1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "wasm-lower"
38 
39 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
40     const TargetMachine &TM, const WebAssemblySubtarget &STI)
41     : TargetLowering(TM), Subtarget(&STI) {
42   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
43 
44   // Booleans always contain 0 or 1.
45   setBooleanContents(ZeroOrOneBooleanContent);
46   // Except in SIMD vectors
47   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
48   // WebAssembly does not produce floating-point exceptions on normal floating
49   // point operations.
50   setHasFloatingPointExceptions(false);
51   // We don't know the microarchitecture here, so just reduce register pressure.
52   setSchedulingPreference(Sched::RegPressure);
53   // Tell ISel that we have a stack pointer.
54   setStackPointerRegisterToSaveRestore(
55       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
56   // Set up the register classes.
57   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
58   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
59   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
60   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
61   if (Subtarget->hasSIMD128()) {
62     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
66   }
67   if (Subtarget->hasUnimplementedSIMD128()) {
68     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
69     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
70   }
71   // Compute derived properties from the register classes.
72   computeRegisterProperties(Subtarget->getRegisterInfo());
73 
74   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
75   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
76   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
77   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
78   setOperationAction(ISD::BRIND, MVT::Other, Custom);
79 
80   // Take the default expansion for va_arg, va_copy, and va_end. There is no
81   // default action for va_start, so we do that custom.
82   setOperationAction(ISD::VASTART, MVT::Other, Custom);
83   setOperationAction(ISD::VAARG, MVT::Other, Expand);
84   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
85   setOperationAction(ISD::VAEND, MVT::Other, Expand);
86 
87   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
88     // Don't expand the floating-point types to constant pools.
89     setOperationAction(ISD::ConstantFP, T, Legal);
90     // Expand floating-point comparisons.
91     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
92                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
93       setCondCodeAction(CC, T, Expand);
94     // Expand floating-point library function operators.
95     for (auto Op :
96          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
97       setOperationAction(Op, T, Expand);
98     // Note supported floating-point library function operators that otherwise
99     // default to expand.
100     for (auto Op :
101          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
102       setOperationAction(Op, T, Legal);
103     // Support minimum and maximum, which otherwise default to expand.
104     setOperationAction(ISD::FMINIMUM, T, Legal);
105     setOperationAction(ISD::FMAXIMUM, T, Legal);
106     // WebAssembly currently has no builtin f16 support.
107     setOperationAction(ISD::FP16_TO_FP, T, Expand);
108     setOperationAction(ISD::FP_TO_FP16, T, Expand);
109     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
110     setTruncStoreAction(T, MVT::f16, Expand);
111   }
112 
113   // Expand unavailable integer operations.
114   for (auto Op :
115        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
116         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
117         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
118     for (auto T : {MVT::i32, MVT::i64})
119       setOperationAction(Op, T, Expand);
120     if (Subtarget->hasSIMD128())
121       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
122         setOperationAction(Op, T, Expand);
123     if (Subtarget->hasUnimplementedSIMD128())
124       setOperationAction(Op, MVT::v2i64, Expand);
125   }
126 
127   // SIMD-specific configuration
128   if (Subtarget->hasSIMD128()) {
129     // Support saturating add for i8x16 and i16x8
130     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
131       for (auto T : {MVT::v16i8, MVT::v8i16})
132         setOperationAction(Op, T, Legal);
133 
134     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
135     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
136       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
137     if (Subtarget->hasUnimplementedSIMD128())
138       for (auto T : {MVT::v2i64, MVT::v2f64})
139         setOperationAction(ISD::BUILD_VECTOR, T, Custom);
140 
141     // We have custom shuffle lowering to expose the shuffle mask
142     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
143       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
144     if (Subtarget->hasUnimplementedSIMD128())
145       for (auto T: {MVT::v2i64, MVT::v2f64})
146         setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
147 
148     // Custom lowering since wasm shifts must have a scalar shift amount
149     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
150       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
151         setOperationAction(Op, T, Custom);
152       if (Subtarget->hasUnimplementedSIMD128())
153         setOperationAction(Op, MVT::v2i64, Custom);
154     }
155 
156     // Custom lower lane accesses to expand out variable indices
157     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
158       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
159         setOperationAction(Op, T, Custom);
160       if (Subtarget->hasUnimplementedSIMD128())
161         for (auto T : {MVT::v2i64, MVT::v2f64})
162           setOperationAction(Op, T, Custom);
163     }
164 
165     // There is no i64x2.mul instruction
166     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
167 
168     // There are no vector select instructions
169     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
170       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
171         setOperationAction(Op, T, Expand);
172       if (Subtarget->hasUnimplementedSIMD128())
173         for (auto T : {MVT::v2i64, MVT::v2f64})
174           setOperationAction(Op, T, Expand);
175     }
176 
177     // Expand integer operations supported for scalars but not SIMD
178     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
179                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
180       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
181         setOperationAction(Op, T, Expand);
182       if (Subtarget->hasUnimplementedSIMD128())
183         setOperationAction(Op, MVT::v2i64, Expand);
184     }
185 
186     // Expand float operations supported for scalars but not SIMD
187     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
188                     ISD::FCOPYSIGN}) {
189       setOperationAction(Op, MVT::v4f32, Expand);
190       if (Subtarget->hasUnimplementedSIMD128())
191         setOperationAction(Op, MVT::v2f64, Expand);
192     }
193 
194     // Expand additional SIMD ops that V8 hasn't implemented yet
195     if (!Subtarget->hasUnimplementedSIMD128()) {
196       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
197       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
198     }
199   }
200 
201   // As a special case, these operators use the type to mean the type to
202   // sign-extend from.
203   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
204   if (!Subtarget->hasSignExt()) {
205     // Sign extends are legal only when extending a vector extract
206     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
207     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
208       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
209   }
210   for (auto T : MVT::integer_vector_valuetypes())
211     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
212 
213   // Dynamic stack allocation: use the default expansion.
214   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
215   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
216   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
217 
218   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
219   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
220 
221   // Expand these forms; we pattern-match the forms that we can handle in isel.
222   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
223     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
224       setOperationAction(Op, T, Expand);
225 
226   // We have custom switch handling.
227   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
228 
229   // WebAssembly doesn't have:
230   //  - Floating-point extending loads.
231   //  - Floating-point truncating stores.
232   //  - i1 extending loads.
233   //  - extending/truncating SIMD loads/stores
234   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
235   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
236   for (auto T : MVT::integer_valuetypes())
237     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
238       setLoadExtAction(Ext, T, MVT::i1, Promote);
239   if (Subtarget->hasSIMD128()) {
240     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
241                    MVT::v2f64}) {
242       for (auto MemT : MVT::vector_valuetypes()) {
243         if (MVT(T) != MemT) {
244           setTruncStoreAction(T, MemT, Expand);
245           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
246             setLoadExtAction(Ext, T, MemT, Expand);
247         }
248       }
249     }
250   }
251 
252   // Don't do anything clever with build_pairs
253   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
254 
255   // Trap lowers to wasm unreachable
256   setOperationAction(ISD::TRAP, MVT::Other, Legal);
257 
258   // Exception handling intrinsics
259   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
260   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
261 
262   setMaxAtomicSizeInBitsSupported(64);
263 
264   if (Subtarget->hasBulkMemory()) {
265     // Use memory.copy and friends over multiple loads and stores
266     MaxStoresPerMemcpy = 1;
267     MaxStoresPerMemcpyOptSize = 1;
268     MaxStoresPerMemmove = 1;
269     MaxStoresPerMemmoveOptSize = 1;
270     MaxStoresPerMemset = 1;
271     MaxStoresPerMemsetOptSize = 1;
272   }
273 
274   // Always convert switches to br_tables unless there is only one case, which
275   // is equivalent to a simple branch. This reduces code size for wasm, and we
276   // defer possible jump table optimizations to the VM.
277   setMinimumJumpTableEntries(2);
278 }
279 
280 TargetLowering::AtomicExpansionKind
281 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
282   // We have wasm instructions for these
283   switch (AI->getOperation()) {
284   case AtomicRMWInst::Add:
285   case AtomicRMWInst::Sub:
286   case AtomicRMWInst::And:
287   case AtomicRMWInst::Or:
288   case AtomicRMWInst::Xor:
289   case AtomicRMWInst::Xchg:
290     return AtomicExpansionKind::None;
291   default:
292     break;
293   }
294   return AtomicExpansionKind::CmpXChg;
295 }
296 
297 FastISel *WebAssemblyTargetLowering::createFastISel(
298     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
299   return WebAssembly::createFastISel(FuncInfo, LibInfo);
300 }
301 
302 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
303                                                       EVT VT) const {
304   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
305   if (BitWidth > 1 && BitWidth < 8)
306     BitWidth = 8;
307 
308   if (BitWidth > 64) {
309     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
310     // the count to be an i32.
311     BitWidth = 32;
312     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
313            "32-bit shift counts ought to be enough for anyone");
314   }
315 
316   MVT Result = MVT::getIntegerVT(BitWidth);
317   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
318          "Unable to represent scalar shift amount type");
319   return Result;
320 }
321 
322 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
323 // undefined result on invalid/overflow, to the WebAssembly opcode, which
324 // traps on invalid/overflow.
325 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
326                                        MachineBasicBlock *BB,
327                                        const TargetInstrInfo &TII,
328                                        bool IsUnsigned, bool Int64,
329                                        bool Float64, unsigned LoweredOpcode) {
330   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
331 
332   unsigned OutReg = MI.getOperand(0).getReg();
333   unsigned InReg = MI.getOperand(1).getReg();
334 
335   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
336   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
337   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
338   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
339   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
340   unsigned Eqz = WebAssembly::EQZ_I32;
341   unsigned And = WebAssembly::AND_I32;
342   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
343   int64_t Substitute = IsUnsigned ? 0 : Limit;
344   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
345   auto &Context = BB->getParent()->getFunction().getContext();
346   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
347 
348   const BasicBlock *LLVMBB = BB->getBasicBlock();
349   MachineFunction *F = BB->getParent();
350   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
351   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
352   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
353 
354   MachineFunction::iterator It = ++BB->getIterator();
355   F->insert(It, FalseMBB);
356   F->insert(It, TrueMBB);
357   F->insert(It, DoneMBB);
358 
359   // Transfer the remainder of BB and its successor edges to DoneMBB.
360   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
361   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
362 
363   BB->addSuccessor(TrueMBB);
364   BB->addSuccessor(FalseMBB);
365   TrueMBB->addSuccessor(DoneMBB);
366   FalseMBB->addSuccessor(DoneMBB);
367 
368   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
369   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
370   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
371   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
372   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
373   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
374   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
375 
376   MI.eraseFromParent();
377   // For signed numbers, we can do a single comparison to determine whether
378   // fabs(x) is within range.
379   if (IsUnsigned) {
380     Tmp0 = InReg;
381   } else {
382     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
383   }
384   BuildMI(BB, DL, TII.get(FConst), Tmp1)
385       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
386   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
387 
388   // For unsigned numbers, we have to do a separate comparison with zero.
389   if (IsUnsigned) {
390     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
391     unsigned SecondCmpReg =
392         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
393     unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
394     BuildMI(BB, DL, TII.get(FConst), Tmp1)
395         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
396     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
397     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
398     CmpReg = AndReg;
399   }
400 
401   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
402 
403   // Create the CFG diamond to select between doing the conversion or using
404   // the substitute value.
405   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
406   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
407   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
408   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
409   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
410       .addReg(FalseReg)
411       .addMBB(FalseMBB)
412       .addReg(TrueReg)
413       .addMBB(TrueMBB);
414 
415   return DoneMBB;
416 }
417 
418 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
419     MachineInstr &MI, MachineBasicBlock *BB) const {
420   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
421   DebugLoc DL = MI.getDebugLoc();
422 
423   switch (MI.getOpcode()) {
424   default:
425     llvm_unreachable("Unexpected instr type to insert");
426   case WebAssembly::FP_TO_SINT_I32_F32:
427     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
428                         WebAssembly::I32_TRUNC_S_F32);
429   case WebAssembly::FP_TO_UINT_I32_F32:
430     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
431                         WebAssembly::I32_TRUNC_U_F32);
432   case WebAssembly::FP_TO_SINT_I64_F32:
433     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
434                         WebAssembly::I64_TRUNC_S_F32);
435   case WebAssembly::FP_TO_UINT_I64_F32:
436     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
437                         WebAssembly::I64_TRUNC_U_F32);
438   case WebAssembly::FP_TO_SINT_I32_F64:
439     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
440                         WebAssembly::I32_TRUNC_S_F64);
441   case WebAssembly::FP_TO_UINT_I32_F64:
442     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
443                         WebAssembly::I32_TRUNC_U_F64);
444   case WebAssembly::FP_TO_SINT_I64_F64:
445     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
446                         WebAssembly::I64_TRUNC_S_F64);
447   case WebAssembly::FP_TO_UINT_I64_F64:
448     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
449                         WebAssembly::I64_TRUNC_U_F64);
450     llvm_unreachable("Unexpected instruction to emit with custom inserter");
451   }
452 }
453 
454 const char *
455 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
456   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
457   case WebAssemblyISD::FIRST_NUMBER:
458     break;
459 #define HANDLE_NODETYPE(NODE)                                                  \
460   case WebAssemblyISD::NODE:                                                   \
461     return "WebAssemblyISD::" #NODE;
462 #include "WebAssemblyISD.def"
463 #undef HANDLE_NODETYPE
464   }
465   return nullptr;
466 }
467 
468 std::pair<unsigned, const TargetRegisterClass *>
469 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
470     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
471   // First, see if this is a constraint that directly corresponds to a
472   // WebAssembly register class.
473   if (Constraint.size() == 1) {
474     switch (Constraint[0]) {
475     case 'r':
476       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
477       if (Subtarget->hasSIMD128() && VT.isVector()) {
478         if (VT.getSizeInBits() == 128)
479           return std::make_pair(0U, &WebAssembly::V128RegClass);
480       }
481       if (VT.isInteger() && !VT.isVector()) {
482         if (VT.getSizeInBits() <= 32)
483           return std::make_pair(0U, &WebAssembly::I32RegClass);
484         if (VT.getSizeInBits() <= 64)
485           return std::make_pair(0U, &WebAssembly::I64RegClass);
486       }
487       break;
488     default:
489       break;
490     }
491   }
492 
493   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
494 }
495 
496 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
497   // Assume ctz is a relatively cheap operation.
498   return true;
499 }
500 
501 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
502   // Assume clz is a relatively cheap operation.
503   return true;
504 }
505 
506 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
507                                                       const AddrMode &AM,
508                                                       Type *Ty, unsigned AS,
509                                                       Instruction *I) const {
510   // WebAssembly offsets are added as unsigned without wrapping. The
511   // isLegalAddressingMode gives us no way to determine if wrapping could be
512   // happening, so we approximate this by accepting only non-negative offsets.
513   if (AM.BaseOffs < 0)
514     return false;
515 
516   // WebAssembly has no scale register operands.
517   if (AM.Scale != 0)
518     return false;
519 
520   // Everything else is legal.
521   return true;
522 }
523 
524 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
525     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const {
526   // WebAssembly supports unaligned accesses, though it should be declared
527   // with the p2align attribute on loads and stores which do so, and there
528   // may be a performance impact. We tell LLVM they're "fast" because
529   // for the kinds of things that LLVM uses this for (merging adjacent stores
530   // of constants, etc.), WebAssembly implementations will either want the
531   // unaligned access or they'll split anyway.
532   if (Fast)
533     *Fast = true;
534   return true;
535 }
536 
537 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
538                                               AttributeList Attr) const {
539   // The current thinking is that wasm engines will perform this optimization,
540   // so we can save on code size.
541   return true;
542 }
543 
544 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
545                                                   LLVMContext &C,
546                                                   EVT VT) const {
547   if (VT.isVector())
548     return VT.changeVectorElementTypeToInteger();
549 
550   return TargetLowering::getSetCCResultType(DL, C, VT);
551 }
552 
553 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
554                                                    const CallInst &I,
555                                                    MachineFunction &MF,
556                                                    unsigned Intrinsic) const {
557   switch (Intrinsic) {
558   case Intrinsic::wasm_atomic_notify:
559     Info.opc = ISD::INTRINSIC_W_CHAIN;
560     Info.memVT = MVT::i32;
561     Info.ptrVal = I.getArgOperand(0);
562     Info.offset = 0;
563     Info.align = 4;
564     // atomic.notify instruction does not really load the memory specified with
565     // this argument, but MachineMemOperand should either be load or store, so
566     // we set this to a load.
567     // FIXME Volatile isn't really correct, but currently all LLVM atomic
568     // instructions are treated as volatiles in the backend, so we should be
569     // consistent. The same applies for wasm_atomic_wait intrinsics too.
570     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
571     return true;
572   case Intrinsic::wasm_atomic_wait_i32:
573     Info.opc = ISD::INTRINSIC_W_CHAIN;
574     Info.memVT = MVT::i32;
575     Info.ptrVal = I.getArgOperand(0);
576     Info.offset = 0;
577     Info.align = 4;
578     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
579     return true;
580   case Intrinsic::wasm_atomic_wait_i64:
581     Info.opc = ISD::INTRINSIC_W_CHAIN;
582     Info.memVT = MVT::i64;
583     Info.ptrVal = I.getArgOperand(0);
584     Info.offset = 0;
585     Info.align = 8;
586     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
587     return true;
588   default:
589     return false;
590   }
591 }
592 
593 //===----------------------------------------------------------------------===//
594 // WebAssembly Lowering private implementation.
595 //===----------------------------------------------------------------------===//
596 
597 //===----------------------------------------------------------------------===//
598 // Lowering Code
599 //===----------------------------------------------------------------------===//
600 
601 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
602   MachineFunction &MF = DAG.getMachineFunction();
603   DAG.getContext()->diagnose(
604       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
605 }
606 
607 // Test whether the given calling convention is supported.
608 static bool callingConvSupported(CallingConv::ID CallConv) {
609   // We currently support the language-independent target-independent
610   // conventions. We don't yet have a way to annotate calls with properties like
611   // "cold", and we don't have any call-clobbered registers, so these are mostly
612   // all handled the same.
613   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
614          CallConv == CallingConv::Cold ||
615          CallConv == CallingConv::PreserveMost ||
616          CallConv == CallingConv::PreserveAll ||
617          CallConv == CallingConv::CXX_FAST_TLS;
618 }
619 
620 SDValue
621 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
622                                      SmallVectorImpl<SDValue> &InVals) const {
623   SelectionDAG &DAG = CLI.DAG;
624   SDLoc DL = CLI.DL;
625   SDValue Chain = CLI.Chain;
626   SDValue Callee = CLI.Callee;
627   MachineFunction &MF = DAG.getMachineFunction();
628   auto Layout = MF.getDataLayout();
629 
630   CallingConv::ID CallConv = CLI.CallConv;
631   if (!callingConvSupported(CallConv))
632     fail(DL, DAG,
633          "WebAssembly doesn't support language-specific or target-specific "
634          "calling conventions yet");
635   if (CLI.IsPatchPoint)
636     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
637 
638   // WebAssembly doesn't currently support explicit tail calls. If they are
639   // required, fail. Otherwise, just disable them.
640   if ((CallConv == CallingConv::Fast && CLI.IsTailCall &&
641        MF.getTarget().Options.GuaranteedTailCallOpt) ||
642       (CLI.CS && CLI.CS.isMustTailCall()))
643     fail(DL, DAG, "WebAssembly doesn't support tail call yet");
644   CLI.IsTailCall = false;
645 
646   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
647   if (Ins.size() > 1)
648     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
649 
650   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
651   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
652   unsigned NumFixedArgs = 0;
653   for (unsigned I = 0; I < Outs.size(); ++I) {
654     const ISD::OutputArg &Out = Outs[I];
655     SDValue &OutVal = OutVals[I];
656     if (Out.Flags.isNest())
657       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
658     if (Out.Flags.isInAlloca())
659       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
660     if (Out.Flags.isInConsecutiveRegs())
661       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
662     if (Out.Flags.isInConsecutiveRegsLast())
663       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
664     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
665       auto &MFI = MF.getFrameInfo();
666       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
667                                      Out.Flags.getByValAlign(),
668                                      /*isSS=*/false);
669       SDValue SizeNode =
670           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
671       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
672       Chain = DAG.getMemcpy(
673           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
674           /*isVolatile*/ false, /*AlwaysInline=*/false,
675           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
676       OutVal = FINode;
677     }
678     // Count the number of fixed args *after* legalization.
679     NumFixedArgs += Out.IsFixed;
680   }
681 
682   bool IsVarArg = CLI.IsVarArg;
683   auto PtrVT = getPointerTy(Layout);
684 
685   // Analyze operands of the call, assigning locations to each operand.
686   SmallVector<CCValAssign, 16> ArgLocs;
687   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
688 
689   if (IsVarArg) {
690     // Outgoing non-fixed arguments are placed in a buffer. First
691     // compute their offsets and the total amount of buffer space needed.
692     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
693       const ISD::OutputArg &Out = Outs[I];
694       SDValue &Arg = OutVals[I];
695       EVT VT = Arg.getValueType();
696       assert(VT != MVT::iPTR && "Legalized args should be concrete");
697       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
698       unsigned Align = std::max(Out.Flags.getOrigAlign(),
699                                 Layout.getABITypeAlignment(Ty));
700       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
701                                              Align);
702       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
703                                         Offset, VT.getSimpleVT(),
704                                         CCValAssign::Full));
705     }
706   }
707 
708   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
709 
710   SDValue FINode;
711   if (IsVarArg && NumBytes) {
712     // For non-fixed arguments, next emit stores to store the argument values
713     // to the stack buffer at the offsets computed above.
714     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
715                                                  Layout.getStackAlignment(),
716                                                  /*isSS=*/false);
717     unsigned ValNo = 0;
718     SmallVector<SDValue, 8> Chains;
719     for (SDValue Arg :
720          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
721       assert(ArgLocs[ValNo].getValNo() == ValNo &&
722              "ArgLocs should remain in order and only hold varargs args");
723       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
724       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
725       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
726                                 DAG.getConstant(Offset, DL, PtrVT));
727       Chains.push_back(
728           DAG.getStore(Chain, DL, Arg, Add,
729                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
730     }
731     if (!Chains.empty())
732       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
733   } else if (IsVarArg) {
734     FINode = DAG.getIntPtrConstant(0, DL);
735   }
736 
737   if (Callee->getOpcode() == ISD::GlobalAddress) {
738     // If the callee is a GlobalAddress node (quite common, every direct call
739     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
740     // doesn't at MO_GOT which is not needed for direct calls.
741     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
742     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
743                                         getPointerTy(DAG.getDataLayout()),
744                                         GA->getOffset());
745     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
746                          getPointerTy(DAG.getDataLayout()), Callee);
747   }
748 
749   // Compute the operands for the CALLn node.
750   SmallVector<SDValue, 16> Ops;
751   Ops.push_back(Chain);
752   Ops.push_back(Callee);
753 
754   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
755   // isn't reliable.
756   Ops.append(OutVals.begin(),
757              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
758   // Add a pointer to the vararg buffer.
759   if (IsVarArg)
760     Ops.push_back(FINode);
761 
762   SmallVector<EVT, 8> InTys;
763   for (const auto &In : Ins) {
764     assert(!In.Flags.isByVal() && "byval is not valid for return values");
765     assert(!In.Flags.isNest() && "nest is not valid for return values");
766     if (In.Flags.isInAlloca())
767       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
768     if (In.Flags.isInConsecutiveRegs())
769       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
770     if (In.Flags.isInConsecutiveRegsLast())
771       fail(DL, DAG,
772            "WebAssembly hasn't implemented cons regs last return values");
773     // Ignore In.getOrigAlign() because all our arguments are passed in
774     // registers.
775     InTys.push_back(In.VT);
776   }
777   InTys.push_back(MVT::Other);
778   SDVTList InTyList = DAG.getVTList(InTys);
779   SDValue Res =
780       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
781                   DL, InTyList, Ops);
782   if (Ins.empty()) {
783     Chain = Res;
784   } else {
785     InVals.push_back(Res);
786     Chain = Res.getValue(1);
787   }
788 
789   return Chain;
790 }
791 
792 bool WebAssemblyTargetLowering::CanLowerReturn(
793     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
794     const SmallVectorImpl<ISD::OutputArg> &Outs,
795     LLVMContext & /*Context*/) const {
796   // WebAssembly can't currently handle returning tuples.
797   return Outs.size() <= 1;
798 }
799 
800 SDValue WebAssemblyTargetLowering::LowerReturn(
801     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
802     const SmallVectorImpl<ISD::OutputArg> &Outs,
803     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
804     SelectionDAG &DAG) const {
805   assert(Outs.size() <= 1 && "WebAssembly can only return up to one value");
806   if (!callingConvSupported(CallConv))
807     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
808 
809   SmallVector<SDValue, 4> RetOps(1, Chain);
810   RetOps.append(OutVals.begin(), OutVals.end());
811   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
812 
813   // Record the number and types of the return values.
814   for (const ISD::OutputArg &Out : Outs) {
815     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
816     assert(!Out.Flags.isNest() && "nest is not valid for return values");
817     assert(Out.IsFixed && "non-fixed return value is not valid");
818     if (Out.Flags.isInAlloca())
819       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
820     if (Out.Flags.isInConsecutiveRegs())
821       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
822     if (Out.Flags.isInConsecutiveRegsLast())
823       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
824   }
825 
826   return Chain;
827 }
828 
829 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
830     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
831     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
832     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
833   if (!callingConvSupported(CallConv))
834     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
835 
836   MachineFunction &MF = DAG.getMachineFunction();
837   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
838 
839   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
840   // of the incoming values before they're represented by virtual registers.
841   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
842 
843   for (const ISD::InputArg &In : Ins) {
844     if (In.Flags.isInAlloca())
845       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
846     if (In.Flags.isNest())
847       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
848     if (In.Flags.isInConsecutiveRegs())
849       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
850     if (In.Flags.isInConsecutiveRegsLast())
851       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
852     // Ignore In.getOrigAlign() because all our arguments are passed in
853     // registers.
854     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
855                                            DAG.getTargetConstant(InVals.size(),
856                                                                  DL, MVT::i32))
857                              : DAG.getUNDEF(In.VT));
858 
859     // Record the number and types of arguments.
860     MFI->addParam(In.VT);
861   }
862 
863   // Varargs are copied into a buffer allocated by the caller, and a pointer to
864   // the buffer is passed as an argument.
865   if (IsVarArg) {
866     MVT PtrVT = getPointerTy(MF.getDataLayout());
867     unsigned VarargVreg =
868         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
869     MFI->setVarargBufferVreg(VarargVreg);
870     Chain = DAG.getCopyToReg(
871         Chain, DL, VarargVreg,
872         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
873                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
874     MFI->addParam(PtrVT);
875   }
876 
877   // Record the number and types of arguments and results.
878   SmallVector<MVT, 4> Params;
879   SmallVector<MVT, 4> Results;
880   computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
881                       DAG.getTarget(), Params, Results);
882   for (MVT VT : Results)
883     MFI->addResult(VT);
884   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
885   // the param logic here with ComputeSignatureVTs
886   assert(MFI->getParams().size() == Params.size() &&
887          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
888                     Params.begin()));
889 
890   return Chain;
891 }
892 
893 //===----------------------------------------------------------------------===//
894 //  Custom lowering hooks.
895 //===----------------------------------------------------------------------===//
896 
897 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
898                                                   SelectionDAG &DAG) const {
899   SDLoc DL(Op);
900   switch (Op.getOpcode()) {
901   default:
902     llvm_unreachable("unimplemented operation lowering");
903     return SDValue();
904   case ISD::FrameIndex:
905     return LowerFrameIndex(Op, DAG);
906   case ISD::GlobalAddress:
907     return LowerGlobalAddress(Op, DAG);
908   case ISD::ExternalSymbol:
909     return LowerExternalSymbol(Op, DAG);
910   case ISD::JumpTable:
911     return LowerJumpTable(Op, DAG);
912   case ISD::BR_JT:
913     return LowerBR_JT(Op, DAG);
914   case ISD::VASTART:
915     return LowerVASTART(Op, DAG);
916   case ISD::BlockAddress:
917   case ISD::BRIND:
918     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
919     return SDValue();
920   case ISD::RETURNADDR: // Probably nothing meaningful can be returned here.
921     fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address");
922     return SDValue();
923   case ISD::FRAMEADDR:
924     return LowerFRAMEADDR(Op, DAG);
925   case ISD::CopyToReg:
926     return LowerCopyToReg(Op, DAG);
927   case ISD::EXTRACT_VECTOR_ELT:
928   case ISD::INSERT_VECTOR_ELT:
929     return LowerAccessVectorElement(Op, DAG);
930   case ISD::INTRINSIC_VOID:
931   case ISD::INTRINSIC_WO_CHAIN:
932   case ISD::INTRINSIC_W_CHAIN:
933     return LowerIntrinsic(Op, DAG);
934   case ISD::SIGN_EXTEND_INREG:
935     return LowerSIGN_EXTEND_INREG(Op, DAG);
936   case ISD::BUILD_VECTOR:
937     return LowerBUILD_VECTOR(Op, DAG);
938   case ISD::VECTOR_SHUFFLE:
939     return LowerVECTOR_SHUFFLE(Op, DAG);
940   case ISD::SHL:
941   case ISD::SRA:
942   case ISD::SRL:
943     return LowerShift(Op, DAG);
944   }
945 }
946 
947 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
948                                                   SelectionDAG &DAG) const {
949   SDValue Src = Op.getOperand(2);
950   if (isa<FrameIndexSDNode>(Src.getNode())) {
951     // CopyToReg nodes don't support FrameIndex operands. Other targets select
952     // the FI to some LEA-like instruction, but since we don't have that, we
953     // need to insert some kind of instruction that can take an FI operand and
954     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
955     // local.copy between Op and its FI operand.
956     SDValue Chain = Op.getOperand(0);
957     SDLoc DL(Op);
958     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
959     EVT VT = Src.getValueType();
960     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
961                                                    : WebAssembly::COPY_I64,
962                                     DL, VT, Src),
963                  0);
964     return Op.getNode()->getNumValues() == 1
965                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
966                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
967                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
968                                                            : SDValue());
969   }
970   return SDValue();
971 }
972 
973 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
974                                                    SelectionDAG &DAG) const {
975   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
976   return DAG.getTargetFrameIndex(FI, Op.getValueType());
977 }
978 
979 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
980                                                   SelectionDAG &DAG) const {
981   // Non-zero depths are not supported by WebAssembly currently. Use the
982   // legalizer's default expansion, which is to return 0 (what this function is
983   // documented to do).
984   if (Op.getConstantOperandVal(0) > 0)
985     return SDValue();
986 
987   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
988   EVT VT = Op.getValueType();
989   unsigned FP =
990       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
991   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
992 }
993 
994 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
995                                                       SelectionDAG &DAG) const {
996   SDLoc DL(Op);
997   const auto *GA = cast<GlobalAddressSDNode>(Op);
998   EVT VT = Op.getValueType();
999   assert(GA->getTargetFlags() == 0 &&
1000          "Unexpected target flags on generic GlobalAddressSDNode");
1001   if (GA->getAddressSpace() != 0)
1002     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1003 
1004   unsigned OperandFlags = 0;
1005   if (isPositionIndependent()) {
1006     const GlobalValue *GV = GA->getGlobal();
1007     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1008       MachineFunction &MF = DAG.getMachineFunction();
1009       MVT PtrVT = getPointerTy(MF.getDataLayout());
1010       const char *BaseName;
1011       if (GV->getValueType()->isFunctionTy()) {
1012         BaseName = MF.createExternalSymbolName("__table_base");
1013         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1014       }
1015       else {
1016         BaseName = MF.createExternalSymbolName("__memory_base");
1017         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1018       }
1019       SDValue BaseAddr =
1020           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1021                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1022 
1023       SDValue SymAddr = DAG.getNode(
1024           WebAssemblyISD::WrapperPIC, DL, VT,
1025           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1026                                      OperandFlags));
1027 
1028       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1029     } else {
1030       OperandFlags = WebAssemblyII::MO_GOT;
1031     }
1032   }
1033 
1034   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1035                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1036                                                 GA->getOffset(), OperandFlags));
1037 }
1038 
1039 SDValue
1040 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1041                                                SelectionDAG &DAG) const {
1042   SDLoc DL(Op);
1043   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1044   EVT VT = Op.getValueType();
1045   assert(ES->getTargetFlags() == 0 &&
1046          "Unexpected target flags on generic ExternalSymbolSDNode");
1047   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1048                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1049 }
1050 
1051 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1052                                                   SelectionDAG &DAG) const {
1053   // There's no need for a Wrapper node because we always incorporate a jump
1054   // table operand into a BR_TABLE instruction, rather than ever
1055   // materializing it in a register.
1056   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1057   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1058                                 JT->getTargetFlags());
1059 }
1060 
1061 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1062                                               SelectionDAG &DAG) const {
1063   SDLoc DL(Op);
1064   SDValue Chain = Op.getOperand(0);
1065   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1066   SDValue Index = Op.getOperand(2);
1067   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1068 
1069   SmallVector<SDValue, 8> Ops;
1070   Ops.push_back(Chain);
1071   Ops.push_back(Index);
1072 
1073   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1074   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1075 
1076   // Add an operand for each case.
1077   for (auto MBB : MBBs)
1078     Ops.push_back(DAG.getBasicBlock(MBB));
1079 
1080   // TODO: For now, we just pick something arbitrary for a default case for now.
1081   // We really want to sniff out the guard and put in the real default case (and
1082   // delete the guard).
1083   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1084 
1085   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1086 }
1087 
1088 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1089                                                 SelectionDAG &DAG) const {
1090   SDLoc DL(Op);
1091   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1092 
1093   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1094   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1095 
1096   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1097                                     MFI->getVarargBufferVreg(), PtrVT);
1098   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1099                       MachinePointerInfo(SV), 0);
1100 }
1101 
1102 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1103                                                   SelectionDAG &DAG) const {
1104   MachineFunction &MF = DAG.getMachineFunction();
1105   unsigned IntNo;
1106   switch (Op.getOpcode()) {
1107   case ISD::INTRINSIC_VOID:
1108   case ISD::INTRINSIC_W_CHAIN:
1109     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1110     break;
1111   case ISD::INTRINSIC_WO_CHAIN:
1112     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1113     break;
1114   default:
1115     llvm_unreachable("Invalid intrinsic");
1116   }
1117   SDLoc DL(Op);
1118 
1119   switch (IntNo) {
1120   default:
1121     return SDValue(); // Don't custom lower most intrinsics.
1122 
1123   case Intrinsic::wasm_lsda: {
1124     EVT VT = Op.getValueType();
1125     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1126     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1127     auto &Context = MF.getMMI().getContext();
1128     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1129                                             Twine(MF.getFunctionNumber()));
1130     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1131                        DAG.getMCSymbol(S, PtrVT));
1132   }
1133 
1134   case Intrinsic::wasm_throw: {
1135     // We only support C++ exceptions for now
1136     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1137     if (Tag != CPP_EXCEPTION)
1138       llvm_unreachable("Invalid tag!");
1139     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1140     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1141     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1142     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1143                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
1144     return DAG.getNode(WebAssemblyISD::THROW, DL,
1145                        MVT::Other, // outchain type
1146                        {
1147                            Op.getOperand(0), // inchain
1148                            SymNode,          // exception symbol
1149                            Op.getOperand(3)  // thrown value
1150                        });
1151   }
1152   }
1153 }
1154 
1155 SDValue
1156 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1157                                                   SelectionDAG &DAG) const {
1158   // If sign extension operations are disabled, allow sext_inreg only if operand
1159   // is a vector extract. SIMD does not depend on sign extension operations, but
1160   // allowing sext_inreg in this context lets us have simple patterns to select
1161   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1162   // simpler in this file, but would necessitate large and brittle patterns to
1163   // undo the expansion and select extract_lane_s instructions.
1164   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1165   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT)
1166     return Op;
1167   // Otherwise expand
1168   return SDValue();
1169 }
1170 
1171 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1172                                                      SelectionDAG &DAG) const {
1173   SDLoc DL(Op);
1174   const EVT VecT = Op.getValueType();
1175   const EVT LaneT = Op.getOperand(0).getValueType();
1176   const size_t Lanes = Op.getNumOperands();
1177   auto IsConstant = [](const SDValue &V) {
1178     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1179   };
1180 
1181   // Find the most common operand, which is approximately the best to splat
1182   using Entry = std::pair<SDValue, size_t>;
1183   SmallVector<Entry, 16> ValueCounts;
1184   size_t NumConst = 0, NumDynamic = 0;
1185   for (const SDValue &Lane : Op->op_values()) {
1186     if (Lane.isUndef()) {
1187       continue;
1188     } else if (IsConstant(Lane)) {
1189       NumConst++;
1190     } else {
1191       NumDynamic++;
1192     }
1193     auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(),
1194                                 [&Lane](Entry A) { return A.first == Lane; });
1195     if (CountIt == ValueCounts.end()) {
1196       ValueCounts.emplace_back(Lane, 1);
1197     } else {
1198       CountIt->second++;
1199     }
1200   }
1201   auto CommonIt =
1202       std::max_element(ValueCounts.begin(), ValueCounts.end(),
1203                        [](Entry A, Entry B) { return A.second < B.second; });
1204   assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector");
1205   SDValue SplatValue = CommonIt->first;
1206   size_t NumCommon = CommonIt->second;
1207 
1208   // If v128.const is available, consider using it instead of a splat
1209   if (Subtarget->hasUnimplementedSIMD128()) {
1210     // {i32,i64,f32,f64}.const opcode, and value
1211     const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes);
1212     // SIMD prefix and opcode
1213     const size_t SplatBytes = 2;
1214     const size_t SplatConstBytes = SplatBytes + ConstBytes;
1215     // SIMD prefix, opcode, and lane index
1216     const size_t ReplaceBytes = 3;
1217     const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes;
1218     // SIMD prefix, v128.const opcode, and 128-bit value
1219     const size_t VecConstBytes = 18;
1220     // Initial v128.const and a replace_lane for each non-const operand
1221     const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes;
1222     // Initial splat and all necessary replace_lanes
1223     const size_t SplatInitBytes =
1224         IsConstant(SplatValue)
1225             // Initial constant splat
1226             ? (SplatConstBytes +
1227                // Constant replace_lanes
1228                (NumConst - NumCommon) * ReplaceConstBytes +
1229                // Dynamic replace_lanes
1230                (NumDynamic * ReplaceBytes))
1231             // Initial dynamic splat
1232             : (SplatBytes +
1233                // Constant replace_lanes
1234                (NumConst * ReplaceConstBytes) +
1235                // Dynamic replace_lanes
1236                (NumDynamic - NumCommon) * ReplaceBytes);
1237     if (ConstInitBytes < SplatInitBytes) {
1238       // Create build_vector that will lower to initial v128.const
1239       SmallVector<SDValue, 16> ConstLanes;
1240       for (const SDValue &Lane : Op->op_values()) {
1241         if (IsConstant(Lane)) {
1242           ConstLanes.push_back(Lane);
1243         } else if (LaneT.isFloatingPoint()) {
1244           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1245         } else {
1246           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1247         }
1248       }
1249       SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1250       // Add replace_lane instructions for non-const lanes
1251       for (size_t I = 0; I < Lanes; ++I) {
1252         const SDValue &Lane = Op->getOperand(I);
1253         if (!Lane.isUndef() && !IsConstant(Lane))
1254           Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1255                                DAG.getConstant(I, DL, MVT::i32));
1256       }
1257       return Result;
1258     }
1259   }
1260   // Use a splat for the initial vector
1261   SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1262   // Add replace_lane instructions for other values
1263   for (size_t I = 0; I < Lanes; ++I) {
1264     const SDValue &Lane = Op->getOperand(I);
1265     if (Lane != SplatValue)
1266       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1267                            DAG.getConstant(I, DL, MVT::i32));
1268   }
1269   return Result;
1270 }
1271 
1272 SDValue
1273 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1274                                                SelectionDAG &DAG) const {
1275   SDLoc DL(Op);
1276   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1277   MVT VecType = Op.getOperand(0).getSimpleValueType();
1278   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1279   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1280 
1281   // Space for two vector args and sixteen mask indices
1282   SDValue Ops[18];
1283   size_t OpIdx = 0;
1284   Ops[OpIdx++] = Op.getOperand(0);
1285   Ops[OpIdx++] = Op.getOperand(1);
1286 
1287   // Expand mask indices to byte indices and materialize them as operands
1288   for (int M : Mask) {
1289     for (size_t J = 0; J < LaneBytes; ++J) {
1290       // Lower undefs (represented by -1 in mask) to zero
1291       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1292       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1293     }
1294   }
1295 
1296   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1297 }
1298 
1299 SDValue
1300 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1301                                                     SelectionDAG &DAG) const {
1302   // Allow constant lane indices, expand variable lane indices
1303   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1304   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1305     return Op;
1306   else
1307     // Perform default expansion
1308     return SDValue();
1309 }
1310 
1311 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1312   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1313   // 32-bit and 64-bit unrolled shifts will have proper semantics
1314   if (LaneT.bitsGE(MVT::i32))
1315     return DAG.UnrollVectorOp(Op.getNode());
1316   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1317   SDLoc DL(Op);
1318   SDValue ShiftVal = Op.getOperand(1);
1319   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1320   SDValue MaskedShiftVal = DAG.getNode(
1321       ISD::AND,                    // mask opcode
1322       DL, ShiftVal.getValueType(), // masked value type
1323       ShiftVal,                    // original shift value operand
1324       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1325   );
1326 
1327   return DAG.UnrollVectorOp(
1328       DAG.getNode(Op.getOpcode(),        // original shift opcode
1329                   DL, Op.getValueType(), // original return type
1330                   Op.getOperand(0),      // original vector operand,
1331                   MaskedShiftVal         // new masked shift value operand
1332                   )
1333           .getNode());
1334 }
1335 
1336 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1337                                               SelectionDAG &DAG) const {
1338   SDLoc DL(Op);
1339 
1340   // Only manually lower vector shifts
1341   assert(Op.getSimpleValueType().isVector());
1342 
1343   // Expand all vector shifts until V8 fixes its implementation
1344   // TODO: remove this once V8 is fixed
1345   if (!Subtarget->hasUnimplementedSIMD128())
1346     return unrollVectorShift(Op, DAG);
1347 
1348   // Unroll non-splat vector shifts
1349   BuildVectorSDNode *ShiftVec;
1350   SDValue SplatVal;
1351   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1352       !(SplatVal = ShiftVec->getSplatValue()))
1353     return unrollVectorShift(Op, DAG);
1354 
1355   // All splats except i64x2 const splats are handled by patterns
1356   auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1357   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1358     return Op;
1359 
1360   // i64x2 const splats are custom lowered to avoid unnecessary wraps
1361   unsigned Opcode;
1362   switch (Op.getOpcode()) {
1363   case ISD::SHL:
1364     Opcode = WebAssemblyISD::VEC_SHL;
1365     break;
1366   case ISD::SRA:
1367     Opcode = WebAssemblyISD::VEC_SHR_S;
1368     break;
1369   case ISD::SRL:
1370     Opcode = WebAssemblyISD::VEC_SHR_U;
1371     break;
1372   default:
1373     llvm_unreachable("unexpected opcode");
1374   }
1375   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1376   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1377                      DAG.getConstant(Shift, DL, MVT::i32));
1378 }
1379 
1380 //===----------------------------------------------------------------------===//
1381 //                          WebAssembly Optimization Hooks
1382 //===----------------------------------------------------------------------===//
1383