1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 66 } 67 // Compute derived properties from the register classes. 68 computeRegisterProperties(Subtarget->getRegisterInfo()); 69 70 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 71 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 72 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 73 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 74 setOperationAction(ISD::BRIND, MVT::Other, Custom); 75 76 // Take the default expansion for va_arg, va_copy, and va_end. There is no 77 // default action for va_start, so we do that custom. 78 setOperationAction(ISD::VASTART, MVT::Other, Custom); 79 setOperationAction(ISD::VAARG, MVT::Other, Expand); 80 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 81 setOperationAction(ISD::VAEND, MVT::Other, Expand); 82 83 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 84 // Don't expand the floating-point types to constant pools. 85 setOperationAction(ISD::ConstantFP, T, Legal); 86 // Expand floating-point comparisons. 87 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 88 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 89 setCondCodeAction(CC, T, Expand); 90 // Expand floating-point library function operators. 91 for (auto Op : 92 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 93 setOperationAction(Op, T, Expand); 94 // Note supported floating-point library function operators that otherwise 95 // default to expand. 96 for (auto Op : 97 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 98 setOperationAction(Op, T, Legal); 99 // Support minimum and maximum, which otherwise default to expand. 100 setOperationAction(ISD::FMINIMUM, T, Legal); 101 setOperationAction(ISD::FMAXIMUM, T, Legal); 102 // WebAssembly currently has no builtin f16 support. 103 setOperationAction(ISD::FP16_TO_FP, T, Expand); 104 setOperationAction(ISD::FP_TO_FP16, T, Expand); 105 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 106 setTruncStoreAction(T, MVT::f16, Expand); 107 } 108 109 // Expand unavailable integer operations. 110 for (auto Op : 111 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 112 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 113 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 114 for (auto T : {MVT::i32, MVT::i64}) 115 setOperationAction(Op, T, Expand); 116 if (Subtarget->hasSIMD128()) 117 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 118 setOperationAction(Op, T, Expand); 119 } 120 121 // SIMD-specific configuration 122 if (Subtarget->hasSIMD128()) { 123 // Support saturating add for i8x16 and i16x8 124 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 125 for (auto T : {MVT::v16i8, MVT::v8i16}) 126 setOperationAction(Op, T, Legal); 127 128 // Support integer abs 129 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 130 setOperationAction(ISD::ABS, T, Legal); 131 132 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 133 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 134 MVT::v2f64}) 135 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 136 137 // We have custom shuffle lowering to expose the shuffle mask 138 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 139 MVT::v2f64}) 140 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 141 142 // Custom lowering since wasm shifts must have a scalar shift amount 143 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 144 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 145 setOperationAction(Op, T, Custom); 146 147 // Custom lower lane accesses to expand out variable indices 148 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 149 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 150 MVT::v2f64}) 151 setOperationAction(Op, T, Custom); 152 153 // There is no i64x2.mul instruction 154 // TODO: Actually, there is now. Implement it. 155 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 156 157 // There are no vector select instructions 158 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) 159 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 160 MVT::v2f64}) 161 setOperationAction(Op, T, Expand); 162 163 // Expand integer operations supported for scalars but not SIMD 164 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 165 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 166 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 167 setOperationAction(Op, T, Expand); 168 169 // But we do have integer min and max operations 170 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 171 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 172 setOperationAction(Op, T, Legal); 173 174 // Expand float operations supported for scalars but not SIMD 175 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 176 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 177 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 178 for (auto T : {MVT::v4f32, MVT::v2f64}) 179 setOperationAction(Op, T, Expand); 180 181 // Expand operations not supported for i64x2 vectors 182 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 183 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 184 185 // 64x2 conversions are not in the spec 186 for (auto Op : 187 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 188 for (auto T : {MVT::v2i64, MVT::v2f64}) 189 setOperationAction(Op, T, Expand); 190 } 191 192 // As a special case, these operators use the type to mean the type to 193 // sign-extend from. 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 195 if (!Subtarget->hasSignExt()) { 196 // Sign extends are legal only when extending a vector extract 197 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 198 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 199 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 200 } 201 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 202 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 203 204 // Dynamic stack allocation: use the default expansion. 205 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 206 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 207 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 208 209 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 210 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 211 212 // Expand these forms; we pattern-match the forms that we can handle in isel. 213 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 214 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 215 setOperationAction(Op, T, Expand); 216 217 // We have custom switch handling. 218 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 219 220 // WebAssembly doesn't have: 221 // - Floating-point extending loads. 222 // - Floating-point truncating stores. 223 // - i1 extending loads. 224 // - truncating SIMD stores and most extending loads 225 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 226 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 227 for (auto T : MVT::integer_valuetypes()) 228 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 229 setLoadExtAction(Ext, T, MVT::i1, Promote); 230 if (Subtarget->hasSIMD128()) { 231 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 232 MVT::v2f64}) { 233 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 234 if (MVT(T) != MemT) { 235 setTruncStoreAction(T, MemT, Expand); 236 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 237 setLoadExtAction(Ext, T, MemT, Expand); 238 } 239 } 240 } 241 // But some vector extending loads are legal 242 if (Subtarget->hasUnimplementedSIMD128()) { 243 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 244 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 245 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 246 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 247 } 248 } 249 } 250 251 // Don't do anything clever with build_pairs 252 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 253 254 // Trap lowers to wasm unreachable 255 setOperationAction(ISD::TRAP, MVT::Other, Legal); 256 257 // Exception handling intrinsics 258 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 259 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 260 261 setMaxAtomicSizeInBitsSupported(64); 262 263 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 264 // consistent with the f64 and f128 names. 265 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 266 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 267 268 // Define the emscripten name for return address helper. 269 // TODO: when implementing other WASM backends, make this generic or only do 270 // this on emscripten depending on what they end up doing. 271 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 272 273 // Always convert switches to br_tables unless there is only one case, which 274 // is equivalent to a simple branch. This reduces code size for wasm, and we 275 // defer possible jump table optimizations to the VM. 276 setMinimumJumpTableEntries(2); 277 } 278 279 TargetLowering::AtomicExpansionKind 280 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 281 // We have wasm instructions for these 282 switch (AI->getOperation()) { 283 case AtomicRMWInst::Add: 284 case AtomicRMWInst::Sub: 285 case AtomicRMWInst::And: 286 case AtomicRMWInst::Or: 287 case AtomicRMWInst::Xor: 288 case AtomicRMWInst::Xchg: 289 return AtomicExpansionKind::None; 290 default: 291 break; 292 } 293 return AtomicExpansionKind::CmpXChg; 294 } 295 296 FastISel *WebAssemblyTargetLowering::createFastISel( 297 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 298 return WebAssembly::createFastISel(FuncInfo, LibInfo); 299 } 300 301 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 302 EVT VT) const { 303 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 304 if (BitWidth > 1 && BitWidth < 8) 305 BitWidth = 8; 306 307 if (BitWidth > 64) { 308 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 309 // the count to be an i32. 310 BitWidth = 32; 311 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 312 "32-bit shift counts ought to be enough for anyone"); 313 } 314 315 MVT Result = MVT::getIntegerVT(BitWidth); 316 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 317 "Unable to represent scalar shift amount type"); 318 return Result; 319 } 320 321 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 322 // undefined result on invalid/overflow, to the WebAssembly opcode, which 323 // traps on invalid/overflow. 324 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 325 MachineBasicBlock *BB, 326 const TargetInstrInfo &TII, 327 bool IsUnsigned, bool Int64, 328 bool Float64, unsigned LoweredOpcode) { 329 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 330 331 Register OutReg = MI.getOperand(0).getReg(); 332 Register InReg = MI.getOperand(1).getReg(); 333 334 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 335 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 336 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 337 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 338 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 339 unsigned Eqz = WebAssembly::EQZ_I32; 340 unsigned And = WebAssembly::AND_I32; 341 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 342 int64_t Substitute = IsUnsigned ? 0 : Limit; 343 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 344 auto &Context = BB->getParent()->getFunction().getContext(); 345 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 346 347 const BasicBlock *LLVMBB = BB->getBasicBlock(); 348 MachineFunction *F = BB->getParent(); 349 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 350 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 351 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 352 353 MachineFunction::iterator It = ++BB->getIterator(); 354 F->insert(It, FalseMBB); 355 F->insert(It, TrueMBB); 356 F->insert(It, DoneMBB); 357 358 // Transfer the remainder of BB and its successor edges to DoneMBB. 359 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 360 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 361 362 BB->addSuccessor(TrueMBB); 363 BB->addSuccessor(FalseMBB); 364 TrueMBB->addSuccessor(DoneMBB); 365 FalseMBB->addSuccessor(DoneMBB); 366 367 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 368 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 369 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 370 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 371 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 372 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 373 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 374 375 MI.eraseFromParent(); 376 // For signed numbers, we can do a single comparison to determine whether 377 // fabs(x) is within range. 378 if (IsUnsigned) { 379 Tmp0 = InReg; 380 } else { 381 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 382 } 383 BuildMI(BB, DL, TII.get(FConst), Tmp1) 384 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 385 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 386 387 // For unsigned numbers, we have to do a separate comparison with zero. 388 if (IsUnsigned) { 389 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 390 Register SecondCmpReg = 391 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 392 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 393 BuildMI(BB, DL, TII.get(FConst), Tmp1) 394 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 395 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 396 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 397 CmpReg = AndReg; 398 } 399 400 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 401 402 // Create the CFG diamond to select between doing the conversion or using 403 // the substitute value. 404 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 405 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 406 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 407 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 408 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 409 .addReg(FalseReg) 410 .addMBB(FalseMBB) 411 .addReg(TrueReg) 412 .addMBB(TrueMBB); 413 414 return DoneMBB; 415 } 416 417 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 418 DebugLoc DL, MachineBasicBlock *BB, 419 const TargetInstrInfo &TII) { 420 MachineInstr &CallParams = *CallResults.getPrevNode(); 421 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 422 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 423 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 424 425 bool IsIndirect = CallParams.getOperand(0).isReg(); 426 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 427 428 unsigned CallOp; 429 if (IsIndirect && IsRetCall) { 430 CallOp = WebAssembly::RET_CALL_INDIRECT; 431 } else if (IsIndirect) { 432 CallOp = WebAssembly::CALL_INDIRECT; 433 } else if (IsRetCall) { 434 CallOp = WebAssembly::RET_CALL; 435 } else { 436 CallOp = WebAssembly::CALL; 437 } 438 439 MachineFunction &MF = *BB->getParent(); 440 const MCInstrDesc &MCID = TII.get(CallOp); 441 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 442 443 // Move the function pointer to the end of the arguments for indirect calls 444 if (IsIndirect) { 445 auto FnPtr = CallParams.getOperand(0); 446 CallParams.RemoveOperand(0); 447 CallParams.addOperand(FnPtr); 448 } 449 450 for (auto Def : CallResults.defs()) 451 MIB.add(Def); 452 453 // Add placeholders for the type index and immediate flags 454 if (IsIndirect) { 455 MIB.addImm(0); 456 MIB.addImm(0); 457 } 458 459 for (auto Use : CallParams.uses()) 460 MIB.add(Use); 461 462 BB->insert(CallResults.getIterator(), MIB); 463 CallParams.eraseFromParent(); 464 CallResults.eraseFromParent(); 465 466 return BB; 467 } 468 469 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 470 MachineInstr &MI, MachineBasicBlock *BB) const { 471 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 472 DebugLoc DL = MI.getDebugLoc(); 473 474 switch (MI.getOpcode()) { 475 default: 476 llvm_unreachable("Unexpected instr type to insert"); 477 case WebAssembly::FP_TO_SINT_I32_F32: 478 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 479 WebAssembly::I32_TRUNC_S_F32); 480 case WebAssembly::FP_TO_UINT_I32_F32: 481 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 482 WebAssembly::I32_TRUNC_U_F32); 483 case WebAssembly::FP_TO_SINT_I64_F32: 484 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 485 WebAssembly::I64_TRUNC_S_F32); 486 case WebAssembly::FP_TO_UINT_I64_F32: 487 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 488 WebAssembly::I64_TRUNC_U_F32); 489 case WebAssembly::FP_TO_SINT_I32_F64: 490 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 491 WebAssembly::I32_TRUNC_S_F64); 492 case WebAssembly::FP_TO_UINT_I32_F64: 493 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 494 WebAssembly::I32_TRUNC_U_F64); 495 case WebAssembly::FP_TO_SINT_I64_F64: 496 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 497 WebAssembly::I64_TRUNC_S_F64); 498 case WebAssembly::FP_TO_UINT_I64_F64: 499 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 500 WebAssembly::I64_TRUNC_U_F64); 501 case WebAssembly::CALL_RESULTS: 502 case WebAssembly::RET_CALL_RESULTS: 503 return LowerCallResults(MI, DL, BB, TII); 504 } 505 } 506 507 const char * 508 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 509 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 510 case WebAssemblyISD::FIRST_NUMBER: 511 case WebAssemblyISD::FIRST_MEM_OPCODE: 512 break; 513 #define HANDLE_NODETYPE(NODE) \ 514 case WebAssemblyISD::NODE: \ 515 return "WebAssemblyISD::" #NODE; 516 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 517 #include "WebAssemblyISD.def" 518 #undef HANDLE_MEM_NODETYPE 519 #undef HANDLE_NODETYPE 520 } 521 return nullptr; 522 } 523 524 std::pair<unsigned, const TargetRegisterClass *> 525 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 526 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 527 // First, see if this is a constraint that directly corresponds to a 528 // WebAssembly register class. 529 if (Constraint.size() == 1) { 530 switch (Constraint[0]) { 531 case 'r': 532 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 533 if (Subtarget->hasSIMD128() && VT.isVector()) { 534 if (VT.getSizeInBits() == 128) 535 return std::make_pair(0U, &WebAssembly::V128RegClass); 536 } 537 if (VT.isInteger() && !VT.isVector()) { 538 if (VT.getSizeInBits() <= 32) 539 return std::make_pair(0U, &WebAssembly::I32RegClass); 540 if (VT.getSizeInBits() <= 64) 541 return std::make_pair(0U, &WebAssembly::I64RegClass); 542 } 543 break; 544 default: 545 break; 546 } 547 } 548 549 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 550 } 551 552 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 553 // Assume ctz is a relatively cheap operation. 554 return true; 555 } 556 557 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 558 // Assume clz is a relatively cheap operation. 559 return true; 560 } 561 562 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 563 const AddrMode &AM, 564 Type *Ty, unsigned AS, 565 Instruction *I) const { 566 // WebAssembly offsets are added as unsigned without wrapping. The 567 // isLegalAddressingMode gives us no way to determine if wrapping could be 568 // happening, so we approximate this by accepting only non-negative offsets. 569 if (AM.BaseOffs < 0) 570 return false; 571 572 // WebAssembly has no scale register operands. 573 if (AM.Scale != 0) 574 return false; 575 576 // Everything else is legal. 577 return true; 578 } 579 580 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 581 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 582 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 583 // WebAssembly supports unaligned accesses, though it should be declared 584 // with the p2align attribute on loads and stores which do so, and there 585 // may be a performance impact. We tell LLVM they're "fast" because 586 // for the kinds of things that LLVM uses this for (merging adjacent stores 587 // of constants, etc.), WebAssembly implementations will either want the 588 // unaligned access or they'll split anyway. 589 if (Fast) 590 *Fast = true; 591 return true; 592 } 593 594 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 595 AttributeList Attr) const { 596 // The current thinking is that wasm engines will perform this optimization, 597 // so we can save on code size. 598 return true; 599 } 600 601 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 602 if (!Subtarget->hasUnimplementedSIMD128()) 603 return false; 604 MVT ExtT = ExtVal.getSimpleValueType(); 605 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 606 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 607 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 608 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 609 } 610 611 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 612 LLVMContext &C, 613 EVT VT) const { 614 if (VT.isVector()) 615 return VT.changeVectorElementTypeToInteger(); 616 617 return TargetLowering::getSetCCResultType(DL, C, VT); 618 } 619 620 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 621 const CallInst &I, 622 MachineFunction &MF, 623 unsigned Intrinsic) const { 624 switch (Intrinsic) { 625 case Intrinsic::wasm_atomic_notify: 626 Info.opc = ISD::INTRINSIC_W_CHAIN; 627 Info.memVT = MVT::i32; 628 Info.ptrVal = I.getArgOperand(0); 629 Info.offset = 0; 630 Info.align = Align(4); 631 // atomic.notify instruction does not really load the memory specified with 632 // this argument, but MachineMemOperand should either be load or store, so 633 // we set this to a load. 634 // FIXME Volatile isn't really correct, but currently all LLVM atomic 635 // instructions are treated as volatiles in the backend, so we should be 636 // consistent. The same applies for wasm_atomic_wait intrinsics too. 637 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 638 return true; 639 case Intrinsic::wasm_atomic_wait_i32: 640 Info.opc = ISD::INTRINSIC_W_CHAIN; 641 Info.memVT = MVT::i32; 642 Info.ptrVal = I.getArgOperand(0); 643 Info.offset = 0; 644 Info.align = Align(4); 645 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 646 return true; 647 case Intrinsic::wasm_atomic_wait_i64: 648 Info.opc = ISD::INTRINSIC_W_CHAIN; 649 Info.memVT = MVT::i64; 650 Info.ptrVal = I.getArgOperand(0); 651 Info.offset = 0; 652 Info.align = Align(8); 653 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 654 return true; 655 default: 656 return false; 657 } 658 } 659 660 //===----------------------------------------------------------------------===// 661 // WebAssembly Lowering private implementation. 662 //===----------------------------------------------------------------------===// 663 664 //===----------------------------------------------------------------------===// 665 // Lowering Code 666 //===----------------------------------------------------------------------===// 667 668 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 669 MachineFunction &MF = DAG.getMachineFunction(); 670 DAG.getContext()->diagnose( 671 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 672 } 673 674 // Test whether the given calling convention is supported. 675 static bool callingConvSupported(CallingConv::ID CallConv) { 676 // We currently support the language-independent target-independent 677 // conventions. We don't yet have a way to annotate calls with properties like 678 // "cold", and we don't have any call-clobbered registers, so these are mostly 679 // all handled the same. 680 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 681 CallConv == CallingConv::Cold || 682 CallConv == CallingConv::PreserveMost || 683 CallConv == CallingConv::PreserveAll || 684 CallConv == CallingConv::CXX_FAST_TLS || 685 CallConv == CallingConv::WASM_EmscriptenInvoke || 686 CallConv == CallingConv::Swift; 687 } 688 689 SDValue 690 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 691 SmallVectorImpl<SDValue> &InVals) const { 692 SelectionDAG &DAG = CLI.DAG; 693 SDLoc DL = CLI.DL; 694 SDValue Chain = CLI.Chain; 695 SDValue Callee = CLI.Callee; 696 MachineFunction &MF = DAG.getMachineFunction(); 697 auto Layout = MF.getDataLayout(); 698 699 CallingConv::ID CallConv = CLI.CallConv; 700 if (!callingConvSupported(CallConv)) 701 fail(DL, DAG, 702 "WebAssembly doesn't support language-specific or target-specific " 703 "calling conventions yet"); 704 if (CLI.IsPatchPoint) 705 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 706 707 if (CLI.IsTailCall) { 708 auto NoTail = [&](const char *Msg) { 709 if (CLI.CB && CLI.CB->isMustTailCall()) 710 fail(DL, DAG, Msg); 711 CLI.IsTailCall = false; 712 }; 713 714 if (!Subtarget->hasTailCall()) 715 NoTail("WebAssembly 'tail-call' feature not enabled"); 716 717 // Varargs calls cannot be tail calls because the buffer is on the stack 718 if (CLI.IsVarArg) 719 NoTail("WebAssembly does not support varargs tail calls"); 720 721 // Do not tail call unless caller and callee return types match 722 const Function &F = MF.getFunction(); 723 const TargetMachine &TM = getTargetMachine(); 724 Type *RetTy = F.getReturnType(); 725 SmallVector<MVT, 4> CallerRetTys; 726 SmallVector<MVT, 4> CalleeRetTys; 727 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 728 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 729 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 730 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 731 CalleeRetTys.begin()); 732 if (!TypesMatch) 733 NoTail("WebAssembly tail call requires caller and callee return types to " 734 "match"); 735 736 // If pointers to local stack values are passed, we cannot tail call 737 if (CLI.CB) { 738 for (auto &Arg : CLI.CB->args()) { 739 Value *Val = Arg.get(); 740 // Trace the value back through pointer operations 741 while (true) { 742 Value *Src = Val->stripPointerCastsAndAliases(); 743 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 744 Src = GEP->getPointerOperand(); 745 if (Val == Src) 746 break; 747 Val = Src; 748 } 749 if (isa<AllocaInst>(Val)) { 750 NoTail( 751 "WebAssembly does not support tail calling with stack arguments"); 752 break; 753 } 754 } 755 } 756 } 757 758 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 759 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 760 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 761 762 // The generic code may have added an sret argument. If we're lowering an 763 // invoke function, the ABI requires that the function pointer be the first 764 // argument, so we may have to swap the arguments. 765 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 766 Outs[0].Flags.isSRet()) { 767 std::swap(Outs[0], Outs[1]); 768 std::swap(OutVals[0], OutVals[1]); 769 } 770 771 bool HasSwiftSelfArg = false; 772 bool HasSwiftErrorArg = false; 773 unsigned NumFixedArgs = 0; 774 for (unsigned I = 0; I < Outs.size(); ++I) { 775 const ISD::OutputArg &Out = Outs[I]; 776 SDValue &OutVal = OutVals[I]; 777 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 778 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 779 if (Out.Flags.isNest()) 780 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 781 if (Out.Flags.isInAlloca()) 782 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 783 if (Out.Flags.isInConsecutiveRegs()) 784 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 785 if (Out.Flags.isInConsecutiveRegsLast()) 786 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 787 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 788 auto &MFI = MF.getFrameInfo(); 789 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 790 Out.Flags.getNonZeroByValAlign(), 791 /*isSS=*/false); 792 SDValue SizeNode = 793 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 794 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 795 Chain = DAG.getMemcpy( 796 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 797 /*isVolatile*/ false, /*AlwaysInline=*/false, 798 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 799 OutVal = FINode; 800 } 801 // Count the number of fixed args *after* legalization. 802 NumFixedArgs += Out.IsFixed; 803 } 804 805 bool IsVarArg = CLI.IsVarArg; 806 auto PtrVT = getPointerTy(Layout); 807 808 // For swiftcc, emit additional swiftself and swifterror arguments 809 // if there aren't. These additional arguments are also added for callee 810 // signature They are necessary to match callee and caller signature for 811 // indirect call. 812 if (CallConv == CallingConv::Swift) { 813 if (!HasSwiftSelfArg) { 814 NumFixedArgs++; 815 ISD::OutputArg Arg; 816 Arg.Flags.setSwiftSelf(); 817 CLI.Outs.push_back(Arg); 818 SDValue ArgVal = DAG.getUNDEF(PtrVT); 819 CLI.OutVals.push_back(ArgVal); 820 } 821 if (!HasSwiftErrorArg) { 822 NumFixedArgs++; 823 ISD::OutputArg Arg; 824 Arg.Flags.setSwiftError(); 825 CLI.Outs.push_back(Arg); 826 SDValue ArgVal = DAG.getUNDEF(PtrVT); 827 CLI.OutVals.push_back(ArgVal); 828 } 829 } 830 831 // Analyze operands of the call, assigning locations to each operand. 832 SmallVector<CCValAssign, 16> ArgLocs; 833 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 834 835 if (IsVarArg) { 836 // Outgoing non-fixed arguments are placed in a buffer. First 837 // compute their offsets and the total amount of buffer space needed. 838 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 839 const ISD::OutputArg &Out = Outs[I]; 840 SDValue &Arg = OutVals[I]; 841 EVT VT = Arg.getValueType(); 842 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 843 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 844 unsigned Align = std::max(Out.Flags.getOrigAlign(), 845 Layout.getABITypeAlignment(Ty)); 846 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 847 Align); 848 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 849 Offset, VT.getSimpleVT(), 850 CCValAssign::Full)); 851 } 852 } 853 854 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 855 856 SDValue FINode; 857 if (IsVarArg && NumBytes) { 858 // For non-fixed arguments, next emit stores to store the argument values 859 // to the stack buffer at the offsets computed above. 860 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 861 Layout.getStackAlignment(), 862 /*isSS=*/false); 863 unsigned ValNo = 0; 864 SmallVector<SDValue, 8> Chains; 865 for (SDValue Arg : 866 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 867 assert(ArgLocs[ValNo].getValNo() == ValNo && 868 "ArgLocs should remain in order and only hold varargs args"); 869 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 870 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 871 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 872 DAG.getConstant(Offset, DL, PtrVT)); 873 Chains.push_back( 874 DAG.getStore(Chain, DL, Arg, Add, 875 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 876 } 877 if (!Chains.empty()) 878 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 879 } else if (IsVarArg) { 880 FINode = DAG.getIntPtrConstant(0, DL); 881 } 882 883 if (Callee->getOpcode() == ISD::GlobalAddress) { 884 // If the callee is a GlobalAddress node (quite common, every direct call 885 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 886 // doesn't at MO_GOT which is not needed for direct calls. 887 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 888 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 889 getPointerTy(DAG.getDataLayout()), 890 GA->getOffset()); 891 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 892 getPointerTy(DAG.getDataLayout()), Callee); 893 } 894 895 // Compute the operands for the CALLn node. 896 SmallVector<SDValue, 16> Ops; 897 Ops.push_back(Chain); 898 Ops.push_back(Callee); 899 900 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 901 // isn't reliable. 902 Ops.append(OutVals.begin(), 903 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 904 // Add a pointer to the vararg buffer. 905 if (IsVarArg) 906 Ops.push_back(FINode); 907 908 SmallVector<EVT, 8> InTys; 909 for (const auto &In : Ins) { 910 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 911 assert(!In.Flags.isNest() && "nest is not valid for return values"); 912 if (In.Flags.isInAlloca()) 913 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 914 if (In.Flags.isInConsecutiveRegs()) 915 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 916 if (In.Flags.isInConsecutiveRegsLast()) 917 fail(DL, DAG, 918 "WebAssembly hasn't implemented cons regs last return values"); 919 // Ignore In.getOrigAlign() because all our arguments are passed in 920 // registers. 921 InTys.push_back(In.VT); 922 } 923 924 if (CLI.IsTailCall) { 925 // ret_calls do not return values to the current frame 926 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 927 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 928 } 929 930 InTys.push_back(MVT::Other); 931 SDVTList InTyList = DAG.getVTList(InTys); 932 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 933 934 for (size_t I = 0; I < Ins.size(); ++I) 935 InVals.push_back(Res.getValue(I)); 936 937 // Return the chain 938 return Res.getValue(Ins.size()); 939 } 940 941 bool WebAssemblyTargetLowering::CanLowerReturn( 942 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 943 const SmallVectorImpl<ISD::OutputArg> &Outs, 944 LLVMContext & /*Context*/) const { 945 // WebAssembly can only handle returning tuples with multivalue enabled 946 return Subtarget->hasMultivalue() || Outs.size() <= 1; 947 } 948 949 SDValue WebAssemblyTargetLowering::LowerReturn( 950 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 951 const SmallVectorImpl<ISD::OutputArg> &Outs, 952 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 953 SelectionDAG &DAG) const { 954 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 955 "MVP WebAssembly can only return up to one value"); 956 if (!callingConvSupported(CallConv)) 957 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 958 959 SmallVector<SDValue, 4> RetOps(1, Chain); 960 RetOps.append(OutVals.begin(), OutVals.end()); 961 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 962 963 // Record the number and types of the return values. 964 for (const ISD::OutputArg &Out : Outs) { 965 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 966 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 967 assert(Out.IsFixed && "non-fixed return value is not valid"); 968 if (Out.Flags.isInAlloca()) 969 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 970 if (Out.Flags.isInConsecutiveRegs()) 971 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 972 if (Out.Flags.isInConsecutiveRegsLast()) 973 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 974 } 975 976 return Chain; 977 } 978 979 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 980 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 981 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 982 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 983 if (!callingConvSupported(CallConv)) 984 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 985 986 MachineFunction &MF = DAG.getMachineFunction(); 987 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 988 989 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 990 // of the incoming values before they're represented by virtual registers. 991 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 992 993 bool HasSwiftErrorArg = false; 994 bool HasSwiftSelfArg = false; 995 for (const ISD::InputArg &In : Ins) { 996 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 997 HasSwiftErrorArg |= In.Flags.isSwiftError(); 998 if (In.Flags.isInAlloca()) 999 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1000 if (In.Flags.isNest()) 1001 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1002 if (In.Flags.isInConsecutiveRegs()) 1003 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1004 if (In.Flags.isInConsecutiveRegsLast()) 1005 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1006 // Ignore In.getOrigAlign() because all our arguments are passed in 1007 // registers. 1008 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1009 DAG.getTargetConstant(InVals.size(), 1010 DL, MVT::i32)) 1011 : DAG.getUNDEF(In.VT)); 1012 1013 // Record the number and types of arguments. 1014 MFI->addParam(In.VT); 1015 } 1016 1017 // For swiftcc, emit additional swiftself and swifterror arguments 1018 // if there aren't. These additional arguments are also added for callee 1019 // signature They are necessary to match callee and caller signature for 1020 // indirect call. 1021 auto PtrVT = getPointerTy(MF.getDataLayout()); 1022 if (CallConv == CallingConv::Swift) { 1023 if (!HasSwiftSelfArg) { 1024 MFI->addParam(PtrVT); 1025 } 1026 if (!HasSwiftErrorArg) { 1027 MFI->addParam(PtrVT); 1028 } 1029 } 1030 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1031 // the buffer is passed as an argument. 1032 if (IsVarArg) { 1033 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1034 Register VarargVreg = 1035 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1036 MFI->setVarargBufferVreg(VarargVreg); 1037 Chain = DAG.getCopyToReg( 1038 Chain, DL, VarargVreg, 1039 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1040 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1041 MFI->addParam(PtrVT); 1042 } 1043 1044 // Record the number and types of arguments and results. 1045 SmallVector<MVT, 4> Params; 1046 SmallVector<MVT, 4> Results; 1047 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1048 MF.getFunction(), DAG.getTarget(), Params, Results); 1049 for (MVT VT : Results) 1050 MFI->addResult(VT); 1051 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1052 // the param logic here with ComputeSignatureVTs 1053 assert(MFI->getParams().size() == Params.size() && 1054 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1055 Params.begin())); 1056 1057 return Chain; 1058 } 1059 1060 void WebAssemblyTargetLowering::ReplaceNodeResults( 1061 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1062 switch (N->getOpcode()) { 1063 case ISD::SIGN_EXTEND_INREG: 1064 // Do not add any results, signifying that N should not be custom lowered 1065 // after all. This happens because simd128 turns on custom lowering for 1066 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1067 // illegal type. 1068 break; 1069 default: 1070 llvm_unreachable( 1071 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1072 } 1073 } 1074 1075 //===----------------------------------------------------------------------===// 1076 // Custom lowering hooks. 1077 //===----------------------------------------------------------------------===// 1078 1079 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1080 SelectionDAG &DAG) const { 1081 SDLoc DL(Op); 1082 switch (Op.getOpcode()) { 1083 default: 1084 llvm_unreachable("unimplemented operation lowering"); 1085 return SDValue(); 1086 case ISD::FrameIndex: 1087 return LowerFrameIndex(Op, DAG); 1088 case ISD::GlobalAddress: 1089 return LowerGlobalAddress(Op, DAG); 1090 case ISD::ExternalSymbol: 1091 return LowerExternalSymbol(Op, DAG); 1092 case ISD::JumpTable: 1093 return LowerJumpTable(Op, DAG); 1094 case ISD::BR_JT: 1095 return LowerBR_JT(Op, DAG); 1096 case ISD::VASTART: 1097 return LowerVASTART(Op, DAG); 1098 case ISD::BlockAddress: 1099 case ISD::BRIND: 1100 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1101 return SDValue(); 1102 case ISD::RETURNADDR: 1103 return LowerRETURNADDR(Op, DAG); 1104 case ISD::FRAMEADDR: 1105 return LowerFRAMEADDR(Op, DAG); 1106 case ISD::CopyToReg: 1107 return LowerCopyToReg(Op, DAG); 1108 case ISD::EXTRACT_VECTOR_ELT: 1109 case ISD::INSERT_VECTOR_ELT: 1110 return LowerAccessVectorElement(Op, DAG); 1111 case ISD::INTRINSIC_VOID: 1112 case ISD::INTRINSIC_WO_CHAIN: 1113 case ISD::INTRINSIC_W_CHAIN: 1114 return LowerIntrinsic(Op, DAG); 1115 case ISD::SIGN_EXTEND_INREG: 1116 return LowerSIGN_EXTEND_INREG(Op, DAG); 1117 case ISD::BUILD_VECTOR: 1118 return LowerBUILD_VECTOR(Op, DAG); 1119 case ISD::VECTOR_SHUFFLE: 1120 return LowerVECTOR_SHUFFLE(Op, DAG); 1121 case ISD::SETCC: 1122 return LowerSETCC(Op, DAG); 1123 case ISD::SHL: 1124 case ISD::SRA: 1125 case ISD::SRL: 1126 return LowerShift(Op, DAG); 1127 } 1128 } 1129 1130 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1131 SelectionDAG &DAG) const { 1132 SDValue Src = Op.getOperand(2); 1133 if (isa<FrameIndexSDNode>(Src.getNode())) { 1134 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1135 // the FI to some LEA-like instruction, but since we don't have that, we 1136 // need to insert some kind of instruction that can take an FI operand and 1137 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1138 // local.copy between Op and its FI operand. 1139 SDValue Chain = Op.getOperand(0); 1140 SDLoc DL(Op); 1141 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1142 EVT VT = Src.getValueType(); 1143 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1144 : WebAssembly::COPY_I64, 1145 DL, VT, Src), 1146 0); 1147 return Op.getNode()->getNumValues() == 1 1148 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1149 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1150 Op.getNumOperands() == 4 ? Op.getOperand(3) 1151 : SDValue()); 1152 } 1153 return SDValue(); 1154 } 1155 1156 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1157 SelectionDAG &DAG) const { 1158 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1159 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1160 } 1161 1162 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1163 SelectionDAG &DAG) const { 1164 SDLoc DL(Op); 1165 1166 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1167 fail(DL, DAG, 1168 "Non-Emscripten WebAssembly hasn't implemented " 1169 "__builtin_return_address"); 1170 return SDValue(); 1171 } 1172 1173 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1174 return SDValue(); 1175 1176 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1177 MakeLibCallOptions CallOptions; 1178 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1179 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1180 .first; 1181 } 1182 1183 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1184 SelectionDAG &DAG) const { 1185 // Non-zero depths are not supported by WebAssembly currently. Use the 1186 // legalizer's default expansion, which is to return 0 (what this function is 1187 // documented to do). 1188 if (Op.getConstantOperandVal(0) > 0) 1189 return SDValue(); 1190 1191 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1192 EVT VT = Op.getValueType(); 1193 Register FP = 1194 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1195 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1196 } 1197 1198 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1199 SelectionDAG &DAG) const { 1200 SDLoc DL(Op); 1201 const auto *GA = cast<GlobalAddressSDNode>(Op); 1202 EVT VT = Op.getValueType(); 1203 assert(GA->getTargetFlags() == 0 && 1204 "Unexpected target flags on generic GlobalAddressSDNode"); 1205 if (GA->getAddressSpace() != 0) 1206 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1207 1208 unsigned OperandFlags = 0; 1209 if (isPositionIndependent()) { 1210 const GlobalValue *GV = GA->getGlobal(); 1211 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1212 MachineFunction &MF = DAG.getMachineFunction(); 1213 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1214 const char *BaseName; 1215 if (GV->getValueType()->isFunctionTy()) { 1216 BaseName = MF.createExternalSymbolName("__table_base"); 1217 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1218 } 1219 else { 1220 BaseName = MF.createExternalSymbolName("__memory_base"); 1221 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1222 } 1223 SDValue BaseAddr = 1224 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1225 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1226 1227 SDValue SymAddr = DAG.getNode( 1228 WebAssemblyISD::WrapperPIC, DL, VT, 1229 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1230 OperandFlags)); 1231 1232 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1233 } else { 1234 OperandFlags = WebAssemblyII::MO_GOT; 1235 } 1236 } 1237 1238 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1239 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1240 GA->getOffset(), OperandFlags)); 1241 } 1242 1243 SDValue 1244 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1245 SelectionDAG &DAG) const { 1246 SDLoc DL(Op); 1247 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1248 EVT VT = Op.getValueType(); 1249 assert(ES->getTargetFlags() == 0 && 1250 "Unexpected target flags on generic ExternalSymbolSDNode"); 1251 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1252 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1253 } 1254 1255 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1256 SelectionDAG &DAG) const { 1257 // There's no need for a Wrapper node because we always incorporate a jump 1258 // table operand into a BR_TABLE instruction, rather than ever 1259 // materializing it in a register. 1260 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1261 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1262 JT->getTargetFlags()); 1263 } 1264 1265 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1266 SelectionDAG &DAG) const { 1267 SDLoc DL(Op); 1268 SDValue Chain = Op.getOperand(0); 1269 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1270 SDValue Index = Op.getOperand(2); 1271 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1272 1273 SmallVector<SDValue, 8> Ops; 1274 Ops.push_back(Chain); 1275 Ops.push_back(Index); 1276 1277 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1278 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1279 1280 // Add an operand for each case. 1281 for (auto MBB : MBBs) 1282 Ops.push_back(DAG.getBasicBlock(MBB)); 1283 1284 // TODO: For now, we just pick something arbitrary for a default case for now. 1285 // We really want to sniff out the guard and put in the real default case (and 1286 // delete the guard). 1287 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1288 1289 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1290 } 1291 1292 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1293 SelectionDAG &DAG) const { 1294 SDLoc DL(Op); 1295 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1296 1297 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1298 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1299 1300 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1301 MFI->getVarargBufferVreg(), PtrVT); 1302 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1303 MachinePointerInfo(SV), 0); 1304 } 1305 1306 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1307 SelectionDAG &DAG) const { 1308 MachineFunction &MF = DAG.getMachineFunction(); 1309 unsigned IntNo; 1310 switch (Op.getOpcode()) { 1311 case ISD::INTRINSIC_VOID: 1312 case ISD::INTRINSIC_W_CHAIN: 1313 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1314 break; 1315 case ISD::INTRINSIC_WO_CHAIN: 1316 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1317 break; 1318 default: 1319 llvm_unreachable("Invalid intrinsic"); 1320 } 1321 SDLoc DL(Op); 1322 1323 switch (IntNo) { 1324 default: 1325 return SDValue(); // Don't custom lower most intrinsics. 1326 1327 case Intrinsic::wasm_lsda: { 1328 EVT VT = Op.getValueType(); 1329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1330 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1331 auto &Context = MF.getMMI().getContext(); 1332 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1333 Twine(MF.getFunctionNumber())); 1334 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1335 DAG.getMCSymbol(S, PtrVT)); 1336 } 1337 1338 case Intrinsic::wasm_throw: { 1339 // We only support C++ exceptions for now 1340 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1341 if (Tag != CPP_EXCEPTION) 1342 llvm_unreachable("Invalid tag!"); 1343 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1344 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1345 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1346 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1347 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1348 return DAG.getNode(WebAssemblyISD::THROW, DL, 1349 MVT::Other, // outchain type 1350 { 1351 Op.getOperand(0), // inchain 1352 SymNode, // exception symbol 1353 Op.getOperand(3) // thrown value 1354 }); 1355 } 1356 1357 case Intrinsic::wasm_shuffle: { 1358 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1359 SDValue Ops[18]; 1360 size_t OpIdx = 0; 1361 Ops[OpIdx++] = Op.getOperand(1); 1362 Ops[OpIdx++] = Op.getOperand(2); 1363 while (OpIdx < 18) { 1364 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1365 if (MaskIdx.isUndef() || 1366 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1367 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1368 } else { 1369 Ops[OpIdx++] = MaskIdx; 1370 } 1371 } 1372 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1373 } 1374 } 1375 } 1376 1377 SDValue 1378 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1379 SelectionDAG &DAG) const { 1380 SDLoc DL(Op); 1381 // If sign extension operations are disabled, allow sext_inreg only if operand 1382 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1383 // extension operations, but allowing sext_inreg in this context lets us have 1384 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1385 // everywhere would be simpler in this file, but would necessitate large and 1386 // brittle patterns to undo the expansion and select extract_lane_s 1387 // instructions. 1388 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1389 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1390 return SDValue(); 1391 1392 const SDValue &Extract = Op.getOperand(0); 1393 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1394 if (VecT.getVectorElementType().getSizeInBits() > 32) 1395 return SDValue(); 1396 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1397 ->getVT() 1398 .getSimpleVT(); 1399 MVT ExtractedVecT = 1400 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1401 if (ExtractedVecT == VecT) 1402 return Op; 1403 1404 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1405 const SDValue &Index = Extract.getOperand(1); 1406 unsigned IndexVal = 1407 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1408 unsigned Scale = 1409 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1410 assert(Scale > 1); 1411 SDValue NewIndex = 1412 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1413 SDValue NewExtract = DAG.getNode( 1414 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1415 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1416 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1417 Op.getOperand(1)); 1418 } 1419 1420 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1421 SelectionDAG &DAG) const { 1422 SDLoc DL(Op); 1423 const EVT VecT = Op.getValueType(); 1424 const EVT LaneT = Op.getOperand(0).getValueType(); 1425 const size_t Lanes = Op.getNumOperands(); 1426 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8; 1427 1428 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1429 // possible number of lanes at once followed by a sequence of replace_lane 1430 // instructions to individually initialize any remaining lanes. 1431 1432 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1433 // swizzled lanes should be given greater weight. 1434 1435 // TODO: Investigate building vectors by shuffling together vectors built by 1436 // separately specialized means. 1437 1438 auto IsConstant = [](const SDValue &V) { 1439 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1440 }; 1441 1442 // Returns the source vector and index vector pair if they exist. Checks for: 1443 // (extract_vector_elt 1444 // $src, 1445 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1446 // ) 1447 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1448 auto Bail = std::make_pair(SDValue(), SDValue()); 1449 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1450 return Bail; 1451 const SDValue &SwizzleSrc = Lane->getOperand(0); 1452 const SDValue &IndexExt = Lane->getOperand(1); 1453 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1454 return Bail; 1455 const SDValue &Index = IndexExt->getOperand(0); 1456 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1457 return Bail; 1458 const SDValue &SwizzleIndices = Index->getOperand(0); 1459 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1460 SwizzleIndices.getValueType() != MVT::v16i8 || 1461 Index->getOperand(1)->getOpcode() != ISD::Constant || 1462 Index->getConstantOperandVal(1) != I) 1463 return Bail; 1464 return std::make_pair(SwizzleSrc, SwizzleIndices); 1465 }; 1466 1467 using ValueEntry = std::pair<SDValue, size_t>; 1468 SmallVector<ValueEntry, 16> SplatValueCounts; 1469 1470 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1471 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1472 1473 auto AddCount = [](auto &Counts, const auto &Val) { 1474 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1475 [&Val](auto E) { return E.first == Val; }); 1476 if (CountIt == Counts.end()) { 1477 Counts.emplace_back(Val, 1); 1478 } else { 1479 CountIt->second++; 1480 } 1481 }; 1482 1483 auto GetMostCommon = [](auto &Counts) { 1484 auto CommonIt = 1485 std::max_element(Counts.begin(), Counts.end(), 1486 [](auto A, auto B) { return A.second < B.second; }); 1487 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1488 return *CommonIt; 1489 }; 1490 1491 size_t NumConstantLanes = 0; 1492 1493 // Count eligible lanes for each type of vector creation op 1494 for (size_t I = 0; I < Lanes; ++I) { 1495 const SDValue &Lane = Op->getOperand(I); 1496 if (Lane.isUndef()) 1497 continue; 1498 1499 AddCount(SplatValueCounts, Lane); 1500 1501 if (IsConstant(Lane)) { 1502 NumConstantLanes++; 1503 } else if (CanSwizzle) { 1504 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1505 if (SwizzleSrcs.first) 1506 AddCount(SwizzleCounts, SwizzleSrcs); 1507 } 1508 } 1509 1510 SDValue SplatValue; 1511 size_t NumSplatLanes; 1512 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1513 1514 SDValue SwizzleSrc; 1515 SDValue SwizzleIndices; 1516 size_t NumSwizzleLanes = 0; 1517 if (SwizzleCounts.size()) 1518 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1519 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1520 1521 // Predicate returning true if the lane is properly initialized by the 1522 // original instruction 1523 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1524 SDValue Result; 1525 if (Subtarget->hasUnimplementedSIMD128()) { 1526 // Prefer swizzles over vector consts over splats 1527 if (NumSwizzleLanes >= NumSplatLanes && 1528 NumSwizzleLanes >= NumConstantLanes) { 1529 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1530 SwizzleIndices); 1531 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1532 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1533 return Swizzled == GetSwizzleSrcs(I, Lane); 1534 }; 1535 } else if (NumConstantLanes >= NumSplatLanes) { 1536 SmallVector<SDValue, 16> ConstLanes; 1537 for (const SDValue &Lane : Op->op_values()) { 1538 if (IsConstant(Lane)) { 1539 ConstLanes.push_back(Lane); 1540 } else if (LaneT.isFloatingPoint()) { 1541 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1542 } else { 1543 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1544 } 1545 } 1546 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1547 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1548 return IsConstant(Lane); 1549 }; 1550 } 1551 } 1552 if (!Result) { 1553 // Use a splat, but possibly a load_splat 1554 LoadSDNode *SplattedLoad; 1555 if (Subtarget->hasUnimplementedSIMD128() && 1556 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1557 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1558 Result = DAG.getMemIntrinsicNode( 1559 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1560 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1561 SplattedLoad->getOffset()}, 1562 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1563 } else { 1564 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1565 } 1566 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1567 return Lane == SplatValue; 1568 }; 1569 } 1570 1571 // Add replace_lane instructions for any unhandled values 1572 for (size_t I = 0; I < Lanes; ++I) { 1573 const SDValue &Lane = Op->getOperand(I); 1574 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1575 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1576 DAG.getConstant(I, DL, MVT::i32)); 1577 } 1578 1579 return Result; 1580 } 1581 1582 SDValue 1583 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1584 SelectionDAG &DAG) const { 1585 SDLoc DL(Op); 1586 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1587 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1588 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1589 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1590 1591 // Space for two vector args and sixteen mask indices 1592 SDValue Ops[18]; 1593 size_t OpIdx = 0; 1594 Ops[OpIdx++] = Op.getOperand(0); 1595 Ops[OpIdx++] = Op.getOperand(1); 1596 1597 // Expand mask indices to byte indices and materialize them as operands 1598 for (int M : Mask) { 1599 for (size_t J = 0; J < LaneBytes; ++J) { 1600 // Lower undefs (represented by -1 in mask) to zero 1601 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1602 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1603 } 1604 } 1605 1606 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1607 } 1608 1609 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1610 SelectionDAG &DAG) const { 1611 SDLoc DL(Op); 1612 // The legalizer does not know how to expand the comparison modes of i64x2 1613 // vectors because no comparison modes are supported. We could solve this by 1614 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1615 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1616 // comparisons here. 1617 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1618 SmallVector<SDValue, 2> LHS, RHS; 1619 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1620 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1621 const SDValue &CC = Op->getOperand(2); 1622 auto MakeLane = [&](unsigned I) { 1623 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1624 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1625 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1626 }; 1627 return DAG.getBuildVector(Op->getValueType(0), DL, 1628 {MakeLane(0), MakeLane(1)}); 1629 } 1630 1631 SDValue 1632 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1633 SelectionDAG &DAG) const { 1634 // Allow constant lane indices, expand variable lane indices 1635 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1636 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1637 return Op; 1638 else 1639 // Perform default expansion 1640 return SDValue(); 1641 } 1642 1643 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1644 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1645 // 32-bit and 64-bit unrolled shifts will have proper semantics 1646 if (LaneT.bitsGE(MVT::i32)) 1647 return DAG.UnrollVectorOp(Op.getNode()); 1648 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1649 SDLoc DL(Op); 1650 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1651 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1652 unsigned ShiftOpcode = Op.getOpcode(); 1653 SmallVector<SDValue, 16> ShiftedElements; 1654 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1655 SmallVector<SDValue, 16> ShiftElements; 1656 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1657 SmallVector<SDValue, 16> UnrolledOps; 1658 for (size_t i = 0; i < NumLanes; ++i) { 1659 SDValue MaskedShiftValue = 1660 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1661 SDValue ShiftedValue = ShiftedElements[i]; 1662 if (ShiftOpcode == ISD::SRA) 1663 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1664 ShiftedValue, DAG.getValueType(LaneT)); 1665 UnrolledOps.push_back( 1666 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1667 } 1668 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1669 } 1670 1671 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1672 SelectionDAG &DAG) const { 1673 SDLoc DL(Op); 1674 1675 // Only manually lower vector shifts 1676 assert(Op.getSimpleValueType().isVector()); 1677 1678 // Unroll non-splat vector shifts 1679 BuildVectorSDNode *ShiftVec; 1680 SDValue SplatVal; 1681 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1682 !(SplatVal = ShiftVec->getSplatValue())) 1683 return unrollVectorShift(Op, DAG); 1684 1685 // All splats except i64x2 const splats are handled by patterns 1686 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1687 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1688 return Op; 1689 1690 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1691 unsigned Opcode; 1692 switch (Op.getOpcode()) { 1693 case ISD::SHL: 1694 Opcode = WebAssemblyISD::VEC_SHL; 1695 break; 1696 case ISD::SRA: 1697 Opcode = WebAssemblyISD::VEC_SHR_S; 1698 break; 1699 case ISD::SRL: 1700 Opcode = WebAssemblyISD::VEC_SHR_U; 1701 break; 1702 default: 1703 llvm_unreachable("unexpected opcode"); 1704 } 1705 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1706 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1707 DAG.getConstant(Shift, DL, MVT::i32)); 1708 } 1709 1710 //===----------------------------------------------------------------------===// 1711 // WebAssembly Optimization Hooks 1712 //===----------------------------------------------------------------------===// 1713