1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "WebAssemblyUtilities.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 73 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 74 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 75 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 76 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 77 setOperationAction(ISD::BRIND, MVT::Other, Custom); 78 79 // Take the default expansion for va_arg, va_copy, and va_end. There is no 80 // default action for va_start, so we do that custom. 81 setOperationAction(ISD::VASTART, MVT::Other, Custom); 82 setOperationAction(ISD::VAARG, MVT::Other, Expand); 83 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 84 setOperationAction(ISD::VAEND, MVT::Other, Expand); 85 86 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 87 // Don't expand the floating-point types to constant pools. 88 setOperationAction(ISD::ConstantFP, T, Legal); 89 // Expand floating-point comparisons. 90 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 91 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 92 setCondCodeAction(CC, T, Expand); 93 // Expand floating-point library function operators. 94 for (auto Op : 95 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 96 setOperationAction(Op, T, Expand); 97 // Note supported floating-point library function operators that otherwise 98 // default to expand. 99 for (auto Op : 100 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 101 setOperationAction(Op, T, Legal); 102 // Support minimum and maximum, which otherwise default to expand. 103 setOperationAction(ISD::FMINIMUM, T, Legal); 104 setOperationAction(ISD::FMAXIMUM, T, Legal); 105 // WebAssembly currently has no builtin f16 support. 106 setOperationAction(ISD::FP16_TO_FP, T, Expand); 107 setOperationAction(ISD::FP_TO_FP16, T, Expand); 108 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 109 setTruncStoreAction(T, MVT::f16, Expand); 110 } 111 112 // Expand unavailable integer operations. 113 for (auto Op : 114 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 115 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 116 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 117 for (auto T : {MVT::i32, MVT::i64}) 118 setOperationAction(Op, T, Expand); 119 if (Subtarget->hasSIMD128()) 120 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 121 setOperationAction(Op, T, Expand); 122 } 123 124 if (Subtarget->hasNontrappingFPToInt()) 125 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 126 for (auto T : {MVT::i32, MVT::i64}) 127 setOperationAction(Op, T, Custom); 128 129 // SIMD-specific configuration 130 if (Subtarget->hasSIMD128()) { 131 // Hoist bitcasts out of shuffles 132 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 133 134 // Combine extends of extract_subvectors into widening ops 135 setTargetDAGCombine(ISD::SIGN_EXTEND); 136 setTargetDAGCombine(ISD::ZERO_EXTEND); 137 138 // Combine int_to_fp of extract_vectors and vice versa into conversions ops 139 setTargetDAGCombine(ISD::SINT_TO_FP); 140 setTargetDAGCombine(ISD::UINT_TO_FP); 141 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 142 143 // Combine concat of {s,u}int_to_fp_sat to i32x4.trunc_sat_f64x2_zero_{s,u} 144 setTargetDAGCombine(ISD::CONCAT_VECTORS); 145 146 // Support saturating add for i8x16 and i16x8 147 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 148 for (auto T : {MVT::v16i8, MVT::v8i16}) 149 setOperationAction(Op, T, Legal); 150 151 // Support integer abs 152 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 153 setOperationAction(ISD::ABS, T, Legal); 154 155 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 156 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 157 MVT::v2f64}) 158 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 159 160 // We have custom shuffle lowering to expose the shuffle mask 161 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 162 MVT::v2f64}) 163 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 164 165 // Custom lowering since wasm shifts must have a scalar shift amount 166 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 168 setOperationAction(Op, T, Custom); 169 170 // Custom lower lane accesses to expand out variable indices 171 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 172 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 173 MVT::v2f64}) 174 setOperationAction(Op, T, Custom); 175 176 // There is no i8x16.mul instruction 177 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 178 179 // There is no vector conditional select instruction 180 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 181 MVT::v2f64}) 182 setOperationAction(ISD::SELECT_CC, T, Expand); 183 184 // Expand integer operations supported for scalars but not SIMD 185 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 186 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 188 setOperationAction(Op, T, Expand); 189 190 // But we do have integer min and max operations 191 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 192 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 193 setOperationAction(Op, T, Legal); 194 195 // Expand float operations supported for scalars but not SIMD 196 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 197 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 198 for (auto T : {MVT::v4f32, MVT::v2f64}) 199 setOperationAction(Op, T, Expand); 200 201 // Unsigned comparison operations are unavailable for i64x2 vectors. 202 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 203 setCondCodeAction(CC, MVT::v2i64, Custom); 204 205 // 64x2 conversions are not in the spec 206 for (auto Op : 207 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 208 for (auto T : {MVT::v2i64, MVT::v2f64}) 209 setOperationAction(Op, T, Expand); 210 211 // But saturating fp_to_int converstions are 212 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 213 setOperationAction(Op, MVT::v4i32, Custom); 214 } 215 216 // As a special case, these operators use the type to mean the type to 217 // sign-extend from. 218 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 219 if (!Subtarget->hasSignExt()) { 220 // Sign extends are legal only when extending a vector extract 221 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 222 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 223 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 224 } 225 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 226 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 227 228 // Dynamic stack allocation: use the default expansion. 229 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 230 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 231 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 232 233 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 234 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 235 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 236 237 // Expand these forms; we pattern-match the forms that we can handle in isel. 238 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 239 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 240 setOperationAction(Op, T, Expand); 241 242 // We have custom switch handling. 243 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 244 245 // WebAssembly doesn't have: 246 // - Floating-point extending loads. 247 // - Floating-point truncating stores. 248 // - i1 extending loads. 249 // - truncating SIMD stores and most extending loads 250 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 251 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 252 for (auto T : MVT::integer_valuetypes()) 253 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 254 setLoadExtAction(Ext, T, MVT::i1, Promote); 255 if (Subtarget->hasSIMD128()) { 256 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 257 MVT::v2f64}) { 258 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 259 if (MVT(T) != MemT) { 260 setTruncStoreAction(T, MemT, Expand); 261 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 262 setLoadExtAction(Ext, T, MemT, Expand); 263 } 264 } 265 } 266 // But some vector extending loads are legal 267 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 268 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 269 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 270 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 271 } 272 // And some truncating stores are legal as well 273 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 274 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 275 } 276 277 // Don't do anything clever with build_pairs 278 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 279 280 // Trap lowers to wasm unreachable 281 setOperationAction(ISD::TRAP, MVT::Other, Legal); 282 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 283 284 // Exception handling intrinsics 285 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 286 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 287 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 288 289 setMaxAtomicSizeInBitsSupported(64); 290 291 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 292 // consistent with the f64 and f128 names. 293 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 294 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 295 296 // Define the emscripten name for return address helper. 297 // TODO: when implementing other Wasm backends, make this generic or only do 298 // this on emscripten depending on what they end up doing. 299 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 300 301 // Always convert switches to br_tables unless there is only one case, which 302 // is equivalent to a simple branch. This reduces code size for wasm, and we 303 // defer possible jump table optimizations to the VM. 304 setMinimumJumpTableEntries(2); 305 } 306 307 TargetLowering::AtomicExpansionKind 308 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 309 // We have wasm instructions for these 310 switch (AI->getOperation()) { 311 case AtomicRMWInst::Add: 312 case AtomicRMWInst::Sub: 313 case AtomicRMWInst::And: 314 case AtomicRMWInst::Or: 315 case AtomicRMWInst::Xor: 316 case AtomicRMWInst::Xchg: 317 return AtomicExpansionKind::None; 318 default: 319 break; 320 } 321 return AtomicExpansionKind::CmpXChg; 322 } 323 324 FastISel *WebAssemblyTargetLowering::createFastISel( 325 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 326 return WebAssembly::createFastISel(FuncInfo, LibInfo); 327 } 328 329 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 330 EVT VT) const { 331 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 332 if (BitWidth > 1 && BitWidth < 8) 333 BitWidth = 8; 334 335 if (BitWidth > 64) { 336 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 337 // the count to be an i32. 338 BitWidth = 32; 339 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 340 "32-bit shift counts ought to be enough for anyone"); 341 } 342 343 MVT Result = MVT::getIntegerVT(BitWidth); 344 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 345 "Unable to represent scalar shift amount type"); 346 return Result; 347 } 348 349 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 350 // undefined result on invalid/overflow, to the WebAssembly opcode, which 351 // traps on invalid/overflow. 352 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 353 MachineBasicBlock *BB, 354 const TargetInstrInfo &TII, 355 bool IsUnsigned, bool Int64, 356 bool Float64, unsigned LoweredOpcode) { 357 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 358 359 Register OutReg = MI.getOperand(0).getReg(); 360 Register InReg = MI.getOperand(1).getReg(); 361 362 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 363 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 364 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 365 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 366 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 367 unsigned Eqz = WebAssembly::EQZ_I32; 368 unsigned And = WebAssembly::AND_I32; 369 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 370 int64_t Substitute = IsUnsigned ? 0 : Limit; 371 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 372 auto &Context = BB->getParent()->getFunction().getContext(); 373 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 374 375 const BasicBlock *LLVMBB = BB->getBasicBlock(); 376 MachineFunction *F = BB->getParent(); 377 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 378 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 379 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 380 381 MachineFunction::iterator It = ++BB->getIterator(); 382 F->insert(It, FalseMBB); 383 F->insert(It, TrueMBB); 384 F->insert(It, DoneMBB); 385 386 // Transfer the remainder of BB and its successor edges to DoneMBB. 387 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 388 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 389 390 BB->addSuccessor(TrueMBB); 391 BB->addSuccessor(FalseMBB); 392 TrueMBB->addSuccessor(DoneMBB); 393 FalseMBB->addSuccessor(DoneMBB); 394 395 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 396 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 397 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 398 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 399 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 400 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 401 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 402 403 MI.eraseFromParent(); 404 // For signed numbers, we can do a single comparison to determine whether 405 // fabs(x) is within range. 406 if (IsUnsigned) { 407 Tmp0 = InReg; 408 } else { 409 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 410 } 411 BuildMI(BB, DL, TII.get(FConst), Tmp1) 412 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 413 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 414 415 // For unsigned numbers, we have to do a separate comparison with zero. 416 if (IsUnsigned) { 417 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 418 Register SecondCmpReg = 419 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 420 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 421 BuildMI(BB, DL, TII.get(FConst), Tmp1) 422 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 423 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 424 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 425 CmpReg = AndReg; 426 } 427 428 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 429 430 // Create the CFG diamond to select between doing the conversion or using 431 // the substitute value. 432 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 433 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 434 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 435 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 436 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 437 .addReg(FalseReg) 438 .addMBB(FalseMBB) 439 .addReg(TrueReg) 440 .addMBB(TrueMBB); 441 442 return DoneMBB; 443 } 444 445 static MachineBasicBlock * 446 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 447 const WebAssemblySubtarget *Subtarget, 448 const TargetInstrInfo &TII) { 449 MachineInstr &CallParams = *CallResults.getPrevNode(); 450 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 451 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 452 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 453 454 bool IsIndirect = CallParams.getOperand(0).isReg(); 455 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 456 457 unsigned CallOp; 458 if (IsIndirect && IsRetCall) { 459 CallOp = WebAssembly::RET_CALL_INDIRECT; 460 } else if (IsIndirect) { 461 CallOp = WebAssembly::CALL_INDIRECT; 462 } else if (IsRetCall) { 463 CallOp = WebAssembly::RET_CALL; 464 } else { 465 CallOp = WebAssembly::CALL; 466 } 467 468 MachineFunction &MF = *BB->getParent(); 469 const MCInstrDesc &MCID = TII.get(CallOp); 470 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 471 472 // See if we must truncate the function pointer. 473 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 474 // as 64-bit for uniformity with other pointer types. 475 // See also: WebAssemblyFastISel::selectCall 476 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 477 Register Reg32 = 478 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 479 auto &FnPtr = CallParams.getOperand(0); 480 BuildMI(*BB, CallResults.getIterator(), DL, 481 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 482 .addReg(FnPtr.getReg()); 483 FnPtr.setReg(Reg32); 484 } 485 486 // Move the function pointer to the end of the arguments for indirect calls 487 if (IsIndirect) { 488 auto FnPtr = CallParams.getOperand(0); 489 CallParams.RemoveOperand(0); 490 CallParams.addOperand(FnPtr); 491 } 492 493 for (auto Def : CallResults.defs()) 494 MIB.add(Def); 495 496 if (IsIndirect) { 497 // Placeholder for the type index. 498 MIB.addImm(0); 499 // The table into which this call_indirect indexes. 500 MCSymbolWasm *Table = 501 WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget); 502 if (Subtarget->hasReferenceTypes()) { 503 MIB.addSym(Table); 504 } else { 505 // For the MVP there is at most one table whose number is 0, but we can't 506 // write a table symbol or issue relocations. Instead we just ensure the 507 // table is live and write a zero. 508 Table->setNoStrip(); 509 MIB.addImm(0); 510 } 511 } 512 513 for (auto Use : CallParams.uses()) 514 MIB.add(Use); 515 516 BB->insert(CallResults.getIterator(), MIB); 517 CallParams.eraseFromParent(); 518 CallResults.eraseFromParent(); 519 520 return BB; 521 } 522 523 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 524 MachineInstr &MI, MachineBasicBlock *BB) const { 525 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 526 DebugLoc DL = MI.getDebugLoc(); 527 528 switch (MI.getOpcode()) { 529 default: 530 llvm_unreachable("Unexpected instr type to insert"); 531 case WebAssembly::FP_TO_SINT_I32_F32: 532 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 533 WebAssembly::I32_TRUNC_S_F32); 534 case WebAssembly::FP_TO_UINT_I32_F32: 535 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 536 WebAssembly::I32_TRUNC_U_F32); 537 case WebAssembly::FP_TO_SINT_I64_F32: 538 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 539 WebAssembly::I64_TRUNC_S_F32); 540 case WebAssembly::FP_TO_UINT_I64_F32: 541 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 542 WebAssembly::I64_TRUNC_U_F32); 543 case WebAssembly::FP_TO_SINT_I32_F64: 544 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 545 WebAssembly::I32_TRUNC_S_F64); 546 case WebAssembly::FP_TO_UINT_I32_F64: 547 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 548 WebAssembly::I32_TRUNC_U_F64); 549 case WebAssembly::FP_TO_SINT_I64_F64: 550 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 551 WebAssembly::I64_TRUNC_S_F64); 552 case WebAssembly::FP_TO_UINT_I64_F64: 553 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 554 WebAssembly::I64_TRUNC_U_F64); 555 case WebAssembly::CALL_RESULTS: 556 case WebAssembly::RET_CALL_RESULTS: 557 return LowerCallResults(MI, DL, BB, Subtarget, TII); 558 } 559 } 560 561 const char * 562 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 563 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 564 case WebAssemblyISD::FIRST_NUMBER: 565 case WebAssemblyISD::FIRST_MEM_OPCODE: 566 break; 567 #define HANDLE_NODETYPE(NODE) \ 568 case WebAssemblyISD::NODE: \ 569 return "WebAssemblyISD::" #NODE; 570 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 571 #include "WebAssemblyISD.def" 572 #undef HANDLE_MEM_NODETYPE 573 #undef HANDLE_NODETYPE 574 } 575 return nullptr; 576 } 577 578 std::pair<unsigned, const TargetRegisterClass *> 579 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 580 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 581 // First, see if this is a constraint that directly corresponds to a 582 // WebAssembly register class. 583 if (Constraint.size() == 1) { 584 switch (Constraint[0]) { 585 case 'r': 586 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 587 if (Subtarget->hasSIMD128() && VT.isVector()) { 588 if (VT.getSizeInBits() == 128) 589 return std::make_pair(0U, &WebAssembly::V128RegClass); 590 } 591 if (VT.isInteger() && !VT.isVector()) { 592 if (VT.getSizeInBits() <= 32) 593 return std::make_pair(0U, &WebAssembly::I32RegClass); 594 if (VT.getSizeInBits() <= 64) 595 return std::make_pair(0U, &WebAssembly::I64RegClass); 596 } 597 if (VT.isFloatingPoint() && !VT.isVector()) { 598 switch (VT.getSizeInBits()) { 599 case 32: 600 return std::make_pair(0U, &WebAssembly::F32RegClass); 601 case 64: 602 return std::make_pair(0U, &WebAssembly::F64RegClass); 603 default: 604 break; 605 } 606 } 607 break; 608 default: 609 break; 610 } 611 } 612 613 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 614 } 615 616 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 617 // Assume ctz is a relatively cheap operation. 618 return true; 619 } 620 621 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 622 // Assume clz is a relatively cheap operation. 623 return true; 624 } 625 626 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 627 const AddrMode &AM, 628 Type *Ty, unsigned AS, 629 Instruction *I) const { 630 // WebAssembly offsets are added as unsigned without wrapping. The 631 // isLegalAddressingMode gives us no way to determine if wrapping could be 632 // happening, so we approximate this by accepting only non-negative offsets. 633 if (AM.BaseOffs < 0) 634 return false; 635 636 // WebAssembly has no scale register operands. 637 if (AM.Scale != 0) 638 return false; 639 640 // Everything else is legal. 641 return true; 642 } 643 644 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 645 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 646 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 647 // WebAssembly supports unaligned accesses, though it should be declared 648 // with the p2align attribute on loads and stores which do so, and there 649 // may be a performance impact. We tell LLVM they're "fast" because 650 // for the kinds of things that LLVM uses this for (merging adjacent stores 651 // of constants, etc.), WebAssembly implementations will either want the 652 // unaligned access or they'll split anyway. 653 if (Fast) 654 *Fast = true; 655 return true; 656 } 657 658 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 659 AttributeList Attr) const { 660 // The current thinking is that wasm engines will perform this optimization, 661 // so we can save on code size. 662 return true; 663 } 664 665 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 666 EVT ExtT = ExtVal.getValueType(); 667 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 668 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 669 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 670 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 671 } 672 673 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 674 LLVMContext &C, 675 EVT VT) const { 676 if (VT.isVector()) 677 return VT.changeVectorElementTypeToInteger(); 678 679 // So far, all branch instructions in Wasm take an I32 condition. 680 // The default TargetLowering::getSetCCResultType returns the pointer size, 681 // which would be useful to reduce instruction counts when testing 682 // against 64-bit pointers/values if at some point Wasm supports that. 683 return EVT::getIntegerVT(C, 32); 684 } 685 686 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 687 const CallInst &I, 688 MachineFunction &MF, 689 unsigned Intrinsic) const { 690 switch (Intrinsic) { 691 case Intrinsic::wasm_memory_atomic_notify: 692 Info.opc = ISD::INTRINSIC_W_CHAIN; 693 Info.memVT = MVT::i32; 694 Info.ptrVal = I.getArgOperand(0); 695 Info.offset = 0; 696 Info.align = Align(4); 697 // atomic.notify instruction does not really load the memory specified with 698 // this argument, but MachineMemOperand should either be load or store, so 699 // we set this to a load. 700 // FIXME Volatile isn't really correct, but currently all LLVM atomic 701 // instructions are treated as volatiles in the backend, so we should be 702 // consistent. The same applies for wasm_atomic_wait intrinsics too. 703 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 704 return true; 705 case Intrinsic::wasm_memory_atomic_wait32: 706 Info.opc = ISD::INTRINSIC_W_CHAIN; 707 Info.memVT = MVT::i32; 708 Info.ptrVal = I.getArgOperand(0); 709 Info.offset = 0; 710 Info.align = Align(4); 711 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 712 return true; 713 case Intrinsic::wasm_memory_atomic_wait64: 714 Info.opc = ISD::INTRINSIC_W_CHAIN; 715 Info.memVT = MVT::i64; 716 Info.ptrVal = I.getArgOperand(0); 717 Info.offset = 0; 718 Info.align = Align(8); 719 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 720 return true; 721 case Intrinsic::wasm_load32_zero: 722 case Intrinsic::wasm_load64_zero: 723 Info.opc = ISD::INTRINSIC_W_CHAIN; 724 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 725 Info.ptrVal = I.getArgOperand(0); 726 Info.offset = 0; 727 Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8); 728 Info.flags = MachineMemOperand::MOLoad; 729 return true; 730 case Intrinsic::wasm_load8_lane: 731 case Intrinsic::wasm_load16_lane: 732 case Intrinsic::wasm_load32_lane: 733 case Intrinsic::wasm_load64_lane: 734 case Intrinsic::wasm_store8_lane: 735 case Intrinsic::wasm_store16_lane: 736 case Intrinsic::wasm_store32_lane: 737 case Intrinsic::wasm_store64_lane: { 738 MVT MemVT; 739 Align MemAlign; 740 switch (Intrinsic) { 741 case Intrinsic::wasm_load8_lane: 742 case Intrinsic::wasm_store8_lane: 743 MemVT = MVT::i8; 744 MemAlign = Align(1); 745 break; 746 case Intrinsic::wasm_load16_lane: 747 case Intrinsic::wasm_store16_lane: 748 MemVT = MVT::i16; 749 MemAlign = Align(2); 750 break; 751 case Intrinsic::wasm_load32_lane: 752 case Intrinsic::wasm_store32_lane: 753 MemVT = MVT::i32; 754 MemAlign = Align(4); 755 break; 756 case Intrinsic::wasm_load64_lane: 757 case Intrinsic::wasm_store64_lane: 758 MemVT = MVT::i64; 759 MemAlign = Align(8); 760 break; 761 default: 762 llvm_unreachable("unexpected intrinsic"); 763 } 764 if (Intrinsic == Intrinsic::wasm_load8_lane || 765 Intrinsic == Intrinsic::wasm_load16_lane || 766 Intrinsic == Intrinsic::wasm_load32_lane || 767 Intrinsic == Intrinsic::wasm_load64_lane) { 768 Info.opc = ISD::INTRINSIC_W_CHAIN; 769 Info.flags = MachineMemOperand::MOLoad; 770 } else { 771 Info.opc = ISD::INTRINSIC_VOID; 772 Info.flags = MachineMemOperand::MOStore; 773 } 774 Info.ptrVal = I.getArgOperand(0); 775 Info.memVT = MemVT; 776 Info.offset = 0; 777 Info.align = MemAlign; 778 return true; 779 } 780 default: 781 return false; 782 } 783 } 784 785 //===----------------------------------------------------------------------===// 786 // WebAssembly Lowering private implementation. 787 //===----------------------------------------------------------------------===// 788 789 //===----------------------------------------------------------------------===// 790 // Lowering Code 791 //===----------------------------------------------------------------------===// 792 793 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 794 MachineFunction &MF = DAG.getMachineFunction(); 795 DAG.getContext()->diagnose( 796 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 797 } 798 799 // Test whether the given calling convention is supported. 800 static bool callingConvSupported(CallingConv::ID CallConv) { 801 // We currently support the language-independent target-independent 802 // conventions. We don't yet have a way to annotate calls with properties like 803 // "cold", and we don't have any call-clobbered registers, so these are mostly 804 // all handled the same. 805 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 806 CallConv == CallingConv::Cold || 807 CallConv == CallingConv::PreserveMost || 808 CallConv == CallingConv::PreserveAll || 809 CallConv == CallingConv::CXX_FAST_TLS || 810 CallConv == CallingConv::WASM_EmscriptenInvoke || 811 CallConv == CallingConv::Swift; 812 } 813 814 SDValue 815 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 816 SmallVectorImpl<SDValue> &InVals) const { 817 SelectionDAG &DAG = CLI.DAG; 818 SDLoc DL = CLI.DL; 819 SDValue Chain = CLI.Chain; 820 SDValue Callee = CLI.Callee; 821 MachineFunction &MF = DAG.getMachineFunction(); 822 auto Layout = MF.getDataLayout(); 823 824 CallingConv::ID CallConv = CLI.CallConv; 825 if (!callingConvSupported(CallConv)) 826 fail(DL, DAG, 827 "WebAssembly doesn't support language-specific or target-specific " 828 "calling conventions yet"); 829 if (CLI.IsPatchPoint) 830 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 831 832 if (CLI.IsTailCall) { 833 auto NoTail = [&](const char *Msg) { 834 if (CLI.CB && CLI.CB->isMustTailCall()) 835 fail(DL, DAG, Msg); 836 CLI.IsTailCall = false; 837 }; 838 839 if (!Subtarget->hasTailCall()) 840 NoTail("WebAssembly 'tail-call' feature not enabled"); 841 842 // Varargs calls cannot be tail calls because the buffer is on the stack 843 if (CLI.IsVarArg) 844 NoTail("WebAssembly does not support varargs tail calls"); 845 846 // Do not tail call unless caller and callee return types match 847 const Function &F = MF.getFunction(); 848 const TargetMachine &TM = getTargetMachine(); 849 Type *RetTy = F.getReturnType(); 850 SmallVector<MVT, 4> CallerRetTys; 851 SmallVector<MVT, 4> CalleeRetTys; 852 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 853 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 854 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 855 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 856 CalleeRetTys.begin()); 857 if (!TypesMatch) 858 NoTail("WebAssembly tail call requires caller and callee return types to " 859 "match"); 860 861 // If pointers to local stack values are passed, we cannot tail call 862 if (CLI.CB) { 863 for (auto &Arg : CLI.CB->args()) { 864 Value *Val = Arg.get(); 865 // Trace the value back through pointer operations 866 while (true) { 867 Value *Src = Val->stripPointerCastsAndAliases(); 868 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 869 Src = GEP->getPointerOperand(); 870 if (Val == Src) 871 break; 872 Val = Src; 873 } 874 if (isa<AllocaInst>(Val)) { 875 NoTail( 876 "WebAssembly does not support tail calling with stack arguments"); 877 break; 878 } 879 } 880 } 881 } 882 883 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 884 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 885 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 886 887 // The generic code may have added an sret argument. If we're lowering an 888 // invoke function, the ABI requires that the function pointer be the first 889 // argument, so we may have to swap the arguments. 890 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 891 Outs[0].Flags.isSRet()) { 892 std::swap(Outs[0], Outs[1]); 893 std::swap(OutVals[0], OutVals[1]); 894 } 895 896 bool HasSwiftSelfArg = false; 897 bool HasSwiftErrorArg = false; 898 unsigned NumFixedArgs = 0; 899 for (unsigned I = 0; I < Outs.size(); ++I) { 900 const ISD::OutputArg &Out = Outs[I]; 901 SDValue &OutVal = OutVals[I]; 902 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 903 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 904 if (Out.Flags.isNest()) 905 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 906 if (Out.Flags.isInAlloca()) 907 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 908 if (Out.Flags.isInConsecutiveRegs()) 909 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 910 if (Out.Flags.isInConsecutiveRegsLast()) 911 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 912 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 913 auto &MFI = MF.getFrameInfo(); 914 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 915 Out.Flags.getNonZeroByValAlign(), 916 /*isSS=*/false); 917 SDValue SizeNode = 918 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 919 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 920 Chain = DAG.getMemcpy( 921 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 922 /*isVolatile*/ false, /*AlwaysInline=*/false, 923 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 924 OutVal = FINode; 925 } 926 // Count the number of fixed args *after* legalization. 927 NumFixedArgs += Out.IsFixed; 928 } 929 930 bool IsVarArg = CLI.IsVarArg; 931 auto PtrVT = getPointerTy(Layout); 932 933 // For swiftcc, emit additional swiftself and swifterror arguments 934 // if there aren't. These additional arguments are also added for callee 935 // signature They are necessary to match callee and caller signature for 936 // indirect call. 937 if (CallConv == CallingConv::Swift) { 938 if (!HasSwiftSelfArg) { 939 NumFixedArgs++; 940 ISD::OutputArg Arg; 941 Arg.Flags.setSwiftSelf(); 942 CLI.Outs.push_back(Arg); 943 SDValue ArgVal = DAG.getUNDEF(PtrVT); 944 CLI.OutVals.push_back(ArgVal); 945 } 946 if (!HasSwiftErrorArg) { 947 NumFixedArgs++; 948 ISD::OutputArg Arg; 949 Arg.Flags.setSwiftError(); 950 CLI.Outs.push_back(Arg); 951 SDValue ArgVal = DAG.getUNDEF(PtrVT); 952 CLI.OutVals.push_back(ArgVal); 953 } 954 } 955 956 // Analyze operands of the call, assigning locations to each operand. 957 SmallVector<CCValAssign, 16> ArgLocs; 958 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 959 960 if (IsVarArg) { 961 // Outgoing non-fixed arguments are placed in a buffer. First 962 // compute their offsets and the total amount of buffer space needed. 963 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 964 const ISD::OutputArg &Out = Outs[I]; 965 SDValue &Arg = OutVals[I]; 966 EVT VT = Arg.getValueType(); 967 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 968 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 969 Align Alignment = 970 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 971 unsigned Offset = 972 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 973 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 974 Offset, VT.getSimpleVT(), 975 CCValAssign::Full)); 976 } 977 } 978 979 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 980 981 SDValue FINode; 982 if (IsVarArg && NumBytes) { 983 // For non-fixed arguments, next emit stores to store the argument values 984 // to the stack buffer at the offsets computed above. 985 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 986 Layout.getStackAlignment(), 987 /*isSS=*/false); 988 unsigned ValNo = 0; 989 SmallVector<SDValue, 8> Chains; 990 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 991 assert(ArgLocs[ValNo].getValNo() == ValNo && 992 "ArgLocs should remain in order and only hold varargs args"); 993 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 994 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 995 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 996 DAG.getConstant(Offset, DL, PtrVT)); 997 Chains.push_back( 998 DAG.getStore(Chain, DL, Arg, Add, 999 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1000 } 1001 if (!Chains.empty()) 1002 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1003 } else if (IsVarArg) { 1004 FINode = DAG.getIntPtrConstant(0, DL); 1005 } 1006 1007 if (Callee->getOpcode() == ISD::GlobalAddress) { 1008 // If the callee is a GlobalAddress node (quite common, every direct call 1009 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1010 // doesn't at MO_GOT which is not needed for direct calls. 1011 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1012 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1013 getPointerTy(DAG.getDataLayout()), 1014 GA->getOffset()); 1015 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1016 getPointerTy(DAG.getDataLayout()), Callee); 1017 } 1018 1019 // Compute the operands for the CALLn node. 1020 SmallVector<SDValue, 16> Ops; 1021 Ops.push_back(Chain); 1022 Ops.push_back(Callee); 1023 1024 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1025 // isn't reliable. 1026 Ops.append(OutVals.begin(), 1027 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1028 // Add a pointer to the vararg buffer. 1029 if (IsVarArg) 1030 Ops.push_back(FINode); 1031 1032 SmallVector<EVT, 8> InTys; 1033 for (const auto &In : Ins) { 1034 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1035 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1036 if (In.Flags.isInAlloca()) 1037 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1038 if (In.Flags.isInConsecutiveRegs()) 1039 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1040 if (In.Flags.isInConsecutiveRegsLast()) 1041 fail(DL, DAG, 1042 "WebAssembly hasn't implemented cons regs last return values"); 1043 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1044 // registers. 1045 InTys.push_back(In.VT); 1046 } 1047 1048 if (CLI.IsTailCall) { 1049 // ret_calls do not return values to the current frame 1050 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1051 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1052 } 1053 1054 InTys.push_back(MVT::Other); 1055 SDVTList InTyList = DAG.getVTList(InTys); 1056 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1057 1058 for (size_t I = 0; I < Ins.size(); ++I) 1059 InVals.push_back(Res.getValue(I)); 1060 1061 // Return the chain 1062 return Res.getValue(Ins.size()); 1063 } 1064 1065 bool WebAssemblyTargetLowering::CanLowerReturn( 1066 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1067 const SmallVectorImpl<ISD::OutputArg> &Outs, 1068 LLVMContext & /*Context*/) const { 1069 // WebAssembly can only handle returning tuples with multivalue enabled 1070 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1071 } 1072 1073 SDValue WebAssemblyTargetLowering::LowerReturn( 1074 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1075 const SmallVectorImpl<ISD::OutputArg> &Outs, 1076 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1077 SelectionDAG &DAG) const { 1078 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1079 "MVP WebAssembly can only return up to one value"); 1080 if (!callingConvSupported(CallConv)) 1081 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1082 1083 SmallVector<SDValue, 4> RetOps(1, Chain); 1084 RetOps.append(OutVals.begin(), OutVals.end()); 1085 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1086 1087 // Record the number and types of the return values. 1088 for (const ISD::OutputArg &Out : Outs) { 1089 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1090 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1091 assert(Out.IsFixed && "non-fixed return value is not valid"); 1092 if (Out.Flags.isInAlloca()) 1093 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1094 if (Out.Flags.isInConsecutiveRegs()) 1095 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1096 if (Out.Flags.isInConsecutiveRegsLast()) 1097 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1098 } 1099 1100 return Chain; 1101 } 1102 1103 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1104 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1105 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1106 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1107 if (!callingConvSupported(CallConv)) 1108 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1109 1110 MachineFunction &MF = DAG.getMachineFunction(); 1111 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1112 1113 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1114 // of the incoming values before they're represented by virtual registers. 1115 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1116 1117 bool HasSwiftErrorArg = false; 1118 bool HasSwiftSelfArg = false; 1119 for (const ISD::InputArg &In : Ins) { 1120 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1121 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1122 if (In.Flags.isInAlloca()) 1123 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1124 if (In.Flags.isNest()) 1125 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1126 if (In.Flags.isInConsecutiveRegs()) 1127 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1128 if (In.Flags.isInConsecutiveRegsLast()) 1129 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1130 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1131 // registers. 1132 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1133 DAG.getTargetConstant(InVals.size(), 1134 DL, MVT::i32)) 1135 : DAG.getUNDEF(In.VT)); 1136 1137 // Record the number and types of arguments. 1138 MFI->addParam(In.VT); 1139 } 1140 1141 // For swiftcc, emit additional swiftself and swifterror arguments 1142 // if there aren't. These additional arguments are also added for callee 1143 // signature They are necessary to match callee and caller signature for 1144 // indirect call. 1145 auto PtrVT = getPointerTy(MF.getDataLayout()); 1146 if (CallConv == CallingConv::Swift) { 1147 if (!HasSwiftSelfArg) { 1148 MFI->addParam(PtrVT); 1149 } 1150 if (!HasSwiftErrorArg) { 1151 MFI->addParam(PtrVT); 1152 } 1153 } 1154 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1155 // the buffer is passed as an argument. 1156 if (IsVarArg) { 1157 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1158 Register VarargVreg = 1159 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1160 MFI->setVarargBufferVreg(VarargVreg); 1161 Chain = DAG.getCopyToReg( 1162 Chain, DL, VarargVreg, 1163 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1164 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1165 MFI->addParam(PtrVT); 1166 } 1167 1168 // Record the number and types of arguments and results. 1169 SmallVector<MVT, 4> Params; 1170 SmallVector<MVT, 4> Results; 1171 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1172 MF.getFunction(), DAG.getTarget(), Params, Results); 1173 for (MVT VT : Results) 1174 MFI->addResult(VT); 1175 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1176 // the param logic here with ComputeSignatureVTs 1177 assert(MFI->getParams().size() == Params.size() && 1178 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1179 Params.begin())); 1180 1181 return Chain; 1182 } 1183 1184 void WebAssemblyTargetLowering::ReplaceNodeResults( 1185 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1186 switch (N->getOpcode()) { 1187 case ISD::SIGN_EXTEND_INREG: 1188 // Do not add any results, signifying that N should not be custom lowered 1189 // after all. This happens because simd128 turns on custom lowering for 1190 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1191 // illegal type. 1192 break; 1193 default: 1194 llvm_unreachable( 1195 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1196 } 1197 } 1198 1199 //===----------------------------------------------------------------------===// 1200 // Custom lowering hooks. 1201 //===----------------------------------------------------------------------===// 1202 1203 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1204 SelectionDAG &DAG) const { 1205 SDLoc DL(Op); 1206 switch (Op.getOpcode()) { 1207 default: 1208 llvm_unreachable("unimplemented operation lowering"); 1209 return SDValue(); 1210 case ISD::FrameIndex: 1211 return LowerFrameIndex(Op, DAG); 1212 case ISD::GlobalAddress: 1213 return LowerGlobalAddress(Op, DAG); 1214 case ISD::GlobalTLSAddress: 1215 return LowerGlobalTLSAddress(Op, DAG); 1216 case ISD::ExternalSymbol: 1217 return LowerExternalSymbol(Op, DAG); 1218 case ISD::JumpTable: 1219 return LowerJumpTable(Op, DAG); 1220 case ISD::BR_JT: 1221 return LowerBR_JT(Op, DAG); 1222 case ISD::VASTART: 1223 return LowerVASTART(Op, DAG); 1224 case ISD::BlockAddress: 1225 case ISD::BRIND: 1226 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1227 return SDValue(); 1228 case ISD::RETURNADDR: 1229 return LowerRETURNADDR(Op, DAG); 1230 case ISD::FRAMEADDR: 1231 return LowerFRAMEADDR(Op, DAG); 1232 case ISD::CopyToReg: 1233 return LowerCopyToReg(Op, DAG); 1234 case ISD::EXTRACT_VECTOR_ELT: 1235 case ISD::INSERT_VECTOR_ELT: 1236 return LowerAccessVectorElement(Op, DAG); 1237 case ISD::INTRINSIC_VOID: 1238 case ISD::INTRINSIC_WO_CHAIN: 1239 case ISD::INTRINSIC_W_CHAIN: 1240 return LowerIntrinsic(Op, DAG); 1241 case ISD::SIGN_EXTEND_INREG: 1242 return LowerSIGN_EXTEND_INREG(Op, DAG); 1243 case ISD::BUILD_VECTOR: 1244 return LowerBUILD_VECTOR(Op, DAG); 1245 case ISD::VECTOR_SHUFFLE: 1246 return LowerVECTOR_SHUFFLE(Op, DAG); 1247 case ISD::SETCC: 1248 return LowerSETCC(Op, DAG); 1249 case ISD::SHL: 1250 case ISD::SRA: 1251 case ISD::SRL: 1252 return LowerShift(Op, DAG); 1253 case ISD::FP_TO_SINT_SAT: 1254 case ISD::FP_TO_UINT_SAT: 1255 return LowerFP_TO_INT_SAT(Op, DAG); 1256 } 1257 } 1258 1259 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1260 SelectionDAG &DAG) const { 1261 SDValue Src = Op.getOperand(2); 1262 if (isa<FrameIndexSDNode>(Src.getNode())) { 1263 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1264 // the FI to some LEA-like instruction, but since we don't have that, we 1265 // need to insert some kind of instruction that can take an FI operand and 1266 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1267 // local.copy between Op and its FI operand. 1268 SDValue Chain = Op.getOperand(0); 1269 SDLoc DL(Op); 1270 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1271 EVT VT = Src.getValueType(); 1272 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1273 : WebAssembly::COPY_I64, 1274 DL, VT, Src), 1275 0); 1276 return Op.getNode()->getNumValues() == 1 1277 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1278 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1279 Op.getNumOperands() == 4 ? Op.getOperand(3) 1280 : SDValue()); 1281 } 1282 return SDValue(); 1283 } 1284 1285 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1286 SelectionDAG &DAG) const { 1287 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1288 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1289 } 1290 1291 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1292 SelectionDAG &DAG) const { 1293 SDLoc DL(Op); 1294 1295 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1296 fail(DL, DAG, 1297 "Non-Emscripten WebAssembly hasn't implemented " 1298 "__builtin_return_address"); 1299 return SDValue(); 1300 } 1301 1302 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1303 return SDValue(); 1304 1305 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1306 MakeLibCallOptions CallOptions; 1307 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1308 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1309 .first; 1310 } 1311 1312 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1313 SelectionDAG &DAG) const { 1314 // Non-zero depths are not supported by WebAssembly currently. Use the 1315 // legalizer's default expansion, which is to return 0 (what this function is 1316 // documented to do). 1317 if (Op.getConstantOperandVal(0) > 0) 1318 return SDValue(); 1319 1320 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1321 EVT VT = Op.getValueType(); 1322 Register FP = 1323 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1324 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1325 } 1326 1327 SDValue 1328 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1329 SelectionDAG &DAG) const { 1330 SDLoc DL(Op); 1331 const auto *GA = cast<GlobalAddressSDNode>(Op); 1332 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1333 1334 MachineFunction &MF = DAG.getMachineFunction(); 1335 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1336 report_fatal_error("cannot use thread-local storage without bulk memory", 1337 false); 1338 1339 const GlobalValue *GV = GA->getGlobal(); 1340 1341 // Currently Emscripten does not support dynamic linking with threads. 1342 // Therefore, if we have thread-local storage, only the local-exec model 1343 // is possible. 1344 // TODO: remove this and implement proper TLS models once Emscripten 1345 // supports dynamic linking with threads. 1346 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1347 !Subtarget->getTargetTriple().isOSEmscripten()) { 1348 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1349 "non-Emscripten OSes: variable " + 1350 GV->getName(), 1351 false); 1352 } 1353 1354 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1355 : WebAssembly::GLOBAL_GET_I32; 1356 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1357 1358 SDValue BaseAddr( 1359 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1360 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1361 0); 1362 1363 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1364 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1365 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1366 1367 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1368 } 1369 1370 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1371 SelectionDAG &DAG) const { 1372 SDLoc DL(Op); 1373 const auto *GA = cast<GlobalAddressSDNode>(Op); 1374 EVT VT = Op.getValueType(); 1375 assert(GA->getTargetFlags() == 0 && 1376 "Unexpected target flags on generic GlobalAddressSDNode"); 1377 if (GA->getAddressSpace() != 0) 1378 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1379 1380 unsigned OperandFlags = 0; 1381 if (isPositionIndependent()) { 1382 const GlobalValue *GV = GA->getGlobal(); 1383 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1384 MachineFunction &MF = DAG.getMachineFunction(); 1385 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1386 const char *BaseName; 1387 if (GV->getValueType()->isFunctionTy()) { 1388 BaseName = MF.createExternalSymbolName("__table_base"); 1389 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1390 } 1391 else { 1392 BaseName = MF.createExternalSymbolName("__memory_base"); 1393 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1394 } 1395 SDValue BaseAddr = 1396 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1397 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1398 1399 SDValue SymAddr = DAG.getNode( 1400 WebAssemblyISD::WrapperPIC, DL, VT, 1401 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1402 OperandFlags)); 1403 1404 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1405 } else { 1406 OperandFlags = WebAssemblyII::MO_GOT; 1407 } 1408 } 1409 1410 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1411 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1412 GA->getOffset(), OperandFlags)); 1413 } 1414 1415 SDValue 1416 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1417 SelectionDAG &DAG) const { 1418 SDLoc DL(Op); 1419 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1420 EVT VT = Op.getValueType(); 1421 assert(ES->getTargetFlags() == 0 && 1422 "Unexpected target flags on generic ExternalSymbolSDNode"); 1423 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1424 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1425 } 1426 1427 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1428 SelectionDAG &DAG) const { 1429 // There's no need for a Wrapper node because we always incorporate a jump 1430 // table operand into a BR_TABLE instruction, rather than ever 1431 // materializing it in a register. 1432 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1433 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1434 JT->getTargetFlags()); 1435 } 1436 1437 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1438 SelectionDAG &DAG) const { 1439 SDLoc DL(Op); 1440 SDValue Chain = Op.getOperand(0); 1441 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1442 SDValue Index = Op.getOperand(2); 1443 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1444 1445 SmallVector<SDValue, 8> Ops; 1446 Ops.push_back(Chain); 1447 Ops.push_back(Index); 1448 1449 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1450 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1451 1452 // Add an operand for each case. 1453 for (auto MBB : MBBs) 1454 Ops.push_back(DAG.getBasicBlock(MBB)); 1455 1456 // Add the first MBB as a dummy default target for now. This will be replaced 1457 // with the proper default target (and the preceding range check eliminated) 1458 // if possible by WebAssemblyFixBrTableDefaults. 1459 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1460 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1461 } 1462 1463 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1464 SelectionDAG &DAG) const { 1465 SDLoc DL(Op); 1466 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1467 1468 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1469 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1470 1471 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1472 MFI->getVarargBufferVreg(), PtrVT); 1473 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1474 MachinePointerInfo(SV)); 1475 } 1476 1477 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1478 SelectionDAG &DAG) { 1479 // We only support C++ exceptions for now 1480 int Tag = 1481 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1482 if (Tag != WebAssembly::CPP_EXCEPTION) 1483 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1484 auto &MF = DAG.getMachineFunction(); 1485 const auto &TLI = DAG.getTargetLoweringInfo(); 1486 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1487 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1488 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1489 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1490 } 1491 1492 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1493 SelectionDAG &DAG) const { 1494 MachineFunction &MF = DAG.getMachineFunction(); 1495 unsigned IntNo; 1496 switch (Op.getOpcode()) { 1497 case ISD::INTRINSIC_VOID: 1498 case ISD::INTRINSIC_W_CHAIN: 1499 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1500 break; 1501 case ISD::INTRINSIC_WO_CHAIN: 1502 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1503 break; 1504 default: 1505 llvm_unreachable("Invalid intrinsic"); 1506 } 1507 SDLoc DL(Op); 1508 1509 switch (IntNo) { 1510 default: 1511 return SDValue(); // Don't custom lower most intrinsics. 1512 1513 case Intrinsic::wasm_lsda: { 1514 EVT VT = Op.getValueType(); 1515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1516 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1517 auto &Context = MF.getMMI().getContext(); 1518 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1519 Twine(MF.getFunctionNumber())); 1520 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1521 DAG.getMCSymbol(S, PtrVT)); 1522 } 1523 1524 case Intrinsic::wasm_throw: { 1525 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1526 return DAG.getNode(WebAssemblyISD::THROW, DL, 1527 MVT::Other, // outchain type 1528 { 1529 Op.getOperand(0), // inchain 1530 SymNode, // exception symbol 1531 Op.getOperand(3) // thrown value 1532 }); 1533 } 1534 1535 case Intrinsic::wasm_catch: { 1536 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1537 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1538 { 1539 MVT::i32, // outchain type 1540 MVT::Other // return value 1541 }, 1542 { 1543 Op.getOperand(0), // inchain 1544 SymNode // exception symbol 1545 }); 1546 } 1547 1548 case Intrinsic::wasm_shuffle: { 1549 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1550 SDValue Ops[18]; 1551 size_t OpIdx = 0; 1552 Ops[OpIdx++] = Op.getOperand(1); 1553 Ops[OpIdx++] = Op.getOperand(2); 1554 while (OpIdx < 18) { 1555 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1556 if (MaskIdx.isUndef() || 1557 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1558 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1559 } else { 1560 Ops[OpIdx++] = MaskIdx; 1561 } 1562 } 1563 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1564 } 1565 } 1566 } 1567 1568 SDValue 1569 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1570 SelectionDAG &DAG) const { 1571 SDLoc DL(Op); 1572 // If sign extension operations are disabled, allow sext_inreg only if operand 1573 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1574 // extension operations, but allowing sext_inreg in this context lets us have 1575 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1576 // everywhere would be simpler in this file, but would necessitate large and 1577 // brittle patterns to undo the expansion and select extract_lane_s 1578 // instructions. 1579 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1580 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1581 return SDValue(); 1582 1583 const SDValue &Extract = Op.getOperand(0); 1584 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1585 if (VecT.getVectorElementType().getSizeInBits() > 32) 1586 return SDValue(); 1587 MVT ExtractedLaneT = 1588 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1589 MVT ExtractedVecT = 1590 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1591 if (ExtractedVecT == VecT) 1592 return Op; 1593 1594 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1595 const SDNode *Index = Extract.getOperand(1).getNode(); 1596 if (!isa<ConstantSDNode>(Index)) 1597 return SDValue(); 1598 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1599 unsigned Scale = 1600 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1601 assert(Scale > 1); 1602 SDValue NewIndex = 1603 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1604 SDValue NewExtract = DAG.getNode( 1605 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1606 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1607 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1608 Op.getOperand(1)); 1609 } 1610 1611 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1612 SelectionDAG &DAG) const { 1613 SDLoc DL(Op); 1614 const EVT VecT = Op.getValueType(); 1615 const EVT LaneT = Op.getOperand(0).getValueType(); 1616 const size_t Lanes = Op.getNumOperands(); 1617 bool CanSwizzle = VecT == MVT::v16i8; 1618 1619 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1620 // possible number of lanes at once followed by a sequence of replace_lane 1621 // instructions to individually initialize any remaining lanes. 1622 1623 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1624 // swizzled lanes should be given greater weight. 1625 1626 // TODO: Investigate looping rather than always extracting/replacing specific 1627 // lanes to fill gaps. 1628 1629 auto IsConstant = [](const SDValue &V) { 1630 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1631 }; 1632 1633 // Returns the source vector and index vector pair if they exist. Checks for: 1634 // (extract_vector_elt 1635 // $src, 1636 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1637 // ) 1638 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1639 auto Bail = std::make_pair(SDValue(), SDValue()); 1640 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1641 return Bail; 1642 const SDValue &SwizzleSrc = Lane->getOperand(0); 1643 const SDValue &IndexExt = Lane->getOperand(1); 1644 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1645 return Bail; 1646 const SDValue &Index = IndexExt->getOperand(0); 1647 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1648 return Bail; 1649 const SDValue &SwizzleIndices = Index->getOperand(0); 1650 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1651 SwizzleIndices.getValueType() != MVT::v16i8 || 1652 Index->getOperand(1)->getOpcode() != ISD::Constant || 1653 Index->getConstantOperandVal(1) != I) 1654 return Bail; 1655 return std::make_pair(SwizzleSrc, SwizzleIndices); 1656 }; 1657 1658 // If the lane is extracted from another vector at a constant index, return 1659 // that vector. The source vector must not have more lanes than the dest 1660 // because the shufflevector indices are in terms of the destination lanes and 1661 // would not be able to address the smaller individual source lanes. 1662 auto GetShuffleSrc = [&](const SDValue &Lane) { 1663 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1664 return SDValue(); 1665 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1666 return SDValue(); 1667 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1668 VecT.getVectorNumElements()) 1669 return SDValue(); 1670 return Lane->getOperand(0); 1671 }; 1672 1673 using ValueEntry = std::pair<SDValue, size_t>; 1674 SmallVector<ValueEntry, 16> SplatValueCounts; 1675 1676 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1677 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1678 1679 using ShuffleEntry = std::pair<SDValue, size_t>; 1680 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1681 1682 auto AddCount = [](auto &Counts, const auto &Val) { 1683 auto CountIt = 1684 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1685 if (CountIt == Counts.end()) { 1686 Counts.emplace_back(Val, 1); 1687 } else { 1688 CountIt->second++; 1689 } 1690 }; 1691 1692 auto GetMostCommon = [](auto &Counts) { 1693 auto CommonIt = 1694 std::max_element(Counts.begin(), Counts.end(), 1695 [](auto A, auto B) { return A.second < B.second; }); 1696 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1697 return *CommonIt; 1698 }; 1699 1700 size_t NumConstantLanes = 0; 1701 1702 // Count eligible lanes for each type of vector creation op 1703 for (size_t I = 0; I < Lanes; ++I) { 1704 const SDValue &Lane = Op->getOperand(I); 1705 if (Lane.isUndef()) 1706 continue; 1707 1708 AddCount(SplatValueCounts, Lane); 1709 1710 if (IsConstant(Lane)) 1711 NumConstantLanes++; 1712 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1713 AddCount(ShuffleCounts, ShuffleSrc); 1714 if (CanSwizzle) { 1715 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1716 if (SwizzleSrcs.first) 1717 AddCount(SwizzleCounts, SwizzleSrcs); 1718 } 1719 } 1720 1721 SDValue SplatValue; 1722 size_t NumSplatLanes; 1723 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1724 1725 SDValue SwizzleSrc; 1726 SDValue SwizzleIndices; 1727 size_t NumSwizzleLanes = 0; 1728 if (SwizzleCounts.size()) 1729 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1730 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1731 1732 // Shuffles can draw from up to two vectors, so find the two most common 1733 // sources. 1734 SDValue ShuffleSrc1, ShuffleSrc2; 1735 size_t NumShuffleLanes = 0; 1736 if (ShuffleCounts.size()) { 1737 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1738 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1739 ShuffleCounts.end(), 1740 [&](const auto &Pair) { 1741 return Pair.first == ShuffleSrc1; 1742 }), 1743 ShuffleCounts.end()); 1744 } 1745 if (ShuffleCounts.size()) { 1746 size_t AdditionalShuffleLanes; 1747 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 1748 GetMostCommon(ShuffleCounts); 1749 NumShuffleLanes += AdditionalShuffleLanes; 1750 } 1751 1752 // Predicate returning true if the lane is properly initialized by the 1753 // original instruction 1754 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1755 SDValue Result; 1756 // Prefer swizzles over shuffles over vector consts over splats 1757 if (NumSwizzleLanes >= NumShuffleLanes && 1758 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 1759 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1760 SwizzleIndices); 1761 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1762 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1763 return Swizzled == GetSwizzleSrcs(I, Lane); 1764 }; 1765 } else if (NumShuffleLanes >= NumConstantLanes && 1766 NumShuffleLanes >= NumSplatLanes) { 1767 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 1768 size_t DestLaneCount = VecT.getVectorNumElements(); 1769 size_t Scale1 = 1; 1770 size_t Scale2 = 1; 1771 SDValue Src1 = ShuffleSrc1; 1772 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 1773 if (Src1.getValueType() != VecT) { 1774 size_t LaneSize = 1775 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1776 assert(LaneSize > DestLaneSize); 1777 Scale1 = LaneSize / DestLaneSize; 1778 Src1 = DAG.getBitcast(VecT, Src1); 1779 } 1780 if (Src2.getValueType() != VecT) { 1781 size_t LaneSize = 1782 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1783 assert(LaneSize > DestLaneSize); 1784 Scale2 = LaneSize / DestLaneSize; 1785 Src2 = DAG.getBitcast(VecT, Src2); 1786 } 1787 1788 int Mask[16]; 1789 assert(DestLaneCount <= 16); 1790 for (size_t I = 0; I < DestLaneCount; ++I) { 1791 const SDValue &Lane = Op->getOperand(I); 1792 SDValue Src = GetShuffleSrc(Lane); 1793 if (Src == ShuffleSrc1) { 1794 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 1795 } else if (Src && Src == ShuffleSrc2) { 1796 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 1797 } else { 1798 Mask[I] = -1; 1799 } 1800 } 1801 ArrayRef<int> MaskRef(Mask, DestLaneCount); 1802 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 1803 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 1804 auto Src = GetShuffleSrc(Lane); 1805 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 1806 }; 1807 } else if (NumConstantLanes >= NumSplatLanes) { 1808 SmallVector<SDValue, 16> ConstLanes; 1809 for (const SDValue &Lane : Op->op_values()) { 1810 if (IsConstant(Lane)) { 1811 ConstLanes.push_back(Lane); 1812 } else if (LaneT.isFloatingPoint()) { 1813 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1814 } else { 1815 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1816 } 1817 } 1818 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1819 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1820 return IsConstant(Lane); 1821 }; 1822 } else { 1823 // Use a splat, but possibly a load_splat 1824 LoadSDNode *SplattedLoad; 1825 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1826 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1827 Result = DAG.getMemIntrinsicNode( 1828 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1829 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1830 SplattedLoad->getOffset()}, 1831 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1832 } else { 1833 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1834 } 1835 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1836 return Lane == SplatValue; 1837 }; 1838 } 1839 1840 assert(Result); 1841 assert(IsLaneConstructed); 1842 1843 // Add replace_lane instructions for any unhandled values 1844 for (size_t I = 0; I < Lanes; ++I) { 1845 const SDValue &Lane = Op->getOperand(I); 1846 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1847 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1848 DAG.getConstant(I, DL, MVT::i32)); 1849 } 1850 1851 return Result; 1852 } 1853 1854 SDValue 1855 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1856 SelectionDAG &DAG) const { 1857 SDLoc DL(Op); 1858 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1859 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1860 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1861 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1862 1863 // Space for two vector args and sixteen mask indices 1864 SDValue Ops[18]; 1865 size_t OpIdx = 0; 1866 Ops[OpIdx++] = Op.getOperand(0); 1867 Ops[OpIdx++] = Op.getOperand(1); 1868 1869 // Expand mask indices to byte indices and materialize them as operands 1870 for (int M : Mask) { 1871 for (size_t J = 0; J < LaneBytes; ++J) { 1872 // Lower undefs (represented by -1 in mask) to zero 1873 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1874 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1875 } 1876 } 1877 1878 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1879 } 1880 1881 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1882 SelectionDAG &DAG) const { 1883 SDLoc DL(Op); 1884 // The legalizer does not know how to expand the unsupported comparison modes 1885 // of i64x2 vectors, so we manually unroll them here. 1886 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1887 SmallVector<SDValue, 2> LHS, RHS; 1888 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1889 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1890 const SDValue &CC = Op->getOperand(2); 1891 auto MakeLane = [&](unsigned I) { 1892 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1893 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1894 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1895 }; 1896 return DAG.getBuildVector(Op->getValueType(0), DL, 1897 {MakeLane(0), MakeLane(1)}); 1898 } 1899 1900 SDValue 1901 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1902 SelectionDAG &DAG) const { 1903 // Allow constant lane indices, expand variable lane indices 1904 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1905 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1906 return Op; 1907 else 1908 // Perform default expansion 1909 return SDValue(); 1910 } 1911 1912 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1913 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1914 // 32-bit and 64-bit unrolled shifts will have proper semantics 1915 if (LaneT.bitsGE(MVT::i32)) 1916 return DAG.UnrollVectorOp(Op.getNode()); 1917 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1918 SDLoc DL(Op); 1919 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1920 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1921 unsigned ShiftOpcode = Op.getOpcode(); 1922 SmallVector<SDValue, 16> ShiftedElements; 1923 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1924 SmallVector<SDValue, 16> ShiftElements; 1925 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1926 SmallVector<SDValue, 16> UnrolledOps; 1927 for (size_t i = 0; i < NumLanes; ++i) { 1928 SDValue MaskedShiftValue = 1929 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1930 SDValue ShiftedValue = ShiftedElements[i]; 1931 if (ShiftOpcode == ISD::SRA) 1932 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1933 ShiftedValue, DAG.getValueType(LaneT)); 1934 UnrolledOps.push_back( 1935 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1936 } 1937 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1938 } 1939 1940 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1941 SelectionDAG &DAG) const { 1942 SDLoc DL(Op); 1943 1944 // Only manually lower vector shifts 1945 assert(Op.getSimpleValueType().isVector()); 1946 1947 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1948 if (!ShiftVal) 1949 return unrollVectorShift(Op, DAG); 1950 1951 // Use anyext because none of the high bits can affect the shift 1952 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1953 1954 unsigned Opcode; 1955 switch (Op.getOpcode()) { 1956 case ISD::SHL: 1957 Opcode = WebAssemblyISD::VEC_SHL; 1958 break; 1959 case ISD::SRA: 1960 Opcode = WebAssemblyISD::VEC_SHR_S; 1961 break; 1962 case ISD::SRL: 1963 Opcode = WebAssemblyISD::VEC_SHR_U; 1964 break; 1965 default: 1966 llvm_unreachable("unexpected opcode"); 1967 } 1968 1969 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1970 } 1971 1972 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 1973 SelectionDAG &DAG) const { 1974 SDLoc DL(Op); 1975 EVT ResT = Op.getValueType(); 1976 uint64_t Width = Op.getConstantOperandVal(1); 1977 1978 if ((ResT == MVT::i32 || ResT == MVT::i64) && (Width == 32 || Width == 64)) 1979 return Op; 1980 1981 if (ResT == MVT::v4i32 && Width == 32) 1982 return Op; 1983 1984 return SDValue(); 1985 } 1986 1987 //===----------------------------------------------------------------------===// 1988 // Custom DAG combine hooks 1989 //===----------------------------------------------------------------------===// 1990 static SDValue 1991 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1992 auto &DAG = DCI.DAG; 1993 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1994 1995 // Hoist vector bitcasts that don't change the number of lanes out of unary 1996 // shuffles, where they are less likely to get in the way of other combines. 1997 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1998 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1999 SDValue Bitcast = N->getOperand(0); 2000 if (Bitcast.getOpcode() != ISD::BITCAST) 2001 return SDValue(); 2002 if (!N->getOperand(1).isUndef()) 2003 return SDValue(); 2004 SDValue CastOp = Bitcast.getOperand(0); 2005 MVT SrcType = CastOp.getSimpleValueType(); 2006 MVT DstType = Bitcast.getSimpleValueType(); 2007 if (!SrcType.is128BitVector() || 2008 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2009 return SDValue(); 2010 SDValue NewShuffle = DAG.getVectorShuffle( 2011 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2012 return DAG.getBitcast(DstType, NewShuffle); 2013 } 2014 2015 static SDValue 2016 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2017 auto &DAG = DCI.DAG; 2018 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2019 N->getOpcode() == ISD::ZERO_EXTEND); 2020 2021 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2022 // possible before the extract_subvector can be expanded. 2023 auto Extract = N->getOperand(0); 2024 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2025 return SDValue(); 2026 auto Source = Extract.getOperand(0); 2027 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2028 if (IndexNode == nullptr) 2029 return SDValue(); 2030 auto Index = IndexNode->getZExtValue(); 2031 2032 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2033 // extracted subvector is the low or high half of its source. 2034 EVT ResVT = N->getValueType(0); 2035 if (ResVT == MVT::v8i16) { 2036 if (Extract.getValueType() != MVT::v8i8 || 2037 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2038 return SDValue(); 2039 } else if (ResVT == MVT::v4i32) { 2040 if (Extract.getValueType() != MVT::v4i16 || 2041 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2042 return SDValue(); 2043 } else if (ResVT == MVT::v2i64) { 2044 if (Extract.getValueType() != MVT::v2i32 || 2045 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2046 return SDValue(); 2047 } else { 2048 return SDValue(); 2049 } 2050 2051 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2052 bool IsLow = Index == 0; 2053 2054 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2055 : WebAssemblyISD::EXTEND_HIGH_S) 2056 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2057 : WebAssemblyISD::EXTEND_HIGH_U); 2058 2059 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2060 } 2061 2062 static SDValue 2063 performVectorConvertLowCombine(SDNode *N, 2064 TargetLowering::DAGCombinerInfo &DCI) { 2065 auto &DAG = DCI.DAG; 2066 2067 EVT ResVT = N->getValueType(0); 2068 if (ResVT != MVT::v2f64) 2069 return SDValue(); 2070 2071 if (N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) { 2072 // Combine this: 2073 // 2074 // (v2f64 ({s,u}int_to_fp 2075 // (v2i32 (extract_subvector (v4i32 $x), 0)))) 2076 // 2077 // into (f64x2.convert_low_i32x4_{s,u} $x). 2078 auto Extract = N->getOperand(0); 2079 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2080 return SDValue(); 2081 if (Extract.getValueType() != MVT::v2i32) 2082 return SDValue(); 2083 auto Source = Extract.getOperand(0); 2084 if (Source.getValueType() != MVT::v4i32) 2085 return SDValue(); 2086 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2087 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2088 return SDValue(); 2089 2090 unsigned Op = N->getOpcode() == ISD::SINT_TO_FP 2091 ? WebAssemblyISD::CONVERT_LOW_S 2092 : WebAssemblyISD::CONVERT_LOW_U; 2093 2094 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2095 2096 } else if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) { 2097 // Combine this: 2098 // 2099 // (v2f64 (extract_subvector 2100 // (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0)) 2101 // 2102 // into (f64x2.convert_low_i32x4_{s,u} $x). 2103 auto IntToFP = N->getOperand(0); 2104 if (IntToFP.getOpcode() != ISD::SINT_TO_FP && 2105 IntToFP.getOpcode() != ISD::UINT_TO_FP) 2106 return SDValue(); 2107 if (IntToFP.getValueType() != MVT::v4f64) 2108 return SDValue(); 2109 auto Source = IntToFP.getOperand(0); 2110 if (Source.getValueType() != MVT::v4i32) 2111 return SDValue(); 2112 auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2113 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2114 return SDValue(); 2115 2116 unsigned Op = IntToFP->getOpcode() == ISD::SINT_TO_FP 2117 ? WebAssemblyISD::CONVERT_LOW_S 2118 : WebAssemblyISD::CONVERT_LOW_U; 2119 2120 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2121 2122 } else { 2123 llvm_unreachable("unexpected opcode"); 2124 } 2125 } 2126 2127 static SDValue 2128 performVectorTruncSatLowCombine(SDNode *N, 2129 TargetLowering::DAGCombinerInfo &DCI) { 2130 auto &DAG = DCI.DAG; 2131 assert(N->getOpcode() == ISD::CONCAT_VECTORS); 2132 2133 // Combine this: 2134 // 2135 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2136 // 2137 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2138 EVT ResVT = N->getValueType(0); 2139 if (ResVT != MVT::v4i32) 2140 return SDValue(); 2141 2142 auto FPToInt = N->getOperand(0); 2143 auto FPToIntOp = FPToInt.getOpcode(); 2144 if (FPToIntOp != ISD::FP_TO_SINT_SAT && FPToIntOp != ISD::FP_TO_UINT_SAT) 2145 return SDValue(); 2146 if (FPToInt.getConstantOperandVal(1) != 32) 2147 return SDValue(); 2148 2149 auto Source = FPToInt.getOperand(0); 2150 if (Source.getValueType() != MVT::v2f64) 2151 return SDValue(); 2152 2153 auto *Splat = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 2154 APInt SplatValue, SplatUndef; 2155 unsigned SplatBitSize; 2156 bool HasAnyUndefs; 2157 if (!Splat || !Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2158 HasAnyUndefs)) 2159 return SDValue(); 2160 if (SplatValue != 0) 2161 return SDValue(); 2162 2163 unsigned Op = FPToIntOp == ISD::FP_TO_SINT_SAT 2164 ? WebAssemblyISD::TRUNC_SAT_ZERO_S 2165 : WebAssemblyISD::TRUNC_SAT_ZERO_U; 2166 2167 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2168 } 2169 2170 SDValue 2171 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2172 DAGCombinerInfo &DCI) const { 2173 switch (N->getOpcode()) { 2174 default: 2175 return SDValue(); 2176 case ISD::VECTOR_SHUFFLE: 2177 return performVECTOR_SHUFFLECombine(N, DCI); 2178 case ISD::SIGN_EXTEND: 2179 case ISD::ZERO_EXTEND: 2180 return performVectorExtendCombine(N, DCI); 2181 case ISD::SINT_TO_FP: 2182 case ISD::UINT_TO_FP: 2183 case ISD::EXTRACT_SUBVECTOR: 2184 return performVectorConvertLowCombine(N, DCI); 2185 case ISD::CONCAT_VECTORS: 2186 return performVectorTruncSatLowCombine(N, DCI); 2187 } 2188 } 2189