1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 } 65 if (Subtarget->hasUnimplementedSIMD128()) { 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 73 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 74 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 75 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 76 setOperationAction(ISD::BRIND, MVT::Other, Custom); 77 78 // Take the default expansion for va_arg, va_copy, and va_end. There is no 79 // default action for va_start, so we do that custom. 80 setOperationAction(ISD::VASTART, MVT::Other, Custom); 81 setOperationAction(ISD::VAARG, MVT::Other, Expand); 82 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 83 setOperationAction(ISD::VAEND, MVT::Other, Expand); 84 85 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 86 // Don't expand the floating-point types to constant pools. 87 setOperationAction(ISD::ConstantFP, T, Legal); 88 // Expand floating-point comparisons. 89 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 90 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 91 setCondCodeAction(CC, T, Expand); 92 // Expand floating-point library function operators. 93 for (auto Op : 94 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 95 setOperationAction(Op, T, Expand); 96 // Note supported floating-point library function operators that otherwise 97 // default to expand. 98 for (auto Op : 99 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 100 setOperationAction(Op, T, Legal); 101 // Support minimum and maximum, which otherwise default to expand. 102 setOperationAction(ISD::FMINIMUM, T, Legal); 103 setOperationAction(ISD::FMAXIMUM, T, Legal); 104 // WebAssembly currently has no builtin f16 support. 105 setOperationAction(ISD::FP16_TO_FP, T, Expand); 106 setOperationAction(ISD::FP_TO_FP16, T, Expand); 107 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 108 setTruncStoreAction(T, MVT::f16, Expand); 109 } 110 111 // Expand unavailable integer operations. 112 for (auto Op : 113 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 114 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 115 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 116 for (auto T : {MVT::i32, MVT::i64}) 117 setOperationAction(Op, T, Expand); 118 if (Subtarget->hasSIMD128()) 119 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 120 setOperationAction(Op, T, Expand); 121 if (Subtarget->hasUnimplementedSIMD128()) 122 setOperationAction(Op, MVT::v2i64, Expand); 123 } 124 125 // SIMD-specific configuration 126 if (Subtarget->hasSIMD128()) { 127 // Support saturating add for i8x16 and i16x8 128 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 129 for (auto T : {MVT::v16i8, MVT::v8i16}) 130 setOperationAction(Op, T, Legal); 131 132 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 133 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 134 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 135 if (Subtarget->hasUnimplementedSIMD128()) 136 for (auto T : {MVT::v2i64, MVT::v2f64}) 137 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 138 139 // We have custom shuffle lowering to expose the shuffle mask 140 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 141 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 142 if (Subtarget->hasUnimplementedSIMD128()) 143 for (auto T: {MVT::v2i64, MVT::v2f64}) 144 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 145 146 // Custom lowering since wasm shifts must have a scalar shift amount 147 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 148 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 149 setOperationAction(Op, T, Custom); 150 if (Subtarget->hasUnimplementedSIMD128()) 151 setOperationAction(Op, MVT::v2i64, Custom); 152 } 153 154 // Custom lower lane accesses to expand out variable indices 155 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 156 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 157 setOperationAction(Op, T, Custom); 158 if (Subtarget->hasUnimplementedSIMD128()) 159 for (auto T : {MVT::v2i64, MVT::v2f64}) 160 setOperationAction(Op, T, Custom); 161 } 162 163 // There is no i64x2.mul instruction 164 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 165 166 // There are no vector select instructions 167 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 168 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 169 setOperationAction(Op, T, Expand); 170 if (Subtarget->hasUnimplementedSIMD128()) 171 for (auto T : {MVT::v2i64, MVT::v2f64}) 172 setOperationAction(Op, T, Expand); 173 } 174 175 // Expand integer operations supported for scalars but not SIMD 176 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 177 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 178 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 179 setOperationAction(Op, T, Expand); 180 if (Subtarget->hasUnimplementedSIMD128()) 181 setOperationAction(Op, MVT::v2i64, Expand); 182 } 183 184 // But we do have integer min and max operations 185 if (Subtarget->hasUnimplementedSIMD128()) { 186 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 188 setOperationAction(Op, T, Legal); 189 } 190 191 // Expand float operations supported for scalars but not SIMD 192 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 193 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 194 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) { 195 setOperationAction(Op, MVT::v4f32, Expand); 196 if (Subtarget->hasUnimplementedSIMD128()) 197 setOperationAction(Op, MVT::v2f64, Expand); 198 } 199 200 // Expand operations not supported for i64x2 vectors 201 if (Subtarget->hasUnimplementedSIMD128()) 202 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 203 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 204 205 // Expand additional SIMD ops that V8 hasn't implemented yet 206 if (!Subtarget->hasUnimplementedSIMD128()) { 207 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 208 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 209 } 210 } 211 212 // As a special case, these operators use the type to mean the type to 213 // sign-extend from. 214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 215 if (!Subtarget->hasSignExt()) { 216 // Sign extends are legal only when extending a vector extract 217 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 218 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 219 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 220 } 221 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 222 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 223 224 // Dynamic stack allocation: use the default expansion. 225 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 226 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 227 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 228 229 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 230 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 231 232 // Expand these forms; we pattern-match the forms that we can handle in isel. 233 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 234 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 235 setOperationAction(Op, T, Expand); 236 237 // We have custom switch handling. 238 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 239 240 // WebAssembly doesn't have: 241 // - Floating-point extending loads. 242 // - Floating-point truncating stores. 243 // - i1 extending loads. 244 // - truncating SIMD stores and most extending loads 245 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 246 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 247 for (auto T : MVT::integer_valuetypes()) 248 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 249 setLoadExtAction(Ext, T, MVT::i1, Promote); 250 if (Subtarget->hasSIMD128()) { 251 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 252 MVT::v2f64}) { 253 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 254 if (MVT(T) != MemT) { 255 setTruncStoreAction(T, MemT, Expand); 256 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 257 setLoadExtAction(Ext, T, MemT, Expand); 258 } 259 } 260 } 261 // But some vector extending loads are legal 262 if (Subtarget->hasUnimplementedSIMD128()) { 263 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 264 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 265 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 266 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 267 } 268 } 269 } 270 271 // Don't do anything clever with build_pairs 272 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 273 274 // Trap lowers to wasm unreachable 275 setOperationAction(ISD::TRAP, MVT::Other, Legal); 276 277 // Exception handling intrinsics 278 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 279 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 280 281 setMaxAtomicSizeInBitsSupported(64); 282 283 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 284 // consistent with the f64 and f128 names. 285 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 286 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 287 288 // Define the emscripten name for return address helper. 289 // TODO: when implementing other WASM backends, make this generic or only do 290 // this on emscripten depending on what they end up doing. 291 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 292 293 // Always convert switches to br_tables unless there is only one case, which 294 // is equivalent to a simple branch. This reduces code size for wasm, and we 295 // defer possible jump table optimizations to the VM. 296 setMinimumJumpTableEntries(2); 297 } 298 299 TargetLowering::AtomicExpansionKind 300 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 301 // We have wasm instructions for these 302 switch (AI->getOperation()) { 303 case AtomicRMWInst::Add: 304 case AtomicRMWInst::Sub: 305 case AtomicRMWInst::And: 306 case AtomicRMWInst::Or: 307 case AtomicRMWInst::Xor: 308 case AtomicRMWInst::Xchg: 309 return AtomicExpansionKind::None; 310 default: 311 break; 312 } 313 return AtomicExpansionKind::CmpXChg; 314 } 315 316 FastISel *WebAssemblyTargetLowering::createFastISel( 317 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 318 return WebAssembly::createFastISel(FuncInfo, LibInfo); 319 } 320 321 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 322 EVT VT) const { 323 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 324 if (BitWidth > 1 && BitWidth < 8) 325 BitWidth = 8; 326 327 if (BitWidth > 64) { 328 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 329 // the count to be an i32. 330 BitWidth = 32; 331 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 332 "32-bit shift counts ought to be enough for anyone"); 333 } 334 335 MVT Result = MVT::getIntegerVT(BitWidth); 336 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 337 "Unable to represent scalar shift amount type"); 338 return Result; 339 } 340 341 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 342 // undefined result on invalid/overflow, to the WebAssembly opcode, which 343 // traps on invalid/overflow. 344 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 345 MachineBasicBlock *BB, 346 const TargetInstrInfo &TII, 347 bool IsUnsigned, bool Int64, 348 bool Float64, unsigned LoweredOpcode) { 349 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 350 351 Register OutReg = MI.getOperand(0).getReg(); 352 Register InReg = MI.getOperand(1).getReg(); 353 354 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 355 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 356 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 357 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 358 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 359 unsigned Eqz = WebAssembly::EQZ_I32; 360 unsigned And = WebAssembly::AND_I32; 361 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 362 int64_t Substitute = IsUnsigned ? 0 : Limit; 363 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 364 auto &Context = BB->getParent()->getFunction().getContext(); 365 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 366 367 const BasicBlock *LLVMBB = BB->getBasicBlock(); 368 MachineFunction *F = BB->getParent(); 369 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 370 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 371 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 372 373 MachineFunction::iterator It = ++BB->getIterator(); 374 F->insert(It, FalseMBB); 375 F->insert(It, TrueMBB); 376 F->insert(It, DoneMBB); 377 378 // Transfer the remainder of BB and its successor edges to DoneMBB. 379 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 380 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 381 382 BB->addSuccessor(TrueMBB); 383 BB->addSuccessor(FalseMBB); 384 TrueMBB->addSuccessor(DoneMBB); 385 FalseMBB->addSuccessor(DoneMBB); 386 387 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 388 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 389 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 390 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 391 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 392 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 393 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 394 395 MI.eraseFromParent(); 396 // For signed numbers, we can do a single comparison to determine whether 397 // fabs(x) is within range. 398 if (IsUnsigned) { 399 Tmp0 = InReg; 400 } else { 401 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 402 } 403 BuildMI(BB, DL, TII.get(FConst), Tmp1) 404 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 405 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 406 407 // For unsigned numbers, we have to do a separate comparison with zero. 408 if (IsUnsigned) { 409 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 410 Register SecondCmpReg = 411 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 412 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 413 BuildMI(BB, DL, TII.get(FConst), Tmp1) 414 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 415 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 416 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 417 CmpReg = AndReg; 418 } 419 420 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 421 422 // Create the CFG diamond to select between doing the conversion or using 423 // the substitute value. 424 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 425 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 426 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 427 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 428 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 429 .addReg(FalseReg) 430 .addMBB(FalseMBB) 431 .addReg(TrueReg) 432 .addMBB(TrueMBB); 433 434 return DoneMBB; 435 } 436 437 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 438 DebugLoc DL, MachineBasicBlock *BB, 439 const TargetInstrInfo &TII) { 440 MachineInstr &CallParams = *CallResults.getPrevNode(); 441 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 442 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS); 443 444 MachineFunction &MF = *BB->getParent(); 445 const MCInstrDesc &MCID = TII.get(WebAssembly::CALL); 446 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 447 448 for (auto Def : CallResults.defs()) 449 MIB.add(Def); 450 for (auto Use : CallParams.uses()) 451 MIB.add(Use); 452 453 BB->insert(CallResults.getIterator(), MIB); 454 CallParams.eraseFromParent(); 455 CallResults.eraseFromParent(); 456 457 return BB; 458 } 459 460 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 461 MachineInstr &MI, MachineBasicBlock *BB) const { 462 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 463 DebugLoc DL = MI.getDebugLoc(); 464 465 switch (MI.getOpcode()) { 466 default: 467 llvm_unreachable("Unexpected instr type to insert"); 468 case WebAssembly::FP_TO_SINT_I32_F32: 469 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 470 WebAssembly::I32_TRUNC_S_F32); 471 case WebAssembly::FP_TO_UINT_I32_F32: 472 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 473 WebAssembly::I32_TRUNC_U_F32); 474 case WebAssembly::FP_TO_SINT_I64_F32: 475 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 476 WebAssembly::I64_TRUNC_S_F32); 477 case WebAssembly::FP_TO_UINT_I64_F32: 478 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 479 WebAssembly::I64_TRUNC_U_F32); 480 case WebAssembly::FP_TO_SINT_I32_F64: 481 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 482 WebAssembly::I32_TRUNC_S_F64); 483 case WebAssembly::FP_TO_UINT_I32_F64: 484 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 485 WebAssembly::I32_TRUNC_U_F64); 486 case WebAssembly::FP_TO_SINT_I64_F64: 487 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 488 WebAssembly::I64_TRUNC_S_F64); 489 case WebAssembly::FP_TO_UINT_I64_F64: 490 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 491 WebAssembly::I64_TRUNC_U_F64); 492 case WebAssembly::CALL_RESULTS: 493 return LowerCallResults(MI, DL, BB, TII); 494 } 495 } 496 497 const char * 498 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 499 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 500 case WebAssemblyISD::FIRST_NUMBER: 501 case WebAssemblyISD::FIRST_MEM_OPCODE: 502 break; 503 #define HANDLE_NODETYPE(NODE) \ 504 case WebAssemblyISD::NODE: \ 505 return "WebAssemblyISD::" #NODE; 506 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 507 #include "WebAssemblyISD.def" 508 #undef HANDLE_MEM_NODETYPE 509 #undef HANDLE_NODETYPE 510 } 511 return nullptr; 512 } 513 514 std::pair<unsigned, const TargetRegisterClass *> 515 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 516 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 517 // First, see if this is a constraint that directly corresponds to a 518 // WebAssembly register class. 519 if (Constraint.size() == 1) { 520 switch (Constraint[0]) { 521 case 'r': 522 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 523 if (Subtarget->hasSIMD128() && VT.isVector()) { 524 if (VT.getSizeInBits() == 128) 525 return std::make_pair(0U, &WebAssembly::V128RegClass); 526 } 527 if (VT.isInteger() && !VT.isVector()) { 528 if (VT.getSizeInBits() <= 32) 529 return std::make_pair(0U, &WebAssembly::I32RegClass); 530 if (VT.getSizeInBits() <= 64) 531 return std::make_pair(0U, &WebAssembly::I64RegClass); 532 } 533 break; 534 default: 535 break; 536 } 537 } 538 539 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 540 } 541 542 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 543 // Assume ctz is a relatively cheap operation. 544 return true; 545 } 546 547 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 548 // Assume clz is a relatively cheap operation. 549 return true; 550 } 551 552 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 553 const AddrMode &AM, 554 Type *Ty, unsigned AS, 555 Instruction *I) const { 556 // WebAssembly offsets are added as unsigned without wrapping. The 557 // isLegalAddressingMode gives us no way to determine if wrapping could be 558 // happening, so we approximate this by accepting only non-negative offsets. 559 if (AM.BaseOffs < 0) 560 return false; 561 562 // WebAssembly has no scale register operands. 563 if (AM.Scale != 0) 564 return false; 565 566 // Everything else is legal. 567 return true; 568 } 569 570 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 571 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 572 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 573 // WebAssembly supports unaligned accesses, though it should be declared 574 // with the p2align attribute on loads and stores which do so, and there 575 // may be a performance impact. We tell LLVM they're "fast" because 576 // for the kinds of things that LLVM uses this for (merging adjacent stores 577 // of constants, etc.), WebAssembly implementations will either want the 578 // unaligned access or they'll split anyway. 579 if (Fast) 580 *Fast = true; 581 return true; 582 } 583 584 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 585 AttributeList Attr) const { 586 // The current thinking is that wasm engines will perform this optimization, 587 // so we can save on code size. 588 return true; 589 } 590 591 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 592 if (!Subtarget->hasUnimplementedSIMD128()) 593 return false; 594 MVT ExtT = ExtVal.getSimpleValueType(); 595 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 596 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 597 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 598 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 599 } 600 601 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 602 LLVMContext &C, 603 EVT VT) const { 604 if (VT.isVector()) 605 return VT.changeVectorElementTypeToInteger(); 606 607 return TargetLowering::getSetCCResultType(DL, C, VT); 608 } 609 610 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 611 const CallInst &I, 612 MachineFunction &MF, 613 unsigned Intrinsic) const { 614 switch (Intrinsic) { 615 case Intrinsic::wasm_atomic_notify: 616 Info.opc = ISD::INTRINSIC_W_CHAIN; 617 Info.memVT = MVT::i32; 618 Info.ptrVal = I.getArgOperand(0); 619 Info.offset = 0; 620 Info.align = Align(4); 621 // atomic.notify instruction does not really load the memory specified with 622 // this argument, but MachineMemOperand should either be load or store, so 623 // we set this to a load. 624 // FIXME Volatile isn't really correct, but currently all LLVM atomic 625 // instructions are treated as volatiles in the backend, so we should be 626 // consistent. The same applies for wasm_atomic_wait intrinsics too. 627 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 628 return true; 629 case Intrinsic::wasm_atomic_wait_i32: 630 Info.opc = ISD::INTRINSIC_W_CHAIN; 631 Info.memVT = MVT::i32; 632 Info.ptrVal = I.getArgOperand(0); 633 Info.offset = 0; 634 Info.align = Align(4); 635 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 636 return true; 637 case Intrinsic::wasm_atomic_wait_i64: 638 Info.opc = ISD::INTRINSIC_W_CHAIN; 639 Info.memVT = MVT::i64; 640 Info.ptrVal = I.getArgOperand(0); 641 Info.offset = 0; 642 Info.align = Align(8); 643 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 644 return true; 645 default: 646 return false; 647 } 648 } 649 650 //===----------------------------------------------------------------------===// 651 // WebAssembly Lowering private implementation. 652 //===----------------------------------------------------------------------===// 653 654 //===----------------------------------------------------------------------===// 655 // Lowering Code 656 //===----------------------------------------------------------------------===// 657 658 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 659 MachineFunction &MF = DAG.getMachineFunction(); 660 DAG.getContext()->diagnose( 661 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 662 } 663 664 // Test whether the given calling convention is supported. 665 static bool callingConvSupported(CallingConv::ID CallConv) { 666 // We currently support the language-independent target-independent 667 // conventions. We don't yet have a way to annotate calls with properties like 668 // "cold", and we don't have any call-clobbered registers, so these are mostly 669 // all handled the same. 670 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 671 CallConv == CallingConv::Cold || 672 CallConv == CallingConv::PreserveMost || 673 CallConv == CallingConv::PreserveAll || 674 CallConv == CallingConv::CXX_FAST_TLS || 675 CallConv == CallingConv::WASM_EmscriptenInvoke || 676 CallConv == CallingConv::Swift; 677 } 678 679 SDValue 680 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 681 SmallVectorImpl<SDValue> &InVals) const { 682 SelectionDAG &DAG = CLI.DAG; 683 SDLoc DL = CLI.DL; 684 SDValue Chain = CLI.Chain; 685 SDValue Callee = CLI.Callee; 686 MachineFunction &MF = DAG.getMachineFunction(); 687 auto Layout = MF.getDataLayout(); 688 689 CallingConv::ID CallConv = CLI.CallConv; 690 if (!callingConvSupported(CallConv)) 691 fail(DL, DAG, 692 "WebAssembly doesn't support language-specific or target-specific " 693 "calling conventions yet"); 694 if (CLI.IsPatchPoint) 695 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 696 697 if (CLI.IsTailCall) { 698 bool MustTail = CLI.CS && CLI.CS.isMustTailCall(); 699 if (Subtarget->hasTailCall() && !CLI.IsVarArg) { 700 // Do not tail call unless caller and callee return types match 701 const Function &F = MF.getFunction(); 702 const TargetMachine &TM = getTargetMachine(); 703 Type *RetTy = F.getReturnType(); 704 SmallVector<MVT, 4> CallerRetTys; 705 SmallVector<MVT, 4> CalleeRetTys; 706 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 707 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 708 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 709 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 710 CalleeRetTys.begin()); 711 if (!TypesMatch) { 712 // musttail in this case would be an LLVM IR validation failure 713 assert(!MustTail); 714 CLI.IsTailCall = false; 715 } 716 } else { 717 CLI.IsTailCall = false; 718 if (MustTail) { 719 if (CLI.IsVarArg) { 720 // The return would pop the argument buffer 721 fail(DL, DAG, "WebAssembly does not support varargs tail calls"); 722 } else { 723 fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled"); 724 } 725 } 726 } 727 } 728 729 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 730 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 731 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 732 733 // The generic code may have added an sret argument. If we're lowering an 734 // invoke function, the ABI requires that the function pointer be the first 735 // argument, so we may have to swap the arguments. 736 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 737 Outs[0].Flags.isSRet()) { 738 std::swap(Outs[0], Outs[1]); 739 std::swap(OutVals[0], OutVals[1]); 740 } 741 742 unsigned NumFixedArgs = 0; 743 for (unsigned I = 0; I < Outs.size(); ++I) { 744 const ISD::OutputArg &Out = Outs[I]; 745 SDValue &OutVal = OutVals[I]; 746 if (Out.Flags.isNest()) 747 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 748 if (Out.Flags.isInAlloca()) 749 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 750 if (Out.Flags.isInConsecutiveRegs()) 751 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 752 if (Out.Flags.isInConsecutiveRegsLast()) 753 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 754 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 755 auto &MFI = MF.getFrameInfo(); 756 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 757 Out.Flags.getByValAlign(), 758 /*isSS=*/false); 759 SDValue SizeNode = 760 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 761 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 762 Chain = DAG.getMemcpy( 763 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 764 /*isVolatile*/ false, /*AlwaysInline=*/false, 765 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 766 OutVal = FINode; 767 } 768 // Count the number of fixed args *after* legalization. 769 NumFixedArgs += Out.IsFixed; 770 } 771 772 bool IsVarArg = CLI.IsVarArg; 773 auto PtrVT = getPointerTy(Layout); 774 775 // Analyze operands of the call, assigning locations to each operand. 776 SmallVector<CCValAssign, 16> ArgLocs; 777 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 778 779 if (IsVarArg) { 780 // Outgoing non-fixed arguments are placed in a buffer. First 781 // compute their offsets and the total amount of buffer space needed. 782 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 783 const ISD::OutputArg &Out = Outs[I]; 784 SDValue &Arg = OutVals[I]; 785 EVT VT = Arg.getValueType(); 786 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 787 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 788 unsigned Align = std::max(Out.Flags.getOrigAlign(), 789 Layout.getABITypeAlignment(Ty)); 790 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 791 Align); 792 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 793 Offset, VT.getSimpleVT(), 794 CCValAssign::Full)); 795 } 796 } 797 798 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 799 800 SDValue FINode; 801 if (IsVarArg && NumBytes) { 802 // For non-fixed arguments, next emit stores to store the argument values 803 // to the stack buffer at the offsets computed above. 804 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 805 Layout.getStackAlignment(), 806 /*isSS=*/false); 807 unsigned ValNo = 0; 808 SmallVector<SDValue, 8> Chains; 809 for (SDValue Arg : 810 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 811 assert(ArgLocs[ValNo].getValNo() == ValNo && 812 "ArgLocs should remain in order and only hold varargs args"); 813 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 814 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 815 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 816 DAG.getConstant(Offset, DL, PtrVT)); 817 Chains.push_back( 818 DAG.getStore(Chain, DL, Arg, Add, 819 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 820 } 821 if (!Chains.empty()) 822 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 823 } else if (IsVarArg) { 824 FINode = DAG.getIntPtrConstant(0, DL); 825 } 826 827 if (Callee->getOpcode() == ISD::GlobalAddress) { 828 // If the callee is a GlobalAddress node (quite common, every direct call 829 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 830 // doesn't at MO_GOT which is not needed for direct calls. 831 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 832 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 833 getPointerTy(DAG.getDataLayout()), 834 GA->getOffset()); 835 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 836 getPointerTy(DAG.getDataLayout()), Callee); 837 } 838 839 // Compute the operands for the CALLn node. 840 SmallVector<SDValue, 16> Ops; 841 Ops.push_back(Chain); 842 Ops.push_back(Callee); 843 844 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 845 // isn't reliable. 846 Ops.append(OutVals.begin(), 847 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 848 // Add a pointer to the vararg buffer. 849 if (IsVarArg) 850 Ops.push_back(FINode); 851 852 SmallVector<EVT, 8> InTys; 853 for (const auto &In : Ins) { 854 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 855 assert(!In.Flags.isNest() && "nest is not valid for return values"); 856 if (In.Flags.isInAlloca()) 857 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 858 if (In.Flags.isInConsecutiveRegs()) 859 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 860 if (In.Flags.isInConsecutiveRegsLast()) 861 fail(DL, DAG, 862 "WebAssembly hasn't implemented cons regs last return values"); 863 // Ignore In.getOrigAlign() because all our arguments are passed in 864 // registers. 865 InTys.push_back(In.VT); 866 } 867 868 if (CLI.IsTailCall) { 869 // ret_calls do not return values to the current frame 870 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 871 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 872 } 873 874 InTys.push_back(MVT::Other); 875 unsigned Opc; 876 // TODO: Remove CALL0 and CALL1 in favor of CALL 877 switch (Ins.size()) { 878 case 0: 879 Opc = WebAssemblyISD::CALL0; 880 break; 881 case 1: 882 Opc = WebAssemblyISD::CALL1; 883 break; 884 default: 885 Opc = WebAssemblyISD::CALL; 886 break; 887 } 888 SDVTList InTyList = DAG.getVTList(InTys); 889 SDValue Res = DAG.getNode(Opc, DL, InTyList, Ops); 890 891 for (size_t I = 0; I < Ins.size(); ++I) 892 InVals.push_back(Res.getValue(I)); 893 894 // Return the chain 895 return Res.getValue(Ins.size()); 896 } 897 898 bool WebAssemblyTargetLowering::CanLowerReturn( 899 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 900 const SmallVectorImpl<ISD::OutputArg> &Outs, 901 LLVMContext & /*Context*/) const { 902 // WebAssembly can only handle returning tuples with multivalue enabled 903 return Subtarget->hasMultivalue() || Outs.size() <= 1; 904 } 905 906 SDValue WebAssemblyTargetLowering::LowerReturn( 907 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 908 const SmallVectorImpl<ISD::OutputArg> &Outs, 909 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 910 SelectionDAG &DAG) const { 911 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 912 "MVP WebAssembly can only return up to one value"); 913 if (!callingConvSupported(CallConv)) 914 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 915 916 SmallVector<SDValue, 4> RetOps(1, Chain); 917 RetOps.append(OutVals.begin(), OutVals.end()); 918 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 919 920 // Record the number and types of the return values. 921 for (const ISD::OutputArg &Out : Outs) { 922 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 923 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 924 assert(Out.IsFixed && "non-fixed return value is not valid"); 925 if (Out.Flags.isInAlloca()) 926 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 927 if (Out.Flags.isInConsecutiveRegs()) 928 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 929 if (Out.Flags.isInConsecutiveRegsLast()) 930 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 931 } 932 933 return Chain; 934 } 935 936 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 937 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 938 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 939 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 940 if (!callingConvSupported(CallConv)) 941 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 942 943 MachineFunction &MF = DAG.getMachineFunction(); 944 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 945 946 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 947 // of the incoming values before they're represented by virtual registers. 948 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 949 950 for (const ISD::InputArg &In : Ins) { 951 if (In.Flags.isInAlloca()) 952 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 953 if (In.Flags.isNest()) 954 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 955 if (In.Flags.isInConsecutiveRegs()) 956 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 957 if (In.Flags.isInConsecutiveRegsLast()) 958 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 959 // Ignore In.getOrigAlign() because all our arguments are passed in 960 // registers. 961 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 962 DAG.getTargetConstant(InVals.size(), 963 DL, MVT::i32)) 964 : DAG.getUNDEF(In.VT)); 965 966 // Record the number and types of arguments. 967 MFI->addParam(In.VT); 968 } 969 970 // Varargs are copied into a buffer allocated by the caller, and a pointer to 971 // the buffer is passed as an argument. 972 if (IsVarArg) { 973 MVT PtrVT = getPointerTy(MF.getDataLayout()); 974 Register VarargVreg = 975 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 976 MFI->setVarargBufferVreg(VarargVreg); 977 Chain = DAG.getCopyToReg( 978 Chain, DL, VarargVreg, 979 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 980 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 981 MFI->addParam(PtrVT); 982 } 983 984 // Record the number and types of arguments and results. 985 SmallVector<MVT, 4> Params; 986 SmallVector<MVT, 4> Results; 987 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 988 DAG.getTarget(), Params, Results); 989 for (MVT VT : Results) 990 MFI->addResult(VT); 991 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 992 // the param logic here with ComputeSignatureVTs 993 assert(MFI->getParams().size() == Params.size() && 994 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 995 Params.begin())); 996 997 return Chain; 998 } 999 1000 void WebAssemblyTargetLowering::ReplaceNodeResults( 1001 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1002 switch (N->getOpcode()) { 1003 case ISD::SIGN_EXTEND_INREG: 1004 // Do not add any results, signifying that N should not be custom lowered 1005 // after all. This happens because simd128 turns on custom lowering for 1006 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1007 // illegal type. 1008 break; 1009 default: 1010 llvm_unreachable( 1011 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1012 } 1013 } 1014 1015 //===----------------------------------------------------------------------===// 1016 // Custom lowering hooks. 1017 //===----------------------------------------------------------------------===// 1018 1019 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1020 SelectionDAG &DAG) const { 1021 SDLoc DL(Op); 1022 switch (Op.getOpcode()) { 1023 default: 1024 llvm_unreachable("unimplemented operation lowering"); 1025 return SDValue(); 1026 case ISD::FrameIndex: 1027 return LowerFrameIndex(Op, DAG); 1028 case ISD::GlobalAddress: 1029 return LowerGlobalAddress(Op, DAG); 1030 case ISD::ExternalSymbol: 1031 return LowerExternalSymbol(Op, DAG); 1032 case ISD::JumpTable: 1033 return LowerJumpTable(Op, DAG); 1034 case ISD::BR_JT: 1035 return LowerBR_JT(Op, DAG); 1036 case ISD::VASTART: 1037 return LowerVASTART(Op, DAG); 1038 case ISD::BlockAddress: 1039 case ISD::BRIND: 1040 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1041 return SDValue(); 1042 case ISD::RETURNADDR: 1043 return LowerRETURNADDR(Op, DAG); 1044 case ISD::FRAMEADDR: 1045 return LowerFRAMEADDR(Op, DAG); 1046 case ISD::CopyToReg: 1047 return LowerCopyToReg(Op, DAG); 1048 case ISD::EXTRACT_VECTOR_ELT: 1049 case ISD::INSERT_VECTOR_ELT: 1050 return LowerAccessVectorElement(Op, DAG); 1051 case ISD::INTRINSIC_VOID: 1052 case ISD::INTRINSIC_WO_CHAIN: 1053 case ISD::INTRINSIC_W_CHAIN: 1054 return LowerIntrinsic(Op, DAG); 1055 case ISD::SIGN_EXTEND_INREG: 1056 return LowerSIGN_EXTEND_INREG(Op, DAG); 1057 case ISD::BUILD_VECTOR: 1058 return LowerBUILD_VECTOR(Op, DAG); 1059 case ISD::VECTOR_SHUFFLE: 1060 return LowerVECTOR_SHUFFLE(Op, DAG); 1061 case ISD::SETCC: 1062 return LowerSETCC(Op, DAG); 1063 case ISD::SHL: 1064 case ISD::SRA: 1065 case ISD::SRL: 1066 return LowerShift(Op, DAG); 1067 } 1068 } 1069 1070 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1071 SelectionDAG &DAG) const { 1072 SDValue Src = Op.getOperand(2); 1073 if (isa<FrameIndexSDNode>(Src.getNode())) { 1074 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1075 // the FI to some LEA-like instruction, but since we don't have that, we 1076 // need to insert some kind of instruction that can take an FI operand and 1077 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1078 // local.copy between Op and its FI operand. 1079 SDValue Chain = Op.getOperand(0); 1080 SDLoc DL(Op); 1081 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1082 EVT VT = Src.getValueType(); 1083 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1084 : WebAssembly::COPY_I64, 1085 DL, VT, Src), 1086 0); 1087 return Op.getNode()->getNumValues() == 1 1088 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1089 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1090 Op.getNumOperands() == 4 ? Op.getOperand(3) 1091 : SDValue()); 1092 } 1093 return SDValue(); 1094 } 1095 1096 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1097 SelectionDAG &DAG) const { 1098 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1099 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1100 } 1101 1102 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1103 SelectionDAG &DAG) const { 1104 SDLoc DL(Op); 1105 1106 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1107 fail(DL, DAG, 1108 "Non-Emscripten WebAssembly hasn't implemented " 1109 "__builtin_return_address"); 1110 return SDValue(); 1111 } 1112 1113 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1114 return SDValue(); 1115 1116 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1117 MakeLibCallOptions CallOptions; 1118 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1119 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1120 .first; 1121 } 1122 1123 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1124 SelectionDAG &DAG) const { 1125 // Non-zero depths are not supported by WebAssembly currently. Use the 1126 // legalizer's default expansion, which is to return 0 (what this function is 1127 // documented to do). 1128 if (Op.getConstantOperandVal(0) > 0) 1129 return SDValue(); 1130 1131 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1132 EVT VT = Op.getValueType(); 1133 Register FP = 1134 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1135 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1136 } 1137 1138 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1139 SelectionDAG &DAG) const { 1140 SDLoc DL(Op); 1141 const auto *GA = cast<GlobalAddressSDNode>(Op); 1142 EVT VT = Op.getValueType(); 1143 assert(GA->getTargetFlags() == 0 && 1144 "Unexpected target flags on generic GlobalAddressSDNode"); 1145 if (GA->getAddressSpace() != 0) 1146 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1147 1148 unsigned OperandFlags = 0; 1149 if (isPositionIndependent()) { 1150 const GlobalValue *GV = GA->getGlobal(); 1151 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1152 MachineFunction &MF = DAG.getMachineFunction(); 1153 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1154 const char *BaseName; 1155 if (GV->getValueType()->isFunctionTy()) { 1156 BaseName = MF.createExternalSymbolName("__table_base"); 1157 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1158 } 1159 else { 1160 BaseName = MF.createExternalSymbolName("__memory_base"); 1161 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1162 } 1163 SDValue BaseAddr = 1164 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1165 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1166 1167 SDValue SymAddr = DAG.getNode( 1168 WebAssemblyISD::WrapperPIC, DL, VT, 1169 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1170 OperandFlags)); 1171 1172 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1173 } else { 1174 OperandFlags = WebAssemblyII::MO_GOT; 1175 } 1176 } 1177 1178 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1179 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1180 GA->getOffset(), OperandFlags)); 1181 } 1182 1183 SDValue 1184 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1185 SelectionDAG &DAG) const { 1186 SDLoc DL(Op); 1187 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1188 EVT VT = Op.getValueType(); 1189 assert(ES->getTargetFlags() == 0 && 1190 "Unexpected target flags on generic ExternalSymbolSDNode"); 1191 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1192 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1193 } 1194 1195 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1196 SelectionDAG &DAG) const { 1197 // There's no need for a Wrapper node because we always incorporate a jump 1198 // table operand into a BR_TABLE instruction, rather than ever 1199 // materializing it in a register. 1200 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1201 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1202 JT->getTargetFlags()); 1203 } 1204 1205 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1206 SelectionDAG &DAG) const { 1207 SDLoc DL(Op); 1208 SDValue Chain = Op.getOperand(0); 1209 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1210 SDValue Index = Op.getOperand(2); 1211 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1212 1213 SmallVector<SDValue, 8> Ops; 1214 Ops.push_back(Chain); 1215 Ops.push_back(Index); 1216 1217 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1218 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1219 1220 // Add an operand for each case. 1221 for (auto MBB : MBBs) 1222 Ops.push_back(DAG.getBasicBlock(MBB)); 1223 1224 // TODO: For now, we just pick something arbitrary for a default case for now. 1225 // We really want to sniff out the guard and put in the real default case (and 1226 // delete the guard). 1227 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1228 1229 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1230 } 1231 1232 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1233 SelectionDAG &DAG) const { 1234 SDLoc DL(Op); 1235 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1236 1237 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1238 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1239 1240 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1241 MFI->getVarargBufferVreg(), PtrVT); 1242 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1243 MachinePointerInfo(SV), 0); 1244 } 1245 1246 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1247 SelectionDAG &DAG) const { 1248 MachineFunction &MF = DAG.getMachineFunction(); 1249 unsigned IntNo; 1250 switch (Op.getOpcode()) { 1251 case ISD::INTRINSIC_VOID: 1252 case ISD::INTRINSIC_W_CHAIN: 1253 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1254 break; 1255 case ISD::INTRINSIC_WO_CHAIN: 1256 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1257 break; 1258 default: 1259 llvm_unreachable("Invalid intrinsic"); 1260 } 1261 SDLoc DL(Op); 1262 1263 switch (IntNo) { 1264 default: 1265 return SDValue(); // Don't custom lower most intrinsics. 1266 1267 case Intrinsic::wasm_lsda: { 1268 EVT VT = Op.getValueType(); 1269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1270 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1271 auto &Context = MF.getMMI().getContext(); 1272 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1273 Twine(MF.getFunctionNumber())); 1274 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1275 DAG.getMCSymbol(S, PtrVT)); 1276 } 1277 1278 case Intrinsic::wasm_throw: { 1279 // We only support C++ exceptions for now 1280 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1281 if (Tag != CPP_EXCEPTION) 1282 llvm_unreachable("Invalid tag!"); 1283 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1284 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1285 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1286 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1287 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1288 return DAG.getNode(WebAssemblyISD::THROW, DL, 1289 MVT::Other, // outchain type 1290 { 1291 Op.getOperand(0), // inchain 1292 SymNode, // exception symbol 1293 Op.getOperand(3) // thrown value 1294 }); 1295 } 1296 } 1297 } 1298 1299 SDValue 1300 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1301 SelectionDAG &DAG) const { 1302 SDLoc DL(Op); 1303 // If sign extension operations are disabled, allow sext_inreg only if operand 1304 // is a vector extract. SIMD does not depend on sign extension operations, but 1305 // allowing sext_inreg in this context lets us have simple patterns to select 1306 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1307 // simpler in this file, but would necessitate large and brittle patterns to 1308 // undo the expansion and select extract_lane_s instructions. 1309 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1310 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1311 const SDValue &Extract = Op.getOperand(0); 1312 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1313 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1314 ->getVT() 1315 .getSimpleVT(); 1316 MVT ExtractedVecT = 1317 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1318 if (ExtractedVecT == VecT) 1319 return Op; 1320 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1321 const SDValue &Index = Extract.getOperand(1); 1322 unsigned IndexVal = 1323 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1324 unsigned Scale = 1325 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1326 assert(Scale > 1); 1327 SDValue NewIndex = 1328 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1329 SDValue NewExtract = DAG.getNode( 1330 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1331 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1332 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), 1333 NewExtract, Op.getOperand(1)); 1334 } 1335 // Otherwise expand 1336 return SDValue(); 1337 } 1338 1339 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1340 SelectionDAG &DAG) const { 1341 SDLoc DL(Op); 1342 const EVT VecT = Op.getValueType(); 1343 const EVT LaneT = Op.getOperand(0).getValueType(); 1344 const size_t Lanes = Op.getNumOperands(); 1345 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8; 1346 1347 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1348 // possible number of lanes at once followed by a sequence of replace_lane 1349 // instructions to individually initialize any remaining lanes. 1350 1351 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1352 // swizzled lanes should be given greater weight. 1353 1354 // TODO: Investigate building vectors by shuffling together vectors built by 1355 // separately specialized means. 1356 1357 auto IsConstant = [](const SDValue &V) { 1358 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1359 }; 1360 1361 // Returns the source vector and index vector pair if they exist. Checks for: 1362 // (extract_vector_elt 1363 // $src, 1364 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1365 // ) 1366 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1367 auto Bail = std::make_pair(SDValue(), SDValue()); 1368 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1369 return Bail; 1370 const SDValue &SwizzleSrc = Lane->getOperand(0); 1371 const SDValue &IndexExt = Lane->getOperand(1); 1372 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1373 return Bail; 1374 const SDValue &Index = IndexExt->getOperand(0); 1375 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1376 return Bail; 1377 const SDValue &SwizzleIndices = Index->getOperand(0); 1378 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1379 SwizzleIndices.getValueType() != MVT::v16i8 || 1380 Index->getOperand(1)->getOpcode() != ISD::Constant || 1381 Index->getConstantOperandVal(1) != I) 1382 return Bail; 1383 return std::make_pair(SwizzleSrc, SwizzleIndices); 1384 }; 1385 1386 using ValueEntry = std::pair<SDValue, size_t>; 1387 SmallVector<ValueEntry, 16> SplatValueCounts; 1388 1389 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1390 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1391 1392 auto AddCount = [](auto &Counts, const auto &Val) { 1393 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1394 [&Val](auto E) { return E.first == Val; }); 1395 if (CountIt == Counts.end()) { 1396 Counts.emplace_back(Val, 1); 1397 } else { 1398 CountIt->second++; 1399 } 1400 }; 1401 1402 auto GetMostCommon = [](auto &Counts) { 1403 auto CommonIt = 1404 std::max_element(Counts.begin(), Counts.end(), 1405 [](auto A, auto B) { return A.second < B.second; }); 1406 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1407 return *CommonIt; 1408 }; 1409 1410 size_t NumConstantLanes = 0; 1411 1412 // Count eligible lanes for each type of vector creation op 1413 for (size_t I = 0; I < Lanes; ++I) { 1414 const SDValue &Lane = Op->getOperand(I); 1415 if (Lane.isUndef()) 1416 continue; 1417 1418 AddCount(SplatValueCounts, Lane); 1419 1420 if (IsConstant(Lane)) { 1421 NumConstantLanes++; 1422 } else if (CanSwizzle) { 1423 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1424 if (SwizzleSrcs.first) 1425 AddCount(SwizzleCounts, SwizzleSrcs); 1426 } 1427 } 1428 1429 SDValue SplatValue; 1430 size_t NumSplatLanes; 1431 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1432 1433 SDValue SwizzleSrc; 1434 SDValue SwizzleIndices; 1435 size_t NumSwizzleLanes = 0; 1436 if (SwizzleCounts.size()) 1437 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1438 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1439 1440 // Predicate returning true if the lane is properly initialized by the 1441 // original instruction 1442 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1443 SDValue Result; 1444 if (Subtarget->hasUnimplementedSIMD128()) { 1445 // Prefer swizzles over vector consts over splats 1446 if (NumSwizzleLanes >= NumSplatLanes && 1447 NumSwizzleLanes >= NumConstantLanes) { 1448 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1449 SwizzleIndices); 1450 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1451 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1452 return Swizzled == GetSwizzleSrcs(I, Lane); 1453 }; 1454 } else if (NumConstantLanes >= NumSplatLanes) { 1455 SmallVector<SDValue, 16> ConstLanes; 1456 for (const SDValue &Lane : Op->op_values()) { 1457 if (IsConstant(Lane)) { 1458 ConstLanes.push_back(Lane); 1459 } else if (LaneT.isFloatingPoint()) { 1460 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1461 } else { 1462 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1463 } 1464 } 1465 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1466 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1467 return IsConstant(Lane); 1468 }; 1469 } 1470 } 1471 if (!Result) { 1472 // Use a splat, but possibly a load_splat 1473 LoadSDNode *SplattedLoad; 1474 if (Subtarget->hasUnimplementedSIMD128() && 1475 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1476 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1477 Result = DAG.getMemIntrinsicNode( 1478 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1479 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1480 SplattedLoad->getOffset()}, 1481 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1482 } else { 1483 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1484 } 1485 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1486 return Lane == SplatValue; 1487 }; 1488 } 1489 1490 // Add replace_lane instructions for any unhandled values 1491 for (size_t I = 0; I < Lanes; ++I) { 1492 const SDValue &Lane = Op->getOperand(I); 1493 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1494 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1495 DAG.getConstant(I, DL, MVT::i32)); 1496 } 1497 1498 return Result; 1499 } 1500 1501 SDValue 1502 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1503 SelectionDAG &DAG) const { 1504 SDLoc DL(Op); 1505 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1506 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1507 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1508 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1509 1510 // Space for two vector args and sixteen mask indices 1511 SDValue Ops[18]; 1512 size_t OpIdx = 0; 1513 Ops[OpIdx++] = Op.getOperand(0); 1514 Ops[OpIdx++] = Op.getOperand(1); 1515 1516 // Expand mask indices to byte indices and materialize them as operands 1517 for (int M : Mask) { 1518 for (size_t J = 0; J < LaneBytes; ++J) { 1519 // Lower undefs (represented by -1 in mask) to zero 1520 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1521 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1522 } 1523 } 1524 1525 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1526 } 1527 1528 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1529 SelectionDAG &DAG) const { 1530 SDLoc DL(Op); 1531 // The legalizer does not know how to expand the comparison modes of i64x2 1532 // vectors because no comparison modes are supported. We could solve this by 1533 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1534 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1535 // comparisons here. 1536 assert(Subtarget->hasUnimplementedSIMD128()); 1537 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1538 SmallVector<SDValue, 2> LHS, RHS; 1539 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1540 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1541 const SDValue &CC = Op->getOperand(2); 1542 auto MakeLane = [&](unsigned I) { 1543 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1544 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1545 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1546 }; 1547 return DAG.getBuildVector(Op->getValueType(0), DL, 1548 {MakeLane(0), MakeLane(1)}); 1549 } 1550 1551 SDValue 1552 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1553 SelectionDAG &DAG) const { 1554 // Allow constant lane indices, expand variable lane indices 1555 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1556 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1557 return Op; 1558 else 1559 // Perform default expansion 1560 return SDValue(); 1561 } 1562 1563 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1564 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1565 // 32-bit and 64-bit unrolled shifts will have proper semantics 1566 if (LaneT.bitsGE(MVT::i32)) 1567 return DAG.UnrollVectorOp(Op.getNode()); 1568 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1569 SDLoc DL(Op); 1570 SDValue ShiftVal = Op.getOperand(1); 1571 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1572 SDValue MaskedShiftVal = DAG.getNode( 1573 ISD::AND, // mask opcode 1574 DL, ShiftVal.getValueType(), // masked value type 1575 ShiftVal, // original shift value operand 1576 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1577 ); 1578 1579 return DAG.UnrollVectorOp( 1580 DAG.getNode(Op.getOpcode(), // original shift opcode 1581 DL, Op.getValueType(), // original return type 1582 Op.getOperand(0), // original vector operand, 1583 MaskedShiftVal // new masked shift value operand 1584 ) 1585 .getNode()); 1586 } 1587 1588 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1589 SelectionDAG &DAG) const { 1590 SDLoc DL(Op); 1591 1592 // Only manually lower vector shifts 1593 assert(Op.getSimpleValueType().isVector()); 1594 1595 // Unroll non-splat vector shifts 1596 BuildVectorSDNode *ShiftVec; 1597 SDValue SplatVal; 1598 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1599 !(SplatVal = ShiftVec->getSplatValue())) 1600 return unrollVectorShift(Op, DAG); 1601 1602 // All splats except i64x2 const splats are handled by patterns 1603 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1604 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1605 return Op; 1606 1607 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1608 unsigned Opcode; 1609 switch (Op.getOpcode()) { 1610 case ISD::SHL: 1611 Opcode = WebAssemblyISD::VEC_SHL; 1612 break; 1613 case ISD::SRA: 1614 Opcode = WebAssemblyISD::VEC_SHR_S; 1615 break; 1616 case ISD::SRL: 1617 Opcode = WebAssemblyISD::VEC_SHR_U; 1618 break; 1619 default: 1620 llvm_unreachable("unexpected opcode"); 1621 } 1622 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1623 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1624 DAG.getConstant(Shift, DL, MVT::i32)); 1625 } 1626 1627 //===----------------------------------------------------------------------===// 1628 // WebAssembly Optimization Hooks 1629 //===----------------------------------------------------------------------===// 1630