1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/IntrinsicsWebAssembly.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetOptions.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "wasm-lower"
39 
40 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
41     const TargetMachine &TM, const WebAssemblySubtarget &STI)
42     : TargetLowering(TM), Subtarget(&STI) {
43   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
44 
45   // Booleans always contain 0 or 1.
46   setBooleanContents(ZeroOrOneBooleanContent);
47   // Except in SIMD vectors
48   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
49   // We don't know the microarchitecture here, so just reduce register pressure.
50   setSchedulingPreference(Sched::RegPressure);
51   // Tell ISel that we have a stack pointer.
52   setStackPointerRegisterToSaveRestore(
53       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
54   // Set up the register classes.
55   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
56   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
57   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
58   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
59   if (Subtarget->hasSIMD128()) {
60     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
61     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
62     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
66   }
67   // Compute derived properties from the register classes.
68   computeRegisterProperties(Subtarget->getRegisterInfo());
69 
70   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
71   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
72   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
73   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
74   setOperationAction(ISD::BRIND, MVT::Other, Custom);
75 
76   // Take the default expansion for va_arg, va_copy, and va_end. There is no
77   // default action for va_start, so we do that custom.
78   setOperationAction(ISD::VASTART, MVT::Other, Custom);
79   setOperationAction(ISD::VAARG, MVT::Other, Expand);
80   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
81   setOperationAction(ISD::VAEND, MVT::Other, Expand);
82 
83   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
84     // Don't expand the floating-point types to constant pools.
85     setOperationAction(ISD::ConstantFP, T, Legal);
86     // Expand floating-point comparisons.
87     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
88                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
89       setCondCodeAction(CC, T, Expand);
90     // Expand floating-point library function operators.
91     for (auto Op :
92          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
93       setOperationAction(Op, T, Expand);
94     // Note supported floating-point library function operators that otherwise
95     // default to expand.
96     for (auto Op :
97          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
98       setOperationAction(Op, T, Legal);
99     // Support minimum and maximum, which otherwise default to expand.
100     setOperationAction(ISD::FMINIMUM, T, Legal);
101     setOperationAction(ISD::FMAXIMUM, T, Legal);
102     // WebAssembly currently has no builtin f16 support.
103     setOperationAction(ISD::FP16_TO_FP, T, Expand);
104     setOperationAction(ISD::FP_TO_FP16, T, Expand);
105     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
106     setTruncStoreAction(T, MVT::f16, Expand);
107   }
108 
109   // Expand unavailable integer operations.
110   for (auto Op :
111        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
112         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
113         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
114     for (auto T : {MVT::i32, MVT::i64})
115       setOperationAction(Op, T, Expand);
116     if (Subtarget->hasSIMD128())
117       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
118         setOperationAction(Op, T, Expand);
119   }
120 
121   // SIMD-specific configuration
122   if (Subtarget->hasSIMD128()) {
123     // Support saturating add for i8x16 and i16x8
124     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
125       for (auto T : {MVT::v16i8, MVT::v8i16})
126         setOperationAction(Op, T, Legal);
127 
128     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
129     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
130                    MVT::v2f64})
131       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
132 
133     // We have custom shuffle lowering to expose the shuffle mask
134     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
135                    MVT::v2f64})
136       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
137 
138     // Custom lowering since wasm shifts must have a scalar shift amount
139     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
140       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
141         setOperationAction(Op, T, Custom);
142 
143     // Custom lower lane accesses to expand out variable indices
144     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
145       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
146                      MVT::v2f64})
147         setOperationAction(Op, T, Custom);
148 
149     // There is no i64x2.mul instruction
150     // TODO: Actually, there is now. Implement it.
151     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
152 
153     // There are no vector select instructions
154     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT})
155       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
156                      MVT::v2f64})
157         setOperationAction(Op, T, Expand);
158 
159     // Expand integer operations supported for scalars but not SIMD
160     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
161                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
162       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
163         setOperationAction(Op, T, Expand);
164 
165     // But we do have integer min and max operations
166     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
167       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
168         setOperationAction(Op, T, Legal);
169 
170     // Expand float operations supported for scalars but not SIMD
171     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
172                     ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
173                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
174       for (auto T : {MVT::v4f32, MVT::v2f64})
175         setOperationAction(Op, T, Expand);
176 
177     // Expand operations not supported for i64x2 vectors
178     for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC)
179       setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom);
180 
181     // 64x2 conversions are not in the spec
182     if (!Subtarget->hasUnimplementedSIMD128())
183       for (auto Op :
184            {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
185         for (auto T : {MVT::v2i64, MVT::v2f64})
186           setOperationAction(Op, T, Expand);
187   }
188 
189   // As a special case, these operators use the type to mean the type to
190   // sign-extend from.
191   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
192   if (!Subtarget->hasSignExt()) {
193     // Sign extends are legal only when extending a vector extract
194     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
195     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
196       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
197   }
198   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
199     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
200 
201   // Dynamic stack allocation: use the default expansion.
202   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
203   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
204   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
205 
206   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
207   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
208 
209   // Expand these forms; we pattern-match the forms that we can handle in isel.
210   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
211     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
212       setOperationAction(Op, T, Expand);
213 
214   // We have custom switch handling.
215   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
216 
217   // WebAssembly doesn't have:
218   //  - Floating-point extending loads.
219   //  - Floating-point truncating stores.
220   //  - i1 extending loads.
221   //  - truncating SIMD stores and most extending loads
222   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
223   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
224   for (auto T : MVT::integer_valuetypes())
225     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
226       setLoadExtAction(Ext, T, MVT::i1, Promote);
227   if (Subtarget->hasSIMD128()) {
228     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
229                    MVT::v2f64}) {
230       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
231         if (MVT(T) != MemT) {
232           setTruncStoreAction(T, MemT, Expand);
233           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
234             setLoadExtAction(Ext, T, MemT, Expand);
235         }
236       }
237     }
238     // But some vector extending loads are legal
239     if (Subtarget->hasUnimplementedSIMD128()) {
240       for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
241         setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
242         setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
243         setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
244       }
245     }
246   }
247 
248   // Don't do anything clever with build_pairs
249   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
250 
251   // Trap lowers to wasm unreachable
252   setOperationAction(ISD::TRAP, MVT::Other, Legal);
253 
254   // Exception handling intrinsics
255   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
256   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
257 
258   setMaxAtomicSizeInBitsSupported(64);
259 
260   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
261   // consistent with the f64 and f128 names.
262   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
263   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
264 
265   // Define the emscripten name for return address helper.
266   // TODO: when implementing other WASM backends, make this generic or only do
267   // this on emscripten depending on what they end up doing.
268   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
269 
270   // Always convert switches to br_tables unless there is only one case, which
271   // is equivalent to a simple branch. This reduces code size for wasm, and we
272   // defer possible jump table optimizations to the VM.
273   setMinimumJumpTableEntries(2);
274 }
275 
276 TargetLowering::AtomicExpansionKind
277 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
278   // We have wasm instructions for these
279   switch (AI->getOperation()) {
280   case AtomicRMWInst::Add:
281   case AtomicRMWInst::Sub:
282   case AtomicRMWInst::And:
283   case AtomicRMWInst::Or:
284   case AtomicRMWInst::Xor:
285   case AtomicRMWInst::Xchg:
286     return AtomicExpansionKind::None;
287   default:
288     break;
289   }
290   return AtomicExpansionKind::CmpXChg;
291 }
292 
293 FastISel *WebAssemblyTargetLowering::createFastISel(
294     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
295   return WebAssembly::createFastISel(FuncInfo, LibInfo);
296 }
297 
298 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
299                                                       EVT VT) const {
300   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
301   if (BitWidth > 1 && BitWidth < 8)
302     BitWidth = 8;
303 
304   if (BitWidth > 64) {
305     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
306     // the count to be an i32.
307     BitWidth = 32;
308     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
309            "32-bit shift counts ought to be enough for anyone");
310   }
311 
312   MVT Result = MVT::getIntegerVT(BitWidth);
313   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
314          "Unable to represent scalar shift amount type");
315   return Result;
316 }
317 
318 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
319 // undefined result on invalid/overflow, to the WebAssembly opcode, which
320 // traps on invalid/overflow.
321 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
322                                        MachineBasicBlock *BB,
323                                        const TargetInstrInfo &TII,
324                                        bool IsUnsigned, bool Int64,
325                                        bool Float64, unsigned LoweredOpcode) {
326   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
327 
328   Register OutReg = MI.getOperand(0).getReg();
329   Register InReg = MI.getOperand(1).getReg();
330 
331   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
332   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
333   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
334   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
335   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
336   unsigned Eqz = WebAssembly::EQZ_I32;
337   unsigned And = WebAssembly::AND_I32;
338   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
339   int64_t Substitute = IsUnsigned ? 0 : Limit;
340   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
341   auto &Context = BB->getParent()->getFunction().getContext();
342   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
343 
344   const BasicBlock *LLVMBB = BB->getBasicBlock();
345   MachineFunction *F = BB->getParent();
346   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
347   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
348   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
349 
350   MachineFunction::iterator It = ++BB->getIterator();
351   F->insert(It, FalseMBB);
352   F->insert(It, TrueMBB);
353   F->insert(It, DoneMBB);
354 
355   // Transfer the remainder of BB and its successor edges to DoneMBB.
356   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
357   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
358 
359   BB->addSuccessor(TrueMBB);
360   BB->addSuccessor(FalseMBB);
361   TrueMBB->addSuccessor(DoneMBB);
362   FalseMBB->addSuccessor(DoneMBB);
363 
364   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
365   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
366   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
367   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
368   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
369   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
370   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
371 
372   MI.eraseFromParent();
373   // For signed numbers, we can do a single comparison to determine whether
374   // fabs(x) is within range.
375   if (IsUnsigned) {
376     Tmp0 = InReg;
377   } else {
378     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
379   }
380   BuildMI(BB, DL, TII.get(FConst), Tmp1)
381       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
382   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
383 
384   // For unsigned numbers, we have to do a separate comparison with zero.
385   if (IsUnsigned) {
386     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
387     Register SecondCmpReg =
388         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
389     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
390     BuildMI(BB, DL, TII.get(FConst), Tmp1)
391         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
392     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
393     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
394     CmpReg = AndReg;
395   }
396 
397   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
398 
399   // Create the CFG diamond to select between doing the conversion or using
400   // the substitute value.
401   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
402   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
403   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
404   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
405   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
406       .addReg(FalseReg)
407       .addMBB(FalseMBB)
408       .addReg(TrueReg)
409       .addMBB(TrueMBB);
410 
411   return DoneMBB;
412 }
413 
414 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
415     MachineInstr &MI, MachineBasicBlock *BB) const {
416   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
417   DebugLoc DL = MI.getDebugLoc();
418 
419   switch (MI.getOpcode()) {
420   default:
421     llvm_unreachable("Unexpected instr type to insert");
422   case WebAssembly::FP_TO_SINT_I32_F32:
423     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
424                         WebAssembly::I32_TRUNC_S_F32);
425   case WebAssembly::FP_TO_UINT_I32_F32:
426     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
427                         WebAssembly::I32_TRUNC_U_F32);
428   case WebAssembly::FP_TO_SINT_I64_F32:
429     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
430                         WebAssembly::I64_TRUNC_S_F32);
431   case WebAssembly::FP_TO_UINT_I64_F32:
432     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
433                         WebAssembly::I64_TRUNC_U_F32);
434   case WebAssembly::FP_TO_SINT_I32_F64:
435     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
436                         WebAssembly::I32_TRUNC_S_F64);
437   case WebAssembly::FP_TO_UINT_I32_F64:
438     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
439                         WebAssembly::I32_TRUNC_U_F64);
440   case WebAssembly::FP_TO_SINT_I64_F64:
441     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
442                         WebAssembly::I64_TRUNC_S_F64);
443   case WebAssembly::FP_TO_UINT_I64_F64:
444     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
445                         WebAssembly::I64_TRUNC_U_F64);
446     llvm_unreachable("Unexpected instruction to emit with custom inserter");
447   }
448 }
449 
450 const char *
451 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
452   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
453   case WebAssemblyISD::FIRST_NUMBER:
454   case WebAssemblyISD::FIRST_MEM_OPCODE:
455     break;
456 #define HANDLE_NODETYPE(NODE)                                                  \
457   case WebAssemblyISD::NODE:                                                   \
458     return "WebAssemblyISD::" #NODE;
459 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
460 #include "WebAssemblyISD.def"
461 #undef HANDLE_MEM_NODETYPE
462 #undef HANDLE_NODETYPE
463   }
464   return nullptr;
465 }
466 
467 std::pair<unsigned, const TargetRegisterClass *>
468 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
469     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
470   // First, see if this is a constraint that directly corresponds to a
471   // WebAssembly register class.
472   if (Constraint.size() == 1) {
473     switch (Constraint[0]) {
474     case 'r':
475       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
476       if (Subtarget->hasSIMD128() && VT.isVector()) {
477         if (VT.getSizeInBits() == 128)
478           return std::make_pair(0U, &WebAssembly::V128RegClass);
479       }
480       if (VT.isInteger() && !VT.isVector()) {
481         if (VT.getSizeInBits() <= 32)
482           return std::make_pair(0U, &WebAssembly::I32RegClass);
483         if (VT.getSizeInBits() <= 64)
484           return std::make_pair(0U, &WebAssembly::I64RegClass);
485       }
486       break;
487     default:
488       break;
489     }
490   }
491 
492   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
493 }
494 
495 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
496   // Assume ctz is a relatively cheap operation.
497   return true;
498 }
499 
500 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
501   // Assume clz is a relatively cheap operation.
502   return true;
503 }
504 
505 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
506                                                       const AddrMode &AM,
507                                                       Type *Ty, unsigned AS,
508                                                       Instruction *I) const {
509   // WebAssembly offsets are added as unsigned without wrapping. The
510   // isLegalAddressingMode gives us no way to determine if wrapping could be
511   // happening, so we approximate this by accepting only non-negative offsets.
512   if (AM.BaseOffs < 0)
513     return false;
514 
515   // WebAssembly has no scale register operands.
516   if (AM.Scale != 0)
517     return false;
518 
519   // Everything else is legal.
520   return true;
521 }
522 
523 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
524     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
525     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
526   // WebAssembly supports unaligned accesses, though it should be declared
527   // with the p2align attribute on loads and stores which do so, and there
528   // may be a performance impact. We tell LLVM they're "fast" because
529   // for the kinds of things that LLVM uses this for (merging adjacent stores
530   // of constants, etc.), WebAssembly implementations will either want the
531   // unaligned access or they'll split anyway.
532   if (Fast)
533     *Fast = true;
534   return true;
535 }
536 
537 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
538                                               AttributeList Attr) const {
539   // The current thinking is that wasm engines will perform this optimization,
540   // so we can save on code size.
541   return true;
542 }
543 
544 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
545   if (!Subtarget->hasUnimplementedSIMD128())
546     return false;
547   MVT ExtT = ExtVal.getSimpleValueType();
548   MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0);
549   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
550          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
551          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
552 }
553 
554 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
555                                                   LLVMContext &C,
556                                                   EVT VT) const {
557   if (VT.isVector())
558     return VT.changeVectorElementTypeToInteger();
559 
560   return TargetLowering::getSetCCResultType(DL, C, VT);
561 }
562 
563 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
564                                                    const CallInst &I,
565                                                    MachineFunction &MF,
566                                                    unsigned Intrinsic) const {
567   switch (Intrinsic) {
568   case Intrinsic::wasm_atomic_notify:
569     Info.opc = ISD::INTRINSIC_W_CHAIN;
570     Info.memVT = MVT::i32;
571     Info.ptrVal = I.getArgOperand(0);
572     Info.offset = 0;
573     Info.align = Align(4);
574     // atomic.notify instruction does not really load the memory specified with
575     // this argument, but MachineMemOperand should either be load or store, so
576     // we set this to a load.
577     // FIXME Volatile isn't really correct, but currently all LLVM atomic
578     // instructions are treated as volatiles in the backend, so we should be
579     // consistent. The same applies for wasm_atomic_wait intrinsics too.
580     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
581     return true;
582   case Intrinsic::wasm_atomic_wait_i32:
583     Info.opc = ISD::INTRINSIC_W_CHAIN;
584     Info.memVT = MVT::i32;
585     Info.ptrVal = I.getArgOperand(0);
586     Info.offset = 0;
587     Info.align = Align(4);
588     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
589     return true;
590   case Intrinsic::wasm_atomic_wait_i64:
591     Info.opc = ISD::INTRINSIC_W_CHAIN;
592     Info.memVT = MVT::i64;
593     Info.ptrVal = I.getArgOperand(0);
594     Info.offset = 0;
595     Info.align = Align(8);
596     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
597     return true;
598   default:
599     return false;
600   }
601 }
602 
603 //===----------------------------------------------------------------------===//
604 // WebAssembly Lowering private implementation.
605 //===----------------------------------------------------------------------===//
606 
607 //===----------------------------------------------------------------------===//
608 // Lowering Code
609 //===----------------------------------------------------------------------===//
610 
611 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
612   MachineFunction &MF = DAG.getMachineFunction();
613   DAG.getContext()->diagnose(
614       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
615 }
616 
617 // Test whether the given calling convention is supported.
618 static bool callingConvSupported(CallingConv::ID CallConv) {
619   // We currently support the language-independent target-independent
620   // conventions. We don't yet have a way to annotate calls with properties like
621   // "cold", and we don't have any call-clobbered registers, so these are mostly
622   // all handled the same.
623   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
624          CallConv == CallingConv::Cold ||
625          CallConv == CallingConv::PreserveMost ||
626          CallConv == CallingConv::PreserveAll ||
627          CallConv == CallingConv::CXX_FAST_TLS ||
628          CallConv == CallingConv::WASM_EmscriptenInvoke ||
629          CallConv == CallingConv::Swift;
630 }
631 
632 SDValue
633 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
634                                      SmallVectorImpl<SDValue> &InVals) const {
635   SelectionDAG &DAG = CLI.DAG;
636   SDLoc DL = CLI.DL;
637   SDValue Chain = CLI.Chain;
638   SDValue Callee = CLI.Callee;
639   MachineFunction &MF = DAG.getMachineFunction();
640   auto Layout = MF.getDataLayout();
641 
642   CallingConv::ID CallConv = CLI.CallConv;
643   if (!callingConvSupported(CallConv))
644     fail(DL, DAG,
645          "WebAssembly doesn't support language-specific or target-specific "
646          "calling conventions yet");
647   if (CLI.IsPatchPoint)
648     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
649 
650   if (CLI.IsTailCall) {
651     bool MustTail = CLI.CS && CLI.CS.isMustTailCall();
652     if (Subtarget->hasTailCall() && !CLI.IsVarArg) {
653       // Do not tail call unless caller and callee return types match
654       const Function &F = MF.getFunction();
655       const TargetMachine &TM = getTargetMachine();
656       Type *RetTy = F.getReturnType();
657       SmallVector<MVT, 4> CallerRetTys;
658       SmallVector<MVT, 4> CalleeRetTys;
659       computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
660       computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
661       bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
662                         std::equal(CallerRetTys.begin(), CallerRetTys.end(),
663                                    CalleeRetTys.begin());
664       if (!TypesMatch) {
665         // musttail in this case would be an LLVM IR validation failure
666         assert(!MustTail);
667         CLI.IsTailCall = false;
668       }
669     } else {
670       CLI.IsTailCall = false;
671       if (MustTail) {
672         if (CLI.IsVarArg) {
673           // The return would pop the argument buffer
674           fail(DL, DAG, "WebAssembly does not support varargs tail calls");
675         } else {
676           fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled");
677         }
678       }
679     }
680   }
681 
682   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
683   if (Ins.size() > 1)
684     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
685 
686   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
687   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
688 
689   // The generic code may have added an sret argument. If we're lowering an
690   // invoke function, the ABI requires that the function pointer be the first
691   // argument, so we may have to swap the arguments.
692   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
693       Outs[0].Flags.isSRet()) {
694     std::swap(Outs[0], Outs[1]);
695     std::swap(OutVals[0], OutVals[1]);
696   }
697 
698   unsigned NumFixedArgs = 0;
699   for (unsigned I = 0; I < Outs.size(); ++I) {
700     const ISD::OutputArg &Out = Outs[I];
701     SDValue &OutVal = OutVals[I];
702     if (Out.Flags.isNest())
703       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
704     if (Out.Flags.isInAlloca())
705       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
706     if (Out.Flags.isInConsecutiveRegs())
707       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
708     if (Out.Flags.isInConsecutiveRegsLast())
709       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
710     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
711       auto &MFI = MF.getFrameInfo();
712       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
713                                      Out.Flags.getNonZeroByValAlign(),
714                                      /*isSS=*/false);
715       SDValue SizeNode =
716           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
717       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
718       Chain = DAG.getMemcpy(
719           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
720           /*isVolatile*/ false, /*AlwaysInline=*/false,
721           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
722       OutVal = FINode;
723     }
724     // Count the number of fixed args *after* legalization.
725     NumFixedArgs += Out.IsFixed;
726   }
727 
728   bool IsVarArg = CLI.IsVarArg;
729   auto PtrVT = getPointerTy(Layout);
730 
731   // Analyze operands of the call, assigning locations to each operand.
732   SmallVector<CCValAssign, 16> ArgLocs;
733   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
734 
735   if (IsVarArg) {
736     // Outgoing non-fixed arguments are placed in a buffer. First
737     // compute their offsets and the total amount of buffer space needed.
738     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
739       const ISD::OutputArg &Out = Outs[I];
740       SDValue &Arg = OutVals[I];
741       EVT VT = Arg.getValueType();
742       assert(VT != MVT::iPTR && "Legalized args should be concrete");
743       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
744       unsigned Align = std::max(Out.Flags.getOrigAlign(),
745                                 Layout.getABITypeAlignment(Ty));
746       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
747                                              Align);
748       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
749                                         Offset, VT.getSimpleVT(),
750                                         CCValAssign::Full));
751     }
752   }
753 
754   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
755 
756   SDValue FINode;
757   if (IsVarArg && NumBytes) {
758     // For non-fixed arguments, next emit stores to store the argument values
759     // to the stack buffer at the offsets computed above.
760     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
761                                                  Layout.getStackAlignment(),
762                                                  /*isSS=*/false);
763     unsigned ValNo = 0;
764     SmallVector<SDValue, 8> Chains;
765     for (SDValue Arg :
766          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
767       assert(ArgLocs[ValNo].getValNo() == ValNo &&
768              "ArgLocs should remain in order and only hold varargs args");
769       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
770       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
771       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
772                                 DAG.getConstant(Offset, DL, PtrVT));
773       Chains.push_back(
774           DAG.getStore(Chain, DL, Arg, Add,
775                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
776     }
777     if (!Chains.empty())
778       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
779   } else if (IsVarArg) {
780     FINode = DAG.getIntPtrConstant(0, DL);
781   }
782 
783   if (Callee->getOpcode() == ISD::GlobalAddress) {
784     // If the callee is a GlobalAddress node (quite common, every direct call
785     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
786     // doesn't at MO_GOT which is not needed for direct calls.
787     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
788     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
789                                         getPointerTy(DAG.getDataLayout()),
790                                         GA->getOffset());
791     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
792                          getPointerTy(DAG.getDataLayout()), Callee);
793   }
794 
795   // Compute the operands for the CALLn node.
796   SmallVector<SDValue, 16> Ops;
797   Ops.push_back(Chain);
798   Ops.push_back(Callee);
799 
800   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
801   // isn't reliable.
802   Ops.append(OutVals.begin(),
803              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
804   // Add a pointer to the vararg buffer.
805   if (IsVarArg)
806     Ops.push_back(FINode);
807 
808   SmallVector<EVT, 8> InTys;
809   for (const auto &In : Ins) {
810     assert(!In.Flags.isByVal() && "byval is not valid for return values");
811     assert(!In.Flags.isNest() && "nest is not valid for return values");
812     if (In.Flags.isInAlloca())
813       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
814     if (In.Flags.isInConsecutiveRegs())
815       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
816     if (In.Flags.isInConsecutiveRegsLast())
817       fail(DL, DAG,
818            "WebAssembly hasn't implemented cons regs last return values");
819     // Ignore In.getOrigAlign() because all our arguments are passed in
820     // registers.
821     InTys.push_back(In.VT);
822   }
823 
824   if (CLI.IsTailCall) {
825     // ret_calls do not return values to the current frame
826     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
827     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
828   }
829 
830   InTys.push_back(MVT::Other);
831   SDVTList InTyList = DAG.getVTList(InTys);
832   SDValue Res =
833       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
834                   DL, InTyList, Ops);
835   if (Ins.empty()) {
836     Chain = Res;
837   } else {
838     InVals.push_back(Res);
839     Chain = Res.getValue(1);
840   }
841 
842   return Chain;
843 }
844 
845 bool WebAssemblyTargetLowering::CanLowerReturn(
846     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
847     const SmallVectorImpl<ISD::OutputArg> &Outs,
848     LLVMContext & /*Context*/) const {
849   // WebAssembly can only handle returning tuples with multivalue enabled
850   return Subtarget->hasMultivalue() || Outs.size() <= 1;
851 }
852 
853 SDValue WebAssemblyTargetLowering::LowerReturn(
854     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
855     const SmallVectorImpl<ISD::OutputArg> &Outs,
856     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
857     SelectionDAG &DAG) const {
858   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
859          "MVP WebAssembly can only return up to one value");
860   if (!callingConvSupported(CallConv))
861     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
862 
863   SmallVector<SDValue, 4> RetOps(1, Chain);
864   RetOps.append(OutVals.begin(), OutVals.end());
865   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
866 
867   // Record the number and types of the return values.
868   for (const ISD::OutputArg &Out : Outs) {
869     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
870     assert(!Out.Flags.isNest() && "nest is not valid for return values");
871     assert(Out.IsFixed && "non-fixed return value is not valid");
872     if (Out.Flags.isInAlloca())
873       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
874     if (Out.Flags.isInConsecutiveRegs())
875       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
876     if (Out.Flags.isInConsecutiveRegsLast())
877       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
878   }
879 
880   return Chain;
881 }
882 
883 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
884     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
885     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
886     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
887   if (!callingConvSupported(CallConv))
888     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
889 
890   MachineFunction &MF = DAG.getMachineFunction();
891   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
892 
893   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
894   // of the incoming values before they're represented by virtual registers.
895   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
896 
897   for (const ISD::InputArg &In : Ins) {
898     if (In.Flags.isInAlloca())
899       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
900     if (In.Flags.isNest())
901       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
902     if (In.Flags.isInConsecutiveRegs())
903       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
904     if (In.Flags.isInConsecutiveRegsLast())
905       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
906     // Ignore In.getOrigAlign() because all our arguments are passed in
907     // registers.
908     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
909                                            DAG.getTargetConstant(InVals.size(),
910                                                                  DL, MVT::i32))
911                              : DAG.getUNDEF(In.VT));
912 
913     // Record the number and types of arguments.
914     MFI->addParam(In.VT);
915   }
916 
917   // Varargs are copied into a buffer allocated by the caller, and a pointer to
918   // the buffer is passed as an argument.
919   if (IsVarArg) {
920     MVT PtrVT = getPointerTy(MF.getDataLayout());
921     Register VarargVreg =
922         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
923     MFI->setVarargBufferVreg(VarargVreg);
924     Chain = DAG.getCopyToReg(
925         Chain, DL, VarargVreg,
926         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
927                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
928     MFI->addParam(PtrVT);
929   }
930 
931   // Record the number and types of arguments and results.
932   SmallVector<MVT, 4> Params;
933   SmallVector<MVT, 4> Results;
934   computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
935                       DAG.getTarget(), Params, Results);
936   for (MVT VT : Results)
937     MFI->addResult(VT);
938   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
939   // the param logic here with ComputeSignatureVTs
940   assert(MFI->getParams().size() == Params.size() &&
941          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
942                     Params.begin()));
943 
944   return Chain;
945 }
946 
947 void WebAssemblyTargetLowering::ReplaceNodeResults(
948     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
949   switch (N->getOpcode()) {
950   case ISD::SIGN_EXTEND_INREG:
951     // Do not add any results, signifying that N should not be custom lowered
952     // after all. This happens because simd128 turns on custom lowering for
953     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
954     // illegal type.
955     break;
956   default:
957     llvm_unreachable(
958         "ReplaceNodeResults not implemented for this op for WebAssembly!");
959   }
960 }
961 
962 //===----------------------------------------------------------------------===//
963 //  Custom lowering hooks.
964 //===----------------------------------------------------------------------===//
965 
966 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
967                                                   SelectionDAG &DAG) const {
968   SDLoc DL(Op);
969   switch (Op.getOpcode()) {
970   default:
971     llvm_unreachable("unimplemented operation lowering");
972     return SDValue();
973   case ISD::FrameIndex:
974     return LowerFrameIndex(Op, DAG);
975   case ISD::GlobalAddress:
976     return LowerGlobalAddress(Op, DAG);
977   case ISD::ExternalSymbol:
978     return LowerExternalSymbol(Op, DAG);
979   case ISD::JumpTable:
980     return LowerJumpTable(Op, DAG);
981   case ISD::BR_JT:
982     return LowerBR_JT(Op, DAG);
983   case ISD::VASTART:
984     return LowerVASTART(Op, DAG);
985   case ISD::BlockAddress:
986   case ISD::BRIND:
987     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
988     return SDValue();
989   case ISD::RETURNADDR:
990     return LowerRETURNADDR(Op, DAG);
991   case ISD::FRAMEADDR:
992     return LowerFRAMEADDR(Op, DAG);
993   case ISD::CopyToReg:
994     return LowerCopyToReg(Op, DAG);
995   case ISD::EXTRACT_VECTOR_ELT:
996   case ISD::INSERT_VECTOR_ELT:
997     return LowerAccessVectorElement(Op, DAG);
998   case ISD::INTRINSIC_VOID:
999   case ISD::INTRINSIC_WO_CHAIN:
1000   case ISD::INTRINSIC_W_CHAIN:
1001     return LowerIntrinsic(Op, DAG);
1002   case ISD::SIGN_EXTEND_INREG:
1003     return LowerSIGN_EXTEND_INREG(Op, DAG);
1004   case ISD::BUILD_VECTOR:
1005     return LowerBUILD_VECTOR(Op, DAG);
1006   case ISD::VECTOR_SHUFFLE:
1007     return LowerVECTOR_SHUFFLE(Op, DAG);
1008   case ISD::SETCC:
1009     return LowerSETCC(Op, DAG);
1010   case ISD::SHL:
1011   case ISD::SRA:
1012   case ISD::SRL:
1013     return LowerShift(Op, DAG);
1014   }
1015 }
1016 
1017 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1018                                                   SelectionDAG &DAG) const {
1019   SDValue Src = Op.getOperand(2);
1020   if (isa<FrameIndexSDNode>(Src.getNode())) {
1021     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1022     // the FI to some LEA-like instruction, but since we don't have that, we
1023     // need to insert some kind of instruction that can take an FI operand and
1024     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1025     // local.copy between Op and its FI operand.
1026     SDValue Chain = Op.getOperand(0);
1027     SDLoc DL(Op);
1028     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1029     EVT VT = Src.getValueType();
1030     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1031                                                    : WebAssembly::COPY_I64,
1032                                     DL, VT, Src),
1033                  0);
1034     return Op.getNode()->getNumValues() == 1
1035                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1036                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1037                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1038                                                            : SDValue());
1039   }
1040   return SDValue();
1041 }
1042 
1043 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1044                                                    SelectionDAG &DAG) const {
1045   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1046   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1047 }
1048 
1049 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1050                                                    SelectionDAG &DAG) const {
1051   SDLoc DL(Op);
1052 
1053   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1054     fail(DL, DAG,
1055          "Non-Emscripten WebAssembly hasn't implemented "
1056          "__builtin_return_address");
1057     return SDValue();
1058   }
1059 
1060   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1061     return SDValue();
1062 
1063   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1064   MakeLibCallOptions CallOptions;
1065   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1066                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1067       .first;
1068 }
1069 
1070 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1071                                                   SelectionDAG &DAG) const {
1072   // Non-zero depths are not supported by WebAssembly currently. Use the
1073   // legalizer's default expansion, which is to return 0 (what this function is
1074   // documented to do).
1075   if (Op.getConstantOperandVal(0) > 0)
1076     return SDValue();
1077 
1078   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1079   EVT VT = Op.getValueType();
1080   Register FP =
1081       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1082   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1083 }
1084 
1085 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1086                                                       SelectionDAG &DAG) const {
1087   SDLoc DL(Op);
1088   const auto *GA = cast<GlobalAddressSDNode>(Op);
1089   EVT VT = Op.getValueType();
1090   assert(GA->getTargetFlags() == 0 &&
1091          "Unexpected target flags on generic GlobalAddressSDNode");
1092   if (GA->getAddressSpace() != 0)
1093     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1094 
1095   unsigned OperandFlags = 0;
1096   if (isPositionIndependent()) {
1097     const GlobalValue *GV = GA->getGlobal();
1098     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1099       MachineFunction &MF = DAG.getMachineFunction();
1100       MVT PtrVT = getPointerTy(MF.getDataLayout());
1101       const char *BaseName;
1102       if (GV->getValueType()->isFunctionTy()) {
1103         BaseName = MF.createExternalSymbolName("__table_base");
1104         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1105       }
1106       else {
1107         BaseName = MF.createExternalSymbolName("__memory_base");
1108         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1109       }
1110       SDValue BaseAddr =
1111           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1112                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1113 
1114       SDValue SymAddr = DAG.getNode(
1115           WebAssemblyISD::WrapperPIC, DL, VT,
1116           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1117                                      OperandFlags));
1118 
1119       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1120     } else {
1121       OperandFlags = WebAssemblyII::MO_GOT;
1122     }
1123   }
1124 
1125   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1126                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1127                                                 GA->getOffset(), OperandFlags));
1128 }
1129 
1130 SDValue
1131 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1132                                                SelectionDAG &DAG) const {
1133   SDLoc DL(Op);
1134   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1135   EVT VT = Op.getValueType();
1136   assert(ES->getTargetFlags() == 0 &&
1137          "Unexpected target flags on generic ExternalSymbolSDNode");
1138   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1139                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1140 }
1141 
1142 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1143                                                   SelectionDAG &DAG) const {
1144   // There's no need for a Wrapper node because we always incorporate a jump
1145   // table operand into a BR_TABLE instruction, rather than ever
1146   // materializing it in a register.
1147   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1148   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1149                                 JT->getTargetFlags());
1150 }
1151 
1152 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1153                                               SelectionDAG &DAG) const {
1154   SDLoc DL(Op);
1155   SDValue Chain = Op.getOperand(0);
1156   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1157   SDValue Index = Op.getOperand(2);
1158   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1159 
1160   SmallVector<SDValue, 8> Ops;
1161   Ops.push_back(Chain);
1162   Ops.push_back(Index);
1163 
1164   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1165   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1166 
1167   // Add an operand for each case.
1168   for (auto MBB : MBBs)
1169     Ops.push_back(DAG.getBasicBlock(MBB));
1170 
1171   // TODO: For now, we just pick something arbitrary for a default case for now.
1172   // We really want to sniff out the guard and put in the real default case (and
1173   // delete the guard).
1174   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1175 
1176   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1177 }
1178 
1179 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1180                                                 SelectionDAG &DAG) const {
1181   SDLoc DL(Op);
1182   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1183 
1184   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1185   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1186 
1187   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1188                                     MFI->getVarargBufferVreg(), PtrVT);
1189   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1190                       MachinePointerInfo(SV), 0);
1191 }
1192 
1193 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1194                                                   SelectionDAG &DAG) const {
1195   MachineFunction &MF = DAG.getMachineFunction();
1196   unsigned IntNo;
1197   switch (Op.getOpcode()) {
1198   case ISD::INTRINSIC_VOID:
1199   case ISD::INTRINSIC_W_CHAIN:
1200     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1201     break;
1202   case ISD::INTRINSIC_WO_CHAIN:
1203     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1204     break;
1205   default:
1206     llvm_unreachable("Invalid intrinsic");
1207   }
1208   SDLoc DL(Op);
1209 
1210   switch (IntNo) {
1211   default:
1212     return SDValue(); // Don't custom lower most intrinsics.
1213 
1214   case Intrinsic::wasm_lsda: {
1215     EVT VT = Op.getValueType();
1216     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1217     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1218     auto &Context = MF.getMMI().getContext();
1219     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1220                                             Twine(MF.getFunctionNumber()));
1221     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1222                        DAG.getMCSymbol(S, PtrVT));
1223   }
1224 
1225   case Intrinsic::wasm_throw: {
1226     // We only support C++ exceptions for now
1227     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1228     if (Tag != CPP_EXCEPTION)
1229       llvm_unreachable("Invalid tag!");
1230     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1231     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1232     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1233     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1234                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
1235     return DAG.getNode(WebAssemblyISD::THROW, DL,
1236                        MVT::Other, // outchain type
1237                        {
1238                            Op.getOperand(0), // inchain
1239                            SymNode,          // exception symbol
1240                            Op.getOperand(3)  // thrown value
1241                        });
1242   }
1243   }
1244 }
1245 
1246 SDValue
1247 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1248                                                   SelectionDAG &DAG) const {
1249   SDLoc DL(Op);
1250   // If sign extension operations are disabled, allow sext_inreg only if operand
1251   // is a vector extract. SIMD does not depend on sign extension operations, but
1252   // allowing sext_inreg in this context lets us have simple patterns to select
1253   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1254   // simpler in this file, but would necessitate large and brittle patterns to
1255   // undo the expansion and select extract_lane_s instructions.
1256   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1257   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1258     const SDValue &Extract = Op.getOperand(0);
1259     MVT VecT = Extract.getOperand(0).getSimpleValueType();
1260     MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode())
1261                              ->getVT()
1262                              .getSimpleVT();
1263     MVT ExtractedVecT =
1264         MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1265     if (ExtractedVecT == VecT)
1266       return Op;
1267     // Bitcast vector to appropriate type to ensure ISel pattern coverage
1268     const SDValue &Index = Extract.getOperand(1);
1269     unsigned IndexVal =
1270         static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue();
1271     unsigned Scale =
1272         ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1273     assert(Scale > 1);
1274     SDValue NewIndex =
1275         DAG.getConstant(IndexVal * Scale, DL, Index.getValueType());
1276     SDValue NewExtract = DAG.getNode(
1277         ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1278         DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1279     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(),
1280                        NewExtract, Op.getOperand(1));
1281   }
1282   // Otherwise expand
1283   return SDValue();
1284 }
1285 
1286 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1287                                                      SelectionDAG &DAG) const {
1288   SDLoc DL(Op);
1289   const EVT VecT = Op.getValueType();
1290   const EVT LaneT = Op.getOperand(0).getValueType();
1291   const size_t Lanes = Op.getNumOperands();
1292   bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8;
1293 
1294   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1295   // possible number of lanes at once followed by a sequence of replace_lane
1296   // instructions to individually initialize any remaining lanes.
1297 
1298   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1299   // swizzled lanes should be given greater weight.
1300 
1301   // TODO: Investigate building vectors by shuffling together vectors built by
1302   // separately specialized means.
1303 
1304   auto IsConstant = [](const SDValue &V) {
1305     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1306   };
1307 
1308   // Returns the source vector and index vector pair if they exist. Checks for:
1309   //   (extract_vector_elt
1310   //     $src,
1311   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1312   //   )
1313   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1314     auto Bail = std::make_pair(SDValue(), SDValue());
1315     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1316       return Bail;
1317     const SDValue &SwizzleSrc = Lane->getOperand(0);
1318     const SDValue &IndexExt = Lane->getOperand(1);
1319     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1320       return Bail;
1321     const SDValue &Index = IndexExt->getOperand(0);
1322     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1323       return Bail;
1324     const SDValue &SwizzleIndices = Index->getOperand(0);
1325     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1326         SwizzleIndices.getValueType() != MVT::v16i8 ||
1327         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1328         Index->getConstantOperandVal(1) != I)
1329       return Bail;
1330     return std::make_pair(SwizzleSrc, SwizzleIndices);
1331   };
1332 
1333   using ValueEntry = std::pair<SDValue, size_t>;
1334   SmallVector<ValueEntry, 16> SplatValueCounts;
1335 
1336   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1337   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1338 
1339   auto AddCount = [](auto &Counts, const auto &Val) {
1340     auto CountIt = std::find_if(Counts.begin(), Counts.end(),
1341                                 [&Val](auto E) { return E.first == Val; });
1342     if (CountIt == Counts.end()) {
1343       Counts.emplace_back(Val, 1);
1344     } else {
1345       CountIt->second++;
1346     }
1347   };
1348 
1349   auto GetMostCommon = [](auto &Counts) {
1350     auto CommonIt =
1351         std::max_element(Counts.begin(), Counts.end(),
1352                          [](auto A, auto B) { return A.second < B.second; });
1353     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1354     return *CommonIt;
1355   };
1356 
1357   size_t NumConstantLanes = 0;
1358 
1359   // Count eligible lanes for each type of vector creation op
1360   for (size_t I = 0; I < Lanes; ++I) {
1361     const SDValue &Lane = Op->getOperand(I);
1362     if (Lane.isUndef())
1363       continue;
1364 
1365     AddCount(SplatValueCounts, Lane);
1366 
1367     if (IsConstant(Lane)) {
1368       NumConstantLanes++;
1369     } else if (CanSwizzle) {
1370       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1371       if (SwizzleSrcs.first)
1372         AddCount(SwizzleCounts, SwizzleSrcs);
1373     }
1374   }
1375 
1376   SDValue SplatValue;
1377   size_t NumSplatLanes;
1378   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1379 
1380   SDValue SwizzleSrc;
1381   SDValue SwizzleIndices;
1382   size_t NumSwizzleLanes = 0;
1383   if (SwizzleCounts.size())
1384     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1385                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1386 
1387   // Predicate returning true if the lane is properly initialized by the
1388   // original instruction
1389   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1390   SDValue Result;
1391   if (Subtarget->hasUnimplementedSIMD128()) {
1392     // Prefer swizzles over vector consts over splats
1393     if (NumSwizzleLanes >= NumSplatLanes &&
1394         NumSwizzleLanes >= NumConstantLanes) {
1395       Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1396                            SwizzleIndices);
1397       auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1398       IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1399         return Swizzled == GetSwizzleSrcs(I, Lane);
1400       };
1401     } else if (NumConstantLanes >= NumSplatLanes) {
1402       SmallVector<SDValue, 16> ConstLanes;
1403       for (const SDValue &Lane : Op->op_values()) {
1404         if (IsConstant(Lane)) {
1405           ConstLanes.push_back(Lane);
1406         } else if (LaneT.isFloatingPoint()) {
1407           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1408         } else {
1409           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1410         }
1411       }
1412       Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1413       IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
1414         return IsConstant(Lane);
1415       };
1416     }
1417   }
1418   if (!Result) {
1419     // Use a splat, but possibly a load_splat
1420     LoadSDNode *SplattedLoad;
1421     if (Subtarget->hasUnimplementedSIMD128() &&
1422         (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1423         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1424       Result = DAG.getMemIntrinsicNode(
1425           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1426           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1427            SplattedLoad->getOffset()},
1428           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1429     } else {
1430       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1431     }
1432     IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
1433       return Lane == SplatValue;
1434     };
1435   }
1436 
1437   // Add replace_lane instructions for any unhandled values
1438   for (size_t I = 0; I < Lanes; ++I) {
1439     const SDValue &Lane = Op->getOperand(I);
1440     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1441       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1442                            DAG.getConstant(I, DL, MVT::i32));
1443   }
1444 
1445   return Result;
1446 }
1447 
1448 SDValue
1449 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1450                                                SelectionDAG &DAG) const {
1451   SDLoc DL(Op);
1452   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1453   MVT VecType = Op.getOperand(0).getSimpleValueType();
1454   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1455   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1456 
1457   // Space for two vector args and sixteen mask indices
1458   SDValue Ops[18];
1459   size_t OpIdx = 0;
1460   Ops[OpIdx++] = Op.getOperand(0);
1461   Ops[OpIdx++] = Op.getOperand(1);
1462 
1463   // Expand mask indices to byte indices and materialize them as operands
1464   for (int M : Mask) {
1465     for (size_t J = 0; J < LaneBytes; ++J) {
1466       // Lower undefs (represented by -1 in mask) to zero
1467       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1468       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1469     }
1470   }
1471 
1472   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1473 }
1474 
1475 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
1476                                               SelectionDAG &DAG) const {
1477   SDLoc DL(Op);
1478   // The legalizer does not know how to expand the comparison modes of i64x2
1479   // vectors because no comparison modes are supported. We could solve this by
1480   // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes
1481   // (which return i64x2 results) as well. So instead we manually unroll i64x2
1482   // comparisons here.
1483   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
1484   SmallVector<SDValue, 2> LHS, RHS;
1485   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
1486   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
1487   const SDValue &CC = Op->getOperand(2);
1488   auto MakeLane = [&](unsigned I) {
1489     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
1490                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
1491                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
1492   };
1493   return DAG.getBuildVector(Op->getValueType(0), DL,
1494                             {MakeLane(0), MakeLane(1)});
1495 }
1496 
1497 SDValue
1498 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1499                                                     SelectionDAG &DAG) const {
1500   // Allow constant lane indices, expand variable lane indices
1501   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1502   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1503     return Op;
1504   else
1505     // Perform default expansion
1506     return SDValue();
1507 }
1508 
1509 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1510   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1511   // 32-bit and 64-bit unrolled shifts will have proper semantics
1512   if (LaneT.bitsGE(MVT::i32))
1513     return DAG.UnrollVectorOp(Op.getNode());
1514   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1515   SDLoc DL(Op);
1516   SDValue ShiftVal = Op.getOperand(1);
1517   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1518   SDValue MaskedShiftVal = DAG.getNode(
1519       ISD::AND,                    // mask opcode
1520       DL, ShiftVal.getValueType(), // masked value type
1521       ShiftVal,                    // original shift value operand
1522       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1523   );
1524 
1525   return DAG.UnrollVectorOp(
1526       DAG.getNode(Op.getOpcode(),        // original shift opcode
1527                   DL, Op.getValueType(), // original return type
1528                   Op.getOperand(0),      // original vector operand,
1529                   MaskedShiftVal         // new masked shift value operand
1530                   )
1531           .getNode());
1532 }
1533 
1534 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1535                                               SelectionDAG &DAG) const {
1536   SDLoc DL(Op);
1537 
1538   // Only manually lower vector shifts
1539   assert(Op.getSimpleValueType().isVector());
1540 
1541   // Unroll non-splat vector shifts
1542   BuildVectorSDNode *ShiftVec;
1543   SDValue SplatVal;
1544   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1545       !(SplatVal = ShiftVec->getSplatValue()))
1546     return unrollVectorShift(Op, DAG);
1547 
1548   // All splats except i64x2 const splats are handled by patterns
1549   auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1550   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1551     return Op;
1552 
1553   // i64x2 const splats are custom lowered to avoid unnecessary wraps
1554   unsigned Opcode;
1555   switch (Op.getOpcode()) {
1556   case ISD::SHL:
1557     Opcode = WebAssemblyISD::VEC_SHL;
1558     break;
1559   case ISD::SRA:
1560     Opcode = WebAssemblyISD::VEC_SHR_S;
1561     break;
1562   case ISD::SRL:
1563     Opcode = WebAssemblyISD::VEC_SHR_U;
1564     break;
1565   default:
1566     llvm_unreachable("unexpected opcode");
1567   }
1568   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1569   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1570                      DAG.getConstant(Shift, DL, MVT::i32));
1571 }
1572 
1573 //===----------------------------------------------------------------------===//
1574 //                          WebAssembly Optimization Hooks
1575 //===----------------------------------------------------------------------===//
1576