1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "WebAssemblyUtilities.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsWebAssembly.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetOptions.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "wasm-lower"
41 
42 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
43     const TargetMachine &TM, const WebAssemblySubtarget &STI)
44     : TargetLowering(TM), Subtarget(&STI) {
45   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
46 
47   // Booleans always contain 0 or 1.
48   setBooleanContents(ZeroOrOneBooleanContent);
49   // Except in SIMD vectors
50   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
51   // We don't know the microarchitecture here, so just reduce register pressure.
52   setSchedulingPreference(Sched::RegPressure);
53   // Tell ISel that we have a stack pointer.
54   setStackPointerRegisterToSaveRestore(
55       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
56   // Set up the register classes.
57   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
58   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
59   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
60   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
61   if (Subtarget->hasSIMD128()) {
62     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
68   }
69   // Compute derived properties from the register classes.
70   computeRegisterProperties(Subtarget->getRegisterInfo());
71 
72   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
73   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
74   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
75   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
76   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
77   setOperationAction(ISD::BRIND, MVT::Other, Custom);
78 
79   // Take the default expansion for va_arg, va_copy, and va_end. There is no
80   // default action for va_start, so we do that custom.
81   setOperationAction(ISD::VASTART, MVT::Other, Custom);
82   setOperationAction(ISD::VAARG, MVT::Other, Expand);
83   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
84   setOperationAction(ISD::VAEND, MVT::Other, Expand);
85 
86   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
87     // Don't expand the floating-point types to constant pools.
88     setOperationAction(ISD::ConstantFP, T, Legal);
89     // Expand floating-point comparisons.
90     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
91                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
92       setCondCodeAction(CC, T, Expand);
93     // Expand floating-point library function operators.
94     for (auto Op :
95          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
96       setOperationAction(Op, T, Expand);
97     // Note supported floating-point library function operators that otherwise
98     // default to expand.
99     for (auto Op :
100          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
101       setOperationAction(Op, T, Legal);
102     // Support minimum and maximum, which otherwise default to expand.
103     setOperationAction(ISD::FMINIMUM, T, Legal);
104     setOperationAction(ISD::FMAXIMUM, T, Legal);
105     // WebAssembly currently has no builtin f16 support.
106     setOperationAction(ISD::FP16_TO_FP, T, Expand);
107     setOperationAction(ISD::FP_TO_FP16, T, Expand);
108     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
109     setTruncStoreAction(T, MVT::f16, Expand);
110   }
111 
112   // Expand unavailable integer operations.
113   for (auto Op :
114        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
115         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
116         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
117     for (auto T : {MVT::i32, MVT::i64})
118       setOperationAction(Op, T, Expand);
119     if (Subtarget->hasSIMD128())
120       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
121         setOperationAction(Op, T, Expand);
122   }
123 
124   // SIMD-specific configuration
125   if (Subtarget->hasSIMD128()) {
126     // Hoist bitcasts out of shuffles
127     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
128 
129     // Combine extends of extract_subvectors into widening ops
130     setTargetDAGCombine(ISD::SIGN_EXTEND);
131     setTargetDAGCombine(ISD::ZERO_EXTEND);
132 
133     // Combine {s,u}int_to_fp of extract_vectors into conversion ops
134     setTargetDAGCombine(ISD::SINT_TO_FP);
135     setTargetDAGCombine(ISD::UINT_TO_FP);
136 
137     // Support saturating add for i8x16 and i16x8
138     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
139       for (auto T : {MVT::v16i8, MVT::v8i16})
140         setOperationAction(Op, T, Legal);
141 
142     // Support integer abs
143     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
144       setOperationAction(ISD::ABS, T, Legal);
145 
146     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
147     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
148                    MVT::v2f64})
149       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
150 
151     // We have custom shuffle lowering to expose the shuffle mask
152     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
153                    MVT::v2f64})
154       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
155 
156     // Custom lowering since wasm shifts must have a scalar shift amount
157     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
158       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
159         setOperationAction(Op, T, Custom);
160 
161     // Custom lower lane accesses to expand out variable indices
162     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
163       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
164                      MVT::v2f64})
165         setOperationAction(Op, T, Custom);
166 
167     // There is no i8x16.mul instruction
168     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
169 
170     // There is no vector conditional select instruction
171     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
172                    MVT::v2f64})
173       setOperationAction(ISD::SELECT_CC, T, Expand);
174 
175     // Expand integer operations supported for scalars but not SIMD
176     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
177                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
178       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
179         setOperationAction(Op, T, Expand);
180 
181     // But we do have integer min and max operations
182     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
183       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
184         setOperationAction(Op, T, Legal);
185 
186     // Expand float operations supported for scalars but not SIMD
187     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
188                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
189       for (auto T : {MVT::v4f32, MVT::v2f64})
190         setOperationAction(Op, T, Expand);
191 
192     // Unsigned comparison operations are unavailable for i64x2 vectors.
193     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
194       setCondCodeAction(CC, MVT::v2i64, Custom);
195 
196     // 64x2 conversions are not in the spec
197     for (auto Op :
198          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
199       for (auto T : {MVT::v2i64, MVT::v2f64})
200         setOperationAction(Op, T, Expand);
201   }
202 
203   // As a special case, these operators use the type to mean the type to
204   // sign-extend from.
205   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
206   if (!Subtarget->hasSignExt()) {
207     // Sign extends are legal only when extending a vector extract
208     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
209     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
210       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
211   }
212   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
213     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
214 
215   // Dynamic stack allocation: use the default expansion.
216   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
217   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
218   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
219 
220   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
221   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
222   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
223 
224   // Expand these forms; we pattern-match the forms that we can handle in isel.
225   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
226     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
227       setOperationAction(Op, T, Expand);
228 
229   // We have custom switch handling.
230   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
231 
232   // WebAssembly doesn't have:
233   //  - Floating-point extending loads.
234   //  - Floating-point truncating stores.
235   //  - i1 extending loads.
236   //  - truncating SIMD stores and most extending loads
237   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
238   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
239   for (auto T : MVT::integer_valuetypes())
240     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
241       setLoadExtAction(Ext, T, MVT::i1, Promote);
242   if (Subtarget->hasSIMD128()) {
243     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
244                    MVT::v2f64}) {
245       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
246         if (MVT(T) != MemT) {
247           setTruncStoreAction(T, MemT, Expand);
248           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
249             setLoadExtAction(Ext, T, MemT, Expand);
250         }
251       }
252     }
253     // But some vector extending loads are legal
254     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
255       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
256       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
257       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
258     }
259     // And some truncating stores are legal as well
260     setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
261     setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
262   }
263 
264   // Don't do anything clever with build_pairs
265   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
266 
267   // Trap lowers to wasm unreachable
268   setOperationAction(ISD::TRAP, MVT::Other, Legal);
269   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
270 
271   // Exception handling intrinsics
272   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
273   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
274   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
275 
276   setMaxAtomicSizeInBitsSupported(64);
277 
278   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
279   // consistent with the f64 and f128 names.
280   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
281   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
282 
283   // Define the emscripten name for return address helper.
284   // TODO: when implementing other Wasm backends, make this generic or only do
285   // this on emscripten depending on what they end up doing.
286   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
287 
288   // Always convert switches to br_tables unless there is only one case, which
289   // is equivalent to a simple branch. This reduces code size for wasm, and we
290   // defer possible jump table optimizations to the VM.
291   setMinimumJumpTableEntries(2);
292 }
293 
294 TargetLowering::AtomicExpansionKind
295 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
296   // We have wasm instructions for these
297   switch (AI->getOperation()) {
298   case AtomicRMWInst::Add:
299   case AtomicRMWInst::Sub:
300   case AtomicRMWInst::And:
301   case AtomicRMWInst::Or:
302   case AtomicRMWInst::Xor:
303   case AtomicRMWInst::Xchg:
304     return AtomicExpansionKind::None;
305   default:
306     break;
307   }
308   return AtomicExpansionKind::CmpXChg;
309 }
310 
311 FastISel *WebAssemblyTargetLowering::createFastISel(
312     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
313   return WebAssembly::createFastISel(FuncInfo, LibInfo);
314 }
315 
316 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
317                                                       EVT VT) const {
318   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
319   if (BitWidth > 1 && BitWidth < 8)
320     BitWidth = 8;
321 
322   if (BitWidth > 64) {
323     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
324     // the count to be an i32.
325     BitWidth = 32;
326     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
327            "32-bit shift counts ought to be enough for anyone");
328   }
329 
330   MVT Result = MVT::getIntegerVT(BitWidth);
331   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
332          "Unable to represent scalar shift amount type");
333   return Result;
334 }
335 
336 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
337 // undefined result on invalid/overflow, to the WebAssembly opcode, which
338 // traps on invalid/overflow.
339 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
340                                        MachineBasicBlock *BB,
341                                        const TargetInstrInfo &TII,
342                                        bool IsUnsigned, bool Int64,
343                                        bool Float64, unsigned LoweredOpcode) {
344   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
345 
346   Register OutReg = MI.getOperand(0).getReg();
347   Register InReg = MI.getOperand(1).getReg();
348 
349   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
350   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
351   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
352   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
353   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
354   unsigned Eqz = WebAssembly::EQZ_I32;
355   unsigned And = WebAssembly::AND_I32;
356   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
357   int64_t Substitute = IsUnsigned ? 0 : Limit;
358   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
359   auto &Context = BB->getParent()->getFunction().getContext();
360   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
361 
362   const BasicBlock *LLVMBB = BB->getBasicBlock();
363   MachineFunction *F = BB->getParent();
364   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
365   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
366   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
367 
368   MachineFunction::iterator It = ++BB->getIterator();
369   F->insert(It, FalseMBB);
370   F->insert(It, TrueMBB);
371   F->insert(It, DoneMBB);
372 
373   // Transfer the remainder of BB and its successor edges to DoneMBB.
374   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
375   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
376 
377   BB->addSuccessor(TrueMBB);
378   BB->addSuccessor(FalseMBB);
379   TrueMBB->addSuccessor(DoneMBB);
380   FalseMBB->addSuccessor(DoneMBB);
381 
382   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
383   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
384   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
385   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
386   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
387   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
388   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
389 
390   MI.eraseFromParent();
391   // For signed numbers, we can do a single comparison to determine whether
392   // fabs(x) is within range.
393   if (IsUnsigned) {
394     Tmp0 = InReg;
395   } else {
396     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
397   }
398   BuildMI(BB, DL, TII.get(FConst), Tmp1)
399       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
400   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
401 
402   // For unsigned numbers, we have to do a separate comparison with zero.
403   if (IsUnsigned) {
404     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
405     Register SecondCmpReg =
406         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
407     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
408     BuildMI(BB, DL, TII.get(FConst), Tmp1)
409         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
410     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
411     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
412     CmpReg = AndReg;
413   }
414 
415   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
416 
417   // Create the CFG diamond to select between doing the conversion or using
418   // the substitute value.
419   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
420   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
421   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
422   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
423   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
424       .addReg(FalseReg)
425       .addMBB(FalseMBB)
426       .addReg(TrueReg)
427       .addMBB(TrueMBB);
428 
429   return DoneMBB;
430 }
431 
432 static MachineBasicBlock *
433 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
434                  const WebAssemblySubtarget *Subtarget,
435                  const TargetInstrInfo &TII) {
436   MachineInstr &CallParams = *CallResults.getPrevNode();
437   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
438   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
439          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
440 
441   bool IsIndirect = CallParams.getOperand(0).isReg();
442   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
443 
444   unsigned CallOp;
445   if (IsIndirect && IsRetCall) {
446     CallOp = WebAssembly::RET_CALL_INDIRECT;
447   } else if (IsIndirect) {
448     CallOp = WebAssembly::CALL_INDIRECT;
449   } else if (IsRetCall) {
450     CallOp = WebAssembly::RET_CALL;
451   } else {
452     CallOp = WebAssembly::CALL;
453   }
454 
455   MachineFunction &MF = *BB->getParent();
456   const MCInstrDesc &MCID = TII.get(CallOp);
457   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
458 
459   // See if we must truncate the function pointer.
460   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
461   // as 64-bit for uniformity with other pointer types.
462   // See also: WebAssemblyFastISel::selectCall
463   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
464     Register Reg32 =
465         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
466     auto &FnPtr = CallParams.getOperand(0);
467     BuildMI(*BB, CallResults.getIterator(), DL,
468             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
469         .addReg(FnPtr.getReg());
470     FnPtr.setReg(Reg32);
471   }
472 
473   // Move the function pointer to the end of the arguments for indirect calls
474   if (IsIndirect) {
475     auto FnPtr = CallParams.getOperand(0);
476     CallParams.RemoveOperand(0);
477     CallParams.addOperand(FnPtr);
478   }
479 
480   for (auto Def : CallResults.defs())
481     MIB.add(Def);
482 
483   if (IsIndirect) {
484     // Placeholder for the type index.
485     MIB.addImm(0);
486     // The table into which this call_indirect indexes.
487     MCSymbolWasm *Table =
488         WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget);
489     if (Subtarget->hasReferenceTypes()) {
490       MIB.addSym(Table);
491     } else {
492       // For the MVP there is at most one table whose number is 0, but we can't
493       // write a table symbol or issue relocations.  Instead we just ensure the
494       // table is live and write a zero.
495       Table->setNoStrip();
496       MIB.addImm(0);
497     }
498   }
499 
500   for (auto Use : CallParams.uses())
501     MIB.add(Use);
502 
503   BB->insert(CallResults.getIterator(), MIB);
504   CallParams.eraseFromParent();
505   CallResults.eraseFromParent();
506 
507   return BB;
508 }
509 
510 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
511     MachineInstr &MI, MachineBasicBlock *BB) const {
512   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
513   DebugLoc DL = MI.getDebugLoc();
514 
515   switch (MI.getOpcode()) {
516   default:
517     llvm_unreachable("Unexpected instr type to insert");
518   case WebAssembly::FP_TO_SINT_I32_F32:
519     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
520                         WebAssembly::I32_TRUNC_S_F32);
521   case WebAssembly::FP_TO_UINT_I32_F32:
522     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
523                         WebAssembly::I32_TRUNC_U_F32);
524   case WebAssembly::FP_TO_SINT_I64_F32:
525     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
526                         WebAssembly::I64_TRUNC_S_F32);
527   case WebAssembly::FP_TO_UINT_I64_F32:
528     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
529                         WebAssembly::I64_TRUNC_U_F32);
530   case WebAssembly::FP_TO_SINT_I32_F64:
531     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
532                         WebAssembly::I32_TRUNC_S_F64);
533   case WebAssembly::FP_TO_UINT_I32_F64:
534     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
535                         WebAssembly::I32_TRUNC_U_F64);
536   case WebAssembly::FP_TO_SINT_I64_F64:
537     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
538                         WebAssembly::I64_TRUNC_S_F64);
539   case WebAssembly::FP_TO_UINT_I64_F64:
540     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
541                         WebAssembly::I64_TRUNC_U_F64);
542   case WebAssembly::CALL_RESULTS:
543   case WebAssembly::RET_CALL_RESULTS:
544     return LowerCallResults(MI, DL, BB, Subtarget, TII);
545   }
546 }
547 
548 const char *
549 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
550   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
551   case WebAssemblyISD::FIRST_NUMBER:
552   case WebAssemblyISD::FIRST_MEM_OPCODE:
553     break;
554 #define HANDLE_NODETYPE(NODE)                                                  \
555   case WebAssemblyISD::NODE:                                                   \
556     return "WebAssemblyISD::" #NODE;
557 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
558 #include "WebAssemblyISD.def"
559 #undef HANDLE_MEM_NODETYPE
560 #undef HANDLE_NODETYPE
561   }
562   return nullptr;
563 }
564 
565 std::pair<unsigned, const TargetRegisterClass *>
566 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
567     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
568   // First, see if this is a constraint that directly corresponds to a
569   // WebAssembly register class.
570   if (Constraint.size() == 1) {
571     switch (Constraint[0]) {
572     case 'r':
573       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
574       if (Subtarget->hasSIMD128() && VT.isVector()) {
575         if (VT.getSizeInBits() == 128)
576           return std::make_pair(0U, &WebAssembly::V128RegClass);
577       }
578       if (VT.isInteger() && !VT.isVector()) {
579         if (VT.getSizeInBits() <= 32)
580           return std::make_pair(0U, &WebAssembly::I32RegClass);
581         if (VT.getSizeInBits() <= 64)
582           return std::make_pair(0U, &WebAssembly::I64RegClass);
583       }
584       if (VT.isFloatingPoint() && !VT.isVector()) {
585         switch (VT.getSizeInBits()) {
586         case 32:
587           return std::make_pair(0U, &WebAssembly::F32RegClass);
588         case 64:
589           return std::make_pair(0U, &WebAssembly::F64RegClass);
590         default:
591           break;
592         }
593       }
594       break;
595     default:
596       break;
597     }
598   }
599 
600   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
601 }
602 
603 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
604   // Assume ctz is a relatively cheap operation.
605   return true;
606 }
607 
608 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
609   // Assume clz is a relatively cheap operation.
610   return true;
611 }
612 
613 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
614                                                       const AddrMode &AM,
615                                                       Type *Ty, unsigned AS,
616                                                       Instruction *I) const {
617   // WebAssembly offsets are added as unsigned without wrapping. The
618   // isLegalAddressingMode gives us no way to determine if wrapping could be
619   // happening, so we approximate this by accepting only non-negative offsets.
620   if (AM.BaseOffs < 0)
621     return false;
622 
623   // WebAssembly has no scale register operands.
624   if (AM.Scale != 0)
625     return false;
626 
627   // Everything else is legal.
628   return true;
629 }
630 
631 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
632     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
633     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
634   // WebAssembly supports unaligned accesses, though it should be declared
635   // with the p2align attribute on loads and stores which do so, and there
636   // may be a performance impact. We tell LLVM they're "fast" because
637   // for the kinds of things that LLVM uses this for (merging adjacent stores
638   // of constants, etc.), WebAssembly implementations will either want the
639   // unaligned access or they'll split anyway.
640   if (Fast)
641     *Fast = true;
642   return true;
643 }
644 
645 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
646                                               AttributeList Attr) const {
647   // The current thinking is that wasm engines will perform this optimization,
648   // so we can save on code size.
649   return true;
650 }
651 
652 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
653   EVT ExtT = ExtVal.getValueType();
654   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
655   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
656          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
657          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
658 }
659 
660 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
661                                                   LLVMContext &C,
662                                                   EVT VT) const {
663   if (VT.isVector())
664     return VT.changeVectorElementTypeToInteger();
665 
666   // So far, all branch instructions in Wasm take an I32 condition.
667   // The default TargetLowering::getSetCCResultType returns the pointer size,
668   // which would be useful to reduce instruction counts when testing
669   // against 64-bit pointers/values if at some point Wasm supports that.
670   return EVT::getIntegerVT(C, 32);
671 }
672 
673 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
674                                                    const CallInst &I,
675                                                    MachineFunction &MF,
676                                                    unsigned Intrinsic) const {
677   switch (Intrinsic) {
678   case Intrinsic::wasm_memory_atomic_notify:
679     Info.opc = ISD::INTRINSIC_W_CHAIN;
680     Info.memVT = MVT::i32;
681     Info.ptrVal = I.getArgOperand(0);
682     Info.offset = 0;
683     Info.align = Align(4);
684     // atomic.notify instruction does not really load the memory specified with
685     // this argument, but MachineMemOperand should either be load or store, so
686     // we set this to a load.
687     // FIXME Volatile isn't really correct, but currently all LLVM atomic
688     // instructions are treated as volatiles in the backend, so we should be
689     // consistent. The same applies for wasm_atomic_wait intrinsics too.
690     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
691     return true;
692   case Intrinsic::wasm_memory_atomic_wait32:
693     Info.opc = ISD::INTRINSIC_W_CHAIN;
694     Info.memVT = MVT::i32;
695     Info.ptrVal = I.getArgOperand(0);
696     Info.offset = 0;
697     Info.align = Align(4);
698     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
699     return true;
700   case Intrinsic::wasm_memory_atomic_wait64:
701     Info.opc = ISD::INTRINSIC_W_CHAIN;
702     Info.memVT = MVT::i64;
703     Info.ptrVal = I.getArgOperand(0);
704     Info.offset = 0;
705     Info.align = Align(8);
706     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
707     return true;
708   case Intrinsic::wasm_load32_zero:
709   case Intrinsic::wasm_load64_zero:
710     Info.opc = ISD::INTRINSIC_W_CHAIN;
711     Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64;
712     Info.ptrVal = I.getArgOperand(0);
713     Info.offset = 0;
714     Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8);
715     Info.flags = MachineMemOperand::MOLoad;
716     return true;
717   case Intrinsic::wasm_load8_lane:
718   case Intrinsic::wasm_load16_lane:
719   case Intrinsic::wasm_load32_lane:
720   case Intrinsic::wasm_load64_lane:
721   case Intrinsic::wasm_store8_lane:
722   case Intrinsic::wasm_store16_lane:
723   case Intrinsic::wasm_store32_lane:
724   case Intrinsic::wasm_store64_lane: {
725     MVT MemVT;
726     Align MemAlign;
727     switch (Intrinsic) {
728     case Intrinsic::wasm_load8_lane:
729     case Intrinsic::wasm_store8_lane:
730       MemVT = MVT::i8;
731       MemAlign = Align(1);
732       break;
733     case Intrinsic::wasm_load16_lane:
734     case Intrinsic::wasm_store16_lane:
735       MemVT = MVT::i16;
736       MemAlign = Align(2);
737       break;
738     case Intrinsic::wasm_load32_lane:
739     case Intrinsic::wasm_store32_lane:
740       MemVT = MVT::i32;
741       MemAlign = Align(4);
742       break;
743     case Intrinsic::wasm_load64_lane:
744     case Intrinsic::wasm_store64_lane:
745       MemVT = MVT::i64;
746       MemAlign = Align(8);
747       break;
748     default:
749       llvm_unreachable("unexpected intrinsic");
750     }
751     if (Intrinsic == Intrinsic::wasm_load8_lane ||
752         Intrinsic == Intrinsic::wasm_load16_lane ||
753         Intrinsic == Intrinsic::wasm_load32_lane ||
754         Intrinsic == Intrinsic::wasm_load64_lane) {
755       Info.opc = ISD::INTRINSIC_W_CHAIN;
756       Info.flags = MachineMemOperand::MOLoad;
757     } else {
758       Info.opc = ISD::INTRINSIC_VOID;
759       Info.flags = MachineMemOperand::MOStore;
760     }
761     Info.ptrVal = I.getArgOperand(0);
762     Info.memVT = MemVT;
763     Info.offset = 0;
764     Info.align = MemAlign;
765     return true;
766   }
767   default:
768     return false;
769   }
770 }
771 
772 //===----------------------------------------------------------------------===//
773 // WebAssembly Lowering private implementation.
774 //===----------------------------------------------------------------------===//
775 
776 //===----------------------------------------------------------------------===//
777 // Lowering Code
778 //===----------------------------------------------------------------------===//
779 
780 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
781   MachineFunction &MF = DAG.getMachineFunction();
782   DAG.getContext()->diagnose(
783       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
784 }
785 
786 // Test whether the given calling convention is supported.
787 static bool callingConvSupported(CallingConv::ID CallConv) {
788   // We currently support the language-independent target-independent
789   // conventions. We don't yet have a way to annotate calls with properties like
790   // "cold", and we don't have any call-clobbered registers, so these are mostly
791   // all handled the same.
792   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
793          CallConv == CallingConv::Cold ||
794          CallConv == CallingConv::PreserveMost ||
795          CallConv == CallingConv::PreserveAll ||
796          CallConv == CallingConv::CXX_FAST_TLS ||
797          CallConv == CallingConv::WASM_EmscriptenInvoke ||
798          CallConv == CallingConv::Swift;
799 }
800 
801 SDValue
802 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
803                                      SmallVectorImpl<SDValue> &InVals) const {
804   SelectionDAG &DAG = CLI.DAG;
805   SDLoc DL = CLI.DL;
806   SDValue Chain = CLI.Chain;
807   SDValue Callee = CLI.Callee;
808   MachineFunction &MF = DAG.getMachineFunction();
809   auto Layout = MF.getDataLayout();
810 
811   CallingConv::ID CallConv = CLI.CallConv;
812   if (!callingConvSupported(CallConv))
813     fail(DL, DAG,
814          "WebAssembly doesn't support language-specific or target-specific "
815          "calling conventions yet");
816   if (CLI.IsPatchPoint)
817     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
818 
819   if (CLI.IsTailCall) {
820     auto NoTail = [&](const char *Msg) {
821       if (CLI.CB && CLI.CB->isMustTailCall())
822         fail(DL, DAG, Msg);
823       CLI.IsTailCall = false;
824     };
825 
826     if (!Subtarget->hasTailCall())
827       NoTail("WebAssembly 'tail-call' feature not enabled");
828 
829     // Varargs calls cannot be tail calls because the buffer is on the stack
830     if (CLI.IsVarArg)
831       NoTail("WebAssembly does not support varargs tail calls");
832 
833     // Do not tail call unless caller and callee return types match
834     const Function &F = MF.getFunction();
835     const TargetMachine &TM = getTargetMachine();
836     Type *RetTy = F.getReturnType();
837     SmallVector<MVT, 4> CallerRetTys;
838     SmallVector<MVT, 4> CalleeRetTys;
839     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
840     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
841     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
842                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
843                                  CalleeRetTys.begin());
844     if (!TypesMatch)
845       NoTail("WebAssembly tail call requires caller and callee return types to "
846              "match");
847 
848     // If pointers to local stack values are passed, we cannot tail call
849     if (CLI.CB) {
850       for (auto &Arg : CLI.CB->args()) {
851         Value *Val = Arg.get();
852         // Trace the value back through pointer operations
853         while (true) {
854           Value *Src = Val->stripPointerCastsAndAliases();
855           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
856             Src = GEP->getPointerOperand();
857           if (Val == Src)
858             break;
859           Val = Src;
860         }
861         if (isa<AllocaInst>(Val)) {
862           NoTail(
863               "WebAssembly does not support tail calling with stack arguments");
864           break;
865         }
866       }
867     }
868   }
869 
870   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
871   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
872   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
873 
874   // The generic code may have added an sret argument. If we're lowering an
875   // invoke function, the ABI requires that the function pointer be the first
876   // argument, so we may have to swap the arguments.
877   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
878       Outs[0].Flags.isSRet()) {
879     std::swap(Outs[0], Outs[1]);
880     std::swap(OutVals[0], OutVals[1]);
881   }
882 
883   bool HasSwiftSelfArg = false;
884   bool HasSwiftErrorArg = false;
885   unsigned NumFixedArgs = 0;
886   for (unsigned I = 0; I < Outs.size(); ++I) {
887     const ISD::OutputArg &Out = Outs[I];
888     SDValue &OutVal = OutVals[I];
889     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
890     HasSwiftErrorArg |= Out.Flags.isSwiftError();
891     if (Out.Flags.isNest())
892       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
893     if (Out.Flags.isInAlloca())
894       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
895     if (Out.Flags.isInConsecutiveRegs())
896       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
897     if (Out.Flags.isInConsecutiveRegsLast())
898       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
899     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
900       auto &MFI = MF.getFrameInfo();
901       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
902                                      Out.Flags.getNonZeroByValAlign(),
903                                      /*isSS=*/false);
904       SDValue SizeNode =
905           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
906       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
907       Chain = DAG.getMemcpy(
908           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
909           /*isVolatile*/ false, /*AlwaysInline=*/false,
910           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
911       OutVal = FINode;
912     }
913     // Count the number of fixed args *after* legalization.
914     NumFixedArgs += Out.IsFixed;
915   }
916 
917   bool IsVarArg = CLI.IsVarArg;
918   auto PtrVT = getPointerTy(Layout);
919 
920   // For swiftcc, emit additional swiftself and swifterror arguments
921   // if there aren't. These additional arguments are also added for callee
922   // signature They are necessary to match callee and caller signature for
923   // indirect call.
924   if (CallConv == CallingConv::Swift) {
925     if (!HasSwiftSelfArg) {
926       NumFixedArgs++;
927       ISD::OutputArg Arg;
928       Arg.Flags.setSwiftSelf();
929       CLI.Outs.push_back(Arg);
930       SDValue ArgVal = DAG.getUNDEF(PtrVT);
931       CLI.OutVals.push_back(ArgVal);
932     }
933     if (!HasSwiftErrorArg) {
934       NumFixedArgs++;
935       ISD::OutputArg Arg;
936       Arg.Flags.setSwiftError();
937       CLI.Outs.push_back(Arg);
938       SDValue ArgVal = DAG.getUNDEF(PtrVT);
939       CLI.OutVals.push_back(ArgVal);
940     }
941   }
942 
943   // Analyze operands of the call, assigning locations to each operand.
944   SmallVector<CCValAssign, 16> ArgLocs;
945   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
946 
947   if (IsVarArg) {
948     // Outgoing non-fixed arguments are placed in a buffer. First
949     // compute their offsets and the total amount of buffer space needed.
950     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
951       const ISD::OutputArg &Out = Outs[I];
952       SDValue &Arg = OutVals[I];
953       EVT VT = Arg.getValueType();
954       assert(VT != MVT::iPTR && "Legalized args should be concrete");
955       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
956       Align Alignment =
957           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
958       unsigned Offset =
959           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
960       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
961                                         Offset, VT.getSimpleVT(),
962                                         CCValAssign::Full));
963     }
964   }
965 
966   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
967 
968   SDValue FINode;
969   if (IsVarArg && NumBytes) {
970     // For non-fixed arguments, next emit stores to store the argument values
971     // to the stack buffer at the offsets computed above.
972     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
973                                                  Layout.getStackAlignment(),
974                                                  /*isSS=*/false);
975     unsigned ValNo = 0;
976     SmallVector<SDValue, 8> Chains;
977     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
978       assert(ArgLocs[ValNo].getValNo() == ValNo &&
979              "ArgLocs should remain in order and only hold varargs args");
980       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
981       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
982       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
983                                 DAG.getConstant(Offset, DL, PtrVT));
984       Chains.push_back(
985           DAG.getStore(Chain, DL, Arg, Add,
986                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
987     }
988     if (!Chains.empty())
989       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
990   } else if (IsVarArg) {
991     FINode = DAG.getIntPtrConstant(0, DL);
992   }
993 
994   if (Callee->getOpcode() == ISD::GlobalAddress) {
995     // If the callee is a GlobalAddress node (quite common, every direct call
996     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
997     // doesn't at MO_GOT which is not needed for direct calls.
998     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
999     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1000                                         getPointerTy(DAG.getDataLayout()),
1001                                         GA->getOffset());
1002     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1003                          getPointerTy(DAG.getDataLayout()), Callee);
1004   }
1005 
1006   // Compute the operands for the CALLn node.
1007   SmallVector<SDValue, 16> Ops;
1008   Ops.push_back(Chain);
1009   Ops.push_back(Callee);
1010 
1011   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1012   // isn't reliable.
1013   Ops.append(OutVals.begin(),
1014              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1015   // Add a pointer to the vararg buffer.
1016   if (IsVarArg)
1017     Ops.push_back(FINode);
1018 
1019   SmallVector<EVT, 8> InTys;
1020   for (const auto &In : Ins) {
1021     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1022     assert(!In.Flags.isNest() && "nest is not valid for return values");
1023     if (In.Flags.isInAlloca())
1024       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1025     if (In.Flags.isInConsecutiveRegs())
1026       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1027     if (In.Flags.isInConsecutiveRegsLast())
1028       fail(DL, DAG,
1029            "WebAssembly hasn't implemented cons regs last return values");
1030     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1031     // registers.
1032     InTys.push_back(In.VT);
1033   }
1034 
1035   if (CLI.IsTailCall) {
1036     // ret_calls do not return values to the current frame
1037     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1038     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1039   }
1040 
1041   InTys.push_back(MVT::Other);
1042   SDVTList InTyList = DAG.getVTList(InTys);
1043   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1044 
1045   for (size_t I = 0; I < Ins.size(); ++I)
1046     InVals.push_back(Res.getValue(I));
1047 
1048   // Return the chain
1049   return Res.getValue(Ins.size());
1050 }
1051 
1052 bool WebAssemblyTargetLowering::CanLowerReturn(
1053     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1054     const SmallVectorImpl<ISD::OutputArg> &Outs,
1055     LLVMContext & /*Context*/) const {
1056   // WebAssembly can only handle returning tuples with multivalue enabled
1057   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1058 }
1059 
1060 SDValue WebAssemblyTargetLowering::LowerReturn(
1061     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1062     const SmallVectorImpl<ISD::OutputArg> &Outs,
1063     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1064     SelectionDAG &DAG) const {
1065   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1066          "MVP WebAssembly can only return up to one value");
1067   if (!callingConvSupported(CallConv))
1068     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1069 
1070   SmallVector<SDValue, 4> RetOps(1, Chain);
1071   RetOps.append(OutVals.begin(), OutVals.end());
1072   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1073 
1074   // Record the number and types of the return values.
1075   for (const ISD::OutputArg &Out : Outs) {
1076     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1077     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1078     assert(Out.IsFixed && "non-fixed return value is not valid");
1079     if (Out.Flags.isInAlloca())
1080       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1081     if (Out.Flags.isInConsecutiveRegs())
1082       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1083     if (Out.Flags.isInConsecutiveRegsLast())
1084       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1085   }
1086 
1087   return Chain;
1088 }
1089 
1090 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1091     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1092     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1093     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1094   if (!callingConvSupported(CallConv))
1095     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1096 
1097   MachineFunction &MF = DAG.getMachineFunction();
1098   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1099 
1100   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1101   // of the incoming values before they're represented by virtual registers.
1102   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1103 
1104   bool HasSwiftErrorArg = false;
1105   bool HasSwiftSelfArg = false;
1106   for (const ISD::InputArg &In : Ins) {
1107     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1108     HasSwiftErrorArg |= In.Flags.isSwiftError();
1109     if (In.Flags.isInAlloca())
1110       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1111     if (In.Flags.isNest())
1112       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1113     if (In.Flags.isInConsecutiveRegs())
1114       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1115     if (In.Flags.isInConsecutiveRegsLast())
1116       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1117     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1118     // registers.
1119     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1120                                            DAG.getTargetConstant(InVals.size(),
1121                                                                  DL, MVT::i32))
1122                              : DAG.getUNDEF(In.VT));
1123 
1124     // Record the number and types of arguments.
1125     MFI->addParam(In.VT);
1126   }
1127 
1128   // For swiftcc, emit additional swiftself and swifterror arguments
1129   // if there aren't. These additional arguments are also added for callee
1130   // signature They are necessary to match callee and caller signature for
1131   // indirect call.
1132   auto PtrVT = getPointerTy(MF.getDataLayout());
1133   if (CallConv == CallingConv::Swift) {
1134     if (!HasSwiftSelfArg) {
1135       MFI->addParam(PtrVT);
1136     }
1137     if (!HasSwiftErrorArg) {
1138       MFI->addParam(PtrVT);
1139     }
1140   }
1141   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1142   // the buffer is passed as an argument.
1143   if (IsVarArg) {
1144     MVT PtrVT = getPointerTy(MF.getDataLayout());
1145     Register VarargVreg =
1146         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1147     MFI->setVarargBufferVreg(VarargVreg);
1148     Chain = DAG.getCopyToReg(
1149         Chain, DL, VarargVreg,
1150         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1151                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1152     MFI->addParam(PtrVT);
1153   }
1154 
1155   // Record the number and types of arguments and results.
1156   SmallVector<MVT, 4> Params;
1157   SmallVector<MVT, 4> Results;
1158   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1159                       MF.getFunction(), DAG.getTarget(), Params, Results);
1160   for (MVT VT : Results)
1161     MFI->addResult(VT);
1162   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1163   // the param logic here with ComputeSignatureVTs
1164   assert(MFI->getParams().size() == Params.size() &&
1165          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1166                     Params.begin()));
1167 
1168   return Chain;
1169 }
1170 
1171 void WebAssemblyTargetLowering::ReplaceNodeResults(
1172     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1173   switch (N->getOpcode()) {
1174   case ISD::SIGN_EXTEND_INREG:
1175     // Do not add any results, signifying that N should not be custom lowered
1176     // after all. This happens because simd128 turns on custom lowering for
1177     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1178     // illegal type.
1179     break;
1180   default:
1181     llvm_unreachable(
1182         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1183   }
1184 }
1185 
1186 //===----------------------------------------------------------------------===//
1187 //  Custom lowering hooks.
1188 //===----------------------------------------------------------------------===//
1189 
1190 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1191                                                   SelectionDAG &DAG) const {
1192   SDLoc DL(Op);
1193   switch (Op.getOpcode()) {
1194   default:
1195     llvm_unreachable("unimplemented operation lowering");
1196     return SDValue();
1197   case ISD::FrameIndex:
1198     return LowerFrameIndex(Op, DAG);
1199   case ISD::GlobalAddress:
1200     return LowerGlobalAddress(Op, DAG);
1201   case ISD::GlobalTLSAddress:
1202     return LowerGlobalTLSAddress(Op, DAG);
1203   case ISD::ExternalSymbol:
1204     return LowerExternalSymbol(Op, DAG);
1205   case ISD::JumpTable:
1206     return LowerJumpTable(Op, DAG);
1207   case ISD::BR_JT:
1208     return LowerBR_JT(Op, DAG);
1209   case ISD::VASTART:
1210     return LowerVASTART(Op, DAG);
1211   case ISD::BlockAddress:
1212   case ISD::BRIND:
1213     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1214     return SDValue();
1215   case ISD::RETURNADDR:
1216     return LowerRETURNADDR(Op, DAG);
1217   case ISD::FRAMEADDR:
1218     return LowerFRAMEADDR(Op, DAG);
1219   case ISD::CopyToReg:
1220     return LowerCopyToReg(Op, DAG);
1221   case ISD::EXTRACT_VECTOR_ELT:
1222   case ISD::INSERT_VECTOR_ELT:
1223     return LowerAccessVectorElement(Op, DAG);
1224   case ISD::INTRINSIC_VOID:
1225   case ISD::INTRINSIC_WO_CHAIN:
1226   case ISD::INTRINSIC_W_CHAIN:
1227     return LowerIntrinsic(Op, DAG);
1228   case ISD::SIGN_EXTEND_INREG:
1229     return LowerSIGN_EXTEND_INREG(Op, DAG);
1230   case ISD::BUILD_VECTOR:
1231     return LowerBUILD_VECTOR(Op, DAG);
1232   case ISD::VECTOR_SHUFFLE:
1233     return LowerVECTOR_SHUFFLE(Op, DAG);
1234   case ISD::SETCC:
1235     return LowerSETCC(Op, DAG);
1236   case ISD::SHL:
1237   case ISD::SRA:
1238   case ISD::SRL:
1239     return LowerShift(Op, DAG);
1240   }
1241 }
1242 
1243 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1244                                                   SelectionDAG &DAG) const {
1245   SDValue Src = Op.getOperand(2);
1246   if (isa<FrameIndexSDNode>(Src.getNode())) {
1247     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1248     // the FI to some LEA-like instruction, but since we don't have that, we
1249     // need to insert some kind of instruction that can take an FI operand and
1250     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1251     // local.copy between Op and its FI operand.
1252     SDValue Chain = Op.getOperand(0);
1253     SDLoc DL(Op);
1254     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1255     EVT VT = Src.getValueType();
1256     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1257                                                    : WebAssembly::COPY_I64,
1258                                     DL, VT, Src),
1259                  0);
1260     return Op.getNode()->getNumValues() == 1
1261                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1262                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1263                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1264                                                            : SDValue());
1265   }
1266   return SDValue();
1267 }
1268 
1269 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1270                                                    SelectionDAG &DAG) const {
1271   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1272   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1273 }
1274 
1275 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1276                                                    SelectionDAG &DAG) const {
1277   SDLoc DL(Op);
1278 
1279   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1280     fail(DL, DAG,
1281          "Non-Emscripten WebAssembly hasn't implemented "
1282          "__builtin_return_address");
1283     return SDValue();
1284   }
1285 
1286   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1287     return SDValue();
1288 
1289   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1290   MakeLibCallOptions CallOptions;
1291   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1292                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1293       .first;
1294 }
1295 
1296 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1297                                                   SelectionDAG &DAG) const {
1298   // Non-zero depths are not supported by WebAssembly currently. Use the
1299   // legalizer's default expansion, which is to return 0 (what this function is
1300   // documented to do).
1301   if (Op.getConstantOperandVal(0) > 0)
1302     return SDValue();
1303 
1304   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1305   EVT VT = Op.getValueType();
1306   Register FP =
1307       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1308   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1309 }
1310 
1311 SDValue
1312 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1313                                                  SelectionDAG &DAG) const {
1314   SDLoc DL(Op);
1315   const auto *GA = cast<GlobalAddressSDNode>(Op);
1316   MVT PtrVT = getPointerTy(DAG.getDataLayout());
1317 
1318   MachineFunction &MF = DAG.getMachineFunction();
1319   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1320     report_fatal_error("cannot use thread-local storage without bulk memory",
1321                        false);
1322 
1323   const GlobalValue *GV = GA->getGlobal();
1324 
1325   // Currently Emscripten does not support dynamic linking with threads.
1326   // Therefore, if we have thread-local storage, only the local-exec model
1327   // is possible.
1328   // TODO: remove this and implement proper TLS models once Emscripten
1329   // supports dynamic linking with threads.
1330   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1331       !Subtarget->getTargetTriple().isOSEmscripten()) {
1332     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1333                        "non-Emscripten OSes: variable " +
1334                            GV->getName(),
1335                        false);
1336   }
1337 
1338   auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1339                                      : WebAssembly::GLOBAL_GET_I32;
1340   const char *BaseName = MF.createExternalSymbolName("__tls_base");
1341 
1342   SDValue BaseAddr(
1343       DAG.getMachineNode(GlobalGet, DL, PtrVT,
1344                          DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1345       0);
1346 
1347   SDValue TLSOffset = DAG.getTargetGlobalAddress(
1348       GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1349   SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset);
1350 
1351   return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1352 }
1353 
1354 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1355                                                       SelectionDAG &DAG) const {
1356   SDLoc DL(Op);
1357   const auto *GA = cast<GlobalAddressSDNode>(Op);
1358   EVT VT = Op.getValueType();
1359   assert(GA->getTargetFlags() == 0 &&
1360          "Unexpected target flags on generic GlobalAddressSDNode");
1361   if (GA->getAddressSpace() != 0)
1362     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1363 
1364   unsigned OperandFlags = 0;
1365   if (isPositionIndependent()) {
1366     const GlobalValue *GV = GA->getGlobal();
1367     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1368       MachineFunction &MF = DAG.getMachineFunction();
1369       MVT PtrVT = getPointerTy(MF.getDataLayout());
1370       const char *BaseName;
1371       if (GV->getValueType()->isFunctionTy()) {
1372         BaseName = MF.createExternalSymbolName("__table_base");
1373         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1374       }
1375       else {
1376         BaseName = MF.createExternalSymbolName("__memory_base");
1377         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1378       }
1379       SDValue BaseAddr =
1380           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1381                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1382 
1383       SDValue SymAddr = DAG.getNode(
1384           WebAssemblyISD::WrapperPIC, DL, VT,
1385           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1386                                      OperandFlags));
1387 
1388       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1389     } else {
1390       OperandFlags = WebAssemblyII::MO_GOT;
1391     }
1392   }
1393 
1394   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1395                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1396                                                 GA->getOffset(), OperandFlags));
1397 }
1398 
1399 SDValue
1400 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1401                                                SelectionDAG &DAG) const {
1402   SDLoc DL(Op);
1403   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1404   EVT VT = Op.getValueType();
1405   assert(ES->getTargetFlags() == 0 &&
1406          "Unexpected target flags on generic ExternalSymbolSDNode");
1407   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1408                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1409 }
1410 
1411 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1412                                                   SelectionDAG &DAG) const {
1413   // There's no need for a Wrapper node because we always incorporate a jump
1414   // table operand into a BR_TABLE instruction, rather than ever
1415   // materializing it in a register.
1416   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1417   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1418                                 JT->getTargetFlags());
1419 }
1420 
1421 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1422                                               SelectionDAG &DAG) const {
1423   SDLoc DL(Op);
1424   SDValue Chain = Op.getOperand(0);
1425   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1426   SDValue Index = Op.getOperand(2);
1427   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1428 
1429   SmallVector<SDValue, 8> Ops;
1430   Ops.push_back(Chain);
1431   Ops.push_back(Index);
1432 
1433   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1434   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1435 
1436   // Add an operand for each case.
1437   for (auto MBB : MBBs)
1438     Ops.push_back(DAG.getBasicBlock(MBB));
1439 
1440   // Add the first MBB as a dummy default target for now. This will be replaced
1441   // with the proper default target (and the preceding range check eliminated)
1442   // if possible by WebAssemblyFixBrTableDefaults.
1443   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1444   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1445 }
1446 
1447 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1448                                                 SelectionDAG &DAG) const {
1449   SDLoc DL(Op);
1450   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1451 
1452   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1453   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1454 
1455   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1456                                     MFI->getVarargBufferVreg(), PtrVT);
1457   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1458                       MachinePointerInfo(SV));
1459 }
1460 
1461 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex,
1462                                       SelectionDAG &DAG) {
1463   // We only support C++ exceptions for now
1464   int Tag =
1465       cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue();
1466   if (Tag != WebAssembly::CPP_EXCEPTION)
1467     llvm_unreachable("Invalid tag: We only support C++ exceptions for now");
1468   auto &MF = DAG.getMachineFunction();
1469   const auto &TLI = DAG.getTargetLoweringInfo();
1470   MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1471   const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1472   return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT,
1473                      DAG.getTargetExternalSymbol(SymName, PtrVT));
1474 }
1475 
1476 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1477                                                   SelectionDAG &DAG) const {
1478   MachineFunction &MF = DAG.getMachineFunction();
1479   unsigned IntNo;
1480   switch (Op.getOpcode()) {
1481   case ISD::INTRINSIC_VOID:
1482   case ISD::INTRINSIC_W_CHAIN:
1483     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1484     break;
1485   case ISD::INTRINSIC_WO_CHAIN:
1486     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1487     break;
1488   default:
1489     llvm_unreachable("Invalid intrinsic");
1490   }
1491   SDLoc DL(Op);
1492 
1493   switch (IntNo) {
1494   default:
1495     return SDValue(); // Don't custom lower most intrinsics.
1496 
1497   case Intrinsic::wasm_lsda: {
1498     EVT VT = Op.getValueType();
1499     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1500     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1501     auto &Context = MF.getMMI().getContext();
1502     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1503                                             Twine(MF.getFunctionNumber()));
1504     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1505                        DAG.getMCSymbol(S, PtrVT));
1506   }
1507 
1508   case Intrinsic::wasm_throw: {
1509     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1510     return DAG.getNode(WebAssemblyISD::THROW, DL,
1511                        MVT::Other, // outchain type
1512                        {
1513                            Op.getOperand(0), // inchain
1514                            SymNode,          // exception symbol
1515                            Op.getOperand(3)  // thrown value
1516                        });
1517   }
1518 
1519   case Intrinsic::wasm_catch: {
1520     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1521     return DAG.getNode(WebAssemblyISD::CATCH, DL,
1522                        {
1523                            MVT::i32,  // outchain type
1524                            MVT::Other // return value
1525                        },
1526                        {
1527                            Op.getOperand(0), // inchain
1528                            SymNode           // exception symbol
1529                        });
1530   }
1531 
1532   case Intrinsic::wasm_shuffle: {
1533     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1534     SDValue Ops[18];
1535     size_t OpIdx = 0;
1536     Ops[OpIdx++] = Op.getOperand(1);
1537     Ops[OpIdx++] = Op.getOperand(2);
1538     while (OpIdx < 18) {
1539       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1540       if (MaskIdx.isUndef() ||
1541           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1542         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1543       } else {
1544         Ops[OpIdx++] = MaskIdx;
1545       }
1546     }
1547     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1548   }
1549   }
1550 }
1551 
1552 SDValue
1553 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1554                                                   SelectionDAG &DAG) const {
1555   SDLoc DL(Op);
1556   // If sign extension operations are disabled, allow sext_inreg only if operand
1557   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1558   // extension operations, but allowing sext_inreg in this context lets us have
1559   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1560   // everywhere would be simpler in this file, but would necessitate large and
1561   // brittle patterns to undo the expansion and select extract_lane_s
1562   // instructions.
1563   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1564   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1565     return SDValue();
1566 
1567   const SDValue &Extract = Op.getOperand(0);
1568   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1569   if (VecT.getVectorElementType().getSizeInBits() > 32)
1570     return SDValue();
1571   MVT ExtractedLaneT =
1572       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1573   MVT ExtractedVecT =
1574       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1575   if (ExtractedVecT == VecT)
1576     return Op;
1577 
1578   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1579   const SDNode *Index = Extract.getOperand(1).getNode();
1580   if (!isa<ConstantSDNode>(Index))
1581     return SDValue();
1582   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1583   unsigned Scale =
1584       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1585   assert(Scale > 1);
1586   SDValue NewIndex =
1587       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1588   SDValue NewExtract = DAG.getNode(
1589       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1590       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1591   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1592                      Op.getOperand(1));
1593 }
1594 
1595 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1596                                                      SelectionDAG &DAG) const {
1597   SDLoc DL(Op);
1598   const EVT VecT = Op.getValueType();
1599   const EVT LaneT = Op.getOperand(0).getValueType();
1600   const size_t Lanes = Op.getNumOperands();
1601   bool CanSwizzle = VecT == MVT::v16i8;
1602 
1603   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1604   // possible number of lanes at once followed by a sequence of replace_lane
1605   // instructions to individually initialize any remaining lanes.
1606 
1607   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1608   // swizzled lanes should be given greater weight.
1609 
1610   // TODO: Investigate looping rather than always extracting/replacing specific
1611   // lanes to fill gaps.
1612 
1613   auto IsConstant = [](const SDValue &V) {
1614     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1615   };
1616 
1617   // Returns the source vector and index vector pair if they exist. Checks for:
1618   //   (extract_vector_elt
1619   //     $src,
1620   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1621   //   )
1622   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1623     auto Bail = std::make_pair(SDValue(), SDValue());
1624     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1625       return Bail;
1626     const SDValue &SwizzleSrc = Lane->getOperand(0);
1627     const SDValue &IndexExt = Lane->getOperand(1);
1628     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1629       return Bail;
1630     const SDValue &Index = IndexExt->getOperand(0);
1631     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1632       return Bail;
1633     const SDValue &SwizzleIndices = Index->getOperand(0);
1634     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1635         SwizzleIndices.getValueType() != MVT::v16i8 ||
1636         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1637         Index->getConstantOperandVal(1) != I)
1638       return Bail;
1639     return std::make_pair(SwizzleSrc, SwizzleIndices);
1640   };
1641 
1642   // If the lane is extracted from another vector at a constant index, return
1643   // that vector. The source vector must not have more lanes than the dest
1644   // because the shufflevector indices are in terms of the destination lanes and
1645   // would not be able to address the smaller individual source lanes.
1646   auto GetShuffleSrc = [&](const SDValue &Lane) {
1647     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1648       return SDValue();
1649     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
1650       return SDValue();
1651     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
1652         VecT.getVectorNumElements())
1653       return SDValue();
1654     return Lane->getOperand(0);
1655   };
1656 
1657   using ValueEntry = std::pair<SDValue, size_t>;
1658   SmallVector<ValueEntry, 16> SplatValueCounts;
1659 
1660   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1661   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1662 
1663   using ShuffleEntry = std::pair<SDValue, size_t>;
1664   SmallVector<ShuffleEntry, 16> ShuffleCounts;
1665 
1666   auto AddCount = [](auto &Counts, const auto &Val) {
1667     auto CountIt =
1668         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
1669     if (CountIt == Counts.end()) {
1670       Counts.emplace_back(Val, 1);
1671     } else {
1672       CountIt->second++;
1673     }
1674   };
1675 
1676   auto GetMostCommon = [](auto &Counts) {
1677     auto CommonIt =
1678         std::max_element(Counts.begin(), Counts.end(),
1679                          [](auto A, auto B) { return A.second < B.second; });
1680     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1681     return *CommonIt;
1682   };
1683 
1684   size_t NumConstantLanes = 0;
1685 
1686   // Count eligible lanes for each type of vector creation op
1687   for (size_t I = 0; I < Lanes; ++I) {
1688     const SDValue &Lane = Op->getOperand(I);
1689     if (Lane.isUndef())
1690       continue;
1691 
1692     AddCount(SplatValueCounts, Lane);
1693 
1694     if (IsConstant(Lane))
1695       NumConstantLanes++;
1696     if (auto ShuffleSrc = GetShuffleSrc(Lane))
1697       AddCount(ShuffleCounts, ShuffleSrc);
1698     if (CanSwizzle) {
1699       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1700       if (SwizzleSrcs.first)
1701         AddCount(SwizzleCounts, SwizzleSrcs);
1702     }
1703   }
1704 
1705   SDValue SplatValue;
1706   size_t NumSplatLanes;
1707   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1708 
1709   SDValue SwizzleSrc;
1710   SDValue SwizzleIndices;
1711   size_t NumSwizzleLanes = 0;
1712   if (SwizzleCounts.size())
1713     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1714                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1715 
1716   // Shuffles can draw from up to two vectors, so find the two most common
1717   // sources.
1718   SDValue ShuffleSrc1, ShuffleSrc2;
1719   size_t NumShuffleLanes = 0;
1720   if (ShuffleCounts.size()) {
1721     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
1722     ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(),
1723                                        ShuffleCounts.end(),
1724                                        [&](const auto &Pair) {
1725                                          return Pair.first == ShuffleSrc1;
1726                                        }),
1727                         ShuffleCounts.end());
1728   }
1729   if (ShuffleCounts.size()) {
1730     size_t AdditionalShuffleLanes;
1731     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
1732         GetMostCommon(ShuffleCounts);
1733     NumShuffleLanes += AdditionalShuffleLanes;
1734   }
1735 
1736   // Predicate returning true if the lane is properly initialized by the
1737   // original instruction
1738   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1739   SDValue Result;
1740   // Prefer swizzles over shuffles over vector consts over splats
1741   if (NumSwizzleLanes >= NumShuffleLanes &&
1742       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
1743     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1744                          SwizzleIndices);
1745     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1746     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1747       return Swizzled == GetSwizzleSrcs(I, Lane);
1748     };
1749   } else if (NumShuffleLanes >= NumConstantLanes &&
1750              NumShuffleLanes >= NumSplatLanes) {
1751     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
1752     size_t DestLaneCount = VecT.getVectorNumElements();
1753     size_t Scale1 = 1;
1754     size_t Scale2 = 1;
1755     SDValue Src1 = ShuffleSrc1;
1756     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
1757     if (Src1.getValueType() != VecT) {
1758       size_t LaneSize =
1759           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1760       assert(LaneSize > DestLaneSize);
1761       Scale1 = LaneSize / DestLaneSize;
1762       Src1 = DAG.getBitcast(VecT, Src1);
1763     }
1764     if (Src2.getValueType() != VecT) {
1765       size_t LaneSize =
1766           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1767       assert(LaneSize > DestLaneSize);
1768       Scale2 = LaneSize / DestLaneSize;
1769       Src2 = DAG.getBitcast(VecT, Src2);
1770     }
1771 
1772     int Mask[16];
1773     assert(DestLaneCount <= 16);
1774     for (size_t I = 0; I < DestLaneCount; ++I) {
1775       const SDValue &Lane = Op->getOperand(I);
1776       SDValue Src = GetShuffleSrc(Lane);
1777       if (Src == ShuffleSrc1) {
1778         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
1779       } else if (Src && Src == ShuffleSrc2) {
1780         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
1781       } else {
1782         Mask[I] = -1;
1783       }
1784     }
1785     ArrayRef<int> MaskRef(Mask, DestLaneCount);
1786     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
1787     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
1788       auto Src = GetShuffleSrc(Lane);
1789       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
1790     };
1791   } else if (NumConstantLanes >= NumSplatLanes) {
1792     SmallVector<SDValue, 16> ConstLanes;
1793     for (const SDValue &Lane : Op->op_values()) {
1794       if (IsConstant(Lane)) {
1795         ConstLanes.push_back(Lane);
1796       } else if (LaneT.isFloatingPoint()) {
1797         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1798       } else {
1799         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1800       }
1801     }
1802     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1803     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1804       return IsConstant(Lane);
1805     };
1806   } else {
1807     // Use a splat, but possibly a load_splat
1808     LoadSDNode *SplattedLoad;
1809     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1810         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1811       Result = DAG.getMemIntrinsicNode(
1812           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1813           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1814            SplattedLoad->getOffset()},
1815           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1816     } else {
1817       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1818     }
1819     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
1820       return Lane == SplatValue;
1821     };
1822   }
1823 
1824   assert(Result);
1825   assert(IsLaneConstructed);
1826 
1827   // Add replace_lane instructions for any unhandled values
1828   for (size_t I = 0; I < Lanes; ++I) {
1829     const SDValue &Lane = Op->getOperand(I);
1830     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1831       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1832                            DAG.getConstant(I, DL, MVT::i32));
1833   }
1834 
1835   return Result;
1836 }
1837 
1838 SDValue
1839 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1840                                                SelectionDAG &DAG) const {
1841   SDLoc DL(Op);
1842   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1843   MVT VecType = Op.getOperand(0).getSimpleValueType();
1844   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1845   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1846 
1847   // Space for two vector args and sixteen mask indices
1848   SDValue Ops[18];
1849   size_t OpIdx = 0;
1850   Ops[OpIdx++] = Op.getOperand(0);
1851   Ops[OpIdx++] = Op.getOperand(1);
1852 
1853   // Expand mask indices to byte indices and materialize them as operands
1854   for (int M : Mask) {
1855     for (size_t J = 0; J < LaneBytes; ++J) {
1856       // Lower undefs (represented by -1 in mask) to zero
1857       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1858       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1859     }
1860   }
1861 
1862   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1863 }
1864 
1865 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
1866                                               SelectionDAG &DAG) const {
1867   SDLoc DL(Op);
1868   // The legalizer does not know how to expand the unsupported comparison modes
1869   // of i64x2 vectors, so we manually unroll them here.
1870   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
1871   SmallVector<SDValue, 2> LHS, RHS;
1872   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
1873   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
1874   const SDValue &CC = Op->getOperand(2);
1875   auto MakeLane = [&](unsigned I) {
1876     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
1877                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
1878                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
1879   };
1880   return DAG.getBuildVector(Op->getValueType(0), DL,
1881                             {MakeLane(0), MakeLane(1)});
1882 }
1883 
1884 SDValue
1885 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1886                                                     SelectionDAG &DAG) const {
1887   // Allow constant lane indices, expand variable lane indices
1888   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1889   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1890     return Op;
1891   else
1892     // Perform default expansion
1893     return SDValue();
1894 }
1895 
1896 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1897   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1898   // 32-bit and 64-bit unrolled shifts will have proper semantics
1899   if (LaneT.bitsGE(MVT::i32))
1900     return DAG.UnrollVectorOp(Op.getNode());
1901   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1902   SDLoc DL(Op);
1903   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
1904   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
1905   unsigned ShiftOpcode = Op.getOpcode();
1906   SmallVector<SDValue, 16> ShiftedElements;
1907   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
1908   SmallVector<SDValue, 16> ShiftElements;
1909   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
1910   SmallVector<SDValue, 16> UnrolledOps;
1911   for (size_t i = 0; i < NumLanes; ++i) {
1912     SDValue MaskedShiftValue =
1913         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
1914     SDValue ShiftedValue = ShiftedElements[i];
1915     if (ShiftOpcode == ISD::SRA)
1916       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
1917                                  ShiftedValue, DAG.getValueType(LaneT));
1918     UnrolledOps.push_back(
1919         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
1920   }
1921   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
1922 }
1923 
1924 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1925                                               SelectionDAG &DAG) const {
1926   SDLoc DL(Op);
1927 
1928   // Only manually lower vector shifts
1929   assert(Op.getSimpleValueType().isVector());
1930 
1931   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
1932   if (!ShiftVal)
1933     return unrollVectorShift(Op, DAG);
1934 
1935   // Use anyext because none of the high bits can affect the shift
1936   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
1937 
1938   unsigned Opcode;
1939   switch (Op.getOpcode()) {
1940   case ISD::SHL:
1941     Opcode = WebAssemblyISD::VEC_SHL;
1942     break;
1943   case ISD::SRA:
1944     Opcode = WebAssemblyISD::VEC_SHR_S;
1945     break;
1946   case ISD::SRL:
1947     Opcode = WebAssemblyISD::VEC_SHR_U;
1948     break;
1949   default:
1950     llvm_unreachable("unexpected opcode");
1951   }
1952 
1953   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
1954 }
1955 
1956 //===----------------------------------------------------------------------===//
1957 //   Custom DAG combine hooks
1958 //===----------------------------------------------------------------------===//
1959 static SDValue
1960 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
1961   auto &DAG = DCI.DAG;
1962   auto Shuffle = cast<ShuffleVectorSDNode>(N);
1963 
1964   // Hoist vector bitcasts that don't change the number of lanes out of unary
1965   // shuffles, where they are less likely to get in the way of other combines.
1966   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
1967   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
1968   SDValue Bitcast = N->getOperand(0);
1969   if (Bitcast.getOpcode() != ISD::BITCAST)
1970     return SDValue();
1971   if (!N->getOperand(1).isUndef())
1972     return SDValue();
1973   SDValue CastOp = Bitcast.getOperand(0);
1974   MVT SrcType = CastOp.getSimpleValueType();
1975   MVT DstType = Bitcast.getSimpleValueType();
1976   if (!SrcType.is128BitVector() ||
1977       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
1978     return SDValue();
1979   SDValue NewShuffle = DAG.getVectorShuffle(
1980       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
1981   return DAG.getBitcast(DstType, NewShuffle);
1982 }
1983 
1984 static SDValue
1985 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
1986   auto &DAG = DCI.DAG;
1987   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
1988          N->getOpcode() == ISD::ZERO_EXTEND);
1989 
1990   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
1991   // possible before the extract_subvector can be expanded.
1992   auto Extract = N->getOperand(0);
1993   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
1994     return SDValue();
1995   auto Source = Extract.getOperand(0);
1996   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
1997   if (IndexNode == nullptr)
1998     return SDValue();
1999   auto Index = IndexNode->getZExtValue();
2000 
2001   // Only v8i8 and v4i16 extracts can be widened, and only if the extracted
2002   // subvector is the low or high half of its source.
2003   EVT ResVT = N->getValueType(0);
2004   if (ResVT == MVT::v8i16) {
2005     if (Extract.getValueType() != MVT::v8i8 ||
2006         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2007       return SDValue();
2008   } else if (ResVT == MVT::v4i32) {
2009     if (Extract.getValueType() != MVT::v4i16 ||
2010         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2011       return SDValue();
2012   } else {
2013     return SDValue();
2014   }
2015 
2016   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2017   bool IsLow = Index == 0;
2018 
2019   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2020                                 : WebAssemblyISD::EXTEND_HIGH_S)
2021                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2022                                 : WebAssemblyISD::EXTEND_HIGH_U);
2023 
2024   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2025 }
2026 
2027 static SDValue
2028 performVectorConvertLowCombine(SDNode *N,
2029                                TargetLowering::DAGCombinerInfo &DCI) {
2030   auto &DAG = DCI.DAG;
2031   assert(N->getOpcode() == ISD::SINT_TO_FP ||
2032          N->getOpcode() == ISD::UINT_TO_FP);
2033 
2034   // Combine ({s,u}int_to_fp (extract_subvector ... 0)) to an
2035   // f64x2.convert_low_i32x4_{s,u} SDNode.
2036   auto Extract = N->getOperand(0);
2037   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2038     return SDValue();
2039   auto Source = Extract.getOperand(0);
2040   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2041   if (IndexNode == nullptr)
2042     return SDValue();
2043   auto Index = IndexNode->getZExtValue();
2044 
2045   // The types must be correct.
2046   EVT ResVT = N->getValueType(0);
2047   if (ResVT != MVT::v2f64 || Extract.getValueType() != MVT::v2i32)
2048     return SDValue();
2049 
2050   // The extracted vector must be the low half.
2051   if (Index != 0)
2052     return SDValue();
2053 
2054   unsigned Op = N->getOpcode() == ISD::SINT_TO_FP
2055                     ? WebAssemblyISD::CONVERT_LOW_S
2056                     : WebAssemblyISD::CONVERT_LOW_U;
2057 
2058   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2059 }
2060 
2061 SDValue
2062 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2063                                              DAGCombinerInfo &DCI) const {
2064   switch (N->getOpcode()) {
2065   default:
2066     return SDValue();
2067   case ISD::VECTOR_SHUFFLE:
2068     return performVECTOR_SHUFFLECombine(N, DCI);
2069   case ISD::SIGN_EXTEND:
2070   case ISD::ZERO_EXTEND:
2071     return performVectorExtendCombine(N, DCI);
2072   case ISD::SINT_TO_FP:
2073   case ISD::UINT_TO_FP:
2074     return performVectorConvertLowCombine(N, DCI);
2075   }
2076 }
2077