, but possibly a load_splat 1782 LoadSDNode *SplattedLoad; 1783 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1784 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1785 Result = DAG.getMemIntrinsicNode( 1786 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1787 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1788 SplattedLoad->getOffset()}, 1789 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1790 } else { 1791 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1792 } 1793 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1794 return Lane == SplatValue; 1795 }; 1796 } 1797 1798 assert(Result); 1799 assert(IsLaneConstructed); 1800 1801 // Add replace_lane instructions for any unhandled values 1802 for (size_t I = 0; I < Lanes; ++I) { 1803 const SDValue &Lane = Op->getOperand(I); 1804 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1805 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1806 DAG.getConstant(I, DL, MVT::i32)); 1807 } 1808 1809 return Result; 1810 } 1811 1812 SDValue 1813 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1814 SelectionDAG &DAG) const { 1815 SDLoc DL(Op); 1816 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1817 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1818 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1819 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1820 1821 // Space for two vector args and sixteen mask indices 1822 SDValue Ops[18]; 1823 size_t OpIdx = 0; 1824 Ops[OpIdx++] = Op.getOperand(0); 1825 Ops[OpIdx++] = Op.getOperand(1); 1826 1827 // Expand mask indices to byte indices and materialize them as operands 1828 for (int M : Mask) { 1829 for (size_t J = 0; J < LaneBytes; ++J) { 1830 // Lower undefs (represented by -1 in mask) to zero 1831 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1832 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1833 } 1834 } 1835 1836 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1837 } 1838 1839 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1840 SelectionDAG &DAG) const { 1841 SDLoc DL(Op); 1842 // The legalizer does not know how to expand the comparison modes of i64x2 1843 // vectors because no comparison modes are supported. We could solve this by 1844 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1845 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1846 // comparisons here. 1847 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1848 SmallVector<SDValue, 2> LHS, RHS; 1849 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1850 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1851 const SDValue &CC = Op->getOperand(2); 1852 auto MakeLane = [&](unsigned I) { 1853 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1854 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1855 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1856 }; 1857 return DAG.getBuildVector(Op->getValueType(0), DL, 1858 {MakeLane(0), MakeLane(1)}); 1859 } 1860 1861 SDValue 1862 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1863 SelectionDAG &DAG) const { 1864 // Allow constant lane indices, expand variable lane indices 1865 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1866 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1867 return Op; 1868 else 1869 // Perform default expansion 1870 return SDValue(); 1871 } 1872 1873 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1874 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1875 // 32-bit and 64-bit unrolled shifts will have proper semantics 1876 if (LaneT.bitsGE(MVT::i32)) 1877 return DAG.UnrollVectorOp(Op.getNode()); 1878 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1879 SDLoc DL(Op); 1880 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1881 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1882 unsigned ShiftOpcode = Op.getOpcode(); 1883 SmallVector<SDValue, 16> ShiftedElements; 1884 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1885 SmallVector<SDValue, 16> ShiftElements; 1886 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1887 SmallVector<SDValue, 16> UnrolledOps; 1888 for (size_t i = 0; i < NumLanes; ++i) { 1889 SDValue MaskedShiftValue = 1890 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1891 SDValue ShiftedValue = ShiftedElements[i]; 1892 if (ShiftOpcode == ISD::SRA) 1893 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1894 ShiftedValue, DAG.getValueType(LaneT)); 1895 UnrolledOps.push_back( 1896 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1897 } 1898 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1899 } 1900 1901 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1902 SelectionDAG &DAG) const { 1903 SDLoc DL(Op); 1904 1905 // Only manually lower vector shifts 1906 assert(Op.getSimpleValueType().isVector()); 1907 1908 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1909 if (!ShiftVal) 1910 return unrollVectorShift(Op, DAG); 1911 1912 // Use anyext because none of the high bits can affect the shift 1913 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1914 1915 unsigned Opcode; 1916 switch (Op.getOpcode()) { 1917 case ISD::SHL: 1918 Opcode = WebAssemblyISD::VEC_SHL; 1919 break; 1920 case ISD::SRA: 1921 Opcode = WebAssemblyISD::VEC_SHR_S; 1922 break; 1923 case ISD::SRL: 1924 Opcode = WebAssemblyISD::VEC_SHR_U; 1925 break; 1926 default: 1927 llvm_unreachable("unexpected opcode"); 1928 } 1929 1930 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1931 } 1932 1933 //===----------------------------------------------------------------------===// 1934 // Custom DAG combine hooks 1935 //===----------------------------------------------------------------------===// 1936 static SDValue 1937 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1938 auto &DAG = DCI.DAG; 1939 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1940 1941 // Hoist vector bitcasts that don't change the number of lanes out of unary 1942 // shuffles, where they are less likely to get in the way of other combines. 1943 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1944 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1945 SDValue Bitcast = N->getOperand(0); 1946 if (Bitcast.getOpcode() != ISD::BITCAST) 1947 return SDValue(); 1948 if (!N->getOperand(1).isUndef()) 1949 return SDValue(); 1950 SDValue CastOp = Bitcast.getOperand(0); 1951 MVT SrcType = CastOp.getSimpleValueType(); 1952 MVT DstType = Bitcast.getSimpleValueType(); 1953 if (!SrcType.is128BitVector() || 1954 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1955 return SDValue(); 1956 SDValue NewShuffle = DAG.getVectorShuffle( 1957 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1958 return DAG.getBitcast(DstType, NewShuffle); 1959 } 1960 1961 static SDValue performVectorWidenCombine(SDNode *N, 1962 TargetLowering::DAGCombinerInfo &DCI) { 1963 auto &DAG = DCI.DAG; 1964 assert(N->getOpcode() == ISD::SIGN_EXTEND || 1965 N->getOpcode() == ISD::ZERO_EXTEND); 1966 1967 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 1968 // possible before the extract_subvector can be expanded. 1969 auto Extract = N->getOperand(0); 1970 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 1971 return SDValue(); 1972 auto Source = Extract.getOperand(0); 1973 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 1974 if (IndexNode == nullptr) 1975 return SDValue(); 1976 auto Index = IndexNode->getZExtValue(); 1977 1978 // Only v8i8 and v4i16 extracts can be widened, and only if the extracted 1979 // subvector is the low or high half of its source. 1980 EVT ResVT = N->getValueType(0); 1981 if (ResVT == MVT::v8i16) { 1982 if (Extract.getValueType() != MVT::v8i8 || 1983 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 1984 return SDValue(); 1985 } else if (ResVT == MVT::v4i32) { 1986 if (Extract.getValueType() != MVT::v4i16 || 1987 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 1988 return SDValue(); 1989 } else { 1990 return SDValue(); 1991 } 1992 1993 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 1994 bool IsLow = Index == 0; 1995 1996 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S 1997 : WebAssemblyISD::WIDEN_HIGH_S) 1998 : (IsLow ? WebAssemblyISD::WIDEN_LOW_U 1999 : WebAssemblyISD::WIDEN_HIGH_U); 2000 2001 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2002 } 2003 2004 SDValue 2005 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2006 DAGCombinerInfo &DCI) const { 2007 switch (N->getOpcode()) { 2008 default: 2009 return SDValue(); 2010 case ISD::VECTOR_SHUFFLE: 2011 return performVECTOR_SHUFFLECombine(N, DCI); 2012 case ISD::SIGN_EXTEND: 2013 case ISD::ZERO_EXTEND: 2014 return performVectorWidenCombine(N, DCI); 2015 } 2016 } 2017