1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "wasm-lower"
38 
39 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
40     const TargetMachine &TM, const WebAssemblySubtarget &STI)
41     : TargetLowering(TM), Subtarget(&STI) {
42   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
43 
44   // Booleans always contain 0 or 1.
45   setBooleanContents(ZeroOrOneBooleanContent);
46   // Except in SIMD vectors
47   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
48   // We don't know the microarchitecture here, so just reduce register pressure.
49   setSchedulingPreference(Sched::RegPressure);
50   // Tell ISel that we have a stack pointer.
51   setStackPointerRegisterToSaveRestore(
52       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
53   // Set up the register classes.
54   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
55   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
56   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
57   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
58   if (Subtarget->hasSIMD128()) {
59     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
60     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
61     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
62     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
63   }
64   if (Subtarget->hasUnimplementedSIMD128()) {
65     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
67   }
68   // Compute derived properties from the register classes.
69   computeRegisterProperties(Subtarget->getRegisterInfo());
70 
71   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
72   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
73   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
74   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
75   setOperationAction(ISD::BRIND, MVT::Other, Custom);
76 
77   // Take the default expansion for va_arg, va_copy, and va_end. There is no
78   // default action for va_start, so we do that custom.
79   setOperationAction(ISD::VASTART, MVT::Other, Custom);
80   setOperationAction(ISD::VAARG, MVT::Other, Expand);
81   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
82   setOperationAction(ISD::VAEND, MVT::Other, Expand);
83 
84   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
85     // Don't expand the floating-point types to constant pools.
86     setOperationAction(ISD::ConstantFP, T, Legal);
87     // Expand floating-point comparisons.
88     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
89                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
90       setCondCodeAction(CC, T, Expand);
91     // Expand floating-point library function operators.
92     for (auto Op :
93          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
94       setOperationAction(Op, T, Expand);
95     // Note supported floating-point library function operators that otherwise
96     // default to expand.
97     for (auto Op :
98          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
99       setOperationAction(Op, T, Legal);
100     // Support minimum and maximum, which otherwise default to expand.
101     setOperationAction(ISD::FMINIMUM, T, Legal);
102     setOperationAction(ISD::FMAXIMUM, T, Legal);
103     // WebAssembly currently has no builtin f16 support.
104     setOperationAction(ISD::FP16_TO_FP, T, Expand);
105     setOperationAction(ISD::FP_TO_FP16, T, Expand);
106     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
107     setTruncStoreAction(T, MVT::f16, Expand);
108   }
109 
110   // Expand unavailable integer operations.
111   for (auto Op :
112        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
113         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
114         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
115     for (auto T : {MVT::i32, MVT::i64})
116       setOperationAction(Op, T, Expand);
117     if (Subtarget->hasSIMD128())
118       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
119         setOperationAction(Op, T, Expand);
120     if (Subtarget->hasUnimplementedSIMD128())
121       setOperationAction(Op, MVT::v2i64, Expand);
122   }
123 
124   // SIMD-specific configuration
125   if (Subtarget->hasSIMD128()) {
126     // Support saturating add for i8x16 and i16x8
127     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
128       for (auto T : {MVT::v16i8, MVT::v8i16})
129         setOperationAction(Op, T, Legal);
130 
131     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
132     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
133       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
134     if (Subtarget->hasUnimplementedSIMD128())
135       for (auto T : {MVT::v2i64, MVT::v2f64})
136         setOperationAction(ISD::BUILD_VECTOR, T, Custom);
137 
138     // We have custom shuffle lowering to expose the shuffle mask
139     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
140       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
141     if (Subtarget->hasUnimplementedSIMD128())
142       for (auto T: {MVT::v2i64, MVT::v2f64})
143         setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
144 
145     // Custom lowering since wasm shifts must have a scalar shift amount
146     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
147       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
148         setOperationAction(Op, T, Custom);
149       if (Subtarget->hasUnimplementedSIMD128())
150         setOperationAction(Op, MVT::v2i64, Custom);
151     }
152 
153     // Custom lower lane accesses to expand out variable indices
154     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
155       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
156         setOperationAction(Op, T, Custom);
157       if (Subtarget->hasUnimplementedSIMD128())
158         for (auto T : {MVT::v2i64, MVT::v2f64})
159           setOperationAction(Op, T, Custom);
160     }
161 
162     // There is no i64x2.mul instruction
163     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
164 
165     // There are no vector select instructions
166     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
167       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
168         setOperationAction(Op, T, Expand);
169       if (Subtarget->hasUnimplementedSIMD128())
170         for (auto T : {MVT::v2i64, MVT::v2f64})
171           setOperationAction(Op, T, Expand);
172     }
173 
174     // Expand integer operations supported for scalars but not SIMD
175     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
176                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
177       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
178         setOperationAction(Op, T, Expand);
179       if (Subtarget->hasUnimplementedSIMD128())
180         setOperationAction(Op, MVT::v2i64, Expand);
181     }
182 
183     // Expand float operations supported for scalars but not SIMD
184     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
185                     ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
186                     ISD::FEXP, ISD::FEXP2, ISD::FRINT}) {
187       setOperationAction(Op, MVT::v4f32, Expand);
188       if (Subtarget->hasUnimplementedSIMD128())
189         setOperationAction(Op, MVT::v2f64, Expand);
190     }
191 
192     // Expand additional SIMD ops that V8 hasn't implemented yet
193     if (!Subtarget->hasUnimplementedSIMD128()) {
194       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
195       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
196     }
197   }
198 
199   // As a special case, these operators use the type to mean the type to
200   // sign-extend from.
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
202   if (!Subtarget->hasSignExt()) {
203     // Sign extends are legal only when extending a vector extract
204     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
205     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
206       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
207   }
208   for (auto T : MVT::integer_vector_valuetypes())
209     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
210 
211   // Dynamic stack allocation: use the default expansion.
212   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
213   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
214   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
215 
216   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
217   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
218 
219   // Expand these forms; we pattern-match the forms that we can handle in isel.
220   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
221     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
222       setOperationAction(Op, T, Expand);
223 
224   // We have custom switch handling.
225   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
226 
227   // WebAssembly doesn't have:
228   //  - Floating-point extending loads.
229   //  - Floating-point truncating stores.
230   //  - i1 extending loads.
231   //  - extending/truncating SIMD loads/stores
232   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
233   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
234   for (auto T : MVT::integer_valuetypes())
235     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
236       setLoadExtAction(Ext, T, MVT::i1, Promote);
237   if (Subtarget->hasSIMD128()) {
238     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
239                    MVT::v2f64}) {
240       for (auto MemT : MVT::vector_valuetypes()) {
241         if (MVT(T) != MemT) {
242           setTruncStoreAction(T, MemT, Expand);
243           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
244             setLoadExtAction(Ext, T, MemT, Expand);
245         }
246       }
247     }
248   }
249 
250   // Don't do anything clever with build_pairs
251   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
252 
253   // Trap lowers to wasm unreachable
254   setOperationAction(ISD::TRAP, MVT::Other, Legal);
255 
256   // Exception handling intrinsics
257   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
258   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
259 
260   setMaxAtomicSizeInBitsSupported(64);
261 
262   if (Subtarget->hasBulkMemory()) {
263     // Use memory.copy and friends over multiple loads and stores
264     MaxStoresPerMemcpy = 1;
265     MaxStoresPerMemcpyOptSize = 1;
266     MaxStoresPerMemmove = 1;
267     MaxStoresPerMemmoveOptSize = 1;
268     MaxStoresPerMemset = 1;
269     MaxStoresPerMemsetOptSize = 1;
270   }
271 
272   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
273   // consistent with the f64 and f128 names.
274   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
275   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
276 
277   // Define the emscripten name for return address helper.
278   // TODO: when implementing other WASM backends, make this generic or only do
279   // this on emscripten depending on what they end up doing.
280   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
281 
282   // Always convert switches to br_tables unless there is only one case, which
283   // is equivalent to a simple branch. This reduces code size for wasm, and we
284   // defer possible jump table optimizations to the VM.
285   setMinimumJumpTableEntries(2);
286 }
287 
288 TargetLowering::AtomicExpansionKind
289 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
290   // We have wasm instructions for these
291   switch (AI->getOperation()) {
292   case AtomicRMWInst::Add:
293   case AtomicRMWInst::Sub:
294   case AtomicRMWInst::And:
295   case AtomicRMWInst::Or:
296   case AtomicRMWInst::Xor:
297   case AtomicRMWInst::Xchg:
298     return AtomicExpansionKind::None;
299   default:
300     break;
301   }
302   return AtomicExpansionKind::CmpXChg;
303 }
304 
305 FastISel *WebAssemblyTargetLowering::createFastISel(
306     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
307   return WebAssembly::createFastISel(FuncInfo, LibInfo);
308 }
309 
310 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
311                                                       EVT VT) const {
312   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
313   if (BitWidth > 1 && BitWidth < 8)
314     BitWidth = 8;
315 
316   if (BitWidth > 64) {
317     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
318     // the count to be an i32.
319     BitWidth = 32;
320     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
321            "32-bit shift counts ought to be enough for anyone");
322   }
323 
324   MVT Result = MVT::getIntegerVT(BitWidth);
325   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
326          "Unable to represent scalar shift amount type");
327   return Result;
328 }
329 
330 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
331 // undefined result on invalid/overflow, to the WebAssembly opcode, which
332 // traps on invalid/overflow.
333 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
334                                        MachineBasicBlock *BB,
335                                        const TargetInstrInfo &TII,
336                                        bool IsUnsigned, bool Int64,
337                                        bool Float64, unsigned LoweredOpcode) {
338   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
339 
340   unsigned OutReg = MI.getOperand(0).getReg();
341   unsigned InReg = MI.getOperand(1).getReg();
342 
343   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
344   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
345   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
346   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
347   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
348   unsigned Eqz = WebAssembly::EQZ_I32;
349   unsigned And = WebAssembly::AND_I32;
350   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
351   int64_t Substitute = IsUnsigned ? 0 : Limit;
352   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
353   auto &Context = BB->getParent()->getFunction().getContext();
354   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
355 
356   const BasicBlock *LLVMBB = BB->getBasicBlock();
357   MachineFunction *F = BB->getParent();
358   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
359   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
360   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
361 
362   MachineFunction::iterator It = ++BB->getIterator();
363   F->insert(It, FalseMBB);
364   F->insert(It, TrueMBB);
365   F->insert(It, DoneMBB);
366 
367   // Transfer the remainder of BB and its successor edges to DoneMBB.
368   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
369   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
370 
371   BB->addSuccessor(TrueMBB);
372   BB->addSuccessor(FalseMBB);
373   TrueMBB->addSuccessor(DoneMBB);
374   FalseMBB->addSuccessor(DoneMBB);
375 
376   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
377   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
378   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
379   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
380   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
381   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
382   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
383 
384   MI.eraseFromParent();
385   // For signed numbers, we can do a single comparison to determine whether
386   // fabs(x) is within range.
387   if (IsUnsigned) {
388     Tmp0 = InReg;
389   } else {
390     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
391   }
392   BuildMI(BB, DL, TII.get(FConst), Tmp1)
393       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
394   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
395 
396   // For unsigned numbers, we have to do a separate comparison with zero.
397   if (IsUnsigned) {
398     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
399     unsigned SecondCmpReg =
400         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
401     unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
402     BuildMI(BB, DL, TII.get(FConst), Tmp1)
403         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
404     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
405     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
406     CmpReg = AndReg;
407   }
408 
409   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
410 
411   // Create the CFG diamond to select between doing the conversion or using
412   // the substitute value.
413   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
414   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
415   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
416   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
417   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
418       .addReg(FalseReg)
419       .addMBB(FalseMBB)
420       .addReg(TrueReg)
421       .addMBB(TrueMBB);
422 
423   return DoneMBB;
424 }
425 
426 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
427     MachineInstr &MI, MachineBasicBlock *BB) const {
428   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
429   DebugLoc DL = MI.getDebugLoc();
430 
431   switch (MI.getOpcode()) {
432   default:
433     llvm_unreachable("Unexpected instr type to insert");
434   case WebAssembly::FP_TO_SINT_I32_F32:
435     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
436                         WebAssembly::I32_TRUNC_S_F32);
437   case WebAssembly::FP_TO_UINT_I32_F32:
438     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
439                         WebAssembly::I32_TRUNC_U_F32);
440   case WebAssembly::FP_TO_SINT_I64_F32:
441     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
442                         WebAssembly::I64_TRUNC_S_F32);
443   case WebAssembly::FP_TO_UINT_I64_F32:
444     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
445                         WebAssembly::I64_TRUNC_U_F32);
446   case WebAssembly::FP_TO_SINT_I32_F64:
447     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
448                         WebAssembly::I32_TRUNC_S_F64);
449   case WebAssembly::FP_TO_UINT_I32_F64:
450     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
451                         WebAssembly::I32_TRUNC_U_F64);
452   case WebAssembly::FP_TO_SINT_I64_F64:
453     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
454                         WebAssembly::I64_TRUNC_S_F64);
455   case WebAssembly::FP_TO_UINT_I64_F64:
456     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
457                         WebAssembly::I64_TRUNC_U_F64);
458     llvm_unreachable("Unexpected instruction to emit with custom inserter");
459   }
460 }
461 
462 const char *
463 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
464   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
465   case WebAssemblyISD::FIRST_NUMBER:
466     break;
467 #define HANDLE_NODETYPE(NODE)                                                  \
468   case WebAssemblyISD::NODE:                                                   \
469     return "WebAssemblyISD::" #NODE;
470 #include "WebAssemblyISD.def"
471 #undef HANDLE_NODETYPE
472   }
473   return nullptr;
474 }
475 
476 std::pair<unsigned, const TargetRegisterClass *>
477 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
478     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
479   // First, see if this is a constraint that directly corresponds to a
480   // WebAssembly register class.
481   if (Constraint.size() == 1) {
482     switch (Constraint[0]) {
483     case 'r':
484       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
485       if (Subtarget->hasSIMD128() && VT.isVector()) {
486         if (VT.getSizeInBits() == 128)
487           return std::make_pair(0U, &WebAssembly::V128RegClass);
488       }
489       if (VT.isInteger() && !VT.isVector()) {
490         if (VT.getSizeInBits() <= 32)
491           return std::make_pair(0U, &WebAssembly::I32RegClass);
492         if (VT.getSizeInBits() <= 64)
493           return std::make_pair(0U, &WebAssembly::I64RegClass);
494       }
495       break;
496     default:
497       break;
498     }
499   }
500 
501   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
502 }
503 
504 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
505   // Assume ctz is a relatively cheap operation.
506   return true;
507 }
508 
509 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
510   // Assume clz is a relatively cheap operation.
511   return true;
512 }
513 
514 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
515                                                       const AddrMode &AM,
516                                                       Type *Ty, unsigned AS,
517                                                       Instruction *I) const {
518   // WebAssembly offsets are added as unsigned without wrapping. The
519   // isLegalAddressingMode gives us no way to determine if wrapping could be
520   // happening, so we approximate this by accepting only non-negative offsets.
521   if (AM.BaseOffs < 0)
522     return false;
523 
524   // WebAssembly has no scale register operands.
525   if (AM.Scale != 0)
526     return false;
527 
528   // Everything else is legal.
529   return true;
530 }
531 
532 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
533     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const {
534   // WebAssembly supports unaligned accesses, though it should be declared
535   // with the p2align attribute on loads and stores which do so, and there
536   // may be a performance impact. We tell LLVM they're "fast" because
537   // for the kinds of things that LLVM uses this for (merging adjacent stores
538   // of constants, etc.), WebAssembly implementations will either want the
539   // unaligned access or they'll split anyway.
540   if (Fast)
541     *Fast = true;
542   return true;
543 }
544 
545 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
546                                               AttributeList Attr) const {
547   // The current thinking is that wasm engines will perform this optimization,
548   // so we can save on code size.
549   return true;
550 }
551 
552 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
553                                                   LLVMContext &C,
554                                                   EVT VT) const {
555   if (VT.isVector())
556     return VT.changeVectorElementTypeToInteger();
557 
558   return TargetLowering::getSetCCResultType(DL, C, VT);
559 }
560 
561 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
562                                                    const CallInst &I,
563                                                    MachineFunction &MF,
564                                                    unsigned Intrinsic) const {
565   switch (Intrinsic) {
566   case Intrinsic::wasm_atomic_notify:
567     Info.opc = ISD::INTRINSIC_W_CHAIN;
568     Info.memVT = MVT::i32;
569     Info.ptrVal = I.getArgOperand(0);
570     Info.offset = 0;
571     Info.align = 4;
572     // atomic.notify instruction does not really load the memory specified with
573     // this argument, but MachineMemOperand should either be load or store, so
574     // we set this to a load.
575     // FIXME Volatile isn't really correct, but currently all LLVM atomic
576     // instructions are treated as volatiles in the backend, so we should be
577     // consistent. The same applies for wasm_atomic_wait intrinsics too.
578     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
579     return true;
580   case Intrinsic::wasm_atomic_wait_i32:
581     Info.opc = ISD::INTRINSIC_W_CHAIN;
582     Info.memVT = MVT::i32;
583     Info.ptrVal = I.getArgOperand(0);
584     Info.offset = 0;
585     Info.align = 4;
586     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
587     return true;
588   case Intrinsic::wasm_atomic_wait_i64:
589     Info.opc = ISD::INTRINSIC_W_CHAIN;
590     Info.memVT = MVT::i64;
591     Info.ptrVal = I.getArgOperand(0);
592     Info.offset = 0;
593     Info.align = 8;
594     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
595     return true;
596   default:
597     return false;
598   }
599 }
600 
601 //===----------------------------------------------------------------------===//
602 // WebAssembly Lowering private implementation.
603 //===----------------------------------------------------------------------===//
604 
605 //===----------------------------------------------------------------------===//
606 // Lowering Code
607 //===----------------------------------------------------------------------===//
608 
609 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
610   MachineFunction &MF = DAG.getMachineFunction();
611   DAG.getContext()->diagnose(
612       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
613 }
614 
615 // Test whether the given calling convention is supported.
616 static bool callingConvSupported(CallingConv::ID CallConv) {
617   // We currently support the language-independent target-independent
618   // conventions. We don't yet have a way to annotate calls with properties like
619   // "cold", and we don't have any call-clobbered registers, so these are mostly
620   // all handled the same.
621   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
622          CallConv == CallingConv::Cold ||
623          CallConv == CallingConv::PreserveMost ||
624          CallConv == CallingConv::PreserveAll ||
625          CallConv == CallingConv::CXX_FAST_TLS;
626 }
627 
628 SDValue
629 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
630                                      SmallVectorImpl<SDValue> &InVals) const {
631   SelectionDAG &DAG = CLI.DAG;
632   SDLoc DL = CLI.DL;
633   SDValue Chain = CLI.Chain;
634   SDValue Callee = CLI.Callee;
635   MachineFunction &MF = DAG.getMachineFunction();
636   auto Layout = MF.getDataLayout();
637 
638   CallingConv::ID CallConv = CLI.CallConv;
639   if (!callingConvSupported(CallConv))
640     fail(DL, DAG,
641          "WebAssembly doesn't support language-specific or target-specific "
642          "calling conventions yet");
643   if (CLI.IsPatchPoint)
644     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
645 
646   // WebAssembly doesn't currently support explicit tail calls. If they are
647   // required, fail. Otherwise, just disable them.
648   if ((CallConv == CallingConv::Fast && CLI.IsTailCall &&
649        MF.getTarget().Options.GuaranteedTailCallOpt) ||
650       (CLI.CS && CLI.CS.isMustTailCall()))
651     fail(DL, DAG, "WebAssembly doesn't support tail call yet");
652   CLI.IsTailCall = false;
653 
654   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
655   if (Ins.size() > 1)
656     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
657 
658   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
659   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
660   unsigned NumFixedArgs = 0;
661   for (unsigned I = 0; I < Outs.size(); ++I) {
662     const ISD::OutputArg &Out = Outs[I];
663     SDValue &OutVal = OutVals[I];
664     if (Out.Flags.isNest())
665       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
666     if (Out.Flags.isInAlloca())
667       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
668     if (Out.Flags.isInConsecutiveRegs())
669       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
670     if (Out.Flags.isInConsecutiveRegsLast())
671       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
672     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
673       auto &MFI = MF.getFrameInfo();
674       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
675                                      Out.Flags.getByValAlign(),
676                                      /*isSS=*/false);
677       SDValue SizeNode =
678           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
679       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
680       Chain = DAG.getMemcpy(
681           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
682           /*isVolatile*/ false, /*AlwaysInline=*/false,
683           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
684       OutVal = FINode;
685     }
686     // Count the number of fixed args *after* legalization.
687     NumFixedArgs += Out.IsFixed;
688   }
689 
690   bool IsVarArg = CLI.IsVarArg;
691   auto PtrVT = getPointerTy(Layout);
692 
693   // Analyze operands of the call, assigning locations to each operand.
694   SmallVector<CCValAssign, 16> ArgLocs;
695   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
696 
697   if (IsVarArg) {
698     // Outgoing non-fixed arguments are placed in a buffer. First
699     // compute their offsets and the total amount of buffer space needed.
700     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
701       const ISD::OutputArg &Out = Outs[I];
702       SDValue &Arg = OutVals[I];
703       EVT VT = Arg.getValueType();
704       assert(VT != MVT::iPTR && "Legalized args should be concrete");
705       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
706       unsigned Align = std::max(Out.Flags.getOrigAlign(),
707                                 Layout.getABITypeAlignment(Ty));
708       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
709                                              Align);
710       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
711                                         Offset, VT.getSimpleVT(),
712                                         CCValAssign::Full));
713     }
714   }
715 
716   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
717 
718   SDValue FINode;
719   if (IsVarArg && NumBytes) {
720     // For non-fixed arguments, next emit stores to store the argument values
721     // to the stack buffer at the offsets computed above.
722     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
723                                                  Layout.getStackAlignment(),
724                                                  /*isSS=*/false);
725     unsigned ValNo = 0;
726     SmallVector<SDValue, 8> Chains;
727     for (SDValue Arg :
728          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
729       assert(ArgLocs[ValNo].getValNo() == ValNo &&
730              "ArgLocs should remain in order and only hold varargs args");
731       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
732       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
733       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
734                                 DAG.getConstant(Offset, DL, PtrVT));
735       Chains.push_back(
736           DAG.getStore(Chain, DL, Arg, Add,
737                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
738     }
739     if (!Chains.empty())
740       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
741   } else if (IsVarArg) {
742     FINode = DAG.getIntPtrConstant(0, DL);
743   }
744 
745   if (Callee->getOpcode() == ISD::GlobalAddress) {
746     // If the callee is a GlobalAddress node (quite common, every direct call
747     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
748     // doesn't at MO_GOT which is not needed for direct calls.
749     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
750     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
751                                         getPointerTy(DAG.getDataLayout()),
752                                         GA->getOffset());
753     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
754                          getPointerTy(DAG.getDataLayout()), Callee);
755   }
756 
757   // Compute the operands for the CALLn node.
758   SmallVector<SDValue, 16> Ops;
759   Ops.push_back(Chain);
760   Ops.push_back(Callee);
761 
762   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
763   // isn't reliable.
764   Ops.append(OutVals.begin(),
765              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
766   // Add a pointer to the vararg buffer.
767   if (IsVarArg)
768     Ops.push_back(FINode);
769 
770   SmallVector<EVT, 8> InTys;
771   for (const auto &In : Ins) {
772     assert(!In.Flags.isByVal() && "byval is not valid for return values");
773     assert(!In.Flags.isNest() && "nest is not valid for return values");
774     if (In.Flags.isInAlloca())
775       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
776     if (In.Flags.isInConsecutiveRegs())
777       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
778     if (In.Flags.isInConsecutiveRegsLast())
779       fail(DL, DAG,
780            "WebAssembly hasn't implemented cons regs last return values");
781     // Ignore In.getOrigAlign() because all our arguments are passed in
782     // registers.
783     InTys.push_back(In.VT);
784   }
785   InTys.push_back(MVT::Other);
786   SDVTList InTyList = DAG.getVTList(InTys);
787   SDValue Res =
788       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
789                   DL, InTyList, Ops);
790   if (Ins.empty()) {
791     Chain = Res;
792   } else {
793     InVals.push_back(Res);
794     Chain = Res.getValue(1);
795   }
796 
797   return Chain;
798 }
799 
800 bool WebAssemblyTargetLowering::CanLowerReturn(
801     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
802     const SmallVectorImpl<ISD::OutputArg> &Outs,
803     LLVMContext & /*Context*/) const {
804   // WebAssembly can't currently handle returning tuples.
805   return Outs.size() <= 1;
806 }
807 
808 SDValue WebAssemblyTargetLowering::LowerReturn(
809     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
810     const SmallVectorImpl<ISD::OutputArg> &Outs,
811     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
812     SelectionDAG &DAG) const {
813   assert(Outs.size() <= 1 && "WebAssembly can only return up to one value");
814   if (!callingConvSupported(CallConv))
815     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
816 
817   SmallVector<SDValue, 4> RetOps(1, Chain);
818   RetOps.append(OutVals.begin(), OutVals.end());
819   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
820 
821   // Record the number and types of the return values.
822   for (const ISD::OutputArg &Out : Outs) {
823     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
824     assert(!Out.Flags.isNest() && "nest is not valid for return values");
825     assert(Out.IsFixed && "non-fixed return value is not valid");
826     if (Out.Flags.isInAlloca())
827       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
828     if (Out.Flags.isInConsecutiveRegs())
829       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
830     if (Out.Flags.isInConsecutiveRegsLast())
831       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
832   }
833 
834   return Chain;
835 }
836 
837 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
838     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
839     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
840     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
841   if (!callingConvSupported(CallConv))
842     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
843 
844   MachineFunction &MF = DAG.getMachineFunction();
845   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
846 
847   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
848   // of the incoming values before they're represented by virtual registers.
849   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
850 
851   for (const ISD::InputArg &In : Ins) {
852     if (In.Flags.isInAlloca())
853       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
854     if (In.Flags.isNest())
855       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
856     if (In.Flags.isInConsecutiveRegs())
857       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
858     if (In.Flags.isInConsecutiveRegsLast())
859       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
860     // Ignore In.getOrigAlign() because all our arguments are passed in
861     // registers.
862     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
863                                            DAG.getTargetConstant(InVals.size(),
864                                                                  DL, MVT::i32))
865                              : DAG.getUNDEF(In.VT));
866 
867     // Record the number and types of arguments.
868     MFI->addParam(In.VT);
869   }
870 
871   // Varargs are copied into a buffer allocated by the caller, and a pointer to
872   // the buffer is passed as an argument.
873   if (IsVarArg) {
874     MVT PtrVT = getPointerTy(MF.getDataLayout());
875     unsigned VarargVreg =
876         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
877     MFI->setVarargBufferVreg(VarargVreg);
878     Chain = DAG.getCopyToReg(
879         Chain, DL, VarargVreg,
880         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
881                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
882     MFI->addParam(PtrVT);
883   }
884 
885   // Record the number and types of arguments and results.
886   SmallVector<MVT, 4> Params;
887   SmallVector<MVT, 4> Results;
888   computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
889                       DAG.getTarget(), Params, Results);
890   for (MVT VT : Results)
891     MFI->addResult(VT);
892   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
893   // the param logic here with ComputeSignatureVTs
894   assert(MFI->getParams().size() == Params.size() &&
895          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
896                     Params.begin()));
897 
898   return Chain;
899 }
900 
901 void WebAssemblyTargetLowering::ReplaceNodeResults(
902     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
903   switch (N->getOpcode()) {
904   case ISD::SIGN_EXTEND_INREG:
905     // Do not add any results, signifying that N should not be custom lowered
906     // after all. This happens because simd128 turns on custom lowering for
907     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
908     // illegal type.
909     break;
910   default:
911     llvm_unreachable(
912         "ReplaceNodeResults not implemented for this op for WebAssembly!");
913   }
914 }
915 
916 //===----------------------------------------------------------------------===//
917 //  Custom lowering hooks.
918 //===----------------------------------------------------------------------===//
919 
920 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
921                                                   SelectionDAG &DAG) const {
922   SDLoc DL(Op);
923   switch (Op.getOpcode()) {
924   default:
925     llvm_unreachable("unimplemented operation lowering");
926     return SDValue();
927   case ISD::FrameIndex:
928     return LowerFrameIndex(Op, DAG);
929   case ISD::GlobalAddress:
930     return LowerGlobalAddress(Op, DAG);
931   case ISD::ExternalSymbol:
932     return LowerExternalSymbol(Op, DAG);
933   case ISD::JumpTable:
934     return LowerJumpTable(Op, DAG);
935   case ISD::BR_JT:
936     return LowerBR_JT(Op, DAG);
937   case ISD::VASTART:
938     return LowerVASTART(Op, DAG);
939   case ISD::BlockAddress:
940   case ISD::BRIND:
941     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
942     return SDValue();
943   case ISD::RETURNADDR:
944     return LowerRETURNADDR(Op, DAG);
945   case ISD::FRAMEADDR:
946     return LowerFRAMEADDR(Op, DAG);
947   case ISD::CopyToReg:
948     return LowerCopyToReg(Op, DAG);
949   case ISD::EXTRACT_VECTOR_ELT:
950   case ISD::INSERT_VECTOR_ELT:
951     return LowerAccessVectorElement(Op, DAG);
952   case ISD::INTRINSIC_VOID:
953   case ISD::INTRINSIC_WO_CHAIN:
954   case ISD::INTRINSIC_W_CHAIN:
955     return LowerIntrinsic(Op, DAG);
956   case ISD::SIGN_EXTEND_INREG:
957     return LowerSIGN_EXTEND_INREG(Op, DAG);
958   case ISD::BUILD_VECTOR:
959     return LowerBUILD_VECTOR(Op, DAG);
960   case ISD::VECTOR_SHUFFLE:
961     return LowerVECTOR_SHUFFLE(Op, DAG);
962   case ISD::SHL:
963   case ISD::SRA:
964   case ISD::SRL:
965     return LowerShift(Op, DAG);
966   }
967 }
968 
969 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
970                                                   SelectionDAG &DAG) const {
971   SDValue Src = Op.getOperand(2);
972   if (isa<FrameIndexSDNode>(Src.getNode())) {
973     // CopyToReg nodes don't support FrameIndex operands. Other targets select
974     // the FI to some LEA-like instruction, but since we don't have that, we
975     // need to insert some kind of instruction that can take an FI operand and
976     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
977     // local.copy between Op and its FI operand.
978     SDValue Chain = Op.getOperand(0);
979     SDLoc DL(Op);
980     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
981     EVT VT = Src.getValueType();
982     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
983                                                    : WebAssembly::COPY_I64,
984                                     DL, VT, Src),
985                  0);
986     return Op.getNode()->getNumValues() == 1
987                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
988                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
989                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
990                                                            : SDValue());
991   }
992   return SDValue();
993 }
994 
995 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
996                                                    SelectionDAG &DAG) const {
997   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
998   return DAG.getTargetFrameIndex(FI, Op.getValueType());
999 }
1000 
1001 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1002                                                    SelectionDAG &DAG) const {
1003   SDLoc DL(Op);
1004 
1005   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1006     fail(DL, DAG,
1007          "Non-Emscripten WebAssembly hasn't implemented "
1008          "__builtin_return_address");
1009     return SDValue();
1010   }
1011 
1012   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1013     return SDValue();
1014 
1015   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1016   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1017                      {DAG.getConstant(Depth, DL, MVT::i32)}, false, DL)
1018       .first;
1019 }
1020 
1021 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1022                                                   SelectionDAG &DAG) const {
1023   // Non-zero depths are not supported by WebAssembly currently. Use the
1024   // legalizer's default expansion, which is to return 0 (what this function is
1025   // documented to do).
1026   if (Op.getConstantOperandVal(0) > 0)
1027     return SDValue();
1028 
1029   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1030   EVT VT = Op.getValueType();
1031   unsigned FP =
1032       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1033   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1034 }
1035 
1036 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1037                                                       SelectionDAG &DAG) const {
1038   SDLoc DL(Op);
1039   const auto *GA = cast<GlobalAddressSDNode>(Op);
1040   EVT VT = Op.getValueType();
1041   assert(GA->getTargetFlags() == 0 &&
1042          "Unexpected target flags on generic GlobalAddressSDNode");
1043   if (GA->getAddressSpace() != 0)
1044     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1045 
1046   unsigned OperandFlags = 0;
1047   if (isPositionIndependent()) {
1048     const GlobalValue *GV = GA->getGlobal();
1049     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1050       MachineFunction &MF = DAG.getMachineFunction();
1051       MVT PtrVT = getPointerTy(MF.getDataLayout());
1052       const char *BaseName;
1053       if (GV->getValueType()->isFunctionTy()) {
1054         BaseName = MF.createExternalSymbolName("__table_base");
1055         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1056       }
1057       else {
1058         BaseName = MF.createExternalSymbolName("__memory_base");
1059         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1060       }
1061       SDValue BaseAddr =
1062           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1063                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1064 
1065       SDValue SymAddr = DAG.getNode(
1066           WebAssemblyISD::WrapperPIC, DL, VT,
1067           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1068                                      OperandFlags));
1069 
1070       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1071     } else {
1072       OperandFlags = WebAssemblyII::MO_GOT;
1073     }
1074   }
1075 
1076   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1077                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1078                                                 GA->getOffset(), OperandFlags));
1079 }
1080 
1081 SDValue
1082 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1083                                                SelectionDAG &DAG) const {
1084   SDLoc DL(Op);
1085   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1086   EVT VT = Op.getValueType();
1087   assert(ES->getTargetFlags() == 0 &&
1088          "Unexpected target flags on generic ExternalSymbolSDNode");
1089   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1090                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1091 }
1092 
1093 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1094                                                   SelectionDAG &DAG) const {
1095   // There's no need for a Wrapper node because we always incorporate a jump
1096   // table operand into a BR_TABLE instruction, rather than ever
1097   // materializing it in a register.
1098   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1099   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1100                                 JT->getTargetFlags());
1101 }
1102 
1103 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1104                                               SelectionDAG &DAG) const {
1105   SDLoc DL(Op);
1106   SDValue Chain = Op.getOperand(0);
1107   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1108   SDValue Index = Op.getOperand(2);
1109   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1110 
1111   SmallVector<SDValue, 8> Ops;
1112   Ops.push_back(Chain);
1113   Ops.push_back(Index);
1114 
1115   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1116   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1117 
1118   // Add an operand for each case.
1119   for (auto MBB : MBBs)
1120     Ops.push_back(DAG.getBasicBlock(MBB));
1121 
1122   // TODO: For now, we just pick something arbitrary for a default case for now.
1123   // We really want to sniff out the guard and put in the real default case (and
1124   // delete the guard).
1125   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1126 
1127   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1128 }
1129 
1130 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1131                                                 SelectionDAG &DAG) const {
1132   SDLoc DL(Op);
1133   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1134 
1135   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1136   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1137 
1138   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1139                                     MFI->getVarargBufferVreg(), PtrVT);
1140   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1141                       MachinePointerInfo(SV), 0);
1142 }
1143 
1144 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1145                                                   SelectionDAG &DAG) const {
1146   MachineFunction &MF = DAG.getMachineFunction();
1147   unsigned IntNo;
1148   switch (Op.getOpcode()) {
1149   case ISD::INTRINSIC_VOID:
1150   case ISD::INTRINSIC_W_CHAIN:
1151     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1152     break;
1153   case ISD::INTRINSIC_WO_CHAIN:
1154     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1155     break;
1156   default:
1157     llvm_unreachable("Invalid intrinsic");
1158   }
1159   SDLoc DL(Op);
1160 
1161   switch (IntNo) {
1162   default:
1163     return SDValue(); // Don't custom lower most intrinsics.
1164 
1165   case Intrinsic::wasm_lsda: {
1166     EVT VT = Op.getValueType();
1167     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1168     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1169     auto &Context = MF.getMMI().getContext();
1170     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1171                                             Twine(MF.getFunctionNumber()));
1172     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1173                        DAG.getMCSymbol(S, PtrVT));
1174   }
1175 
1176   case Intrinsic::wasm_throw: {
1177     // We only support C++ exceptions for now
1178     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1179     if (Tag != CPP_EXCEPTION)
1180       llvm_unreachable("Invalid tag!");
1181     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1182     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1183     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1184     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1185                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
1186     return DAG.getNode(WebAssemblyISD::THROW, DL,
1187                        MVT::Other, // outchain type
1188                        {
1189                            Op.getOperand(0), // inchain
1190                            SymNode,          // exception symbol
1191                            Op.getOperand(3)  // thrown value
1192                        });
1193   }
1194   }
1195 }
1196 
1197 SDValue
1198 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1199                                                   SelectionDAG &DAG) const {
1200   // If sign extension operations are disabled, allow sext_inreg only if operand
1201   // is a vector extract. SIMD does not depend on sign extension operations, but
1202   // allowing sext_inreg in this context lets us have simple patterns to select
1203   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1204   // simpler in this file, but would necessitate large and brittle patterns to
1205   // undo the expansion and select extract_lane_s instructions.
1206   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1207   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT)
1208     return Op;
1209   // Otherwise expand
1210   return SDValue();
1211 }
1212 
1213 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1214                                                      SelectionDAG &DAG) const {
1215   SDLoc DL(Op);
1216   const EVT VecT = Op.getValueType();
1217   const EVT LaneT = Op.getOperand(0).getValueType();
1218   const size_t Lanes = Op.getNumOperands();
1219   auto IsConstant = [](const SDValue &V) {
1220     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1221   };
1222 
1223   // Find the most common operand, which is approximately the best to splat
1224   using Entry = std::pair<SDValue, size_t>;
1225   SmallVector<Entry, 16> ValueCounts;
1226   size_t NumConst = 0, NumDynamic = 0;
1227   for (const SDValue &Lane : Op->op_values()) {
1228     if (Lane.isUndef()) {
1229       continue;
1230     } else if (IsConstant(Lane)) {
1231       NumConst++;
1232     } else {
1233       NumDynamic++;
1234     }
1235     auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(),
1236                                 [&Lane](Entry A) { return A.first == Lane; });
1237     if (CountIt == ValueCounts.end()) {
1238       ValueCounts.emplace_back(Lane, 1);
1239     } else {
1240       CountIt->second++;
1241     }
1242   }
1243   auto CommonIt =
1244       std::max_element(ValueCounts.begin(), ValueCounts.end(),
1245                        [](Entry A, Entry B) { return A.second < B.second; });
1246   assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector");
1247   SDValue SplatValue = CommonIt->first;
1248   size_t NumCommon = CommonIt->second;
1249 
1250   // If v128.const is available, consider using it instead of a splat
1251   if (Subtarget->hasUnimplementedSIMD128()) {
1252     // {i32,i64,f32,f64}.const opcode, and value
1253     const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes);
1254     // SIMD prefix and opcode
1255     const size_t SplatBytes = 2;
1256     const size_t SplatConstBytes = SplatBytes + ConstBytes;
1257     // SIMD prefix, opcode, and lane index
1258     const size_t ReplaceBytes = 3;
1259     const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes;
1260     // SIMD prefix, v128.const opcode, and 128-bit value
1261     const size_t VecConstBytes = 18;
1262     // Initial v128.const and a replace_lane for each non-const operand
1263     const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes;
1264     // Initial splat and all necessary replace_lanes
1265     const size_t SplatInitBytes =
1266         IsConstant(SplatValue)
1267             // Initial constant splat
1268             ? (SplatConstBytes +
1269                // Constant replace_lanes
1270                (NumConst - NumCommon) * ReplaceConstBytes +
1271                // Dynamic replace_lanes
1272                (NumDynamic * ReplaceBytes))
1273             // Initial dynamic splat
1274             : (SplatBytes +
1275                // Constant replace_lanes
1276                (NumConst * ReplaceConstBytes) +
1277                // Dynamic replace_lanes
1278                (NumDynamic - NumCommon) * ReplaceBytes);
1279     if (ConstInitBytes < SplatInitBytes) {
1280       // Create build_vector that will lower to initial v128.const
1281       SmallVector<SDValue, 16> ConstLanes;
1282       for (const SDValue &Lane : Op->op_values()) {
1283         if (IsConstant(Lane)) {
1284           ConstLanes.push_back(Lane);
1285         } else if (LaneT.isFloatingPoint()) {
1286           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1287         } else {
1288           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1289         }
1290       }
1291       SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1292       // Add replace_lane instructions for non-const lanes
1293       for (size_t I = 0; I < Lanes; ++I) {
1294         const SDValue &Lane = Op->getOperand(I);
1295         if (!Lane.isUndef() && !IsConstant(Lane))
1296           Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1297                                DAG.getConstant(I, DL, MVT::i32));
1298       }
1299       return Result;
1300     }
1301   }
1302   // Use a splat for the initial vector
1303   SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1304   // Add replace_lane instructions for other values
1305   for (size_t I = 0; I < Lanes; ++I) {
1306     const SDValue &Lane = Op->getOperand(I);
1307     if (Lane != SplatValue)
1308       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1309                            DAG.getConstant(I, DL, MVT::i32));
1310   }
1311   return Result;
1312 }
1313 
1314 SDValue
1315 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1316                                                SelectionDAG &DAG) const {
1317   SDLoc DL(Op);
1318   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1319   MVT VecType = Op.getOperand(0).getSimpleValueType();
1320   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1321   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1322 
1323   // Space for two vector args and sixteen mask indices
1324   SDValue Ops[18];
1325   size_t OpIdx = 0;
1326   Ops[OpIdx++] = Op.getOperand(0);
1327   Ops[OpIdx++] = Op.getOperand(1);
1328 
1329   // Expand mask indices to byte indices and materialize them as operands
1330   for (int M : Mask) {
1331     for (size_t J = 0; J < LaneBytes; ++J) {
1332       // Lower undefs (represented by -1 in mask) to zero
1333       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1334       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1335     }
1336   }
1337 
1338   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1339 }
1340 
1341 SDValue
1342 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1343                                                     SelectionDAG &DAG) const {
1344   // Allow constant lane indices, expand variable lane indices
1345   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1346   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1347     return Op;
1348   else
1349     // Perform default expansion
1350     return SDValue();
1351 }
1352 
1353 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1354   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1355   // 32-bit and 64-bit unrolled shifts will have proper semantics
1356   if (LaneT.bitsGE(MVT::i32))
1357     return DAG.UnrollVectorOp(Op.getNode());
1358   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1359   SDLoc DL(Op);
1360   SDValue ShiftVal = Op.getOperand(1);
1361   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1362   SDValue MaskedShiftVal = DAG.getNode(
1363       ISD::AND,                    // mask opcode
1364       DL, ShiftVal.getValueType(), // masked value type
1365       ShiftVal,                    // original shift value operand
1366       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1367   );
1368 
1369   return DAG.UnrollVectorOp(
1370       DAG.getNode(Op.getOpcode(),        // original shift opcode
1371                   DL, Op.getValueType(), // original return type
1372                   Op.getOperand(0),      // original vector operand,
1373                   MaskedShiftVal         // new masked shift value operand
1374                   )
1375           .getNode());
1376 }
1377 
1378 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1379                                               SelectionDAG &DAG) const {
1380   SDLoc DL(Op);
1381 
1382   // Only manually lower vector shifts
1383   assert(Op.getSimpleValueType().isVector());
1384 
1385   // Expand all vector shifts until V8 fixes its implementation
1386   // TODO: remove this once V8 is fixed
1387   if (!Subtarget->hasUnimplementedSIMD128())
1388     return unrollVectorShift(Op, DAG);
1389 
1390   // Unroll non-splat vector shifts
1391   BuildVectorSDNode *ShiftVec;
1392   SDValue SplatVal;
1393   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1394       !(SplatVal = ShiftVec->getSplatValue()))
1395     return unrollVectorShift(Op, DAG);
1396 
1397   // All splats except i64x2 const splats are handled by patterns
1398   auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1399   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1400     return Op;
1401 
1402   // i64x2 const splats are custom lowered to avoid unnecessary wraps
1403   unsigned Opcode;
1404   switch (Op.getOpcode()) {
1405   case ISD::SHL:
1406     Opcode = WebAssemblyISD::VEC_SHL;
1407     break;
1408   case ISD::SRA:
1409     Opcode = WebAssemblyISD::VEC_SHR_S;
1410     break;
1411   case ISD::SRL:
1412     Opcode = WebAssemblyISD::VEC_SHR_U;
1413     break;
1414   default:
1415     llvm_unreachable("unexpected opcode");
1416   }
1417   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1418   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1419                      DAG.getConstant(Shift, DL, MVT::i32));
1420 }
1421 
1422 //===----------------------------------------------------------------------===//
1423 //                          WebAssembly Optimization Hooks
1424 //===----------------------------------------------------------------------===//
1425