1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // WebAssembly does not produce floating-point exceptions on normal floating 49 // point operations. 50 setHasFloatingPointExceptions(false); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 } 67 if (Subtarget->hasUnimplementedSIMD128()) { 68 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 70 } 71 // Compute derived properties from the register classes. 72 computeRegisterProperties(Subtarget->getRegisterInfo()); 73 74 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 75 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 76 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 77 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 78 setOperationAction(ISD::BRIND, MVT::Other, Custom); 79 80 // Take the default expansion for va_arg, va_copy, and va_end. There is no 81 // default action for va_start, so we do that custom. 82 setOperationAction(ISD::VASTART, MVT::Other, Custom); 83 setOperationAction(ISD::VAARG, MVT::Other, Expand); 84 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 85 setOperationAction(ISD::VAEND, MVT::Other, Expand); 86 87 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 88 // Don't expand the floating-point types to constant pools. 89 setOperationAction(ISD::ConstantFP, T, Legal); 90 // Expand floating-point comparisons. 91 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 92 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 93 setCondCodeAction(CC, T, Expand); 94 // Expand floating-point library function operators. 95 for (auto Op : 96 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 97 setOperationAction(Op, T, Expand); 98 // Note supported floating-point library function operators that otherwise 99 // default to expand. 100 for (auto Op : 101 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 102 setOperationAction(Op, T, Legal); 103 // Support minimum and maximum, which otherwise default to expand. 104 setOperationAction(ISD::FMINIMUM, T, Legal); 105 setOperationAction(ISD::FMAXIMUM, T, Legal); 106 // WebAssembly currently has no builtin f16 support. 107 setOperationAction(ISD::FP16_TO_FP, T, Expand); 108 setOperationAction(ISD::FP_TO_FP16, T, Expand); 109 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 110 setTruncStoreAction(T, MVT::f16, Expand); 111 } 112 113 // Expand unavailable integer operations. 114 for (auto Op : 115 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 116 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 117 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 118 for (auto T : {MVT::i32, MVT::i64}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasSIMD128()) 121 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 122 setOperationAction(Op, T, Expand); 123 if (Subtarget->hasUnimplementedSIMD128()) 124 setOperationAction(Op, MVT::v2i64, Expand); 125 } 126 127 // SIMD-specific configuration 128 if (Subtarget->hasSIMD128()) { 129 // Support saturating add for i8x16 and i16x8 130 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 131 for (auto T : {MVT::v16i8, MVT::v8i16}) 132 setOperationAction(Op, T, Legal); 133 134 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 135 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 136 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 137 if (Subtarget->hasUnimplementedSIMD128()) 138 for (auto T : {MVT::v2i64, MVT::v2f64}) 139 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 140 141 // We have custom shuffle lowering to expose the shuffle mask 142 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 if (Subtarget->hasUnimplementedSIMD128()) 145 for (auto T: {MVT::v2i64, MVT::v2f64}) 146 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 147 148 // Custom lowering since wasm shifts must have a scalar shift amount 149 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 150 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 151 setOperationAction(Op, T, Custom); 152 if (Subtarget->hasUnimplementedSIMD128()) 153 setOperationAction(Op, MVT::v2i64, Custom); 154 } 155 156 // Custom lower lane accesses to expand out variable indices 157 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 158 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 159 setOperationAction(Op, T, Custom); 160 if (Subtarget->hasUnimplementedSIMD128()) 161 for (auto T : {MVT::v2i64, MVT::v2f64}) 162 setOperationAction(Op, T, Custom); 163 } 164 165 // There is no i64x2.mul instruction 166 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 167 168 // There are no vector select instructions 169 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 170 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 171 setOperationAction(Op, T, Expand); 172 if (Subtarget->hasUnimplementedSIMD128()) 173 for (auto T : {MVT::v2i64, MVT::v2f64}) 174 setOperationAction(Op, T, Expand); 175 } 176 177 // Expand integer operations supported for scalars but not SIMD 178 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 179 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 180 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 181 setOperationAction(Op, T, Expand); 182 if (Subtarget->hasUnimplementedSIMD128()) 183 setOperationAction(Op, MVT::v2i64, Expand); 184 } 185 186 // Expand float operations supported for scalars but not SIMD 187 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 188 ISD::FCOPYSIGN}) { 189 setOperationAction(Op, MVT::v4f32, Expand); 190 if (Subtarget->hasUnimplementedSIMD128()) 191 setOperationAction(Op, MVT::v2f64, Expand); 192 } 193 194 // Expand additional SIMD ops that V8 hasn't implemented yet 195 if (!Subtarget->hasUnimplementedSIMD128()) { 196 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 197 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 198 } 199 } 200 201 // As a special case, these operators use the type to mean the type to 202 // sign-extend from. 203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 204 if (!Subtarget->hasSignExt()) { 205 // Sign extends are legal only when extending a vector extract 206 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 207 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 208 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 209 } 210 for (auto T : MVT::integer_vector_valuetypes()) 211 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 212 213 // Dynamic stack allocation: use the default expansion. 214 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 215 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 216 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 217 218 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 219 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 220 221 // Expand these forms; we pattern-match the forms that we can handle in isel. 222 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 223 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 224 setOperationAction(Op, T, Expand); 225 226 // We have custom switch handling. 227 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 228 229 // WebAssembly doesn't have: 230 // - Floating-point extending loads. 231 // - Floating-point truncating stores. 232 // - i1 extending loads. 233 // - extending/truncating SIMD loads/stores 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 235 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 236 for (auto T : MVT::integer_valuetypes()) 237 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 238 setLoadExtAction(Ext, T, MVT::i1, Promote); 239 if (Subtarget->hasSIMD128()) { 240 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 241 MVT::v2f64}) { 242 for (auto MemT : MVT::vector_valuetypes()) { 243 if (MVT(T) != MemT) { 244 setTruncStoreAction(T, MemT, Expand); 245 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 246 setLoadExtAction(Ext, T, MemT, Expand); 247 } 248 } 249 } 250 } 251 252 // Don't do anything clever with build_pairs 253 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 254 255 // Trap lowers to wasm unreachable 256 setOperationAction(ISD::TRAP, MVT::Other, Legal); 257 258 // Exception handling intrinsics 259 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 260 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 261 262 setMaxAtomicSizeInBitsSupported(64); 263 264 if (Subtarget->hasBulkMemory()) { 265 // Use memory.copy and friends over multiple loads and stores 266 MaxStoresPerMemcpy = 1; 267 MaxStoresPerMemcpyOptSize = 1; 268 MaxStoresPerMemmove = 1; 269 MaxStoresPerMemmoveOptSize = 1; 270 MaxStoresPerMemset = 1; 271 MaxStoresPerMemsetOptSize = 1; 272 } 273 274 // Always convert switches to br_tables unless there is only one case, which 275 // is equivalent to a simple branch. This reduces code size for wasm, and we 276 // defer possible jump table optimizations to the VM. 277 setMinimumJumpTableEntries(2); 278 } 279 280 TargetLowering::AtomicExpansionKind 281 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 282 // We have wasm instructions for these 283 switch (AI->getOperation()) { 284 case AtomicRMWInst::Add: 285 case AtomicRMWInst::Sub: 286 case AtomicRMWInst::And: 287 case AtomicRMWInst::Or: 288 case AtomicRMWInst::Xor: 289 case AtomicRMWInst::Xchg: 290 return AtomicExpansionKind::None; 291 default: 292 break; 293 } 294 return AtomicExpansionKind::CmpXChg; 295 } 296 297 FastISel *WebAssemblyTargetLowering::createFastISel( 298 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 299 return WebAssembly::createFastISel(FuncInfo, LibInfo); 300 } 301 302 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 303 EVT VT) const { 304 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 305 if (BitWidth > 1 && BitWidth < 8) 306 BitWidth = 8; 307 308 if (BitWidth > 64) { 309 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 310 // the count to be an i32. 311 BitWidth = 32; 312 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 313 "32-bit shift counts ought to be enough for anyone"); 314 } 315 316 MVT Result = MVT::getIntegerVT(BitWidth); 317 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 318 "Unable to represent scalar shift amount type"); 319 return Result; 320 } 321 322 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 323 // undefined result on invalid/overflow, to the WebAssembly opcode, which 324 // traps on invalid/overflow. 325 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 326 MachineBasicBlock *BB, 327 const TargetInstrInfo &TII, 328 bool IsUnsigned, bool Int64, 329 bool Float64, unsigned LoweredOpcode) { 330 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 331 332 unsigned OutReg = MI.getOperand(0).getReg(); 333 unsigned InReg = MI.getOperand(1).getReg(); 334 335 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 336 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 337 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 338 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 339 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 340 unsigned Eqz = WebAssembly::EQZ_I32; 341 unsigned And = WebAssembly::AND_I32; 342 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 343 int64_t Substitute = IsUnsigned ? 0 : Limit; 344 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 345 auto &Context = BB->getParent()->getFunction().getContext(); 346 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 347 348 const BasicBlock *LLVMBB = BB->getBasicBlock(); 349 MachineFunction *F = BB->getParent(); 350 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 351 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 352 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 353 354 MachineFunction::iterator It = ++BB->getIterator(); 355 F->insert(It, FalseMBB); 356 F->insert(It, TrueMBB); 357 F->insert(It, DoneMBB); 358 359 // Transfer the remainder of BB and its successor edges to DoneMBB. 360 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 361 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 362 363 BB->addSuccessor(TrueMBB); 364 BB->addSuccessor(FalseMBB); 365 TrueMBB->addSuccessor(DoneMBB); 366 FalseMBB->addSuccessor(DoneMBB); 367 368 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 369 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 370 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 371 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 372 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 373 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 374 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 375 376 MI.eraseFromParent(); 377 // For signed numbers, we can do a single comparison to determine whether 378 // fabs(x) is within range. 379 if (IsUnsigned) { 380 Tmp0 = InReg; 381 } else { 382 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 383 } 384 BuildMI(BB, DL, TII.get(FConst), Tmp1) 385 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 386 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 387 388 // For unsigned numbers, we have to do a separate comparison with zero. 389 if (IsUnsigned) { 390 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 391 unsigned SecondCmpReg = 392 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 393 unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 394 BuildMI(BB, DL, TII.get(FConst), Tmp1) 395 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 396 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 397 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 398 CmpReg = AndReg; 399 } 400 401 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 402 403 // Create the CFG diamond to select between doing the conversion or using 404 // the substitute value. 405 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 406 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 407 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 408 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 409 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 410 .addReg(FalseReg) 411 .addMBB(FalseMBB) 412 .addReg(TrueReg) 413 .addMBB(TrueMBB); 414 415 return DoneMBB; 416 } 417 418 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 419 MachineInstr &MI, MachineBasicBlock *BB) const { 420 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 421 DebugLoc DL = MI.getDebugLoc(); 422 423 switch (MI.getOpcode()) { 424 default: 425 llvm_unreachable("Unexpected instr type to insert"); 426 case WebAssembly::FP_TO_SINT_I32_F32: 427 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 428 WebAssembly::I32_TRUNC_S_F32); 429 case WebAssembly::FP_TO_UINT_I32_F32: 430 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 431 WebAssembly::I32_TRUNC_U_F32); 432 case WebAssembly::FP_TO_SINT_I64_F32: 433 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 434 WebAssembly::I64_TRUNC_S_F32); 435 case WebAssembly::FP_TO_UINT_I64_F32: 436 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 437 WebAssembly::I64_TRUNC_U_F32); 438 case WebAssembly::FP_TO_SINT_I32_F64: 439 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 440 WebAssembly::I32_TRUNC_S_F64); 441 case WebAssembly::FP_TO_UINT_I32_F64: 442 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 443 WebAssembly::I32_TRUNC_U_F64); 444 case WebAssembly::FP_TO_SINT_I64_F64: 445 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 446 WebAssembly::I64_TRUNC_S_F64); 447 case WebAssembly::FP_TO_UINT_I64_F64: 448 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 449 WebAssembly::I64_TRUNC_U_F64); 450 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 451 } 452 } 453 454 const char * 455 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 456 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 457 case WebAssemblyISD::FIRST_NUMBER: 458 break; 459 #define HANDLE_NODETYPE(NODE) \ 460 case WebAssemblyISD::NODE: \ 461 return "WebAssemblyISD::" #NODE; 462 #include "WebAssemblyISD.def" 463 #undef HANDLE_NODETYPE 464 } 465 return nullptr; 466 } 467 468 std::pair<unsigned, const TargetRegisterClass *> 469 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 470 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 471 // First, see if this is a constraint that directly corresponds to a 472 // WebAssembly register class. 473 if (Constraint.size() == 1) { 474 switch (Constraint[0]) { 475 case 'r': 476 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 477 if (Subtarget->hasSIMD128() && VT.isVector()) { 478 if (VT.getSizeInBits() == 128) 479 return std::make_pair(0U, &WebAssembly::V128RegClass); 480 } 481 if (VT.isInteger() && !VT.isVector()) { 482 if (VT.getSizeInBits() <= 32) 483 return std::make_pair(0U, &WebAssembly::I32RegClass); 484 if (VT.getSizeInBits() <= 64) 485 return std::make_pair(0U, &WebAssembly::I64RegClass); 486 } 487 break; 488 default: 489 break; 490 } 491 } 492 493 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 494 } 495 496 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 497 // Assume ctz is a relatively cheap operation. 498 return true; 499 } 500 501 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 502 // Assume clz is a relatively cheap operation. 503 return true; 504 } 505 506 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 507 const AddrMode &AM, 508 Type *Ty, unsigned AS, 509 Instruction *I) const { 510 // WebAssembly offsets are added as unsigned without wrapping. The 511 // isLegalAddressingMode gives us no way to determine if wrapping could be 512 // happening, so we approximate this by accepting only non-negative offsets. 513 if (AM.BaseOffs < 0) 514 return false; 515 516 // WebAssembly has no scale register operands. 517 if (AM.Scale != 0) 518 return false; 519 520 // Everything else is legal. 521 return true; 522 } 523 524 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 525 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const { 526 // WebAssembly supports unaligned accesses, though it should be declared 527 // with the p2align attribute on loads and stores which do so, and there 528 // may be a performance impact. We tell LLVM they're "fast" because 529 // for the kinds of things that LLVM uses this for (merging adjacent stores 530 // of constants, etc.), WebAssembly implementations will either want the 531 // unaligned access or they'll split anyway. 532 if (Fast) 533 *Fast = true; 534 return true; 535 } 536 537 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 538 AttributeList Attr) const { 539 // The current thinking is that wasm engines will perform this optimization, 540 // so we can save on code size. 541 return true; 542 } 543 544 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 545 LLVMContext &C, 546 EVT VT) const { 547 if (VT.isVector()) 548 return VT.changeVectorElementTypeToInteger(); 549 550 return TargetLowering::getSetCCResultType(DL, C, VT); 551 } 552 553 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 554 const CallInst &I, 555 MachineFunction &MF, 556 unsigned Intrinsic) const { 557 switch (Intrinsic) { 558 case Intrinsic::wasm_atomic_notify: 559 Info.opc = ISD::INTRINSIC_W_CHAIN; 560 Info.memVT = MVT::i32; 561 Info.ptrVal = I.getArgOperand(0); 562 Info.offset = 0; 563 Info.align = 4; 564 // atomic.notify instruction does not really load the memory specified with 565 // this argument, but MachineMemOperand should either be load or store, so 566 // we set this to a load. 567 // FIXME Volatile isn't really correct, but currently all LLVM atomic 568 // instructions are treated as volatiles in the backend, so we should be 569 // consistent. The same applies for wasm_atomic_wait intrinsics too. 570 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 571 return true; 572 case Intrinsic::wasm_atomic_wait_i32: 573 Info.opc = ISD::INTRINSIC_W_CHAIN; 574 Info.memVT = MVT::i32; 575 Info.ptrVal = I.getArgOperand(0); 576 Info.offset = 0; 577 Info.align = 4; 578 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 579 return true; 580 case Intrinsic::wasm_atomic_wait_i64: 581 Info.opc = ISD::INTRINSIC_W_CHAIN; 582 Info.memVT = MVT::i64; 583 Info.ptrVal = I.getArgOperand(0); 584 Info.offset = 0; 585 Info.align = 8; 586 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 587 return true; 588 default: 589 return false; 590 } 591 } 592 593 //===----------------------------------------------------------------------===// 594 // WebAssembly Lowering private implementation. 595 //===----------------------------------------------------------------------===// 596 597 //===----------------------------------------------------------------------===// 598 // Lowering Code 599 //===----------------------------------------------------------------------===// 600 601 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 602 MachineFunction &MF = DAG.getMachineFunction(); 603 DAG.getContext()->diagnose( 604 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 605 } 606 607 // Test whether the given calling convention is supported. 608 static bool callingConvSupported(CallingConv::ID CallConv) { 609 // We currently support the language-independent target-independent 610 // conventions. We don't yet have a way to annotate calls with properties like 611 // "cold", and we don't have any call-clobbered registers, so these are mostly 612 // all handled the same. 613 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 614 CallConv == CallingConv::Cold || 615 CallConv == CallingConv::PreserveMost || 616 CallConv == CallingConv::PreserveAll || 617 CallConv == CallingConv::CXX_FAST_TLS; 618 } 619 620 SDValue 621 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 622 SmallVectorImpl<SDValue> &InVals) const { 623 SelectionDAG &DAG = CLI.DAG; 624 SDLoc DL = CLI.DL; 625 SDValue Chain = CLI.Chain; 626 SDValue Callee = CLI.Callee; 627 MachineFunction &MF = DAG.getMachineFunction(); 628 auto Layout = MF.getDataLayout(); 629 630 CallingConv::ID CallConv = CLI.CallConv; 631 if (!callingConvSupported(CallConv)) 632 fail(DL, DAG, 633 "WebAssembly doesn't support language-specific or target-specific " 634 "calling conventions yet"); 635 if (CLI.IsPatchPoint) 636 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 637 638 // WebAssembly doesn't currently support explicit tail calls. If they are 639 // required, fail. Otherwise, just disable them. 640 if ((CallConv == CallingConv::Fast && CLI.IsTailCall && 641 MF.getTarget().Options.GuaranteedTailCallOpt) || 642 (CLI.CS && CLI.CS.isMustTailCall())) 643 fail(DL, DAG, "WebAssembly doesn't support tail call yet"); 644 CLI.IsTailCall = false; 645 646 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 647 if (Ins.size() > 1) 648 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 649 650 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 651 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 652 unsigned NumFixedArgs = 0; 653 for (unsigned I = 0; I < Outs.size(); ++I) { 654 const ISD::OutputArg &Out = Outs[I]; 655 SDValue &OutVal = OutVals[I]; 656 if (Out.Flags.isNest()) 657 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 658 if (Out.Flags.isInAlloca()) 659 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 660 if (Out.Flags.isInConsecutiveRegs()) 661 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 662 if (Out.Flags.isInConsecutiveRegsLast()) 663 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 664 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 665 auto &MFI = MF.getFrameInfo(); 666 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 667 Out.Flags.getByValAlign(), 668 /*isSS=*/false); 669 SDValue SizeNode = 670 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 671 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 672 Chain = DAG.getMemcpy( 673 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 674 /*isVolatile*/ false, /*AlwaysInline=*/false, 675 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 676 OutVal = FINode; 677 } 678 // Count the number of fixed args *after* legalization. 679 NumFixedArgs += Out.IsFixed; 680 } 681 682 bool IsVarArg = CLI.IsVarArg; 683 auto PtrVT = getPointerTy(Layout); 684 685 // Analyze operands of the call, assigning locations to each operand. 686 SmallVector<CCValAssign, 16> ArgLocs; 687 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 688 689 if (IsVarArg) { 690 // Outgoing non-fixed arguments are placed in a buffer. First 691 // compute their offsets and the total amount of buffer space needed. 692 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 693 const ISD::OutputArg &Out = Outs[I]; 694 SDValue &Arg = OutVals[I]; 695 EVT VT = Arg.getValueType(); 696 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 697 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 698 unsigned Align = std::max(Out.Flags.getOrigAlign(), 699 Layout.getABITypeAlignment(Ty)); 700 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 701 Align); 702 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 703 Offset, VT.getSimpleVT(), 704 CCValAssign::Full)); 705 } 706 } 707 708 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 709 710 SDValue FINode; 711 if (IsVarArg && NumBytes) { 712 // For non-fixed arguments, next emit stores to store the argument values 713 // to the stack buffer at the offsets computed above. 714 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 715 Layout.getStackAlignment(), 716 /*isSS=*/false); 717 unsigned ValNo = 0; 718 SmallVector<SDValue, 8> Chains; 719 for (SDValue Arg : 720 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 721 assert(ArgLocs[ValNo].getValNo() == ValNo && 722 "ArgLocs should remain in order and only hold varargs args"); 723 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 724 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 725 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 726 DAG.getConstant(Offset, DL, PtrVT)); 727 Chains.push_back( 728 DAG.getStore(Chain, DL, Arg, Add, 729 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 730 } 731 if (!Chains.empty()) 732 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 733 } else if (IsVarArg) { 734 FINode = DAG.getIntPtrConstant(0, DL); 735 } 736 737 if (Callee->getOpcode() == ISD::GlobalAddress) { 738 // If the callee is a GlobalAddress node (quite common, every direct call 739 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 740 // doesn't at MO_GOT which is not needed for direct calls. 741 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 742 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 743 getPointerTy(DAG.getDataLayout()), 744 GA->getOffset()); 745 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 746 getPointerTy(DAG.getDataLayout()), Callee); 747 } 748 749 // Compute the operands for the CALLn node. 750 SmallVector<SDValue, 16> Ops; 751 Ops.push_back(Chain); 752 Ops.push_back(Callee); 753 754 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 755 // isn't reliable. 756 Ops.append(OutVals.begin(), 757 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 758 // Add a pointer to the vararg buffer. 759 if (IsVarArg) 760 Ops.push_back(FINode); 761 762 SmallVector<EVT, 8> InTys; 763 for (const auto &In : Ins) { 764 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 765 assert(!In.Flags.isNest() && "nest is not valid for return values"); 766 if (In.Flags.isInAlloca()) 767 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 768 if (In.Flags.isInConsecutiveRegs()) 769 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 770 if (In.Flags.isInConsecutiveRegsLast()) 771 fail(DL, DAG, 772 "WebAssembly hasn't implemented cons regs last return values"); 773 // Ignore In.getOrigAlign() because all our arguments are passed in 774 // registers. 775 InTys.push_back(In.VT); 776 } 777 InTys.push_back(MVT::Other); 778 SDVTList InTyList = DAG.getVTList(InTys); 779 SDValue Res = 780 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 781 DL, InTyList, Ops); 782 if (Ins.empty()) { 783 Chain = Res; 784 } else { 785 InVals.push_back(Res); 786 Chain = Res.getValue(1); 787 } 788 789 return Chain; 790 } 791 792 bool WebAssemblyTargetLowering::CanLowerReturn( 793 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 794 const SmallVectorImpl<ISD::OutputArg> &Outs, 795 LLVMContext & /*Context*/) const { 796 // WebAssembly can't currently handle returning tuples. 797 return Outs.size() <= 1; 798 } 799 800 SDValue WebAssemblyTargetLowering::LowerReturn( 801 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 802 const SmallVectorImpl<ISD::OutputArg> &Outs, 803 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 804 SelectionDAG &DAG) const { 805 assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); 806 if (!callingConvSupported(CallConv)) 807 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 808 809 SmallVector<SDValue, 4> RetOps(1, Chain); 810 RetOps.append(OutVals.begin(), OutVals.end()); 811 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 812 813 // Record the number and types of the return values. 814 for (const ISD::OutputArg &Out : Outs) { 815 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 816 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 817 assert(Out.IsFixed && "non-fixed return value is not valid"); 818 if (Out.Flags.isInAlloca()) 819 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 820 if (Out.Flags.isInConsecutiveRegs()) 821 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 822 if (Out.Flags.isInConsecutiveRegsLast()) 823 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 824 } 825 826 return Chain; 827 } 828 829 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 830 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 831 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 832 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 833 if (!callingConvSupported(CallConv)) 834 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 835 836 MachineFunction &MF = DAG.getMachineFunction(); 837 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 838 839 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 840 // of the incoming values before they're represented by virtual registers. 841 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 842 843 for (const ISD::InputArg &In : Ins) { 844 if (In.Flags.isInAlloca()) 845 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 846 if (In.Flags.isNest()) 847 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 848 if (In.Flags.isInConsecutiveRegs()) 849 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 850 if (In.Flags.isInConsecutiveRegsLast()) 851 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 852 // Ignore In.getOrigAlign() because all our arguments are passed in 853 // registers. 854 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 855 DAG.getTargetConstant(InVals.size(), 856 DL, MVT::i32)) 857 : DAG.getUNDEF(In.VT)); 858 859 // Record the number and types of arguments. 860 MFI->addParam(In.VT); 861 } 862 863 // Varargs are copied into a buffer allocated by the caller, and a pointer to 864 // the buffer is passed as an argument. 865 if (IsVarArg) { 866 MVT PtrVT = getPointerTy(MF.getDataLayout()); 867 unsigned VarargVreg = 868 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 869 MFI->setVarargBufferVreg(VarargVreg); 870 Chain = DAG.getCopyToReg( 871 Chain, DL, VarargVreg, 872 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 873 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 874 MFI->addParam(PtrVT); 875 } 876 877 // Record the number and types of arguments and results. 878 SmallVector<MVT, 4> Params; 879 SmallVector<MVT, 4> Results; 880 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 881 DAG.getTarget(), Params, Results); 882 for (MVT VT : Results) 883 MFI->addResult(VT); 884 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 885 // the param logic here with ComputeSignatureVTs 886 assert(MFI->getParams().size() == Params.size() && 887 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 888 Params.begin())); 889 890 return Chain; 891 } 892 893 //===----------------------------------------------------------------------===// 894 // Custom lowering hooks. 895 //===----------------------------------------------------------------------===// 896 897 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 898 SelectionDAG &DAG) const { 899 SDLoc DL(Op); 900 switch (Op.getOpcode()) { 901 default: 902 llvm_unreachable("unimplemented operation lowering"); 903 return SDValue(); 904 case ISD::FrameIndex: 905 return LowerFrameIndex(Op, DAG); 906 case ISD::GlobalAddress: 907 return LowerGlobalAddress(Op, DAG); 908 case ISD::ExternalSymbol: 909 return LowerExternalSymbol(Op, DAG); 910 case ISD::JumpTable: 911 return LowerJumpTable(Op, DAG); 912 case ISD::BR_JT: 913 return LowerBR_JT(Op, DAG); 914 case ISD::VASTART: 915 return LowerVASTART(Op, DAG); 916 case ISD::BlockAddress: 917 case ISD::BRIND: 918 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 919 return SDValue(); 920 case ISD::RETURNADDR: // Probably nothing meaningful can be returned here. 921 fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address"); 922 return SDValue(); 923 case ISD::FRAMEADDR: 924 return LowerFRAMEADDR(Op, DAG); 925 case ISD::CopyToReg: 926 return LowerCopyToReg(Op, DAG); 927 case ISD::EXTRACT_VECTOR_ELT: 928 case ISD::INSERT_VECTOR_ELT: 929 return LowerAccessVectorElement(Op, DAG); 930 case ISD::INTRINSIC_VOID: 931 case ISD::INTRINSIC_WO_CHAIN: 932 case ISD::INTRINSIC_W_CHAIN: 933 return LowerIntrinsic(Op, DAG); 934 case ISD::SIGN_EXTEND_INREG: 935 return LowerSIGN_EXTEND_INREG(Op, DAG); 936 case ISD::BUILD_VECTOR: 937 return LowerBUILD_VECTOR(Op, DAG); 938 case ISD::VECTOR_SHUFFLE: 939 return LowerVECTOR_SHUFFLE(Op, DAG); 940 case ISD::SHL: 941 case ISD::SRA: 942 case ISD::SRL: 943 return LowerShift(Op, DAG); 944 } 945 } 946 947 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 948 SelectionDAG &DAG) const { 949 SDValue Src = Op.getOperand(2); 950 if (isa<FrameIndexSDNode>(Src.getNode())) { 951 // CopyToReg nodes don't support FrameIndex operands. Other targets select 952 // the FI to some LEA-like instruction, but since we don't have that, we 953 // need to insert some kind of instruction that can take an FI operand and 954 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 955 // local.copy between Op and its FI operand. 956 SDValue Chain = Op.getOperand(0); 957 SDLoc DL(Op); 958 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 959 EVT VT = Src.getValueType(); 960 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 961 : WebAssembly::COPY_I64, 962 DL, VT, Src), 963 0); 964 return Op.getNode()->getNumValues() == 1 965 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 966 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 967 Op.getNumOperands() == 4 ? Op.getOperand(3) 968 : SDValue()); 969 } 970 return SDValue(); 971 } 972 973 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 974 SelectionDAG &DAG) const { 975 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 976 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 977 } 978 979 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 980 SelectionDAG &DAG) const { 981 // Non-zero depths are not supported by WebAssembly currently. Use the 982 // legalizer's default expansion, which is to return 0 (what this function is 983 // documented to do). 984 if (Op.getConstantOperandVal(0) > 0) 985 return SDValue(); 986 987 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 988 EVT VT = Op.getValueType(); 989 unsigned FP = 990 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 991 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 992 } 993 994 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 995 SelectionDAG &DAG) const { 996 SDLoc DL(Op); 997 const auto *GA = cast<GlobalAddressSDNode>(Op); 998 EVT VT = Op.getValueType(); 999 assert(GA->getTargetFlags() == 0 && 1000 "Unexpected target flags on generic GlobalAddressSDNode"); 1001 if (GA->getAddressSpace() != 0) 1002 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1003 1004 unsigned OperandFlags = 0; 1005 if (isPositionIndependent()) { 1006 const GlobalValue *GV = GA->getGlobal(); 1007 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1008 MachineFunction &MF = DAG.getMachineFunction(); 1009 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1010 const char *BaseName; 1011 if (GV->getValueType()->isFunctionTy()) { 1012 BaseName = MF.createExternalSymbolName("__table_base"); 1013 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1014 } 1015 else { 1016 BaseName = MF.createExternalSymbolName("__memory_base"); 1017 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1018 } 1019 SDValue BaseAddr = 1020 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1021 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1022 1023 SDValue SymAddr = DAG.getNode( 1024 WebAssemblyISD::WrapperPIC, DL, VT, 1025 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1026 OperandFlags)); 1027 1028 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1029 } else { 1030 OperandFlags = WebAssemblyII::MO_GOT; 1031 } 1032 } 1033 1034 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1035 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1036 GA->getOffset(), OperandFlags)); 1037 } 1038 1039 SDValue 1040 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1041 SelectionDAG &DAG) const { 1042 SDLoc DL(Op); 1043 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1044 EVT VT = Op.getValueType(); 1045 assert(ES->getTargetFlags() == 0 && 1046 "Unexpected target flags on generic ExternalSymbolSDNode"); 1047 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1048 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1049 } 1050 1051 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1052 SelectionDAG &DAG) const { 1053 // There's no need for a Wrapper node because we always incorporate a jump 1054 // table operand into a BR_TABLE instruction, rather than ever 1055 // materializing it in a register. 1056 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1057 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1058 JT->getTargetFlags()); 1059 } 1060 1061 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1062 SelectionDAG &DAG) const { 1063 SDLoc DL(Op); 1064 SDValue Chain = Op.getOperand(0); 1065 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1066 SDValue Index = Op.getOperand(2); 1067 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1068 1069 SmallVector<SDValue, 8> Ops; 1070 Ops.push_back(Chain); 1071 Ops.push_back(Index); 1072 1073 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1074 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1075 1076 // Add an operand for each case. 1077 for (auto MBB : MBBs) 1078 Ops.push_back(DAG.getBasicBlock(MBB)); 1079 1080 // TODO: For now, we just pick something arbitrary for a default case for now. 1081 // We really want to sniff out the guard and put in the real default case (and 1082 // delete the guard). 1083 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1084 1085 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1086 } 1087 1088 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1089 SelectionDAG &DAG) const { 1090 SDLoc DL(Op); 1091 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1092 1093 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1094 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1095 1096 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1097 MFI->getVarargBufferVreg(), PtrVT); 1098 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1099 MachinePointerInfo(SV), 0); 1100 } 1101 1102 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1103 SelectionDAG &DAG) const { 1104 MachineFunction &MF = DAG.getMachineFunction(); 1105 unsigned IntNo; 1106 switch (Op.getOpcode()) { 1107 case ISD::INTRINSIC_VOID: 1108 case ISD::INTRINSIC_W_CHAIN: 1109 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1110 break; 1111 case ISD::INTRINSIC_WO_CHAIN: 1112 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1113 break; 1114 default: 1115 llvm_unreachable("Invalid intrinsic"); 1116 } 1117 SDLoc DL(Op); 1118 1119 switch (IntNo) { 1120 default: 1121 return SDValue(); // Don't custom lower most intrinsics. 1122 1123 case Intrinsic::wasm_lsda: { 1124 EVT VT = Op.getValueType(); 1125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1126 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1127 auto &Context = MF.getMMI().getContext(); 1128 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1129 Twine(MF.getFunctionNumber())); 1130 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1131 DAG.getMCSymbol(S, PtrVT)); 1132 } 1133 1134 case Intrinsic::wasm_throw: { 1135 // We only support C++ exceptions for now 1136 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1137 if (Tag != CPP_EXCEPTION) 1138 llvm_unreachable("Invalid tag!"); 1139 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1140 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1141 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1142 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1143 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1144 return DAG.getNode(WebAssemblyISD::THROW, DL, 1145 MVT::Other, // outchain type 1146 { 1147 Op.getOperand(0), // inchain 1148 SymNode, // exception symbol 1149 Op.getOperand(3) // thrown value 1150 }); 1151 } 1152 } 1153 } 1154 1155 SDValue 1156 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1157 SelectionDAG &DAG) const { 1158 // If sign extension operations are disabled, allow sext_inreg only if operand 1159 // is a vector extract. SIMD does not depend on sign extension operations, but 1160 // allowing sext_inreg in this context lets us have simple patterns to select 1161 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1162 // simpler in this file, but would necessitate large and brittle patterns to 1163 // undo the expansion and select extract_lane_s instructions. 1164 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1165 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) 1166 return Op; 1167 // Otherwise expand 1168 return SDValue(); 1169 } 1170 1171 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1172 SelectionDAG &DAG) const { 1173 SDLoc DL(Op); 1174 const EVT VecT = Op.getValueType(); 1175 const EVT LaneT = Op.getOperand(0).getValueType(); 1176 const size_t Lanes = Op.getNumOperands(); 1177 auto IsConstant = [](const SDValue &V) { 1178 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1179 }; 1180 1181 // Find the most common operand, which is approximately the best to splat 1182 using Entry = std::pair<SDValue, size_t>; 1183 SmallVector<Entry, 16> ValueCounts; 1184 size_t NumConst = 0, NumDynamic = 0; 1185 for (const SDValue &Lane : Op->op_values()) { 1186 if (Lane.isUndef()) { 1187 continue; 1188 } else if (IsConstant(Lane)) { 1189 NumConst++; 1190 } else { 1191 NumDynamic++; 1192 } 1193 auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(), 1194 [&Lane](Entry A) { return A.first == Lane; }); 1195 if (CountIt == ValueCounts.end()) { 1196 ValueCounts.emplace_back(Lane, 1); 1197 } else { 1198 CountIt->second++; 1199 } 1200 } 1201 auto CommonIt = 1202 std::max_element(ValueCounts.begin(), ValueCounts.end(), 1203 [](Entry A, Entry B) { return A.second < B.second; }); 1204 assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector"); 1205 SDValue SplatValue = CommonIt->first; 1206 size_t NumCommon = CommonIt->second; 1207 1208 // If v128.const is available, consider using it instead of a splat 1209 if (Subtarget->hasUnimplementedSIMD128()) { 1210 // {i32,i64,f32,f64}.const opcode, and value 1211 const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes); 1212 // SIMD prefix and opcode 1213 const size_t SplatBytes = 2; 1214 const size_t SplatConstBytes = SplatBytes + ConstBytes; 1215 // SIMD prefix, opcode, and lane index 1216 const size_t ReplaceBytes = 3; 1217 const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes; 1218 // SIMD prefix, v128.const opcode, and 128-bit value 1219 const size_t VecConstBytes = 18; 1220 // Initial v128.const and a replace_lane for each non-const operand 1221 const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes; 1222 // Initial splat and all necessary replace_lanes 1223 const size_t SplatInitBytes = 1224 IsConstant(SplatValue) 1225 // Initial constant splat 1226 ? (SplatConstBytes + 1227 // Constant replace_lanes 1228 (NumConst - NumCommon) * ReplaceConstBytes + 1229 // Dynamic replace_lanes 1230 (NumDynamic * ReplaceBytes)) 1231 // Initial dynamic splat 1232 : (SplatBytes + 1233 // Constant replace_lanes 1234 (NumConst * ReplaceConstBytes) + 1235 // Dynamic replace_lanes 1236 (NumDynamic - NumCommon) * ReplaceBytes); 1237 if (ConstInitBytes < SplatInitBytes) { 1238 // Create build_vector that will lower to initial v128.const 1239 SmallVector<SDValue, 16> ConstLanes; 1240 for (const SDValue &Lane : Op->op_values()) { 1241 if (IsConstant(Lane)) { 1242 ConstLanes.push_back(Lane); 1243 } else if (LaneT.isFloatingPoint()) { 1244 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1245 } else { 1246 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1247 } 1248 } 1249 SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1250 // Add replace_lane instructions for non-const lanes 1251 for (size_t I = 0; I < Lanes; ++I) { 1252 const SDValue &Lane = Op->getOperand(I); 1253 if (!Lane.isUndef() && !IsConstant(Lane)) 1254 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1255 DAG.getConstant(I, DL, MVT::i32)); 1256 } 1257 return Result; 1258 } 1259 } 1260 // Use a splat for the initial vector 1261 SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1262 // Add replace_lane instructions for other values 1263 for (size_t I = 0; I < Lanes; ++I) { 1264 const SDValue &Lane = Op->getOperand(I); 1265 if (Lane != SplatValue) 1266 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1267 DAG.getConstant(I, DL, MVT::i32)); 1268 } 1269 return Result; 1270 } 1271 1272 SDValue 1273 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1274 SelectionDAG &DAG) const { 1275 SDLoc DL(Op); 1276 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1277 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1278 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1279 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1280 1281 // Space for two vector args and sixteen mask indices 1282 SDValue Ops[18]; 1283 size_t OpIdx = 0; 1284 Ops[OpIdx++] = Op.getOperand(0); 1285 Ops[OpIdx++] = Op.getOperand(1); 1286 1287 // Expand mask indices to byte indices and materialize them as operands 1288 for (int M : Mask) { 1289 for (size_t J = 0; J < LaneBytes; ++J) { 1290 // Lower undefs (represented by -1 in mask) to zero 1291 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1292 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1293 } 1294 } 1295 1296 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1297 } 1298 1299 SDValue 1300 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1301 SelectionDAG &DAG) const { 1302 // Allow constant lane indices, expand variable lane indices 1303 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1304 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1305 return Op; 1306 else 1307 // Perform default expansion 1308 return SDValue(); 1309 } 1310 1311 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1312 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1313 // 32-bit and 64-bit unrolled shifts will have proper semantics 1314 if (LaneT.bitsGE(MVT::i32)) 1315 return DAG.UnrollVectorOp(Op.getNode()); 1316 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1317 SDLoc DL(Op); 1318 SDValue ShiftVal = Op.getOperand(1); 1319 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1320 SDValue MaskedShiftVal = DAG.getNode( 1321 ISD::AND, // mask opcode 1322 DL, ShiftVal.getValueType(), // masked value type 1323 ShiftVal, // original shift value operand 1324 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1325 ); 1326 1327 return DAG.UnrollVectorOp( 1328 DAG.getNode(Op.getOpcode(), // original shift opcode 1329 DL, Op.getValueType(), // original return type 1330 Op.getOperand(0), // original vector operand, 1331 MaskedShiftVal // new masked shift value operand 1332 ) 1333 .getNode()); 1334 } 1335 1336 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1337 SelectionDAG &DAG) const { 1338 SDLoc DL(Op); 1339 1340 // Only manually lower vector shifts 1341 assert(Op.getSimpleValueType().isVector()); 1342 1343 // Expand all vector shifts until V8 fixes its implementation 1344 // TODO: remove this once V8 is fixed 1345 if (!Subtarget->hasUnimplementedSIMD128()) 1346 return unrollVectorShift(Op, DAG); 1347 1348 // Unroll non-splat vector shifts 1349 BuildVectorSDNode *ShiftVec; 1350 SDValue SplatVal; 1351 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1352 !(SplatVal = ShiftVec->getSplatValue())) 1353 return unrollVectorShift(Op, DAG); 1354 1355 // All splats except i64x2 const splats are handled by patterns 1356 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1357 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1358 return Op; 1359 1360 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1361 unsigned Opcode; 1362 switch (Op.getOpcode()) { 1363 case ISD::SHL: 1364 Opcode = WebAssemblyISD::VEC_SHL; 1365 break; 1366 case ISD::SRA: 1367 Opcode = WebAssemblyISD::VEC_SHR_S; 1368 break; 1369 case ISD::SRL: 1370 Opcode = WebAssemblyISD::VEC_SHR_U; 1371 break; 1372 default: 1373 llvm_unreachable("unexpected opcode"); 1374 } 1375 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1376 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1377 DAG.getConstant(Shift, DL, MVT::i32)); 1378 } 1379 1380 //===----------------------------------------------------------------------===// 1381 // WebAssembly Optimization Hooks 1382 //===----------------------------------------------------------------------===// 1383