1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetOptions.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "wasm-lower" 40 41 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 42 const TargetMachine &TM, const WebAssemblySubtarget &STI) 43 : TargetLowering(TM), Subtarget(&STI) { 44 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 45 46 // Booleans always contain 0 or 1. 47 setBooleanContents(ZeroOrOneBooleanContent); 48 // Except in SIMD vectors 49 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 50 // We don't know the microarchitecture here, so just reduce register pressure. 51 setSchedulingPreference(Sched::RegPressure); 52 // Tell ISel that we have a stack pointer. 53 setStackPointerRegisterToSaveRestore( 54 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 55 // Set up the register classes. 56 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 57 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 58 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 59 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 60 if (Subtarget->hasSIMD128()) { 61 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 67 } 68 // Compute derived properties from the register classes. 69 computeRegisterProperties(Subtarget->getRegisterInfo()); 70 71 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 72 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 73 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 74 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 75 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 76 setOperationAction(ISD::BRIND, MVT::Other, Custom); 77 78 // Take the default expansion for va_arg, va_copy, and va_end. There is no 79 // default action for va_start, so we do that custom. 80 setOperationAction(ISD::VASTART, MVT::Other, Custom); 81 setOperationAction(ISD::VAARG, MVT::Other, Expand); 82 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 83 setOperationAction(ISD::VAEND, MVT::Other, Expand); 84 85 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 86 // Don't expand the floating-point types to constant pools. 87 setOperationAction(ISD::ConstantFP, T, Legal); 88 // Expand floating-point comparisons. 89 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 90 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 91 setCondCodeAction(CC, T, Expand); 92 // Expand floating-point library function operators. 93 for (auto Op : 94 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 95 setOperationAction(Op, T, Expand); 96 // Note supported floating-point library function operators that otherwise 97 // default to expand. 98 for (auto Op : 99 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 100 setOperationAction(Op, T, Legal); 101 // Support minimum and maximum, which otherwise default to expand. 102 setOperationAction(ISD::FMINIMUM, T, Legal); 103 setOperationAction(ISD::FMAXIMUM, T, Legal); 104 // WebAssembly currently has no builtin f16 support. 105 setOperationAction(ISD::FP16_TO_FP, T, Expand); 106 setOperationAction(ISD::FP_TO_FP16, T, Expand); 107 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 108 setTruncStoreAction(T, MVT::f16, Expand); 109 } 110 111 // Expand unavailable integer operations. 112 for (auto Op : 113 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 114 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 115 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 116 for (auto T : {MVT::i32, MVT::i64}) 117 setOperationAction(Op, T, Expand); 118 if (Subtarget->hasSIMD128()) 119 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 120 setOperationAction(Op, T, Expand); 121 } 122 123 // SIMD-specific configuration 124 if (Subtarget->hasSIMD128()) { 125 // Hoist bitcasts out of shuffles 126 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 127 128 // Combine extends of extract_subvectors into widening ops 129 setTargetDAGCombine(ISD::SIGN_EXTEND); 130 setTargetDAGCombine(ISD::ZERO_EXTEND); 131 132 // Support saturating add for i8x16 and i16x8 133 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 134 for (auto T : {MVT::v16i8, MVT::v8i16}) 135 setOperationAction(Op, T, Legal); 136 137 // Support integer abs 138 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 139 setOperationAction(ISD::ABS, T, Legal); 140 141 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 142 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 143 MVT::v2f64}) 144 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 145 146 // We have custom shuffle lowering to expose the shuffle mask 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 148 MVT::v2f64}) 149 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 150 151 // Custom lowering since wasm shifts must have a scalar shift amount 152 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 153 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 154 setOperationAction(Op, T, Custom); 155 156 // Custom lower lane accesses to expand out variable indices 157 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 158 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 159 MVT::v2f64}) 160 setOperationAction(Op, T, Custom); 161 162 // There is no i8x16.mul instruction 163 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 164 165 // There is no vector conditional select instruction 166 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 167 MVT::v2f64}) 168 setOperationAction(ISD::SELECT_CC, T, Expand); 169 170 // Expand integer operations supported for scalars but not SIMD 171 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 172 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 173 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 174 setOperationAction(Op, T, Expand); 175 176 // But we do have integer min and max operations 177 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 178 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 179 setOperationAction(Op, T, Legal); 180 181 // Expand float operations supported for scalars but not SIMD 182 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 183 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 184 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 185 for (auto T : {MVT::v4f32, MVT::v2f64}) 186 setOperationAction(Op, T, Expand); 187 188 // Expand operations not supported for i64x2 vectors 189 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 190 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 191 192 // 64x2 conversions are not in the spec 193 for (auto Op : 194 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 195 for (auto T : {MVT::v2i64, MVT::v2f64}) 196 setOperationAction(Op, T, Expand); 197 } 198 199 // As a special case, these operators use the type to mean the type to 200 // sign-extend from. 201 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 202 if (!Subtarget->hasSignExt()) { 203 // Sign extends are legal only when extending a vector extract 204 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 205 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 206 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 207 } 208 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 209 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 210 211 // Dynamic stack allocation: use the default expansion. 212 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 213 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 214 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 215 216 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 217 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 218 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 219 220 // Expand these forms; we pattern-match the forms that we can handle in isel. 221 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 222 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 223 setOperationAction(Op, T, Expand); 224 225 // We have custom switch handling. 226 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 227 228 // WebAssembly doesn't have: 229 // - Floating-point extending loads. 230 // - Floating-point truncating stores. 231 // - i1 extending loads. 232 // - truncating SIMD stores and most extending loads 233 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 234 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 235 for (auto T : MVT::integer_valuetypes()) 236 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 237 setLoadExtAction(Ext, T, MVT::i1, Promote); 238 if (Subtarget->hasSIMD128()) { 239 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 240 MVT::v2f64}) { 241 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 242 if (MVT(T) != MemT) { 243 setTruncStoreAction(T, MemT, Expand); 244 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 245 setLoadExtAction(Ext, T, MemT, Expand); 246 } 247 } 248 } 249 // But some vector extending loads are legal 250 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 251 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 252 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 253 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 254 } 255 // And some truncating stores are legal as well 256 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 257 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 258 } 259 260 // Don't do anything clever with build_pairs 261 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 262 263 // Trap lowers to wasm unreachable 264 setOperationAction(ISD::TRAP, MVT::Other, Legal); 265 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 266 267 // Exception handling intrinsics 268 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 269 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 270 271 setMaxAtomicSizeInBitsSupported(64); 272 273 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 274 // consistent with the f64 and f128 names. 275 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 276 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 277 278 // Define the emscripten name for return address helper. 279 // TODO: when implementing other Wasm backends, make this generic or only do 280 // this on emscripten depending on what they end up doing. 281 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 282 283 // Always convert switches to br_tables unless there is only one case, which 284 // is equivalent to a simple branch. This reduces code size for wasm, and we 285 // defer possible jump table optimizations to the VM. 286 setMinimumJumpTableEntries(2); 287 } 288 289 TargetLowering::AtomicExpansionKind 290 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 291 // We have wasm instructions for these 292 switch (AI->getOperation()) { 293 case AtomicRMWInst::Add: 294 case AtomicRMWInst::Sub: 295 case AtomicRMWInst::And: 296 case AtomicRMWInst::Or: 297 case AtomicRMWInst::Xor: 298 case AtomicRMWInst::Xchg: 299 return AtomicExpansionKind::None; 300 default: 301 break; 302 } 303 return AtomicExpansionKind::CmpXChg; 304 } 305 306 FastISel *WebAssemblyTargetLowering::createFastISel( 307 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 308 return WebAssembly::createFastISel(FuncInfo, LibInfo); 309 } 310 311 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 312 EVT VT) const { 313 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 314 if (BitWidth > 1 && BitWidth < 8) 315 BitWidth = 8; 316 317 if (BitWidth > 64) { 318 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 319 // the count to be an i32. 320 BitWidth = 32; 321 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 322 "32-bit shift counts ought to be enough for anyone"); 323 } 324 325 MVT Result = MVT::getIntegerVT(BitWidth); 326 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 327 "Unable to represent scalar shift amount type"); 328 return Result; 329 } 330 331 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 332 // undefined result on invalid/overflow, to the WebAssembly opcode, which 333 // traps on invalid/overflow. 334 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 335 MachineBasicBlock *BB, 336 const TargetInstrInfo &TII, 337 bool IsUnsigned, bool Int64, 338 bool Float64, unsigned LoweredOpcode) { 339 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 340 341 Register OutReg = MI.getOperand(0).getReg(); 342 Register InReg = MI.getOperand(1).getReg(); 343 344 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 345 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 346 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 347 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 348 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 349 unsigned Eqz = WebAssembly::EQZ_I32; 350 unsigned And = WebAssembly::AND_I32; 351 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 352 int64_t Substitute = IsUnsigned ? 0 : Limit; 353 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 354 auto &Context = BB->getParent()->getFunction().getContext(); 355 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 356 357 const BasicBlock *LLVMBB = BB->getBasicBlock(); 358 MachineFunction *F = BB->getParent(); 359 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 360 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 361 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 362 363 MachineFunction::iterator It = ++BB->getIterator(); 364 F->insert(It, FalseMBB); 365 F->insert(It, TrueMBB); 366 F->insert(It, DoneMBB); 367 368 // Transfer the remainder of BB and its successor edges to DoneMBB. 369 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 370 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 371 372 BB->addSuccessor(TrueMBB); 373 BB->addSuccessor(FalseMBB); 374 TrueMBB->addSuccessor(DoneMBB); 375 FalseMBB->addSuccessor(DoneMBB); 376 377 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 378 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 379 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 380 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 381 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 382 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 383 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 384 385 MI.eraseFromParent(); 386 // For signed numbers, we can do a single comparison to determine whether 387 // fabs(x) is within range. 388 if (IsUnsigned) { 389 Tmp0 = InReg; 390 } else { 391 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 392 } 393 BuildMI(BB, DL, TII.get(FConst), Tmp1) 394 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 395 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 396 397 // For unsigned numbers, we have to do a separate comparison with zero. 398 if (IsUnsigned) { 399 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 400 Register SecondCmpReg = 401 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 402 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 403 BuildMI(BB, DL, TII.get(FConst), Tmp1) 404 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 405 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 406 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 407 CmpReg = AndReg; 408 } 409 410 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 411 412 // Create the CFG diamond to select between doing the conversion or using 413 // the substitute value. 414 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 415 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 416 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 417 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 418 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 419 .addReg(FalseReg) 420 .addMBB(FalseMBB) 421 .addReg(TrueReg) 422 .addMBB(TrueMBB); 423 424 return DoneMBB; 425 } 426 427 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 428 DebugLoc DL, MachineBasicBlock *BB, 429 const TargetInstrInfo &TII) { 430 MachineInstr &CallParams = *CallResults.getPrevNode(); 431 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 432 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 433 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 434 435 bool IsIndirect = CallParams.getOperand(0).isReg(); 436 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 437 438 unsigned CallOp; 439 if (IsIndirect && IsRetCall) { 440 CallOp = WebAssembly::RET_CALL_INDIRECT; 441 } else if (IsIndirect) { 442 CallOp = WebAssembly::CALL_INDIRECT; 443 } else if (IsRetCall) { 444 CallOp = WebAssembly::RET_CALL; 445 } else { 446 CallOp = WebAssembly::CALL; 447 } 448 449 MachineFunction &MF = *BB->getParent(); 450 const MCInstrDesc &MCID = TII.get(CallOp); 451 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 452 453 // See if we must truncate the function pointer. 454 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 455 // as 64-bit for uniformity with other pointer types. 456 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 457 Register Reg32 = 458 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 459 auto &FnPtr = CallParams.getOperand(0); 460 BuildMI(*BB, CallResults.getIterator(), DL, 461 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 462 .addReg(FnPtr.getReg()); 463 FnPtr.setReg(Reg32); 464 } 465 466 // Move the function pointer to the end of the arguments for indirect calls 467 if (IsIndirect) { 468 auto FnPtr = CallParams.getOperand(0); 469 CallParams.RemoveOperand(0); 470 CallParams.addOperand(FnPtr); 471 } 472 473 for (auto Def : CallResults.defs()) 474 MIB.add(Def); 475 476 // Add placeholders for the type index and immediate flags 477 if (IsIndirect) { 478 MIB.addImm(0); 479 MIB.addImm(0); 480 } 481 482 for (auto Use : CallParams.uses()) 483 MIB.add(Use); 484 485 BB->insert(CallResults.getIterator(), MIB); 486 CallParams.eraseFromParent(); 487 CallResults.eraseFromParent(); 488 489 return BB; 490 } 491 492 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 493 MachineInstr &MI, MachineBasicBlock *BB) const { 494 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 495 DebugLoc DL = MI.getDebugLoc(); 496 497 switch (MI.getOpcode()) { 498 default: 499 llvm_unreachable("Unexpected instr type to insert"); 500 case WebAssembly::FP_TO_SINT_I32_F32: 501 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 502 WebAssembly::I32_TRUNC_S_F32); 503 case WebAssembly::FP_TO_UINT_I32_F32: 504 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 505 WebAssembly::I32_TRUNC_U_F32); 506 case WebAssembly::FP_TO_SINT_I64_F32: 507 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 508 WebAssembly::I64_TRUNC_S_F32); 509 case WebAssembly::FP_TO_UINT_I64_F32: 510 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 511 WebAssembly::I64_TRUNC_U_F32); 512 case WebAssembly::FP_TO_SINT_I32_F64: 513 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 514 WebAssembly::I32_TRUNC_S_F64); 515 case WebAssembly::FP_TO_UINT_I32_F64: 516 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 517 WebAssembly::I32_TRUNC_U_F64); 518 case WebAssembly::FP_TO_SINT_I64_F64: 519 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 520 WebAssembly::I64_TRUNC_S_F64); 521 case WebAssembly::FP_TO_UINT_I64_F64: 522 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 523 WebAssembly::I64_TRUNC_U_F64); 524 case WebAssembly::CALL_RESULTS: 525 case WebAssembly::RET_CALL_RESULTS: 526 return LowerCallResults(MI, DL, BB, TII); 527 } 528 } 529 530 const char * 531 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 532 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 533 case WebAssemblyISD::FIRST_NUMBER: 534 case WebAssemblyISD::FIRST_MEM_OPCODE: 535 break; 536 #define HANDLE_NODETYPE(NODE) \ 537 case WebAssemblyISD::NODE: \ 538 return "WebAssemblyISD::" #NODE; 539 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 540 #include "WebAssemblyISD.def" 541 #undef HANDLE_MEM_NODETYPE 542 #undef HANDLE_NODETYPE 543 } 544 return nullptr; 545 } 546 547 std::pair<unsigned, const TargetRegisterClass *> 548 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 549 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 550 // First, see if this is a constraint that directly corresponds to a 551 // WebAssembly register class. 552 if (Constraint.size() == 1) { 553 switch (Constraint[0]) { 554 case 'r': 555 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 556 if (Subtarget->hasSIMD128() && VT.isVector()) { 557 if (VT.getSizeInBits() == 128) 558 return std::make_pair(0U, &WebAssembly::V128RegClass); 559 } 560 if (VT.isInteger() && !VT.isVector()) { 561 if (VT.getSizeInBits() <= 32) 562 return std::make_pair(0U, &WebAssembly::I32RegClass); 563 if (VT.getSizeInBits() <= 64) 564 return std::make_pair(0U, &WebAssembly::I64RegClass); 565 } 566 if (VT.isFloatingPoint() && !VT.isVector()) { 567 switch (VT.getSizeInBits()) { 568 case 32: 569 return std::make_pair(0U, &WebAssembly::F32RegClass); 570 case 64: 571 return std::make_pair(0U, &WebAssembly::F64RegClass); 572 default: 573 break; 574 } 575 } 576 break; 577 default: 578 break; 579 } 580 } 581 582 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 583 } 584 585 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 586 // Assume ctz is a relatively cheap operation. 587 return true; 588 } 589 590 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 591 // Assume clz is a relatively cheap operation. 592 return true; 593 } 594 595 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 596 const AddrMode &AM, 597 Type *Ty, unsigned AS, 598 Instruction *I) const { 599 // WebAssembly offsets are added as unsigned without wrapping. The 600 // isLegalAddressingMode gives us no way to determine if wrapping could be 601 // happening, so we approximate this by accepting only non-negative offsets. 602 if (AM.BaseOffs < 0) 603 return false; 604 605 // WebAssembly has no scale register operands. 606 if (AM.Scale != 0) 607 return false; 608 609 // Everything else is legal. 610 return true; 611 } 612 613 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 614 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 615 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 616 // WebAssembly supports unaligned accesses, though it should be declared 617 // with the p2align attribute on loads and stores which do so, and there 618 // may be a performance impact. We tell LLVM they're "fast" because 619 // for the kinds of things that LLVM uses this for (merging adjacent stores 620 // of constants, etc.), WebAssembly implementations will either want the 621 // unaligned access or they'll split anyway. 622 if (Fast) 623 *Fast = true; 624 return true; 625 } 626 627 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 628 AttributeList Attr) const { 629 // The current thinking is that wasm engines will perform this optimization, 630 // so we can save on code size. 631 return true; 632 } 633 634 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 635 EVT ExtT = ExtVal.getValueType(); 636 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 637 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 638 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 639 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 640 } 641 642 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 643 LLVMContext &C, 644 EVT VT) const { 645 if (VT.isVector()) 646 return VT.changeVectorElementTypeToInteger(); 647 648 // So far, all branch instructions in Wasm take an I32 condition. 649 // The default TargetLowering::getSetCCResultType returns the pointer size, 650 // which would be useful to reduce instruction counts when testing 651 // against 64-bit pointers/values if at some point Wasm supports that. 652 return EVT::getIntegerVT(C, 32); 653 } 654 655 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 656 const CallInst &I, 657 MachineFunction &MF, 658 unsigned Intrinsic) const { 659 switch (Intrinsic) { 660 case Intrinsic::wasm_memory_atomic_notify: 661 Info.opc = ISD::INTRINSIC_W_CHAIN; 662 Info.memVT = MVT::i32; 663 Info.ptrVal = I.getArgOperand(0); 664 Info.offset = 0; 665 Info.align = Align(4); 666 // atomic.notify instruction does not really load the memory specified with 667 // this argument, but MachineMemOperand should either be load or store, so 668 // we set this to a load. 669 // FIXME Volatile isn't really correct, but currently all LLVM atomic 670 // instructions are treated as volatiles in the backend, so we should be 671 // consistent. The same applies for wasm_atomic_wait intrinsics too. 672 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 673 return true; 674 case Intrinsic::wasm_memory_atomic_wait32: 675 Info.opc = ISD::INTRINSIC_W_CHAIN; 676 Info.memVT = MVT::i32; 677 Info.ptrVal = I.getArgOperand(0); 678 Info.offset = 0; 679 Info.align = Align(4); 680 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 681 return true; 682 case Intrinsic::wasm_memory_atomic_wait64: 683 Info.opc = ISD::INTRINSIC_W_CHAIN; 684 Info.memVT = MVT::i64; 685 Info.ptrVal = I.getArgOperand(0); 686 Info.offset = 0; 687 Info.align = Align(8); 688 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 689 return true; 690 case Intrinsic::wasm_load32_zero: 691 case Intrinsic::wasm_load64_zero: 692 Info.opc = ISD::INTRINSIC_W_CHAIN; 693 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 694 Info.ptrVal = I.getArgOperand(0); 695 Info.offset = 0; 696 Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8); 697 Info.flags = MachineMemOperand::MOLoad; 698 return true; 699 case Intrinsic::wasm_load8_lane: 700 case Intrinsic::wasm_load16_lane: 701 case Intrinsic::wasm_load32_lane: 702 case Intrinsic::wasm_load64_lane: 703 case Intrinsic::wasm_store8_lane: 704 case Intrinsic::wasm_store16_lane: 705 case Intrinsic::wasm_store32_lane: 706 case Intrinsic::wasm_store64_lane: { 707 MVT MemVT; 708 Align MemAlign; 709 switch (Intrinsic) { 710 case Intrinsic::wasm_load8_lane: 711 case Intrinsic::wasm_store8_lane: 712 MemVT = MVT::i8; 713 MemAlign = Align(1); 714 break; 715 case Intrinsic::wasm_load16_lane: 716 case Intrinsic::wasm_store16_lane: 717 MemVT = MVT::i16; 718 MemAlign = Align(2); 719 break; 720 case Intrinsic::wasm_load32_lane: 721 case Intrinsic::wasm_store32_lane: 722 MemVT = MVT::i32; 723 MemAlign = Align(4); 724 break; 725 case Intrinsic::wasm_load64_lane: 726 case Intrinsic::wasm_store64_lane: 727 MemVT = MVT::i64; 728 MemAlign = Align(8); 729 break; 730 default: 731 llvm_unreachable("unexpected intrinsic"); 732 } 733 if (Intrinsic == Intrinsic::wasm_load8_lane || 734 Intrinsic == Intrinsic::wasm_load16_lane || 735 Intrinsic == Intrinsic::wasm_load32_lane || 736 Intrinsic == Intrinsic::wasm_load64_lane) { 737 Info.opc = ISD::INTRINSIC_W_CHAIN; 738 Info.flags = MachineMemOperand::MOLoad; 739 } else { 740 Info.opc = ISD::INTRINSIC_VOID; 741 Info.flags = MachineMemOperand::MOStore; 742 } 743 Info.ptrVal = I.getArgOperand(0); 744 Info.memVT = MemVT; 745 Info.offset = 0; 746 Info.align = MemAlign; 747 return true; 748 } 749 default: 750 return false; 751 } 752 } 753 754 //===----------------------------------------------------------------------===// 755 // WebAssembly Lowering private implementation. 756 //===----------------------------------------------------------------------===// 757 758 //===----------------------------------------------------------------------===// 759 // Lowering Code 760 //===----------------------------------------------------------------------===// 761 762 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 763 MachineFunction &MF = DAG.getMachineFunction(); 764 DAG.getContext()->diagnose( 765 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 766 } 767 768 // Test whether the given calling convention is supported. 769 static bool callingConvSupported(CallingConv::ID CallConv) { 770 // We currently support the language-independent target-independent 771 // conventions. We don't yet have a way to annotate calls with properties like 772 // "cold", and we don't have any call-clobbered registers, so these are mostly 773 // all handled the same. 774 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 775 CallConv == CallingConv::Cold || 776 CallConv == CallingConv::PreserveMost || 777 CallConv == CallingConv::PreserveAll || 778 CallConv == CallingConv::CXX_FAST_TLS || 779 CallConv == CallingConv::WASM_EmscriptenInvoke || 780 CallConv == CallingConv::Swift; 781 } 782 783 SDValue 784 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 785 SmallVectorImpl<SDValue> &InVals) const { 786 SelectionDAG &DAG = CLI.DAG; 787 SDLoc DL = CLI.DL; 788 SDValue Chain = CLI.Chain; 789 SDValue Callee = CLI.Callee; 790 MachineFunction &MF = DAG.getMachineFunction(); 791 auto Layout = MF.getDataLayout(); 792 793 CallingConv::ID CallConv = CLI.CallConv; 794 if (!callingConvSupported(CallConv)) 795 fail(DL, DAG, 796 "WebAssembly doesn't support language-specific or target-specific " 797 "calling conventions yet"); 798 if (CLI.IsPatchPoint) 799 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 800 801 if (CLI.IsTailCall) { 802 auto NoTail = [&](const char *Msg) { 803 if (CLI.CB && CLI.CB->isMustTailCall()) 804 fail(DL, DAG, Msg); 805 CLI.IsTailCall = false; 806 }; 807 808 if (!Subtarget->hasTailCall()) 809 NoTail("WebAssembly 'tail-call' feature not enabled"); 810 811 // Varargs calls cannot be tail calls because the buffer is on the stack 812 if (CLI.IsVarArg) 813 NoTail("WebAssembly does not support varargs tail calls"); 814 815 // Do not tail call unless caller and callee return types match 816 const Function &F = MF.getFunction(); 817 const TargetMachine &TM = getTargetMachine(); 818 Type *RetTy = F.getReturnType(); 819 SmallVector<MVT, 4> CallerRetTys; 820 SmallVector<MVT, 4> CalleeRetTys; 821 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 822 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 823 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 824 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 825 CalleeRetTys.begin()); 826 if (!TypesMatch) 827 NoTail("WebAssembly tail call requires caller and callee return types to " 828 "match"); 829 830 // If pointers to local stack values are passed, we cannot tail call 831 if (CLI.CB) { 832 for (auto &Arg : CLI.CB->args()) { 833 Value *Val = Arg.get(); 834 // Trace the value back through pointer operations 835 while (true) { 836 Value *Src = Val->stripPointerCastsAndAliases(); 837 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 838 Src = GEP->getPointerOperand(); 839 if (Val == Src) 840 break; 841 Val = Src; 842 } 843 if (isa<AllocaInst>(Val)) { 844 NoTail( 845 "WebAssembly does not support tail calling with stack arguments"); 846 break; 847 } 848 } 849 } 850 } 851 852 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 853 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 854 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 855 856 // The generic code may have added an sret argument. If we're lowering an 857 // invoke function, the ABI requires that the function pointer be the first 858 // argument, so we may have to swap the arguments. 859 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 860 Outs[0].Flags.isSRet()) { 861 std::swap(Outs[0], Outs[1]); 862 std::swap(OutVals[0], OutVals[1]); 863 } 864 865 bool HasSwiftSelfArg = false; 866 bool HasSwiftErrorArg = false; 867 unsigned NumFixedArgs = 0; 868 for (unsigned I = 0; I < Outs.size(); ++I) { 869 const ISD::OutputArg &Out = Outs[I]; 870 SDValue &OutVal = OutVals[I]; 871 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 872 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 873 if (Out.Flags.isNest()) 874 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 875 if (Out.Flags.isInAlloca()) 876 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 877 if (Out.Flags.isInConsecutiveRegs()) 878 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 879 if (Out.Flags.isInConsecutiveRegsLast()) 880 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 881 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 882 auto &MFI = MF.getFrameInfo(); 883 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 884 Out.Flags.getNonZeroByValAlign(), 885 /*isSS=*/false); 886 SDValue SizeNode = 887 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 888 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 889 Chain = DAG.getMemcpy( 890 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 891 /*isVolatile*/ false, /*AlwaysInline=*/false, 892 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 893 OutVal = FINode; 894 } 895 // Count the number of fixed args *after* legalization. 896 NumFixedArgs += Out.IsFixed; 897 } 898 899 bool IsVarArg = CLI.IsVarArg; 900 auto PtrVT = getPointerTy(Layout); 901 902 // For swiftcc, emit additional swiftself and swifterror arguments 903 // if there aren't. These additional arguments are also added for callee 904 // signature They are necessary to match callee and caller signature for 905 // indirect call. 906 if (CallConv == CallingConv::Swift) { 907 if (!HasSwiftSelfArg) { 908 NumFixedArgs++; 909 ISD::OutputArg Arg; 910 Arg.Flags.setSwiftSelf(); 911 CLI.Outs.push_back(Arg); 912 SDValue ArgVal = DAG.getUNDEF(PtrVT); 913 CLI.OutVals.push_back(ArgVal); 914 } 915 if (!HasSwiftErrorArg) { 916 NumFixedArgs++; 917 ISD::OutputArg Arg; 918 Arg.Flags.setSwiftError(); 919 CLI.Outs.push_back(Arg); 920 SDValue ArgVal = DAG.getUNDEF(PtrVT); 921 CLI.OutVals.push_back(ArgVal); 922 } 923 } 924 925 // Analyze operands of the call, assigning locations to each operand. 926 SmallVector<CCValAssign, 16> ArgLocs; 927 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 928 929 if (IsVarArg) { 930 // Outgoing non-fixed arguments are placed in a buffer. First 931 // compute their offsets and the total amount of buffer space needed. 932 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 933 const ISD::OutputArg &Out = Outs[I]; 934 SDValue &Arg = OutVals[I]; 935 EVT VT = Arg.getValueType(); 936 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 937 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 938 Align Alignment = 939 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 940 unsigned Offset = 941 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 942 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 943 Offset, VT.getSimpleVT(), 944 CCValAssign::Full)); 945 } 946 } 947 948 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 949 950 SDValue FINode; 951 if (IsVarArg && NumBytes) { 952 // For non-fixed arguments, next emit stores to store the argument values 953 // to the stack buffer at the offsets computed above. 954 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 955 Layout.getStackAlignment(), 956 /*isSS=*/false); 957 unsigned ValNo = 0; 958 SmallVector<SDValue, 8> Chains; 959 for (SDValue Arg : 960 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 961 assert(ArgLocs[ValNo].getValNo() == ValNo && 962 "ArgLocs should remain in order and only hold varargs args"); 963 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 964 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 965 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 966 DAG.getConstant(Offset, DL, PtrVT)); 967 Chains.push_back( 968 DAG.getStore(Chain, DL, Arg, Add, 969 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 970 } 971 if (!Chains.empty()) 972 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 973 } else if (IsVarArg) { 974 FINode = DAG.getIntPtrConstant(0, DL); 975 } 976 977 if (Callee->getOpcode() == ISD::GlobalAddress) { 978 // If the callee is a GlobalAddress node (quite common, every direct call 979 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 980 // doesn't at MO_GOT which is not needed for direct calls. 981 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 982 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 983 getPointerTy(DAG.getDataLayout()), 984 GA->getOffset()); 985 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 986 getPointerTy(DAG.getDataLayout()), Callee); 987 } 988 989 // Compute the operands for the CALLn node. 990 SmallVector<SDValue, 16> Ops; 991 Ops.push_back(Chain); 992 Ops.push_back(Callee); 993 994 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 995 // isn't reliable. 996 Ops.append(OutVals.begin(), 997 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 998 // Add a pointer to the vararg buffer. 999 if (IsVarArg) 1000 Ops.push_back(FINode); 1001 1002 SmallVector<EVT, 8> InTys; 1003 for (const auto &In : Ins) { 1004 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1005 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1006 if (In.Flags.isInAlloca()) 1007 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1008 if (In.Flags.isInConsecutiveRegs()) 1009 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1010 if (In.Flags.isInConsecutiveRegsLast()) 1011 fail(DL, DAG, 1012 "WebAssembly hasn't implemented cons regs last return values"); 1013 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1014 // registers. 1015 InTys.push_back(In.VT); 1016 } 1017 1018 if (CLI.IsTailCall) { 1019 // ret_calls do not return values to the current frame 1020 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1021 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1022 } 1023 1024 InTys.push_back(MVT::Other); 1025 SDVTList InTyList = DAG.getVTList(InTys); 1026 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1027 1028 for (size_t I = 0; I < Ins.size(); ++I) 1029 InVals.push_back(Res.getValue(I)); 1030 1031 // Return the chain 1032 return Res.getValue(Ins.size()); 1033 } 1034 1035 bool WebAssemblyTargetLowering::CanLowerReturn( 1036 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1037 const SmallVectorImpl<ISD::OutputArg> &Outs, 1038 LLVMContext & /*Context*/) const { 1039 // WebAssembly can only handle returning tuples with multivalue enabled 1040 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1041 } 1042 1043 SDValue WebAssemblyTargetLowering::LowerReturn( 1044 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1045 const SmallVectorImpl<ISD::OutputArg> &Outs, 1046 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1047 SelectionDAG &DAG) const { 1048 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1049 "MVP WebAssembly can only return up to one value"); 1050 if (!callingConvSupported(CallConv)) 1051 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1052 1053 SmallVector<SDValue, 4> RetOps(1, Chain); 1054 RetOps.append(OutVals.begin(), OutVals.end()); 1055 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1056 1057 // Record the number and types of the return values. 1058 for (const ISD::OutputArg &Out : Outs) { 1059 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1060 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1061 assert(Out.IsFixed && "non-fixed return value is not valid"); 1062 if (Out.Flags.isInAlloca()) 1063 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1064 if (Out.Flags.isInConsecutiveRegs()) 1065 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1066 if (Out.Flags.isInConsecutiveRegsLast()) 1067 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1068 } 1069 1070 return Chain; 1071 } 1072 1073 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1074 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1075 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1076 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1077 if (!callingConvSupported(CallConv)) 1078 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1079 1080 MachineFunction &MF = DAG.getMachineFunction(); 1081 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1082 1083 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1084 // of the incoming values before they're represented by virtual registers. 1085 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1086 1087 bool HasSwiftErrorArg = false; 1088 bool HasSwiftSelfArg = false; 1089 for (const ISD::InputArg &In : Ins) { 1090 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1091 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1092 if (In.Flags.isInAlloca()) 1093 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1094 if (In.Flags.isNest()) 1095 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1096 if (In.Flags.isInConsecutiveRegs()) 1097 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1098 if (In.Flags.isInConsecutiveRegsLast()) 1099 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1100 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1101 // registers. 1102 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1103 DAG.getTargetConstant(InVals.size(), 1104 DL, MVT::i32)) 1105 : DAG.getUNDEF(In.VT)); 1106 1107 // Record the number and types of arguments. 1108 MFI->addParam(In.VT); 1109 } 1110 1111 // For swiftcc, emit additional swiftself and swifterror arguments 1112 // if there aren't. These additional arguments are also added for callee 1113 // signature They are necessary to match callee and caller signature for 1114 // indirect call. 1115 auto PtrVT = getPointerTy(MF.getDataLayout()); 1116 if (CallConv == CallingConv::Swift) { 1117 if (!HasSwiftSelfArg) { 1118 MFI->addParam(PtrVT); 1119 } 1120 if (!HasSwiftErrorArg) { 1121 MFI->addParam(PtrVT); 1122 } 1123 } 1124 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1125 // the buffer is passed as an argument. 1126 if (IsVarArg) { 1127 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1128 Register VarargVreg = 1129 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1130 MFI->setVarargBufferVreg(VarargVreg); 1131 Chain = DAG.getCopyToReg( 1132 Chain, DL, VarargVreg, 1133 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1134 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1135 MFI->addParam(PtrVT); 1136 } 1137 1138 // Record the number and types of arguments and results. 1139 SmallVector<MVT, 4> Params; 1140 SmallVector<MVT, 4> Results; 1141 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1142 MF.getFunction(), DAG.getTarget(), Params, Results); 1143 for (MVT VT : Results) 1144 MFI->addResult(VT); 1145 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1146 // the param logic here with ComputeSignatureVTs 1147 assert(MFI->getParams().size() == Params.size() && 1148 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1149 Params.begin())); 1150 1151 return Chain; 1152 } 1153 1154 void WebAssemblyTargetLowering::ReplaceNodeResults( 1155 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1156 switch (N->getOpcode()) { 1157 case ISD::SIGN_EXTEND_INREG: 1158 // Do not add any results, signifying that N should not be custom lowered 1159 // after all. This happens because simd128 turns on custom lowering for 1160 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1161 // illegal type. 1162 break; 1163 default: 1164 llvm_unreachable( 1165 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1166 } 1167 } 1168 1169 //===----------------------------------------------------------------------===// 1170 // Custom lowering hooks. 1171 //===----------------------------------------------------------------------===// 1172 1173 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1174 SelectionDAG &DAG) const { 1175 SDLoc DL(Op); 1176 switch (Op.getOpcode()) { 1177 default: 1178 llvm_unreachable("unimplemented operation lowering"); 1179 return SDValue(); 1180 case ISD::FrameIndex: 1181 return LowerFrameIndex(Op, DAG); 1182 case ISD::GlobalAddress: 1183 return LowerGlobalAddress(Op, DAG); 1184 case ISD::GlobalTLSAddress: 1185 return LowerGlobalTLSAddress(Op, DAG); 1186 case ISD::ExternalSymbol: 1187 return LowerExternalSymbol(Op, DAG); 1188 case ISD::JumpTable: 1189 return LowerJumpTable(Op, DAG); 1190 case ISD::BR_JT: 1191 return LowerBR_JT(Op, DAG); 1192 case ISD::VASTART: 1193 return LowerVASTART(Op, DAG); 1194 case ISD::BlockAddress: 1195 case ISD::BRIND: 1196 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1197 return SDValue(); 1198 case ISD::RETURNADDR: 1199 return LowerRETURNADDR(Op, DAG); 1200 case ISD::FRAMEADDR: 1201 return LowerFRAMEADDR(Op, DAG); 1202 case ISD::CopyToReg: 1203 return LowerCopyToReg(Op, DAG); 1204 case ISD::EXTRACT_VECTOR_ELT: 1205 case ISD::INSERT_VECTOR_ELT: 1206 return LowerAccessVectorElement(Op, DAG); 1207 case ISD::INTRINSIC_VOID: 1208 case ISD::INTRINSIC_WO_CHAIN: 1209 case ISD::INTRINSIC_W_CHAIN: 1210 return LowerIntrinsic(Op, DAG); 1211 case ISD::SIGN_EXTEND_INREG: 1212 return LowerSIGN_EXTEND_INREG(Op, DAG); 1213 case ISD::BUILD_VECTOR: 1214 return LowerBUILD_VECTOR(Op, DAG); 1215 case ISD::VECTOR_SHUFFLE: 1216 return LowerVECTOR_SHUFFLE(Op, DAG); 1217 case ISD::SETCC: 1218 return LowerSETCC(Op, DAG); 1219 case ISD::SHL: 1220 case ISD::SRA: 1221 case ISD::SRL: 1222 return LowerShift(Op, DAG); 1223 } 1224 } 1225 1226 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1227 SelectionDAG &DAG) const { 1228 SDValue Src = Op.getOperand(2); 1229 if (isa<FrameIndexSDNode>(Src.getNode())) { 1230 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1231 // the FI to some LEA-like instruction, but since we don't have that, we 1232 // need to insert some kind of instruction that can take an FI operand and 1233 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1234 // local.copy between Op and its FI operand. 1235 SDValue Chain = Op.getOperand(0); 1236 SDLoc DL(Op); 1237 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1238 EVT VT = Src.getValueType(); 1239 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1240 : WebAssembly::COPY_I64, 1241 DL, VT, Src), 1242 0); 1243 return Op.getNode()->getNumValues() == 1 1244 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1245 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1246 Op.getNumOperands() == 4 ? Op.getOperand(3) 1247 : SDValue()); 1248 } 1249 return SDValue(); 1250 } 1251 1252 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1253 SelectionDAG &DAG) const { 1254 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1255 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1256 } 1257 1258 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1259 SelectionDAG &DAG) const { 1260 SDLoc DL(Op); 1261 1262 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1263 fail(DL, DAG, 1264 "Non-Emscripten WebAssembly hasn't implemented " 1265 "__builtin_return_address"); 1266 return SDValue(); 1267 } 1268 1269 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1270 return SDValue(); 1271 1272 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1273 MakeLibCallOptions CallOptions; 1274 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1275 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1276 .first; 1277 } 1278 1279 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1280 SelectionDAG &DAG) const { 1281 // Non-zero depths are not supported by WebAssembly currently. Use the 1282 // legalizer's default expansion, which is to return 0 (what this function is 1283 // documented to do). 1284 if (Op.getConstantOperandVal(0) > 0) 1285 return SDValue(); 1286 1287 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1288 EVT VT = Op.getValueType(); 1289 Register FP = 1290 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1291 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1292 } 1293 1294 SDValue 1295 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1296 SelectionDAG &DAG) const { 1297 SDLoc DL(Op); 1298 const auto *GA = cast<GlobalAddressSDNode>(Op); 1299 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1300 1301 MachineFunction &MF = DAG.getMachineFunction(); 1302 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1303 report_fatal_error("cannot use thread-local storage without bulk memory", 1304 false); 1305 1306 const GlobalValue *GV = GA->getGlobal(); 1307 1308 // Currently Emscripten does not support dynamic linking with threads. 1309 // Therefore, if we have thread-local storage, only the local-exec model 1310 // is possible. 1311 // TODO: remove this and implement proper TLS models once Emscripten 1312 // supports dynamic linking with threads. 1313 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1314 !Subtarget->getTargetTriple().isOSEmscripten()) { 1315 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1316 "non-Emscripten OSes: variable " + 1317 GV->getName(), 1318 false); 1319 } 1320 1321 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1322 : WebAssembly::GLOBAL_GET_I32; 1323 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1324 1325 SDValue BaseAddr( 1326 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1327 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1328 0); 1329 1330 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1331 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1332 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1333 1334 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1335 } 1336 1337 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1338 SelectionDAG &DAG) const { 1339 SDLoc DL(Op); 1340 const auto *GA = cast<GlobalAddressSDNode>(Op); 1341 EVT VT = Op.getValueType(); 1342 assert(GA->getTargetFlags() == 0 && 1343 "Unexpected target flags on generic GlobalAddressSDNode"); 1344 if (GA->getAddressSpace() != 0) 1345 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1346 1347 unsigned OperandFlags = 0; 1348 if (isPositionIndependent()) { 1349 const GlobalValue *GV = GA->getGlobal(); 1350 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1351 MachineFunction &MF = DAG.getMachineFunction(); 1352 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1353 const char *BaseName; 1354 if (GV->getValueType()->isFunctionTy()) { 1355 BaseName = MF.createExternalSymbolName("__table_base"); 1356 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1357 } 1358 else { 1359 BaseName = MF.createExternalSymbolName("__memory_base"); 1360 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1361 } 1362 SDValue BaseAddr = 1363 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1364 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1365 1366 SDValue SymAddr = DAG.getNode( 1367 WebAssemblyISD::WrapperPIC, DL, VT, 1368 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1369 OperandFlags)); 1370 1371 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1372 } else { 1373 OperandFlags = WebAssemblyII::MO_GOT; 1374 } 1375 } 1376 1377 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1378 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1379 GA->getOffset(), OperandFlags)); 1380 } 1381 1382 SDValue 1383 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1384 SelectionDAG &DAG) const { 1385 SDLoc DL(Op); 1386 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1387 EVT VT = Op.getValueType(); 1388 assert(ES->getTargetFlags() == 0 && 1389 "Unexpected target flags on generic ExternalSymbolSDNode"); 1390 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1391 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1392 } 1393 1394 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1395 SelectionDAG &DAG) const { 1396 // There's no need for a Wrapper node because we always incorporate a jump 1397 // table operand into a BR_TABLE instruction, rather than ever 1398 // materializing it in a register. 1399 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1400 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1401 JT->getTargetFlags()); 1402 } 1403 1404 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1405 SelectionDAG &DAG) const { 1406 SDLoc DL(Op); 1407 SDValue Chain = Op.getOperand(0); 1408 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1409 SDValue Index = Op.getOperand(2); 1410 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1411 1412 SmallVector<SDValue, 8> Ops; 1413 Ops.push_back(Chain); 1414 Ops.push_back(Index); 1415 1416 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1417 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1418 1419 // Add an operand for each case. 1420 for (auto MBB : MBBs) 1421 Ops.push_back(DAG.getBasicBlock(MBB)); 1422 1423 // Add the first MBB as a dummy default target for now. This will be replaced 1424 // with the proper default target (and the preceding range check eliminated) 1425 // if possible by WebAssemblyFixBrTableDefaults. 1426 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1427 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1428 } 1429 1430 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1431 SelectionDAG &DAG) const { 1432 SDLoc DL(Op); 1433 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1434 1435 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1436 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1437 1438 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1439 MFI->getVarargBufferVreg(), PtrVT); 1440 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1441 MachinePointerInfo(SV)); 1442 } 1443 1444 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1445 SelectionDAG &DAG) const { 1446 MachineFunction &MF = DAG.getMachineFunction(); 1447 unsigned IntNo; 1448 switch (Op.getOpcode()) { 1449 case ISD::INTRINSIC_VOID: 1450 case ISD::INTRINSIC_W_CHAIN: 1451 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1452 break; 1453 case ISD::INTRINSIC_WO_CHAIN: 1454 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1455 break; 1456 default: 1457 llvm_unreachable("Invalid intrinsic"); 1458 } 1459 SDLoc DL(Op); 1460 1461 switch (IntNo) { 1462 default: 1463 return SDValue(); // Don't custom lower most intrinsics. 1464 1465 case Intrinsic::wasm_lsda: { 1466 EVT VT = Op.getValueType(); 1467 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1468 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1469 auto &Context = MF.getMMI().getContext(); 1470 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1471 Twine(MF.getFunctionNumber())); 1472 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1473 DAG.getMCSymbol(S, PtrVT)); 1474 } 1475 1476 case Intrinsic::wasm_throw: { 1477 // We only support C++ exceptions for now 1478 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1479 if (Tag != CPP_EXCEPTION) 1480 llvm_unreachable("Invalid tag!"); 1481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1482 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1483 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1484 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1485 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1486 return DAG.getNode(WebAssemblyISD::THROW, DL, 1487 MVT::Other, // outchain type 1488 { 1489 Op.getOperand(0), // inchain 1490 SymNode, // exception symbol 1491 Op.getOperand(3) // thrown value 1492 }); 1493 } 1494 1495 case Intrinsic::wasm_shuffle: { 1496 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1497 SDValue Ops[18]; 1498 size_t OpIdx = 0; 1499 Ops[OpIdx++] = Op.getOperand(1); 1500 Ops[OpIdx++] = Op.getOperand(2); 1501 while (OpIdx < 18) { 1502 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1503 if (MaskIdx.isUndef() || 1504 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1505 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1506 } else { 1507 Ops[OpIdx++] = MaskIdx; 1508 } 1509 } 1510 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1511 } 1512 } 1513 } 1514 1515 SDValue 1516 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1517 SelectionDAG &DAG) const { 1518 SDLoc DL(Op); 1519 // If sign extension operations are disabled, allow sext_inreg only if operand 1520 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1521 // extension operations, but allowing sext_inreg in this context lets us have 1522 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1523 // everywhere would be simpler in this file, but would necessitate large and 1524 // brittle patterns to undo the expansion and select extract_lane_s 1525 // instructions. 1526 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1527 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1528 return SDValue(); 1529 1530 const SDValue &Extract = Op.getOperand(0); 1531 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1532 if (VecT.getVectorElementType().getSizeInBits() > 32) 1533 return SDValue(); 1534 MVT ExtractedLaneT = 1535 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1536 MVT ExtractedVecT = 1537 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1538 if (ExtractedVecT == VecT) 1539 return Op; 1540 1541 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1542 const SDNode *Index = Extract.getOperand(1).getNode(); 1543 if (!isa<ConstantSDNode>(Index)) 1544 return SDValue(); 1545 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1546 unsigned Scale = 1547 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1548 assert(Scale > 1); 1549 SDValue NewIndex = 1550 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1551 SDValue NewExtract = DAG.getNode( 1552 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1553 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1554 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1555 Op.getOperand(1)); 1556 } 1557 1558 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1559 SelectionDAG &DAG) const { 1560 SDLoc DL(Op); 1561 const EVT VecT = Op.getValueType(); 1562 const EVT LaneT = Op.getOperand(0).getValueType(); 1563 const size_t Lanes = Op.getNumOperands(); 1564 bool CanSwizzle = VecT == MVT::v16i8; 1565 1566 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1567 // possible number of lanes at once followed by a sequence of replace_lane 1568 // instructions to individually initialize any remaining lanes. 1569 1570 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1571 // swizzled lanes should be given greater weight. 1572 1573 // TODO: Investigate building vectors by shuffling together vectors built by 1574 // separately specialized means. 1575 1576 auto IsConstant = [](const SDValue &V) { 1577 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1578 }; 1579 1580 // Returns the source vector and index vector pair if they exist. Checks for: 1581 // (extract_vector_elt 1582 // $src, 1583 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1584 // ) 1585 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1586 auto Bail = std::make_pair(SDValue(), SDValue()); 1587 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1588 return Bail; 1589 const SDValue &SwizzleSrc = Lane->getOperand(0); 1590 const SDValue &IndexExt = Lane->getOperand(1); 1591 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1592 return Bail; 1593 const SDValue &Index = IndexExt->getOperand(0); 1594 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1595 return Bail; 1596 const SDValue &SwizzleIndices = Index->getOperand(0); 1597 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1598 SwizzleIndices.getValueType() != MVT::v16i8 || 1599 Index->getOperand(1)->getOpcode() != ISD::Constant || 1600 Index->getConstantOperandVal(1) != I) 1601 return Bail; 1602 return std::make_pair(SwizzleSrc, SwizzleIndices); 1603 }; 1604 1605 using ValueEntry = std::pair<SDValue, size_t>; 1606 SmallVector<ValueEntry, 16> SplatValueCounts; 1607 1608 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1609 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1610 1611 auto AddCount = [](auto &Counts, const auto &Val) { 1612 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1613 [&Val](auto E) { return E.first == Val; }); 1614 if (CountIt == Counts.end()) { 1615 Counts.emplace_back(Val, 1); 1616 } else { 1617 CountIt->second++; 1618 } 1619 }; 1620 1621 auto GetMostCommon = [](auto &Counts) { 1622 auto CommonIt = 1623 std::max_element(Counts.begin(), Counts.end(), 1624 [](auto A, auto B) { return A.second < B.second; }); 1625 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1626 return *CommonIt; 1627 }; 1628 1629 size_t NumConstantLanes = 0; 1630 1631 // Count eligible lanes for each type of vector creation op 1632 for (size_t I = 0; I < Lanes; ++I) { 1633 const SDValue &Lane = Op->getOperand(I); 1634 if (Lane.isUndef()) 1635 continue; 1636 1637 AddCount(SplatValueCounts, Lane); 1638 1639 if (IsConstant(Lane)) { 1640 NumConstantLanes++; 1641 } else if (CanSwizzle) { 1642 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1643 if (SwizzleSrcs.first) 1644 AddCount(SwizzleCounts, SwizzleSrcs); 1645 } 1646 } 1647 1648 SDValue SplatValue; 1649 size_t NumSplatLanes; 1650 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1651 1652 SDValue SwizzleSrc; 1653 SDValue SwizzleIndices; 1654 size_t NumSwizzleLanes = 0; 1655 if (SwizzleCounts.size()) 1656 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1657 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1658 1659 // Predicate returning true if the lane is properly initialized by the 1660 // original instruction 1661 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1662 SDValue Result; 1663 // Prefer swizzles over vector consts over splats 1664 if (NumSwizzleLanes >= NumSplatLanes && 1665 (!Subtarget->hasUnimplementedSIMD128() || 1666 NumSwizzleLanes >= NumConstantLanes)) { 1667 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1668 SwizzleIndices); 1669 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1670 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1671 return Swizzled == GetSwizzleSrcs(I, Lane); 1672 }; 1673 } else if (NumConstantLanes >= NumSplatLanes && 1674 Subtarget->hasUnimplementedSIMD128()) { 1675 // If we support v128.const, emit it directly 1676 SmallVector<SDValue, 16> ConstLanes; 1677 for (const SDValue &Lane : Op->op_values()) { 1678 if (IsConstant(Lane)) { 1679 ConstLanes.push_back(Lane); 1680 } else if (LaneT.isFloatingPoint()) { 1681 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1682 } else { 1683 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1684 } 1685 } 1686 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1687 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1688 return IsConstant(Lane); 1689 }; 1690 } else if (NumConstantLanes >= NumSplatLanes && VecT.isInteger()) { 1691 // Otherwise, if this is an integer vector, pack the lane values together so 1692 // we can construct the 128-bit constant from a pair of i64s using a splat 1693 // followed by at most one i64x2.replace_lane. Also keep track of the lanes 1694 // that actually matter so we can avoid the replace_lane in more cases. 1695 std::array<uint64_t, 2> I64s{{0, 0}}; 1696 std::array<uint64_t, 2> ConstLaneMasks{{0, 0}}; 1697 size_t LaneBits = 128 / Lanes; 1698 size_t HalfLanes = Lanes / 2; 1699 for (size_t I = 0; I < Lanes; ++I) { 1700 const SDValue &Lane = Op.getOperand(I); 1701 if (IsConstant(Lane)) { 1702 // How much we need to shift Val to position it in an i64 1703 auto Shift = LaneBits * (I % HalfLanes); 1704 auto Mask = maskTrailingOnes<uint64_t>(LaneBits); 1705 auto Val = cast<ConstantSDNode>(Lane.getNode())->getZExtValue() & Mask; 1706 I64s[I / HalfLanes] |= Val << Shift; 1707 ConstLaneMasks[I / HalfLanes] |= Mask << Shift; 1708 } 1709 } 1710 // Check whether all constant lanes in the second half of the vector are 1711 // equivalent in the first half or vice versa to determine whether splatting 1712 // either side will be sufficient to materialize the constant. As a special 1713 // case, if the first and second halves have no constant lanes in common, we 1714 // can just combine them. 1715 bool FirstHalfSufficient = (I64s[0] & ConstLaneMasks[1]) == I64s[1]; 1716 bool SecondHalfSufficient = (I64s[1] & ConstLaneMasks[0]) == I64s[0]; 1717 bool CombinedSufficient = (ConstLaneMasks[0] & ConstLaneMasks[1]) == 0; 1718 1719 uint64_t Splatted; 1720 if (SecondHalfSufficient) { 1721 Splatted = I64s[1]; 1722 } else if (CombinedSufficient) { 1723 Splatted = I64s[0] | I64s[1]; 1724 } else { 1725 Splatted = I64s[0]; 1726 } 1727 1728 Result = DAG.getSplatBuildVector(MVT::v2i64, DL, 1729 DAG.getConstant(Splatted, DL, MVT::i64)); 1730 if (!FirstHalfSufficient && !SecondHalfSufficient && !CombinedSufficient) { 1731 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i64, Result, 1732 DAG.getConstant(I64s[1], DL, MVT::i64), 1733 DAG.getConstant(1, DL, MVT::i32)); 1734 } 1735 Result = DAG.getBitcast(VecT, Result); 1736 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1737 return IsConstant(Lane); 1738 }; 1739 } else { 1740 // Use a splat, but possibly a load_splat 1741 LoadSDNode *SplattedLoad; 1742 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1743 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1744 Result = DAG.getMemIntrinsicNode( 1745 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1746 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1747 SplattedLoad->getOffset()}, 1748 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1749 } else { 1750 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1751 } 1752 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1753 return Lane == SplatValue; 1754 }; 1755 } 1756 1757 assert(Result); 1758 assert(IsLaneConstructed); 1759 1760 // Add replace_lane instructions for any unhandled values 1761 for (size_t I = 0; I < Lanes; ++I) { 1762 const SDValue &Lane = Op->getOperand(I); 1763 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1764 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1765 DAG.getConstant(I, DL, MVT::i32)); 1766 } 1767 1768 return Result; 1769 } 1770 1771 SDValue 1772 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1773 SelectionDAG &DAG) const { 1774 SDLoc DL(Op); 1775 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1776 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1777 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1778 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1779 1780 // Space for two vector args and sixteen mask indices 1781 SDValue Ops[18]; 1782 size_t OpIdx = 0; 1783 Ops[OpIdx++] = Op.getOperand(0); 1784 Ops[OpIdx++] = Op.getOperand(1); 1785 1786 // Expand mask indices to byte indices and materialize them as operands 1787 for (int M : Mask) { 1788 for (size_t J = 0; J < LaneBytes; ++J) { 1789 // Lower undefs (represented by -1 in mask) to zero 1790 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1791 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1792 } 1793 } 1794 1795 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1796 } 1797 1798 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1799 SelectionDAG &DAG) const { 1800 SDLoc DL(Op); 1801 // The legalizer does not know how to expand the comparison modes of i64x2 1802 // vectors because no comparison modes are supported. We could solve this by 1803 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1804 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1805 // comparisons here. 1806 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1807 SmallVector<SDValue, 2> LHS, RHS; 1808 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1809 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1810 const SDValue &CC = Op->getOperand(2); 1811 auto MakeLane = [&](unsigned I) { 1812 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1813 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1814 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1815 }; 1816 return DAG.getBuildVector(Op->getValueType(0), DL, 1817 {MakeLane(0), MakeLane(1)}); 1818 } 1819 1820 SDValue 1821 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1822 SelectionDAG &DAG) const { 1823 // Allow constant lane indices, expand variable lane indices 1824 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1825 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1826 return Op; 1827 else 1828 // Perform default expansion 1829 return SDValue(); 1830 } 1831 1832 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1833 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1834 // 32-bit and 64-bit unrolled shifts will have proper semantics 1835 if (LaneT.bitsGE(MVT::i32)) 1836 return DAG.UnrollVectorOp(Op.getNode()); 1837 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1838 SDLoc DL(Op); 1839 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1840 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1841 unsigned ShiftOpcode = Op.getOpcode(); 1842 SmallVector<SDValue, 16> ShiftedElements; 1843 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1844 SmallVector<SDValue, 16> ShiftElements; 1845 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1846 SmallVector<SDValue, 16> UnrolledOps; 1847 for (size_t i = 0; i < NumLanes; ++i) { 1848 SDValue MaskedShiftValue = 1849 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1850 SDValue ShiftedValue = ShiftedElements[i]; 1851 if (ShiftOpcode == ISD::SRA) 1852 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1853 ShiftedValue, DAG.getValueType(LaneT)); 1854 UnrolledOps.push_back( 1855 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1856 } 1857 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1858 } 1859 1860 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1861 SelectionDAG &DAG) const { 1862 SDLoc DL(Op); 1863 1864 // Only manually lower vector shifts 1865 assert(Op.getSimpleValueType().isVector()); 1866 1867 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1868 if (!ShiftVal) 1869 return unrollVectorShift(Op, DAG); 1870 1871 // Use anyext because none of the high bits can affect the shift 1872 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1873 1874 unsigned Opcode; 1875 switch (Op.getOpcode()) { 1876 case ISD::SHL: 1877 Opcode = WebAssemblyISD::VEC_SHL; 1878 break; 1879 case ISD::SRA: 1880 Opcode = WebAssemblyISD::VEC_SHR_S; 1881 break; 1882 case ISD::SRL: 1883 Opcode = WebAssemblyISD::VEC_SHR_U; 1884 break; 1885 default: 1886 llvm_unreachable("unexpected opcode"); 1887 } 1888 1889 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1890 } 1891 1892 //===----------------------------------------------------------------------===// 1893 // Custom DAG combine hooks 1894 //===----------------------------------------------------------------------===// 1895 static SDValue 1896 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1897 auto &DAG = DCI.DAG; 1898 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1899 1900 // Hoist vector bitcasts that don't change the number of lanes out of unary 1901 // shuffles, where they are less likely to get in the way of other combines. 1902 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1903 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1904 SDValue Bitcast = N->getOperand(0); 1905 if (Bitcast.getOpcode() != ISD::BITCAST) 1906 return SDValue(); 1907 if (!N->getOperand(1).isUndef()) 1908 return SDValue(); 1909 SDValue CastOp = Bitcast.getOperand(0); 1910 MVT SrcType = CastOp.getSimpleValueType(); 1911 MVT DstType = Bitcast.getSimpleValueType(); 1912 if (!SrcType.is128BitVector() || 1913 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1914 return SDValue(); 1915 SDValue NewShuffle = DAG.getVectorShuffle( 1916 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1917 return DAG.getBitcast(DstType, NewShuffle); 1918 } 1919 1920 static SDValue performVectorWidenCombine(SDNode *N, 1921 TargetLowering::DAGCombinerInfo &DCI) { 1922 auto &DAG = DCI.DAG; 1923 assert(N->getOpcode() == ISD::SIGN_EXTEND || 1924 N->getOpcode() == ISD::ZERO_EXTEND); 1925 1926 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 1927 // possible before the extract_subvector can be expanded. 1928 auto Extract = N->getOperand(0); 1929 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 1930 return SDValue(); 1931 auto Source = Extract.getOperand(0); 1932 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 1933 if (IndexNode == nullptr) 1934 return SDValue(); 1935 auto Index = IndexNode->getZExtValue(); 1936 1937 // Only v8i8 and v4i16 extracts can be widened, and only if the extracted 1938 // subvector is the low or high half of its source. 1939 EVT ResVT = N->getValueType(0); 1940 if (ResVT == MVT::v8i16) { 1941 if (Extract.getValueType() != MVT::v8i8 || 1942 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 1943 return SDValue(); 1944 } else if (ResVT == MVT::v4i32) { 1945 if (Extract.getValueType() != MVT::v4i16 || 1946 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 1947 return SDValue(); 1948 } else { 1949 return SDValue(); 1950 } 1951 1952 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 1953 bool IsLow = Index == 0; 1954 1955 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S 1956 : WebAssemblyISD::WIDEN_HIGH_S) 1957 : (IsLow ? WebAssemblyISD::WIDEN_LOW_U 1958 : WebAssemblyISD::WIDEN_HIGH_U); 1959 1960 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 1961 } 1962 1963 SDValue 1964 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 1965 DAGCombinerInfo &DCI) const { 1966 switch (N->getOpcode()) { 1967 default: 1968 return SDValue(); 1969 case ISD::VECTOR_SHUFFLE: 1970 return performVECTOR_SHUFFLECombine(N, DCI); 1971 case ISD::SIGN_EXTEND: 1972 case ISD::ZERO_EXTEND: 1973 return performVectorWidenCombine(N, DCI); 1974 } 1975 } 1976