1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 66 } 67 // Compute derived properties from the register classes. 68 computeRegisterProperties(Subtarget->getRegisterInfo()); 69 70 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 71 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 72 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 73 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 74 setOperationAction(ISD::BRIND, MVT::Other, Custom); 75 76 // Take the default expansion for va_arg, va_copy, and va_end. There is no 77 // default action for va_start, so we do that custom. 78 setOperationAction(ISD::VASTART, MVT::Other, Custom); 79 setOperationAction(ISD::VAARG, MVT::Other, Expand); 80 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 81 setOperationAction(ISD::VAEND, MVT::Other, Expand); 82 83 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 84 // Don't expand the floating-point types to constant pools. 85 setOperationAction(ISD::ConstantFP, T, Legal); 86 // Expand floating-point comparisons. 87 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 88 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 89 setCondCodeAction(CC, T, Expand); 90 // Expand floating-point library function operators. 91 for (auto Op : 92 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 93 setOperationAction(Op, T, Expand); 94 // Note supported floating-point library function operators that otherwise 95 // default to expand. 96 for (auto Op : 97 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 98 setOperationAction(Op, T, Legal); 99 // Support minimum and maximum, which otherwise default to expand. 100 setOperationAction(ISD::FMINIMUM, T, Legal); 101 setOperationAction(ISD::FMAXIMUM, T, Legal); 102 // WebAssembly currently has no builtin f16 support. 103 setOperationAction(ISD::FP16_TO_FP, T, Expand); 104 setOperationAction(ISD::FP_TO_FP16, T, Expand); 105 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 106 setTruncStoreAction(T, MVT::f16, Expand); 107 } 108 109 // Expand unavailable integer operations. 110 for (auto Op : 111 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 112 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 113 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 114 for (auto T : {MVT::i32, MVT::i64}) 115 setOperationAction(Op, T, Expand); 116 if (Subtarget->hasSIMD128()) 117 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 118 setOperationAction(Op, T, Expand); 119 } 120 121 // SIMD-specific configuration 122 if (Subtarget->hasSIMD128()) { 123 // Support saturating add for i8x16 and i16x8 124 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 125 for (auto T : {MVT::v16i8, MVT::v8i16}) 126 setOperationAction(Op, T, Legal); 127 128 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 129 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 130 MVT::v2f64}) 131 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 132 133 // We have custom shuffle lowering to expose the shuffle mask 134 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 135 MVT::v2f64}) 136 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 137 138 // Custom lowering since wasm shifts must have a scalar shift amount 139 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 140 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 141 setOperationAction(Op, T, Custom); 142 143 // Custom lower lane accesses to expand out variable indices 144 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 145 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 146 MVT::v2f64}) 147 setOperationAction(Op, T, Custom); 148 149 // There is no i64x2.mul instruction 150 // TODO: Actually, there is now. Implement it. 151 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 152 153 // There are no vector select instructions 154 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) 155 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 156 MVT::v2f64}) 157 setOperationAction(Op, T, Expand); 158 159 // Expand integer operations supported for scalars but not SIMD 160 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 161 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 162 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 163 setOperationAction(Op, T, Expand); 164 165 // But we do have integer min and max operations 166 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 168 setOperationAction(Op, T, Legal); 169 170 // Expand float operations supported for scalars but not SIMD 171 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 172 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 173 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 174 for (auto T : {MVT::v4f32, MVT::v2f64}) 175 setOperationAction(Op, T, Expand); 176 177 // Expand operations not supported for i64x2 vectors 178 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 179 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 180 181 // 64x2 conversions are not in the spec 182 if (!Subtarget->hasUnimplementedSIMD128()) 183 for (auto Op : 184 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 185 for (auto T : {MVT::v2i64, MVT::v2f64}) 186 setOperationAction(Op, T, Expand); 187 } 188 189 // As a special case, these operators use the type to mean the type to 190 // sign-extend from. 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget->hasSignExt()) { 193 // Sign extends are legal only when extending a vector extract 194 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 195 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 196 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 197 } 198 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 199 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 200 201 // Dynamic stack allocation: use the default expansion. 202 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 203 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 204 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 205 206 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 207 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 208 209 // Expand these forms; we pattern-match the forms that we can handle in isel. 210 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 211 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 212 setOperationAction(Op, T, Expand); 213 214 // We have custom switch handling. 215 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 216 217 // WebAssembly doesn't have: 218 // - Floating-point extending loads. 219 // - Floating-point truncating stores. 220 // - i1 extending loads. 221 // - truncating SIMD stores and most extending loads 222 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 223 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 224 for (auto T : MVT::integer_valuetypes()) 225 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 226 setLoadExtAction(Ext, T, MVT::i1, Promote); 227 if (Subtarget->hasSIMD128()) { 228 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 229 MVT::v2f64}) { 230 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 231 if (MVT(T) != MemT) { 232 setTruncStoreAction(T, MemT, Expand); 233 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 234 setLoadExtAction(Ext, T, MemT, Expand); 235 } 236 } 237 } 238 // But some vector extending loads are legal 239 if (Subtarget->hasUnimplementedSIMD128()) { 240 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 241 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 242 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 243 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 244 } 245 } 246 } 247 248 // Don't do anything clever with build_pairs 249 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 250 251 // Trap lowers to wasm unreachable 252 setOperationAction(ISD::TRAP, MVT::Other, Legal); 253 254 // Exception handling intrinsics 255 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 256 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 257 258 setMaxAtomicSizeInBitsSupported(64); 259 260 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 261 // consistent with the f64 and f128 names. 262 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 263 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 264 265 // Define the emscripten name for return address helper. 266 // TODO: when implementing other WASM backends, make this generic or only do 267 // this on emscripten depending on what they end up doing. 268 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 269 270 // Always convert switches to br_tables unless there is only one case, which 271 // is equivalent to a simple branch. This reduces code size for wasm, and we 272 // defer possible jump table optimizations to the VM. 273 setMinimumJumpTableEntries(2); 274 } 275 276 TargetLowering::AtomicExpansionKind 277 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 278 // We have wasm instructions for these 279 switch (AI->getOperation()) { 280 case AtomicRMWInst::Add: 281 case AtomicRMWInst::Sub: 282 case AtomicRMWInst::And: 283 case AtomicRMWInst::Or: 284 case AtomicRMWInst::Xor: 285 case AtomicRMWInst::Xchg: 286 return AtomicExpansionKind::None; 287 default: 288 break; 289 } 290 return AtomicExpansionKind::CmpXChg; 291 } 292 293 FastISel *WebAssemblyTargetLowering::createFastISel( 294 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 295 return WebAssembly::createFastISel(FuncInfo, LibInfo); 296 } 297 298 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 299 EVT VT) const { 300 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 301 if (BitWidth > 1 && BitWidth < 8) 302 BitWidth = 8; 303 304 if (BitWidth > 64) { 305 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 306 // the count to be an i32. 307 BitWidth = 32; 308 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 309 "32-bit shift counts ought to be enough for anyone"); 310 } 311 312 MVT Result = MVT::getIntegerVT(BitWidth); 313 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 314 "Unable to represent scalar shift amount type"); 315 return Result; 316 } 317 318 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 319 // undefined result on invalid/overflow, to the WebAssembly opcode, which 320 // traps on invalid/overflow. 321 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 322 MachineBasicBlock *BB, 323 const TargetInstrInfo &TII, 324 bool IsUnsigned, bool Int64, 325 bool Float64, unsigned LoweredOpcode) { 326 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 327 328 Register OutReg = MI.getOperand(0).getReg(); 329 Register InReg = MI.getOperand(1).getReg(); 330 331 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 332 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 333 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 334 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 335 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 336 unsigned Eqz = WebAssembly::EQZ_I32; 337 unsigned And = WebAssembly::AND_I32; 338 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 339 int64_t Substitute = IsUnsigned ? 0 : Limit; 340 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 341 auto &Context = BB->getParent()->getFunction().getContext(); 342 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 343 344 const BasicBlock *LLVMBB = BB->getBasicBlock(); 345 MachineFunction *F = BB->getParent(); 346 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 347 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 348 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 349 350 MachineFunction::iterator It = ++BB->getIterator(); 351 F->insert(It, FalseMBB); 352 F->insert(It, TrueMBB); 353 F->insert(It, DoneMBB); 354 355 // Transfer the remainder of BB and its successor edges to DoneMBB. 356 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 357 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 358 359 BB->addSuccessor(TrueMBB); 360 BB->addSuccessor(FalseMBB); 361 TrueMBB->addSuccessor(DoneMBB); 362 FalseMBB->addSuccessor(DoneMBB); 363 364 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 365 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 366 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 367 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 368 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 369 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 370 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 371 372 MI.eraseFromParent(); 373 // For signed numbers, we can do a single comparison to determine whether 374 // fabs(x) is within range. 375 if (IsUnsigned) { 376 Tmp0 = InReg; 377 } else { 378 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 379 } 380 BuildMI(BB, DL, TII.get(FConst), Tmp1) 381 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 382 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 383 384 // For unsigned numbers, we have to do a separate comparison with zero. 385 if (IsUnsigned) { 386 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 387 Register SecondCmpReg = 388 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 389 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 390 BuildMI(BB, DL, TII.get(FConst), Tmp1) 391 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 392 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 393 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 394 CmpReg = AndReg; 395 } 396 397 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 398 399 // Create the CFG diamond to select between doing the conversion or using 400 // the substitute value. 401 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 402 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 403 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 404 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 405 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 406 .addReg(FalseReg) 407 .addMBB(FalseMBB) 408 .addReg(TrueReg) 409 .addMBB(TrueMBB); 410 411 return DoneMBB; 412 } 413 414 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 415 MachineInstr &MI, MachineBasicBlock *BB) const { 416 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 417 DebugLoc DL = MI.getDebugLoc(); 418 419 switch (MI.getOpcode()) { 420 default: 421 llvm_unreachable("Unexpected instr type to insert"); 422 case WebAssembly::FP_TO_SINT_I32_F32: 423 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 424 WebAssembly::I32_TRUNC_S_F32); 425 case WebAssembly::FP_TO_UINT_I32_F32: 426 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 427 WebAssembly::I32_TRUNC_U_F32); 428 case WebAssembly::FP_TO_SINT_I64_F32: 429 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 430 WebAssembly::I64_TRUNC_S_F32); 431 case WebAssembly::FP_TO_UINT_I64_F32: 432 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 433 WebAssembly::I64_TRUNC_U_F32); 434 case WebAssembly::FP_TO_SINT_I32_F64: 435 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 436 WebAssembly::I32_TRUNC_S_F64); 437 case WebAssembly::FP_TO_UINT_I32_F64: 438 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 439 WebAssembly::I32_TRUNC_U_F64); 440 case WebAssembly::FP_TO_SINT_I64_F64: 441 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 442 WebAssembly::I64_TRUNC_S_F64); 443 case WebAssembly::FP_TO_UINT_I64_F64: 444 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 445 WebAssembly::I64_TRUNC_U_F64); 446 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 447 } 448 } 449 450 const char * 451 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 452 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 453 case WebAssemblyISD::FIRST_NUMBER: 454 case WebAssemblyISD::FIRST_MEM_OPCODE: 455 break; 456 #define HANDLE_NODETYPE(NODE) \ 457 case WebAssemblyISD::NODE: \ 458 return "WebAssemblyISD::" #NODE; 459 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 460 #include "WebAssemblyISD.def" 461 #undef HANDLE_MEM_NODETYPE 462 #undef HANDLE_NODETYPE 463 } 464 return nullptr; 465 } 466 467 std::pair<unsigned, const TargetRegisterClass *> 468 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 469 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 470 // First, see if this is a constraint that directly corresponds to a 471 // WebAssembly register class. 472 if (Constraint.size() == 1) { 473 switch (Constraint[0]) { 474 case 'r': 475 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 476 if (Subtarget->hasSIMD128() && VT.isVector()) { 477 if (VT.getSizeInBits() == 128) 478 return std::make_pair(0U, &WebAssembly::V128RegClass); 479 } 480 if (VT.isInteger() && !VT.isVector()) { 481 if (VT.getSizeInBits() <= 32) 482 return std::make_pair(0U, &WebAssembly::I32RegClass); 483 if (VT.getSizeInBits() <= 64) 484 return std::make_pair(0U, &WebAssembly::I64RegClass); 485 } 486 break; 487 default: 488 break; 489 } 490 } 491 492 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 493 } 494 495 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 496 // Assume ctz is a relatively cheap operation. 497 return true; 498 } 499 500 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 501 // Assume clz is a relatively cheap operation. 502 return true; 503 } 504 505 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 506 const AddrMode &AM, 507 Type *Ty, unsigned AS, 508 Instruction *I) const { 509 // WebAssembly offsets are added as unsigned without wrapping. The 510 // isLegalAddressingMode gives us no way to determine if wrapping could be 511 // happening, so we approximate this by accepting only non-negative offsets. 512 if (AM.BaseOffs < 0) 513 return false; 514 515 // WebAssembly has no scale register operands. 516 if (AM.Scale != 0) 517 return false; 518 519 // Everything else is legal. 520 return true; 521 } 522 523 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 524 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 525 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 526 // WebAssembly supports unaligned accesses, though it should be declared 527 // with the p2align attribute on loads and stores which do so, and there 528 // may be a performance impact. We tell LLVM they're "fast" because 529 // for the kinds of things that LLVM uses this for (merging adjacent stores 530 // of constants, etc.), WebAssembly implementations will either want the 531 // unaligned access or they'll split anyway. 532 if (Fast) 533 *Fast = true; 534 return true; 535 } 536 537 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 538 AttributeList Attr) const { 539 // The current thinking is that wasm engines will perform this optimization, 540 // so we can save on code size. 541 return true; 542 } 543 544 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 545 if (!Subtarget->hasUnimplementedSIMD128()) 546 return false; 547 MVT ExtT = ExtVal.getSimpleValueType(); 548 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 549 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 550 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 551 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 552 } 553 554 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 555 LLVMContext &C, 556 EVT VT) const { 557 if (VT.isVector()) 558 return VT.changeVectorElementTypeToInteger(); 559 560 return TargetLowering::getSetCCResultType(DL, C, VT); 561 } 562 563 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 564 const CallInst &I, 565 MachineFunction &MF, 566 unsigned Intrinsic) const { 567 switch (Intrinsic) { 568 case Intrinsic::wasm_atomic_notify: 569 Info.opc = ISD::INTRINSIC_W_CHAIN; 570 Info.memVT = MVT::i32; 571 Info.ptrVal = I.getArgOperand(0); 572 Info.offset = 0; 573 Info.align = Align(4); 574 // atomic.notify instruction does not really load the memory specified with 575 // this argument, but MachineMemOperand should either be load or store, so 576 // we set this to a load. 577 // FIXME Volatile isn't really correct, but currently all LLVM atomic 578 // instructions are treated as volatiles in the backend, so we should be 579 // consistent. The same applies for wasm_atomic_wait intrinsics too. 580 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 581 return true; 582 case Intrinsic::wasm_atomic_wait_i32: 583 Info.opc = ISD::INTRINSIC_W_CHAIN; 584 Info.memVT = MVT::i32; 585 Info.ptrVal = I.getArgOperand(0); 586 Info.offset = 0; 587 Info.align = Align(4); 588 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 589 return true; 590 case Intrinsic::wasm_atomic_wait_i64: 591 Info.opc = ISD::INTRINSIC_W_CHAIN; 592 Info.memVT = MVT::i64; 593 Info.ptrVal = I.getArgOperand(0); 594 Info.offset = 0; 595 Info.align = Align(8); 596 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 597 return true; 598 default: 599 return false; 600 } 601 } 602 603 //===----------------------------------------------------------------------===// 604 // WebAssembly Lowering private implementation. 605 //===----------------------------------------------------------------------===// 606 607 //===----------------------------------------------------------------------===// 608 // Lowering Code 609 //===----------------------------------------------------------------------===// 610 611 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 612 MachineFunction &MF = DAG.getMachineFunction(); 613 DAG.getContext()->diagnose( 614 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 615 } 616 617 // Test whether the given calling convention is supported. 618 static bool callingConvSupported(CallingConv::ID CallConv) { 619 // We currently support the language-independent target-independent 620 // conventions. We don't yet have a way to annotate calls with properties like 621 // "cold", and we don't have any call-clobbered registers, so these are mostly 622 // all handled the same. 623 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 624 CallConv == CallingConv::Cold || 625 CallConv == CallingConv::PreserveMost || 626 CallConv == CallingConv::PreserveAll || 627 CallConv == CallingConv::CXX_FAST_TLS || 628 CallConv == CallingConv::WASM_EmscriptenInvoke || 629 CallConv == CallingConv::Swift; 630 } 631 632 SDValue 633 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 634 SmallVectorImpl<SDValue> &InVals) const { 635 SelectionDAG &DAG = CLI.DAG; 636 SDLoc DL = CLI.DL; 637 SDValue Chain = CLI.Chain; 638 SDValue Callee = CLI.Callee; 639 MachineFunction &MF = DAG.getMachineFunction(); 640 auto Layout = MF.getDataLayout(); 641 642 CallingConv::ID CallConv = CLI.CallConv; 643 if (!callingConvSupported(CallConv)) 644 fail(DL, DAG, 645 "WebAssembly doesn't support language-specific or target-specific " 646 "calling conventions yet"); 647 if (CLI.IsPatchPoint) 648 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 649 650 if (CLI.IsTailCall) { 651 auto NoTail = [&](const char *Msg) { 652 if (CLI.CS && CLI.CS.isMustTailCall()) 653 fail(DL, DAG, Msg); 654 CLI.IsTailCall = false; 655 }; 656 657 if (!Subtarget->hasTailCall()) 658 NoTail("WebAssembly 'tail-call' feature not enabled"); 659 660 // Varargs calls cannot be tail calls because the buffer is on the stack 661 if (CLI.IsVarArg) 662 NoTail("WebAssembly does not support varargs tail calls"); 663 664 // Do not tail call unless caller and callee return types match 665 const Function &F = MF.getFunction(); 666 const TargetMachine &TM = getTargetMachine(); 667 Type *RetTy = F.getReturnType(); 668 SmallVector<MVT, 4> CallerRetTys; 669 SmallVector<MVT, 4> CalleeRetTys; 670 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 671 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 672 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 673 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 674 CalleeRetTys.begin()); 675 if (!TypesMatch) 676 NoTail("WebAssembly tail call requires caller and callee return types to " 677 "match"); 678 679 // If pointers to local stack values are passed, we cannot tail call 680 if (CLI.CS) { 681 for (auto &Arg : CLI.CS.args()) { 682 Value *Val = Arg.get(); 683 // Trace the value back through pointer operations 684 while (true) { 685 Value *Src = Val->stripPointerCastsAndAliases(); 686 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 687 Src = GEP->getPointerOperand(); 688 if (Val == Src) 689 break; 690 Val = Src; 691 } 692 if (isa<AllocaInst>(Val)) { 693 NoTail( 694 "WebAssembly does not support tail calling with stack arguments"); 695 break; 696 } 697 } 698 } 699 } 700 701 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 702 if (Ins.size() > 1) 703 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 704 705 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 706 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 707 708 // The generic code may have added an sret argument. If we're lowering an 709 // invoke function, the ABI requires that the function pointer be the first 710 // argument, so we may have to swap the arguments. 711 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 712 Outs[0].Flags.isSRet()) { 713 std::swap(Outs[0], Outs[1]); 714 std::swap(OutVals[0], OutVals[1]); 715 } 716 717 unsigned NumFixedArgs = 0; 718 for (unsigned I = 0; I < Outs.size(); ++I) { 719 const ISD::OutputArg &Out = Outs[I]; 720 SDValue &OutVal = OutVals[I]; 721 if (Out.Flags.isNest()) 722 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 723 if (Out.Flags.isInAlloca()) 724 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 725 if (Out.Flags.isInConsecutiveRegs()) 726 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 727 if (Out.Flags.isInConsecutiveRegsLast()) 728 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 729 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 730 auto &MFI = MF.getFrameInfo(); 731 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 732 Out.Flags.getNonZeroByValAlign(), 733 /*isSS=*/false); 734 SDValue SizeNode = 735 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 736 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 737 Chain = DAG.getMemcpy( 738 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 739 /*isVolatile*/ false, /*AlwaysInline=*/false, 740 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 741 OutVal = FINode; 742 } 743 // Count the number of fixed args *after* legalization. 744 NumFixedArgs += Out.IsFixed; 745 } 746 747 bool IsVarArg = CLI.IsVarArg; 748 auto PtrVT = getPointerTy(Layout); 749 750 // Analyze operands of the call, assigning locations to each operand. 751 SmallVector<CCValAssign, 16> ArgLocs; 752 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 753 754 if (IsVarArg) { 755 // Outgoing non-fixed arguments are placed in a buffer. First 756 // compute their offsets and the total amount of buffer space needed. 757 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 758 const ISD::OutputArg &Out = Outs[I]; 759 SDValue &Arg = OutVals[I]; 760 EVT VT = Arg.getValueType(); 761 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 762 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 763 unsigned Align = std::max(Out.Flags.getOrigAlign(), 764 Layout.getABITypeAlignment(Ty)); 765 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 766 Align); 767 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 768 Offset, VT.getSimpleVT(), 769 CCValAssign::Full)); 770 } 771 } 772 773 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 774 775 SDValue FINode; 776 if (IsVarArg && NumBytes) { 777 // For non-fixed arguments, next emit stores to store the argument values 778 // to the stack buffer at the offsets computed above. 779 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 780 Layout.getStackAlignment(), 781 /*isSS=*/false); 782 unsigned ValNo = 0; 783 SmallVector<SDValue, 8> Chains; 784 for (SDValue Arg : 785 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 786 assert(ArgLocs[ValNo].getValNo() == ValNo && 787 "ArgLocs should remain in order and only hold varargs args"); 788 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 789 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 790 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 791 DAG.getConstant(Offset, DL, PtrVT)); 792 Chains.push_back( 793 DAG.getStore(Chain, DL, Arg, Add, 794 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 795 } 796 if (!Chains.empty()) 797 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 798 } else if (IsVarArg) { 799 FINode = DAG.getIntPtrConstant(0, DL); 800 } 801 802 if (Callee->getOpcode() == ISD::GlobalAddress) { 803 // If the callee is a GlobalAddress node (quite common, every direct call 804 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 805 // doesn't at MO_GOT which is not needed for direct calls. 806 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 807 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 808 getPointerTy(DAG.getDataLayout()), 809 GA->getOffset()); 810 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 811 getPointerTy(DAG.getDataLayout()), Callee); 812 } 813 814 // Compute the operands for the CALLn node. 815 SmallVector<SDValue, 16> Ops; 816 Ops.push_back(Chain); 817 Ops.push_back(Callee); 818 819 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 820 // isn't reliable. 821 Ops.append(OutVals.begin(), 822 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 823 // Add a pointer to the vararg buffer. 824 if (IsVarArg) 825 Ops.push_back(FINode); 826 827 SmallVector<EVT, 8> InTys; 828 for (const auto &In : Ins) { 829 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 830 assert(!In.Flags.isNest() && "nest is not valid for return values"); 831 if (In.Flags.isInAlloca()) 832 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 833 if (In.Flags.isInConsecutiveRegs()) 834 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 835 if (In.Flags.isInConsecutiveRegsLast()) 836 fail(DL, DAG, 837 "WebAssembly hasn't implemented cons regs last return values"); 838 // Ignore In.getOrigAlign() because all our arguments are passed in 839 // registers. 840 InTys.push_back(In.VT); 841 } 842 843 if (CLI.IsTailCall) { 844 // ret_calls do not return values to the current frame 845 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 846 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 847 } 848 849 InTys.push_back(MVT::Other); 850 SDVTList InTyList = DAG.getVTList(InTys); 851 SDValue Res = 852 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 853 DL, InTyList, Ops); 854 if (Ins.empty()) { 855 Chain = Res; 856 } else { 857 InVals.push_back(Res); 858 Chain = Res.getValue(1); 859 } 860 861 return Chain; 862 } 863 864 bool WebAssemblyTargetLowering::CanLowerReturn( 865 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 866 const SmallVectorImpl<ISD::OutputArg> &Outs, 867 LLVMContext & /*Context*/) const { 868 // WebAssembly can only handle returning tuples with multivalue enabled 869 return Subtarget->hasMultivalue() || Outs.size() <= 1; 870 } 871 872 SDValue WebAssemblyTargetLowering::LowerReturn( 873 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 874 const SmallVectorImpl<ISD::OutputArg> &Outs, 875 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 876 SelectionDAG &DAG) const { 877 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 878 "MVP WebAssembly can only return up to one value"); 879 if (!callingConvSupported(CallConv)) 880 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 881 882 SmallVector<SDValue, 4> RetOps(1, Chain); 883 RetOps.append(OutVals.begin(), OutVals.end()); 884 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 885 886 // Record the number and types of the return values. 887 for (const ISD::OutputArg &Out : Outs) { 888 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 889 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 890 assert(Out.IsFixed && "non-fixed return value is not valid"); 891 if (Out.Flags.isInAlloca()) 892 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 893 if (Out.Flags.isInConsecutiveRegs()) 894 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 895 if (Out.Flags.isInConsecutiveRegsLast()) 896 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 897 } 898 899 return Chain; 900 } 901 902 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 903 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 904 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 905 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 906 if (!callingConvSupported(CallConv)) 907 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 908 909 MachineFunction &MF = DAG.getMachineFunction(); 910 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 911 912 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 913 // of the incoming values before they're represented by virtual registers. 914 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 915 916 for (const ISD::InputArg &In : Ins) { 917 if (In.Flags.isInAlloca()) 918 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 919 if (In.Flags.isNest()) 920 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 921 if (In.Flags.isInConsecutiveRegs()) 922 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 923 if (In.Flags.isInConsecutiveRegsLast()) 924 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 925 // Ignore In.getOrigAlign() because all our arguments are passed in 926 // registers. 927 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 928 DAG.getTargetConstant(InVals.size(), 929 DL, MVT::i32)) 930 : DAG.getUNDEF(In.VT)); 931 932 // Record the number and types of arguments. 933 MFI->addParam(In.VT); 934 } 935 936 // Varargs are copied into a buffer allocated by the caller, and a pointer to 937 // the buffer is passed as an argument. 938 if (IsVarArg) { 939 MVT PtrVT = getPointerTy(MF.getDataLayout()); 940 Register VarargVreg = 941 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 942 MFI->setVarargBufferVreg(VarargVreg); 943 Chain = DAG.getCopyToReg( 944 Chain, DL, VarargVreg, 945 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 946 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 947 MFI->addParam(PtrVT); 948 } 949 950 // Record the number and types of arguments and results. 951 SmallVector<MVT, 4> Params; 952 SmallVector<MVT, 4> Results; 953 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 954 DAG.getTarget(), Params, Results); 955 for (MVT VT : Results) 956 MFI->addResult(VT); 957 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 958 // the param logic here with ComputeSignatureVTs 959 assert(MFI->getParams().size() == Params.size() && 960 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 961 Params.begin())); 962 963 return Chain; 964 } 965 966 void WebAssemblyTargetLowering::ReplaceNodeResults( 967 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 968 switch (N->getOpcode()) { 969 case ISD::SIGN_EXTEND_INREG: 970 // Do not add any results, signifying that N should not be custom lowered 971 // after all. This happens because simd128 turns on custom lowering for 972 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 973 // illegal type. 974 break; 975 default: 976 llvm_unreachable( 977 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 978 } 979 } 980 981 //===----------------------------------------------------------------------===// 982 // Custom lowering hooks. 983 //===----------------------------------------------------------------------===// 984 985 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 986 SelectionDAG &DAG) const { 987 SDLoc DL(Op); 988 switch (Op.getOpcode()) { 989 default: 990 llvm_unreachable("unimplemented operation lowering"); 991 return SDValue(); 992 case ISD::FrameIndex: 993 return LowerFrameIndex(Op, DAG); 994 case ISD::GlobalAddress: 995 return LowerGlobalAddress(Op, DAG); 996 case ISD::ExternalSymbol: 997 return LowerExternalSymbol(Op, DAG); 998 case ISD::JumpTable: 999 return LowerJumpTable(Op, DAG); 1000 case ISD::BR_JT: 1001 return LowerBR_JT(Op, DAG); 1002 case ISD::VASTART: 1003 return LowerVASTART(Op, DAG); 1004 case ISD::BlockAddress: 1005 case ISD::BRIND: 1006 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1007 return SDValue(); 1008 case ISD::RETURNADDR: 1009 return LowerRETURNADDR(Op, DAG); 1010 case ISD::FRAMEADDR: 1011 return LowerFRAMEADDR(Op, DAG); 1012 case ISD::CopyToReg: 1013 return LowerCopyToReg(Op, DAG); 1014 case ISD::EXTRACT_VECTOR_ELT: 1015 case ISD::INSERT_VECTOR_ELT: 1016 return LowerAccessVectorElement(Op, DAG); 1017 case ISD::INTRINSIC_VOID: 1018 case ISD::INTRINSIC_WO_CHAIN: 1019 case ISD::INTRINSIC_W_CHAIN: 1020 return LowerIntrinsic(Op, DAG); 1021 case ISD::SIGN_EXTEND_INREG: 1022 return LowerSIGN_EXTEND_INREG(Op, DAG); 1023 case ISD::BUILD_VECTOR: 1024 return LowerBUILD_VECTOR(Op, DAG); 1025 case ISD::VECTOR_SHUFFLE: 1026 return LowerVECTOR_SHUFFLE(Op, DAG); 1027 case ISD::SETCC: 1028 return LowerSETCC(Op, DAG); 1029 case ISD::SHL: 1030 case ISD::SRA: 1031 case ISD::SRL: 1032 return LowerShift(Op, DAG); 1033 } 1034 } 1035 1036 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1037 SelectionDAG &DAG) const { 1038 SDValue Src = Op.getOperand(2); 1039 if (isa<FrameIndexSDNode>(Src.getNode())) { 1040 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1041 // the FI to some LEA-like instruction, but since we don't have that, we 1042 // need to insert some kind of instruction that can take an FI operand and 1043 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1044 // local.copy between Op and its FI operand. 1045 SDValue Chain = Op.getOperand(0); 1046 SDLoc DL(Op); 1047 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1048 EVT VT = Src.getValueType(); 1049 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1050 : WebAssembly::COPY_I64, 1051 DL, VT, Src), 1052 0); 1053 return Op.getNode()->getNumValues() == 1 1054 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1055 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1056 Op.getNumOperands() == 4 ? Op.getOperand(3) 1057 : SDValue()); 1058 } 1059 return SDValue(); 1060 } 1061 1062 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1063 SelectionDAG &DAG) const { 1064 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1065 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1066 } 1067 1068 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1069 SelectionDAG &DAG) const { 1070 SDLoc DL(Op); 1071 1072 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1073 fail(DL, DAG, 1074 "Non-Emscripten WebAssembly hasn't implemented " 1075 "__builtin_return_address"); 1076 return SDValue(); 1077 } 1078 1079 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1080 return SDValue(); 1081 1082 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1083 MakeLibCallOptions CallOptions; 1084 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1085 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1086 .first; 1087 } 1088 1089 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1090 SelectionDAG &DAG) const { 1091 // Non-zero depths are not supported by WebAssembly currently. Use the 1092 // legalizer's default expansion, which is to return 0 (what this function is 1093 // documented to do). 1094 if (Op.getConstantOperandVal(0) > 0) 1095 return SDValue(); 1096 1097 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1098 EVT VT = Op.getValueType(); 1099 Register FP = 1100 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1101 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1102 } 1103 1104 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1105 SelectionDAG &DAG) const { 1106 SDLoc DL(Op); 1107 const auto *GA = cast<GlobalAddressSDNode>(Op); 1108 EVT VT = Op.getValueType(); 1109 assert(GA->getTargetFlags() == 0 && 1110 "Unexpected target flags on generic GlobalAddressSDNode"); 1111 if (GA->getAddressSpace() != 0) 1112 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1113 1114 unsigned OperandFlags = 0; 1115 if (isPositionIndependent()) { 1116 const GlobalValue *GV = GA->getGlobal(); 1117 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1118 MachineFunction &MF = DAG.getMachineFunction(); 1119 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1120 const char *BaseName; 1121 if (GV->getValueType()->isFunctionTy()) { 1122 BaseName = MF.createExternalSymbolName("__table_base"); 1123 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1124 } 1125 else { 1126 BaseName = MF.createExternalSymbolName("__memory_base"); 1127 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1128 } 1129 SDValue BaseAddr = 1130 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1131 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1132 1133 SDValue SymAddr = DAG.getNode( 1134 WebAssemblyISD::WrapperPIC, DL, VT, 1135 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1136 OperandFlags)); 1137 1138 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1139 } else { 1140 OperandFlags = WebAssemblyII::MO_GOT; 1141 } 1142 } 1143 1144 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1145 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1146 GA->getOffset(), OperandFlags)); 1147 } 1148 1149 SDValue 1150 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1151 SelectionDAG &DAG) const { 1152 SDLoc DL(Op); 1153 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1154 EVT VT = Op.getValueType(); 1155 assert(ES->getTargetFlags() == 0 && 1156 "Unexpected target flags on generic ExternalSymbolSDNode"); 1157 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1158 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1159 } 1160 1161 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1162 SelectionDAG &DAG) const { 1163 // There's no need for a Wrapper node because we always incorporate a jump 1164 // table operand into a BR_TABLE instruction, rather than ever 1165 // materializing it in a register. 1166 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1167 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1168 JT->getTargetFlags()); 1169 } 1170 1171 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1172 SelectionDAG &DAG) const { 1173 SDLoc DL(Op); 1174 SDValue Chain = Op.getOperand(0); 1175 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1176 SDValue Index = Op.getOperand(2); 1177 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1178 1179 SmallVector<SDValue, 8> Ops; 1180 Ops.push_back(Chain); 1181 Ops.push_back(Index); 1182 1183 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1184 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1185 1186 // Add an operand for each case. 1187 for (auto MBB : MBBs) 1188 Ops.push_back(DAG.getBasicBlock(MBB)); 1189 1190 // TODO: For now, we just pick something arbitrary for a default case for now. 1191 // We really want to sniff out the guard and put in the real default case (and 1192 // delete the guard). 1193 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1194 1195 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1196 } 1197 1198 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1199 SelectionDAG &DAG) const { 1200 SDLoc DL(Op); 1201 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1202 1203 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1204 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1205 1206 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1207 MFI->getVarargBufferVreg(), PtrVT); 1208 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1209 MachinePointerInfo(SV), 0); 1210 } 1211 1212 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1213 SelectionDAG &DAG) const { 1214 MachineFunction &MF = DAG.getMachineFunction(); 1215 unsigned IntNo; 1216 switch (Op.getOpcode()) { 1217 case ISD::INTRINSIC_VOID: 1218 case ISD::INTRINSIC_W_CHAIN: 1219 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1220 break; 1221 case ISD::INTRINSIC_WO_CHAIN: 1222 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1223 break; 1224 default: 1225 llvm_unreachable("Invalid intrinsic"); 1226 } 1227 SDLoc DL(Op); 1228 1229 switch (IntNo) { 1230 default: 1231 return SDValue(); // Don't custom lower most intrinsics. 1232 1233 case Intrinsic::wasm_lsda: { 1234 EVT VT = Op.getValueType(); 1235 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1236 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1237 auto &Context = MF.getMMI().getContext(); 1238 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1239 Twine(MF.getFunctionNumber())); 1240 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1241 DAG.getMCSymbol(S, PtrVT)); 1242 } 1243 1244 case Intrinsic::wasm_throw: { 1245 // We only support C++ exceptions for now 1246 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1247 if (Tag != CPP_EXCEPTION) 1248 llvm_unreachable("Invalid tag!"); 1249 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1250 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1251 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1252 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1253 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1254 return DAG.getNode(WebAssemblyISD::THROW, DL, 1255 MVT::Other, // outchain type 1256 { 1257 Op.getOperand(0), // inchain 1258 SymNode, // exception symbol 1259 Op.getOperand(3) // thrown value 1260 }); 1261 } 1262 } 1263 } 1264 1265 SDValue 1266 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1267 SelectionDAG &DAG) const { 1268 SDLoc DL(Op); 1269 // If sign extension operations are disabled, allow sext_inreg only if operand 1270 // is a vector extract. SIMD does not depend on sign extension operations, but 1271 // allowing sext_inreg in this context lets us have simple patterns to select 1272 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1273 // simpler in this file, but would necessitate large and brittle patterns to 1274 // undo the expansion and select extract_lane_s instructions. 1275 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1276 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1277 const SDValue &Extract = Op.getOperand(0); 1278 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1279 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1280 ->getVT() 1281 .getSimpleVT(); 1282 MVT ExtractedVecT = 1283 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1284 if (ExtractedVecT == VecT) 1285 return Op; 1286 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1287 const SDValue &Index = Extract.getOperand(1); 1288 unsigned IndexVal = 1289 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1290 unsigned Scale = 1291 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1292 assert(Scale > 1); 1293 SDValue NewIndex = 1294 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1295 SDValue NewExtract = DAG.getNode( 1296 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1297 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1298 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), 1299 NewExtract, Op.getOperand(1)); 1300 } 1301 // Otherwise expand 1302 return SDValue(); 1303 } 1304 1305 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1306 SelectionDAG &DAG) const { 1307 SDLoc DL(Op); 1308 const EVT VecT = Op.getValueType(); 1309 const EVT LaneT = Op.getOperand(0).getValueType(); 1310 const size_t Lanes = Op.getNumOperands(); 1311 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8; 1312 1313 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1314 // possible number of lanes at once followed by a sequence of replace_lane 1315 // instructions to individually initialize any remaining lanes. 1316 1317 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1318 // swizzled lanes should be given greater weight. 1319 1320 // TODO: Investigate building vectors by shuffling together vectors built by 1321 // separately specialized means. 1322 1323 auto IsConstant = [](const SDValue &V) { 1324 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1325 }; 1326 1327 // Returns the source vector and index vector pair if they exist. Checks for: 1328 // (extract_vector_elt 1329 // $src, 1330 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1331 // ) 1332 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1333 auto Bail = std::make_pair(SDValue(), SDValue()); 1334 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1335 return Bail; 1336 const SDValue &SwizzleSrc = Lane->getOperand(0); 1337 const SDValue &IndexExt = Lane->getOperand(1); 1338 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1339 return Bail; 1340 const SDValue &Index = IndexExt->getOperand(0); 1341 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1342 return Bail; 1343 const SDValue &SwizzleIndices = Index->getOperand(0); 1344 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1345 SwizzleIndices.getValueType() != MVT::v16i8 || 1346 Index->getOperand(1)->getOpcode() != ISD::Constant || 1347 Index->getConstantOperandVal(1) != I) 1348 return Bail; 1349 return std::make_pair(SwizzleSrc, SwizzleIndices); 1350 }; 1351 1352 using ValueEntry = std::pair<SDValue, size_t>; 1353 SmallVector<ValueEntry, 16> SplatValueCounts; 1354 1355 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1356 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1357 1358 auto AddCount = [](auto &Counts, const auto &Val) { 1359 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1360 [&Val](auto E) { return E.first == Val; }); 1361 if (CountIt == Counts.end()) { 1362 Counts.emplace_back(Val, 1); 1363 } else { 1364 CountIt->second++; 1365 } 1366 }; 1367 1368 auto GetMostCommon = [](auto &Counts) { 1369 auto CommonIt = 1370 std::max_element(Counts.begin(), Counts.end(), 1371 [](auto A, auto B) { return A.second < B.second; }); 1372 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1373 return *CommonIt; 1374 }; 1375 1376 size_t NumConstantLanes = 0; 1377 1378 // Count eligible lanes for each type of vector creation op 1379 for (size_t I = 0; I < Lanes; ++I) { 1380 const SDValue &Lane = Op->getOperand(I); 1381 if (Lane.isUndef()) 1382 continue; 1383 1384 AddCount(SplatValueCounts, Lane); 1385 1386 if (IsConstant(Lane)) { 1387 NumConstantLanes++; 1388 } else if (CanSwizzle) { 1389 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1390 if (SwizzleSrcs.first) 1391 AddCount(SwizzleCounts, SwizzleSrcs); 1392 } 1393 } 1394 1395 SDValue SplatValue; 1396 size_t NumSplatLanes; 1397 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1398 1399 SDValue SwizzleSrc; 1400 SDValue SwizzleIndices; 1401 size_t NumSwizzleLanes = 0; 1402 if (SwizzleCounts.size()) 1403 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1404 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1405 1406 // Predicate returning true if the lane is properly initialized by the 1407 // original instruction 1408 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1409 SDValue Result; 1410 if (Subtarget->hasUnimplementedSIMD128()) { 1411 // Prefer swizzles over vector consts over splats 1412 if (NumSwizzleLanes >= NumSplatLanes && 1413 NumSwizzleLanes >= NumConstantLanes) { 1414 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1415 SwizzleIndices); 1416 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1417 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1418 return Swizzled == GetSwizzleSrcs(I, Lane); 1419 }; 1420 } else if (NumConstantLanes >= NumSplatLanes) { 1421 SmallVector<SDValue, 16> ConstLanes; 1422 for (const SDValue &Lane : Op->op_values()) { 1423 if (IsConstant(Lane)) { 1424 ConstLanes.push_back(Lane); 1425 } else if (LaneT.isFloatingPoint()) { 1426 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1427 } else { 1428 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1429 } 1430 } 1431 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1432 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1433 return IsConstant(Lane); 1434 }; 1435 } 1436 } 1437 if (!Result) { 1438 // Use a splat, but possibly a load_splat 1439 LoadSDNode *SplattedLoad; 1440 if (Subtarget->hasUnimplementedSIMD128() && 1441 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1442 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1443 Result = DAG.getMemIntrinsicNode( 1444 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1445 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1446 SplattedLoad->getOffset()}, 1447 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1448 } else { 1449 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1450 } 1451 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1452 return Lane == SplatValue; 1453 }; 1454 } 1455 1456 // Add replace_lane instructions for any unhandled values 1457 for (size_t I = 0; I < Lanes; ++I) { 1458 const SDValue &Lane = Op->getOperand(I); 1459 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1460 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1461 DAG.getConstant(I, DL, MVT::i32)); 1462 } 1463 1464 return Result; 1465 } 1466 1467 SDValue 1468 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1469 SelectionDAG &DAG) const { 1470 SDLoc DL(Op); 1471 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1472 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1473 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1474 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1475 1476 // Space for two vector args and sixteen mask indices 1477 SDValue Ops[18]; 1478 size_t OpIdx = 0; 1479 Ops[OpIdx++] = Op.getOperand(0); 1480 Ops[OpIdx++] = Op.getOperand(1); 1481 1482 // Expand mask indices to byte indices and materialize them as operands 1483 for (int M : Mask) { 1484 for (size_t J = 0; J < LaneBytes; ++J) { 1485 // Lower undefs (represented by -1 in mask) to zero 1486 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1487 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1488 } 1489 } 1490 1491 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1492 } 1493 1494 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1495 SelectionDAG &DAG) const { 1496 SDLoc DL(Op); 1497 // The legalizer does not know how to expand the comparison modes of i64x2 1498 // vectors because no comparison modes are supported. We could solve this by 1499 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1500 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1501 // comparisons here. 1502 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1503 SmallVector<SDValue, 2> LHS, RHS; 1504 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1505 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1506 const SDValue &CC = Op->getOperand(2); 1507 auto MakeLane = [&](unsigned I) { 1508 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1509 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1510 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1511 }; 1512 return DAG.getBuildVector(Op->getValueType(0), DL, 1513 {MakeLane(0), MakeLane(1)}); 1514 } 1515 1516 SDValue 1517 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1518 SelectionDAG &DAG) const { 1519 // Allow constant lane indices, expand variable lane indices 1520 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1521 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1522 return Op; 1523 else 1524 // Perform default expansion 1525 return SDValue(); 1526 } 1527 1528 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1529 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1530 // 32-bit and 64-bit unrolled shifts will have proper semantics 1531 if (LaneT.bitsGE(MVT::i32)) 1532 return DAG.UnrollVectorOp(Op.getNode()); 1533 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1534 SDLoc DL(Op); 1535 SDValue ShiftVal = Op.getOperand(1); 1536 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1537 SDValue MaskedShiftVal = DAG.getNode( 1538 ISD::AND, // mask opcode 1539 DL, ShiftVal.getValueType(), // masked value type 1540 ShiftVal, // original shift value operand 1541 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1542 ); 1543 1544 return DAG.UnrollVectorOp( 1545 DAG.getNode(Op.getOpcode(), // original shift opcode 1546 DL, Op.getValueType(), // original return type 1547 Op.getOperand(0), // original vector operand, 1548 MaskedShiftVal // new masked shift value operand 1549 ) 1550 .getNode()); 1551 } 1552 1553 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1554 SelectionDAG &DAG) const { 1555 SDLoc DL(Op); 1556 1557 // Only manually lower vector shifts 1558 assert(Op.getSimpleValueType().isVector()); 1559 1560 // Unroll non-splat vector shifts 1561 BuildVectorSDNode *ShiftVec; 1562 SDValue SplatVal; 1563 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1564 !(SplatVal = ShiftVec->getSplatValue())) 1565 return unrollVectorShift(Op, DAG); 1566 1567 // All splats except i64x2 const splats are handled by patterns 1568 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1569 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1570 return Op; 1571 1572 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1573 unsigned Opcode; 1574 switch (Op.getOpcode()) { 1575 case ISD::SHL: 1576 Opcode = WebAssemblyISD::VEC_SHL; 1577 break; 1578 case ISD::SRA: 1579 Opcode = WebAssemblyISD::VEC_SHR_S; 1580 break; 1581 case ISD::SRL: 1582 Opcode = WebAssemblyISD::VEC_SHR_U; 1583 break; 1584 default: 1585 llvm_unreachable("unexpected opcode"); 1586 } 1587 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1588 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1589 DAG.getConstant(Shift, DL, MVT::i32)); 1590 } 1591 1592 //===----------------------------------------------------------------------===// 1593 // WebAssembly Optimization Hooks 1594 //===----------------------------------------------------------------------===// 1595