1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 66 } 67 // Compute derived properties from the register classes. 68 computeRegisterProperties(Subtarget->getRegisterInfo()); 69 70 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 71 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 72 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 73 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 74 setOperationAction(ISD::BRIND, MVT::Other, Custom); 75 76 // Take the default expansion for va_arg, va_copy, and va_end. There is no 77 // default action for va_start, so we do that custom. 78 setOperationAction(ISD::VASTART, MVT::Other, Custom); 79 setOperationAction(ISD::VAARG, MVT::Other, Expand); 80 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 81 setOperationAction(ISD::VAEND, MVT::Other, Expand); 82 83 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 84 // Don't expand the floating-point types to constant pools. 85 setOperationAction(ISD::ConstantFP, T, Legal); 86 // Expand floating-point comparisons. 87 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 88 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 89 setCondCodeAction(CC, T, Expand); 90 // Expand floating-point library function operators. 91 for (auto Op : 92 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 93 setOperationAction(Op, T, Expand); 94 // Note supported floating-point library function operators that otherwise 95 // default to expand. 96 for (auto Op : 97 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 98 setOperationAction(Op, T, Legal); 99 // Support minimum and maximum, which otherwise default to expand. 100 setOperationAction(ISD::FMINIMUM, T, Legal); 101 setOperationAction(ISD::FMAXIMUM, T, Legal); 102 // WebAssembly currently has no builtin f16 support. 103 setOperationAction(ISD::FP16_TO_FP, T, Expand); 104 setOperationAction(ISD::FP_TO_FP16, T, Expand); 105 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 106 setTruncStoreAction(T, MVT::f16, Expand); 107 } 108 109 // Expand unavailable integer operations. 110 for (auto Op : 111 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 112 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 113 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 114 for (auto T : {MVT::i32, MVT::i64}) 115 setOperationAction(Op, T, Expand); 116 if (Subtarget->hasSIMD128()) 117 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 118 setOperationAction(Op, T, Expand); 119 } 120 121 // SIMD-specific configuration 122 if (Subtarget->hasSIMD128()) { 123 // Hoist bitcasts out of shuffles 124 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 125 126 // Combine extends of extract_subvectors into widening ops 127 setTargetDAGCombine(ISD::SIGN_EXTEND); 128 setTargetDAGCombine(ISD::ZERO_EXTEND); 129 130 // Support saturating add for i8x16 and i16x8 131 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 132 for (auto T : {MVT::v16i8, MVT::v8i16}) 133 setOperationAction(Op, T, Legal); 134 135 // Support integer abs 136 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 137 setOperationAction(ISD::ABS, T, Legal); 138 139 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 140 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 141 MVT::v2f64}) 142 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 143 144 // We have custom shuffle lowering to expose the shuffle mask 145 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 146 MVT::v2f64}) 147 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 148 149 // Custom lowering since wasm shifts must have a scalar shift amount 150 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 151 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 152 setOperationAction(Op, T, Custom); 153 154 // Custom lower lane accesses to expand out variable indices 155 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 156 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 157 MVT::v2f64}) 158 setOperationAction(Op, T, Custom); 159 160 // There is no i8x16.mul instruction 161 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 162 163 // There is no vector conditional select instruction 164 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 165 MVT::v2f64}) 166 setOperationAction(ISD::SELECT_CC, T, Expand); 167 168 // Expand integer operations supported for scalars but not SIMD 169 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 170 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 171 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 172 setOperationAction(Op, T, Expand); 173 174 // But we do have integer min and max operations 175 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 176 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 177 setOperationAction(Op, T, Legal); 178 179 // Expand float operations supported for scalars but not SIMD 180 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 181 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 182 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 183 for (auto T : {MVT::v4f32, MVT::v2f64}) 184 setOperationAction(Op, T, Expand); 185 186 // Expand operations not supported for i64x2 vectors 187 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 188 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 189 190 // 64x2 conversions are not in the spec 191 for (auto Op : 192 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 193 for (auto T : {MVT::v2i64, MVT::v2f64}) 194 setOperationAction(Op, T, Expand); 195 } 196 197 // As a special case, these operators use the type to mean the type to 198 // sign-extend from. 199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 200 if (!Subtarget->hasSignExt()) { 201 // Sign extends are legal only when extending a vector extract 202 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 203 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 204 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 205 } 206 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 207 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 208 209 // Dynamic stack allocation: use the default expansion. 210 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 211 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 212 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 213 214 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 215 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 216 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 217 218 // Expand these forms; we pattern-match the forms that we can handle in isel. 219 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 220 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 221 setOperationAction(Op, T, Expand); 222 223 // We have custom switch handling. 224 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 225 226 // WebAssembly doesn't have: 227 // - Floating-point extending loads. 228 // - Floating-point truncating stores. 229 // - i1 extending loads. 230 // - truncating SIMD stores and most extending loads 231 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 232 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 233 for (auto T : MVT::integer_valuetypes()) 234 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 235 setLoadExtAction(Ext, T, MVT::i1, Promote); 236 if (Subtarget->hasSIMD128()) { 237 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 238 MVT::v2f64}) { 239 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 240 if (MVT(T) != MemT) { 241 setTruncStoreAction(T, MemT, Expand); 242 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 243 setLoadExtAction(Ext, T, MemT, Expand); 244 } 245 } 246 } 247 // But some vector extending loads are legal 248 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 249 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 250 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 251 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 252 } 253 // And some truncating stores are legal as well 254 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 255 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 256 } 257 258 // Don't do anything clever with build_pairs 259 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 260 261 // Trap lowers to wasm unreachable 262 setOperationAction(ISD::TRAP, MVT::Other, Legal); 263 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 264 265 // Exception handling intrinsics 266 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 267 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 268 269 setMaxAtomicSizeInBitsSupported(64); 270 271 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 272 // consistent with the f64 and f128 names. 273 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 274 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 275 276 // Define the emscripten name for return address helper. 277 // TODO: when implementing other Wasm backends, make this generic or only do 278 // this on emscripten depending on what they end up doing. 279 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 280 281 // Always convert switches to br_tables unless there is only one case, which 282 // is equivalent to a simple branch. This reduces code size for wasm, and we 283 // defer possible jump table optimizations to the VM. 284 setMinimumJumpTableEntries(2); 285 } 286 287 TargetLowering::AtomicExpansionKind 288 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 289 // We have wasm instructions for these 290 switch (AI->getOperation()) { 291 case AtomicRMWInst::Add: 292 case AtomicRMWInst::Sub: 293 case AtomicRMWInst::And: 294 case AtomicRMWInst::Or: 295 case AtomicRMWInst::Xor: 296 case AtomicRMWInst::Xchg: 297 return AtomicExpansionKind::None; 298 default: 299 break; 300 } 301 return AtomicExpansionKind::CmpXChg; 302 } 303 304 FastISel *WebAssemblyTargetLowering::createFastISel( 305 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 306 return WebAssembly::createFastISel(FuncInfo, LibInfo); 307 } 308 309 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 310 EVT VT) const { 311 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 312 if (BitWidth > 1 && BitWidth < 8) 313 BitWidth = 8; 314 315 if (BitWidth > 64) { 316 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 317 // the count to be an i32. 318 BitWidth = 32; 319 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 320 "32-bit shift counts ought to be enough for anyone"); 321 } 322 323 MVT Result = MVT::getIntegerVT(BitWidth); 324 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 325 "Unable to represent scalar shift amount type"); 326 return Result; 327 } 328 329 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 330 // undefined result on invalid/overflow, to the WebAssembly opcode, which 331 // traps on invalid/overflow. 332 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 333 MachineBasicBlock *BB, 334 const TargetInstrInfo &TII, 335 bool IsUnsigned, bool Int64, 336 bool Float64, unsigned LoweredOpcode) { 337 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 338 339 Register OutReg = MI.getOperand(0).getReg(); 340 Register InReg = MI.getOperand(1).getReg(); 341 342 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 343 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 344 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 345 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 346 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 347 unsigned Eqz = WebAssembly::EQZ_I32; 348 unsigned And = WebAssembly::AND_I32; 349 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 350 int64_t Substitute = IsUnsigned ? 0 : Limit; 351 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 352 auto &Context = BB->getParent()->getFunction().getContext(); 353 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 354 355 const BasicBlock *LLVMBB = BB->getBasicBlock(); 356 MachineFunction *F = BB->getParent(); 357 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 358 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 359 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 360 361 MachineFunction::iterator It = ++BB->getIterator(); 362 F->insert(It, FalseMBB); 363 F->insert(It, TrueMBB); 364 F->insert(It, DoneMBB); 365 366 // Transfer the remainder of BB and its successor edges to DoneMBB. 367 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 368 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 369 370 BB->addSuccessor(TrueMBB); 371 BB->addSuccessor(FalseMBB); 372 TrueMBB->addSuccessor(DoneMBB); 373 FalseMBB->addSuccessor(DoneMBB); 374 375 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 376 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 377 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 378 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 379 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 380 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 381 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 382 383 MI.eraseFromParent(); 384 // For signed numbers, we can do a single comparison to determine whether 385 // fabs(x) is within range. 386 if (IsUnsigned) { 387 Tmp0 = InReg; 388 } else { 389 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 390 } 391 BuildMI(BB, DL, TII.get(FConst), Tmp1) 392 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 393 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 394 395 // For unsigned numbers, we have to do a separate comparison with zero. 396 if (IsUnsigned) { 397 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 398 Register SecondCmpReg = 399 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 400 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 401 BuildMI(BB, DL, TII.get(FConst), Tmp1) 402 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 403 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 404 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 405 CmpReg = AndReg; 406 } 407 408 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 409 410 // Create the CFG diamond to select between doing the conversion or using 411 // the substitute value. 412 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 413 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 414 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 415 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 416 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 417 .addReg(FalseReg) 418 .addMBB(FalseMBB) 419 .addReg(TrueReg) 420 .addMBB(TrueMBB); 421 422 return DoneMBB; 423 } 424 425 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 426 DebugLoc DL, MachineBasicBlock *BB, 427 const TargetInstrInfo &TII) { 428 MachineInstr &CallParams = *CallResults.getPrevNode(); 429 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 430 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 431 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 432 433 bool IsIndirect = CallParams.getOperand(0).isReg(); 434 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 435 436 unsigned CallOp; 437 if (IsIndirect && IsRetCall) { 438 CallOp = WebAssembly::RET_CALL_INDIRECT; 439 } else if (IsIndirect) { 440 CallOp = WebAssembly::CALL_INDIRECT; 441 } else if (IsRetCall) { 442 CallOp = WebAssembly::RET_CALL; 443 } else { 444 CallOp = WebAssembly::CALL; 445 } 446 447 MachineFunction &MF = *BB->getParent(); 448 const MCInstrDesc &MCID = TII.get(CallOp); 449 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 450 451 // See if we must truncate the function pointer. 452 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 453 // as 64-bit for uniformity with other pointer types. 454 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 455 Register Reg32 = 456 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 457 auto &FnPtr = CallParams.getOperand(0); 458 BuildMI(*BB, CallResults.getIterator(), DL, 459 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 460 .addReg(FnPtr.getReg()); 461 FnPtr.setReg(Reg32); 462 } 463 464 // Move the function pointer to the end of the arguments for indirect calls 465 if (IsIndirect) { 466 auto FnPtr = CallParams.getOperand(0); 467 CallParams.RemoveOperand(0); 468 CallParams.addOperand(FnPtr); 469 } 470 471 for (auto Def : CallResults.defs()) 472 MIB.add(Def); 473 474 // Add placeholders for the type index and immediate flags 475 if (IsIndirect) { 476 MIB.addImm(0); 477 MIB.addImm(0); 478 } 479 480 for (auto Use : CallParams.uses()) 481 MIB.add(Use); 482 483 BB->insert(CallResults.getIterator(), MIB); 484 CallParams.eraseFromParent(); 485 CallResults.eraseFromParent(); 486 487 return BB; 488 } 489 490 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 491 MachineInstr &MI, MachineBasicBlock *BB) const { 492 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 493 DebugLoc DL = MI.getDebugLoc(); 494 495 switch (MI.getOpcode()) { 496 default: 497 llvm_unreachable("Unexpected instr type to insert"); 498 case WebAssembly::FP_TO_SINT_I32_F32: 499 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 500 WebAssembly::I32_TRUNC_S_F32); 501 case WebAssembly::FP_TO_UINT_I32_F32: 502 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 503 WebAssembly::I32_TRUNC_U_F32); 504 case WebAssembly::FP_TO_SINT_I64_F32: 505 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 506 WebAssembly::I64_TRUNC_S_F32); 507 case WebAssembly::FP_TO_UINT_I64_F32: 508 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 509 WebAssembly::I64_TRUNC_U_F32); 510 case WebAssembly::FP_TO_SINT_I32_F64: 511 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 512 WebAssembly::I32_TRUNC_S_F64); 513 case WebAssembly::FP_TO_UINT_I32_F64: 514 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 515 WebAssembly::I32_TRUNC_U_F64); 516 case WebAssembly::FP_TO_SINT_I64_F64: 517 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 518 WebAssembly::I64_TRUNC_S_F64); 519 case WebAssembly::FP_TO_UINT_I64_F64: 520 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 521 WebAssembly::I64_TRUNC_U_F64); 522 case WebAssembly::CALL_RESULTS: 523 case WebAssembly::RET_CALL_RESULTS: 524 return LowerCallResults(MI, DL, BB, TII); 525 } 526 } 527 528 const char * 529 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 530 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 531 case WebAssemblyISD::FIRST_NUMBER: 532 case WebAssemblyISD::FIRST_MEM_OPCODE: 533 break; 534 #define HANDLE_NODETYPE(NODE) \ 535 case WebAssemblyISD::NODE: \ 536 return "WebAssemblyISD::" #NODE; 537 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 538 #include "WebAssemblyISD.def" 539 #undef HANDLE_MEM_NODETYPE 540 #undef HANDLE_NODETYPE 541 } 542 return nullptr; 543 } 544 545 std::pair<unsigned, const TargetRegisterClass *> 546 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 547 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 548 // First, see if this is a constraint that directly corresponds to a 549 // WebAssembly register class. 550 if (Constraint.size() == 1) { 551 switch (Constraint[0]) { 552 case 'r': 553 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 554 if (Subtarget->hasSIMD128() && VT.isVector()) { 555 if (VT.getSizeInBits() == 128) 556 return std::make_pair(0U, &WebAssembly::V128RegClass); 557 } 558 if (VT.isInteger() && !VT.isVector()) { 559 if (VT.getSizeInBits() <= 32) 560 return std::make_pair(0U, &WebAssembly::I32RegClass); 561 if (VT.getSizeInBits() <= 64) 562 return std::make_pair(0U, &WebAssembly::I64RegClass); 563 } 564 break; 565 default: 566 break; 567 } 568 } 569 570 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 571 } 572 573 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 574 // Assume ctz is a relatively cheap operation. 575 return true; 576 } 577 578 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 579 // Assume clz is a relatively cheap operation. 580 return true; 581 } 582 583 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 584 const AddrMode &AM, 585 Type *Ty, unsigned AS, 586 Instruction *I) const { 587 // WebAssembly offsets are added as unsigned without wrapping. The 588 // isLegalAddressingMode gives us no way to determine if wrapping could be 589 // happening, so we approximate this by accepting only non-negative offsets. 590 if (AM.BaseOffs < 0) 591 return false; 592 593 // WebAssembly has no scale register operands. 594 if (AM.Scale != 0) 595 return false; 596 597 // Everything else is legal. 598 return true; 599 } 600 601 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 602 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 603 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 604 // WebAssembly supports unaligned accesses, though it should be declared 605 // with the p2align attribute on loads and stores which do so, and there 606 // may be a performance impact. We tell LLVM they're "fast" because 607 // for the kinds of things that LLVM uses this for (merging adjacent stores 608 // of constants, etc.), WebAssembly implementations will either want the 609 // unaligned access or they'll split anyway. 610 if (Fast) 611 *Fast = true; 612 return true; 613 } 614 615 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 616 AttributeList Attr) const { 617 // The current thinking is that wasm engines will perform this optimization, 618 // so we can save on code size. 619 return true; 620 } 621 622 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 623 EVT ExtT = ExtVal.getValueType(); 624 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 625 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 626 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 627 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 628 } 629 630 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 631 LLVMContext &C, 632 EVT VT) const { 633 if (VT.isVector()) 634 return VT.changeVectorElementTypeToInteger(); 635 636 // So far, all branch instructions in Wasm take an I32 condition. 637 // The default TargetLowering::getSetCCResultType returns the pointer size, 638 // which would be useful to reduce instruction counts when testing 639 // against 64-bit pointers/values if at some point Wasm supports that. 640 return EVT::getIntegerVT(C, 32); 641 } 642 643 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 644 const CallInst &I, 645 MachineFunction &MF, 646 unsigned Intrinsic) const { 647 switch (Intrinsic) { 648 case Intrinsic::wasm_atomic_notify: 649 Info.opc = ISD::INTRINSIC_W_CHAIN; 650 Info.memVT = MVT::i32; 651 Info.ptrVal = I.getArgOperand(0); 652 Info.offset = 0; 653 Info.align = Align(4); 654 // atomic.notify instruction does not really load the memory specified with 655 // this argument, but MachineMemOperand should either be load or store, so 656 // we set this to a load. 657 // FIXME Volatile isn't really correct, but currently all LLVM atomic 658 // instructions are treated as volatiles in the backend, so we should be 659 // consistent. The same applies for wasm_atomic_wait intrinsics too. 660 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 661 return true; 662 case Intrinsic::wasm_atomic_wait_i32: 663 Info.opc = ISD::INTRINSIC_W_CHAIN; 664 Info.memVT = MVT::i32; 665 Info.ptrVal = I.getArgOperand(0); 666 Info.offset = 0; 667 Info.align = Align(4); 668 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 669 return true; 670 case Intrinsic::wasm_atomic_wait_i64: 671 Info.opc = ISD::INTRINSIC_W_CHAIN; 672 Info.memVT = MVT::i64; 673 Info.ptrVal = I.getArgOperand(0); 674 Info.offset = 0; 675 Info.align = Align(8); 676 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 677 return true; 678 case Intrinsic::wasm_load32_zero: 679 case Intrinsic::wasm_load64_zero: 680 Info.opc = ISD::INTRINSIC_W_CHAIN; 681 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 682 Info.ptrVal = I.getArgOperand(0); 683 Info.offset = 0; 684 Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8); 685 Info.flags = MachineMemOperand::MOLoad; 686 return true; 687 default: 688 return false; 689 } 690 } 691 692 //===----------------------------------------------------------------------===// 693 // WebAssembly Lowering private implementation. 694 //===----------------------------------------------------------------------===// 695 696 //===----------------------------------------------------------------------===// 697 // Lowering Code 698 //===----------------------------------------------------------------------===// 699 700 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 701 MachineFunction &MF = DAG.getMachineFunction(); 702 DAG.getContext()->diagnose( 703 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 704 } 705 706 // Test whether the given calling convention is supported. 707 static bool callingConvSupported(CallingConv::ID CallConv) { 708 // We currently support the language-independent target-independent 709 // conventions. We don't yet have a way to annotate calls with properties like 710 // "cold", and we don't have any call-clobbered registers, so these are mostly 711 // all handled the same. 712 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 713 CallConv == CallingConv::Cold || 714 CallConv == CallingConv::PreserveMost || 715 CallConv == CallingConv::PreserveAll || 716 CallConv == CallingConv::CXX_FAST_TLS || 717 CallConv == CallingConv::WASM_EmscriptenInvoke || 718 CallConv == CallingConv::Swift; 719 } 720 721 SDValue 722 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 723 SmallVectorImpl<SDValue> &InVals) const { 724 SelectionDAG &DAG = CLI.DAG; 725 SDLoc DL = CLI.DL; 726 SDValue Chain = CLI.Chain; 727 SDValue Callee = CLI.Callee; 728 MachineFunction &MF = DAG.getMachineFunction(); 729 auto Layout = MF.getDataLayout(); 730 731 CallingConv::ID CallConv = CLI.CallConv; 732 if (!callingConvSupported(CallConv)) 733 fail(DL, DAG, 734 "WebAssembly doesn't support language-specific or target-specific " 735 "calling conventions yet"); 736 if (CLI.IsPatchPoint) 737 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 738 739 if (CLI.IsTailCall) { 740 auto NoTail = [&](const char *Msg) { 741 if (CLI.CB && CLI.CB->isMustTailCall()) 742 fail(DL, DAG, Msg); 743 CLI.IsTailCall = false; 744 }; 745 746 if (!Subtarget->hasTailCall()) 747 NoTail("WebAssembly 'tail-call' feature not enabled"); 748 749 // Varargs calls cannot be tail calls because the buffer is on the stack 750 if (CLI.IsVarArg) 751 NoTail("WebAssembly does not support varargs tail calls"); 752 753 // Do not tail call unless caller and callee return types match 754 const Function &F = MF.getFunction(); 755 const TargetMachine &TM = getTargetMachine(); 756 Type *RetTy = F.getReturnType(); 757 SmallVector<MVT, 4> CallerRetTys; 758 SmallVector<MVT, 4> CalleeRetTys; 759 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 760 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 761 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 762 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 763 CalleeRetTys.begin()); 764 if (!TypesMatch) 765 NoTail("WebAssembly tail call requires caller and callee return types to " 766 "match"); 767 768 // If pointers to local stack values are passed, we cannot tail call 769 if (CLI.CB) { 770 for (auto &Arg : CLI.CB->args()) { 771 Value *Val = Arg.get(); 772 // Trace the value back through pointer operations 773 while (true) { 774 Value *Src = Val->stripPointerCastsAndAliases(); 775 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 776 Src = GEP->getPointerOperand(); 777 if (Val == Src) 778 break; 779 Val = Src; 780 } 781 if (isa<AllocaInst>(Val)) { 782 NoTail( 783 "WebAssembly does not support tail calling with stack arguments"); 784 break; 785 } 786 } 787 } 788 } 789 790 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 791 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 792 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 793 794 // The generic code may have added an sret argument. If we're lowering an 795 // invoke function, the ABI requires that the function pointer be the first 796 // argument, so we may have to swap the arguments. 797 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 798 Outs[0].Flags.isSRet()) { 799 std::swap(Outs[0], Outs[1]); 800 std::swap(OutVals[0], OutVals[1]); 801 } 802 803 bool HasSwiftSelfArg = false; 804 bool HasSwiftErrorArg = false; 805 unsigned NumFixedArgs = 0; 806 for (unsigned I = 0; I < Outs.size(); ++I) { 807 const ISD::OutputArg &Out = Outs[I]; 808 SDValue &OutVal = OutVals[I]; 809 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 810 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 811 if (Out.Flags.isNest()) 812 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 813 if (Out.Flags.isInAlloca()) 814 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 815 if (Out.Flags.isInConsecutiveRegs()) 816 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 817 if (Out.Flags.isInConsecutiveRegsLast()) 818 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 819 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 820 auto &MFI = MF.getFrameInfo(); 821 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 822 Out.Flags.getNonZeroByValAlign(), 823 /*isSS=*/false); 824 SDValue SizeNode = 825 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 826 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 827 Chain = DAG.getMemcpy( 828 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 829 /*isVolatile*/ false, /*AlwaysInline=*/false, 830 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 831 OutVal = FINode; 832 } 833 // Count the number of fixed args *after* legalization. 834 NumFixedArgs += Out.IsFixed; 835 } 836 837 bool IsVarArg = CLI.IsVarArg; 838 auto PtrVT = getPointerTy(Layout); 839 840 // For swiftcc, emit additional swiftself and swifterror arguments 841 // if there aren't. These additional arguments are also added for callee 842 // signature They are necessary to match callee and caller signature for 843 // indirect call. 844 if (CallConv == CallingConv::Swift) { 845 if (!HasSwiftSelfArg) { 846 NumFixedArgs++; 847 ISD::OutputArg Arg; 848 Arg.Flags.setSwiftSelf(); 849 CLI.Outs.push_back(Arg); 850 SDValue ArgVal = DAG.getUNDEF(PtrVT); 851 CLI.OutVals.push_back(ArgVal); 852 } 853 if (!HasSwiftErrorArg) { 854 NumFixedArgs++; 855 ISD::OutputArg Arg; 856 Arg.Flags.setSwiftError(); 857 CLI.Outs.push_back(Arg); 858 SDValue ArgVal = DAG.getUNDEF(PtrVT); 859 CLI.OutVals.push_back(ArgVal); 860 } 861 } 862 863 // Analyze operands of the call, assigning locations to each operand. 864 SmallVector<CCValAssign, 16> ArgLocs; 865 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 866 867 if (IsVarArg) { 868 // Outgoing non-fixed arguments are placed in a buffer. First 869 // compute their offsets and the total amount of buffer space needed. 870 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 871 const ISD::OutputArg &Out = Outs[I]; 872 SDValue &Arg = OutVals[I]; 873 EVT VT = Arg.getValueType(); 874 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 875 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 876 Align Alignment = 877 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 878 unsigned Offset = 879 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 880 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 881 Offset, VT.getSimpleVT(), 882 CCValAssign::Full)); 883 } 884 } 885 886 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 887 888 SDValue FINode; 889 if (IsVarArg && NumBytes) { 890 // For non-fixed arguments, next emit stores to store the argument values 891 // to the stack buffer at the offsets computed above. 892 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 893 Layout.getStackAlignment(), 894 /*isSS=*/false); 895 unsigned ValNo = 0; 896 SmallVector<SDValue, 8> Chains; 897 for (SDValue Arg : 898 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 899 assert(ArgLocs[ValNo].getValNo() == ValNo && 900 "ArgLocs should remain in order and only hold varargs args"); 901 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 902 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 903 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 904 DAG.getConstant(Offset, DL, PtrVT)); 905 Chains.push_back( 906 DAG.getStore(Chain, DL, Arg, Add, 907 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 908 } 909 if (!Chains.empty()) 910 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 911 } else if (IsVarArg) { 912 FINode = DAG.getIntPtrConstant(0, DL); 913 } 914 915 if (Callee->getOpcode() == ISD::GlobalAddress) { 916 // If the callee is a GlobalAddress node (quite common, every direct call 917 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 918 // doesn't at MO_GOT which is not needed for direct calls. 919 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 920 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 921 getPointerTy(DAG.getDataLayout()), 922 GA->getOffset()); 923 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 924 getPointerTy(DAG.getDataLayout()), Callee); 925 } 926 927 // Compute the operands for the CALLn node. 928 SmallVector<SDValue, 16> Ops; 929 Ops.push_back(Chain); 930 Ops.push_back(Callee); 931 932 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 933 // isn't reliable. 934 Ops.append(OutVals.begin(), 935 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 936 // Add a pointer to the vararg buffer. 937 if (IsVarArg) 938 Ops.push_back(FINode); 939 940 SmallVector<EVT, 8> InTys; 941 for (const auto &In : Ins) { 942 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 943 assert(!In.Flags.isNest() && "nest is not valid for return values"); 944 if (In.Flags.isInAlloca()) 945 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 946 if (In.Flags.isInConsecutiveRegs()) 947 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 948 if (In.Flags.isInConsecutiveRegsLast()) 949 fail(DL, DAG, 950 "WebAssembly hasn't implemented cons regs last return values"); 951 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 952 // registers. 953 InTys.push_back(In.VT); 954 } 955 956 if (CLI.IsTailCall) { 957 // ret_calls do not return values to the current frame 958 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 959 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 960 } 961 962 InTys.push_back(MVT::Other); 963 SDVTList InTyList = DAG.getVTList(InTys); 964 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 965 966 for (size_t I = 0; I < Ins.size(); ++I) 967 InVals.push_back(Res.getValue(I)); 968 969 // Return the chain 970 return Res.getValue(Ins.size()); 971 } 972 973 bool WebAssemblyTargetLowering::CanLowerReturn( 974 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 975 const SmallVectorImpl<ISD::OutputArg> &Outs, 976 LLVMContext & /*Context*/) const { 977 // WebAssembly can only handle returning tuples with multivalue enabled 978 return Subtarget->hasMultivalue() || Outs.size() <= 1; 979 } 980 981 SDValue WebAssemblyTargetLowering::LowerReturn( 982 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 983 const SmallVectorImpl<ISD::OutputArg> &Outs, 984 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 985 SelectionDAG &DAG) const { 986 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 987 "MVP WebAssembly can only return up to one value"); 988 if (!callingConvSupported(CallConv)) 989 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 990 991 SmallVector<SDValue, 4> RetOps(1, Chain); 992 RetOps.append(OutVals.begin(), OutVals.end()); 993 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 994 995 // Record the number and types of the return values. 996 for (const ISD::OutputArg &Out : Outs) { 997 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 998 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 999 assert(Out.IsFixed && "non-fixed return value is not valid"); 1000 if (Out.Flags.isInAlloca()) 1001 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1002 if (Out.Flags.isInConsecutiveRegs()) 1003 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1004 if (Out.Flags.isInConsecutiveRegsLast()) 1005 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1006 } 1007 1008 return Chain; 1009 } 1010 1011 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1012 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1013 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1014 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1015 if (!callingConvSupported(CallConv)) 1016 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1017 1018 MachineFunction &MF = DAG.getMachineFunction(); 1019 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1020 1021 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1022 // of the incoming values before they're represented by virtual registers. 1023 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1024 1025 bool HasSwiftErrorArg = false; 1026 bool HasSwiftSelfArg = false; 1027 for (const ISD::InputArg &In : Ins) { 1028 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1029 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1030 if (In.Flags.isInAlloca()) 1031 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1032 if (In.Flags.isNest()) 1033 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1034 if (In.Flags.isInConsecutiveRegs()) 1035 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1036 if (In.Flags.isInConsecutiveRegsLast()) 1037 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1038 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1039 // registers. 1040 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1041 DAG.getTargetConstant(InVals.size(), 1042 DL, MVT::i32)) 1043 : DAG.getUNDEF(In.VT)); 1044 1045 // Record the number and types of arguments. 1046 MFI->addParam(In.VT); 1047 } 1048 1049 // For swiftcc, emit additional swiftself and swifterror arguments 1050 // if there aren't. These additional arguments are also added for callee 1051 // signature They are necessary to match callee and caller signature for 1052 // indirect call. 1053 auto PtrVT = getPointerTy(MF.getDataLayout()); 1054 if (CallConv == CallingConv::Swift) { 1055 if (!HasSwiftSelfArg) { 1056 MFI->addParam(PtrVT); 1057 } 1058 if (!HasSwiftErrorArg) { 1059 MFI->addParam(PtrVT); 1060 } 1061 } 1062 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1063 // the buffer is passed as an argument. 1064 if (IsVarArg) { 1065 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1066 Register VarargVreg = 1067 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1068 MFI->setVarargBufferVreg(VarargVreg); 1069 Chain = DAG.getCopyToReg( 1070 Chain, DL, VarargVreg, 1071 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1072 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1073 MFI->addParam(PtrVT); 1074 } 1075 1076 // Record the number and types of arguments and results. 1077 SmallVector<MVT, 4> Params; 1078 SmallVector<MVT, 4> Results; 1079 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1080 MF.getFunction(), DAG.getTarget(), Params, Results); 1081 for (MVT VT : Results) 1082 MFI->addResult(VT); 1083 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1084 // the param logic here with ComputeSignatureVTs 1085 assert(MFI->getParams().size() == Params.size() && 1086 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1087 Params.begin())); 1088 1089 return Chain; 1090 } 1091 1092 void WebAssemblyTargetLowering::ReplaceNodeResults( 1093 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1094 switch (N->getOpcode()) { 1095 case ISD::SIGN_EXTEND_INREG: 1096 // Do not add any results, signifying that N should not be custom lowered 1097 // after all. This happens because simd128 turns on custom lowering for 1098 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1099 // illegal type. 1100 break; 1101 default: 1102 llvm_unreachable( 1103 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1104 } 1105 } 1106 1107 //===----------------------------------------------------------------------===// 1108 // Custom lowering hooks. 1109 //===----------------------------------------------------------------------===// 1110 1111 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1112 SelectionDAG &DAG) const { 1113 SDLoc DL(Op); 1114 switch (Op.getOpcode()) { 1115 default: 1116 llvm_unreachable("unimplemented operation lowering"); 1117 return SDValue(); 1118 case ISD::FrameIndex: 1119 return LowerFrameIndex(Op, DAG); 1120 case ISD::GlobalAddress: 1121 return LowerGlobalAddress(Op, DAG); 1122 case ISD::ExternalSymbol: 1123 return LowerExternalSymbol(Op, DAG); 1124 case ISD::JumpTable: 1125 return LowerJumpTable(Op, DAG); 1126 case ISD::BR_JT: 1127 return LowerBR_JT(Op, DAG); 1128 case ISD::VASTART: 1129 return LowerVASTART(Op, DAG); 1130 case ISD::BlockAddress: 1131 case ISD::BRIND: 1132 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1133 return SDValue(); 1134 case ISD::RETURNADDR: 1135 return LowerRETURNADDR(Op, DAG); 1136 case ISD::FRAMEADDR: 1137 return LowerFRAMEADDR(Op, DAG); 1138 case ISD::CopyToReg: 1139 return LowerCopyToReg(Op, DAG); 1140 case ISD::EXTRACT_VECTOR_ELT: 1141 case ISD::INSERT_VECTOR_ELT: 1142 return LowerAccessVectorElement(Op, DAG); 1143 case ISD::INTRINSIC_VOID: 1144 case ISD::INTRINSIC_WO_CHAIN: 1145 case ISD::INTRINSIC_W_CHAIN: 1146 return LowerIntrinsic(Op, DAG); 1147 case ISD::SIGN_EXTEND_INREG: 1148 return LowerSIGN_EXTEND_INREG(Op, DAG); 1149 case ISD::BUILD_VECTOR: 1150 return LowerBUILD_VECTOR(Op, DAG); 1151 case ISD::VECTOR_SHUFFLE: 1152 return LowerVECTOR_SHUFFLE(Op, DAG); 1153 case ISD::SETCC: 1154 return LowerSETCC(Op, DAG); 1155 case ISD::SHL: 1156 case ISD::SRA: 1157 case ISD::SRL: 1158 return LowerShift(Op, DAG); 1159 } 1160 } 1161 1162 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1163 SelectionDAG &DAG) const { 1164 SDValue Src = Op.getOperand(2); 1165 if (isa<FrameIndexSDNode>(Src.getNode())) { 1166 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1167 // the FI to some LEA-like instruction, but since we don't have that, we 1168 // need to insert some kind of instruction that can take an FI operand and 1169 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1170 // local.copy between Op and its FI operand. 1171 SDValue Chain = Op.getOperand(0); 1172 SDLoc DL(Op); 1173 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1174 EVT VT = Src.getValueType(); 1175 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1176 : WebAssembly::COPY_I64, 1177 DL, VT, Src), 1178 0); 1179 return Op.getNode()->getNumValues() == 1 1180 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1181 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1182 Op.getNumOperands() == 4 ? Op.getOperand(3) 1183 : SDValue()); 1184 } 1185 return SDValue(); 1186 } 1187 1188 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1189 SelectionDAG &DAG) const { 1190 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1191 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1192 } 1193 1194 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1195 SelectionDAG &DAG) const { 1196 SDLoc DL(Op); 1197 1198 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1199 fail(DL, DAG, 1200 "Non-Emscripten WebAssembly hasn't implemented " 1201 "__builtin_return_address"); 1202 return SDValue(); 1203 } 1204 1205 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1206 return SDValue(); 1207 1208 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1209 MakeLibCallOptions CallOptions; 1210 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1211 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1212 .first; 1213 } 1214 1215 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1216 SelectionDAG &DAG) const { 1217 // Non-zero depths are not supported by WebAssembly currently. Use the 1218 // legalizer's default expansion, which is to return 0 (what this function is 1219 // documented to do). 1220 if (Op.getConstantOperandVal(0) > 0) 1221 return SDValue(); 1222 1223 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1224 EVT VT = Op.getValueType(); 1225 Register FP = 1226 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1227 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1228 } 1229 1230 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1231 SelectionDAG &DAG) const { 1232 SDLoc DL(Op); 1233 const auto *GA = cast<GlobalAddressSDNode>(Op); 1234 EVT VT = Op.getValueType(); 1235 assert(GA->getTargetFlags() == 0 && 1236 "Unexpected target flags on generic GlobalAddressSDNode"); 1237 if (GA->getAddressSpace() != 0) 1238 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1239 1240 unsigned OperandFlags = 0; 1241 if (isPositionIndependent()) { 1242 const GlobalValue *GV = GA->getGlobal(); 1243 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1244 MachineFunction &MF = DAG.getMachineFunction(); 1245 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1246 const char *BaseName; 1247 if (GV->getValueType()->isFunctionTy()) { 1248 BaseName = MF.createExternalSymbolName("__table_base"); 1249 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1250 } 1251 else { 1252 BaseName = MF.createExternalSymbolName("__memory_base"); 1253 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1254 } 1255 SDValue BaseAddr = 1256 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1257 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1258 1259 SDValue SymAddr = DAG.getNode( 1260 WebAssemblyISD::WrapperPIC, DL, VT, 1261 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1262 OperandFlags)); 1263 1264 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1265 } else { 1266 OperandFlags = WebAssemblyII::MO_GOT; 1267 } 1268 } 1269 1270 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1271 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1272 GA->getOffset(), OperandFlags)); 1273 } 1274 1275 SDValue 1276 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1277 SelectionDAG &DAG) const { 1278 SDLoc DL(Op); 1279 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1280 EVT VT = Op.getValueType(); 1281 assert(ES->getTargetFlags() == 0 && 1282 "Unexpected target flags on generic ExternalSymbolSDNode"); 1283 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1284 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1285 } 1286 1287 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1288 SelectionDAG &DAG) const { 1289 // There's no need for a Wrapper node because we always incorporate a jump 1290 // table operand into a BR_TABLE instruction, rather than ever 1291 // materializing it in a register. 1292 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1293 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1294 JT->getTargetFlags()); 1295 } 1296 1297 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1298 SelectionDAG &DAG) const { 1299 SDLoc DL(Op); 1300 SDValue Chain = Op.getOperand(0); 1301 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1302 SDValue Index = Op.getOperand(2); 1303 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1304 1305 SmallVector<SDValue, 8> Ops; 1306 Ops.push_back(Chain); 1307 Ops.push_back(Index); 1308 1309 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1310 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1311 1312 // Add an operand for each case. 1313 for (auto MBB : MBBs) 1314 Ops.push_back(DAG.getBasicBlock(MBB)); 1315 1316 // Add the first MBB as a dummy default target for now. This will be replaced 1317 // with the proper default target (and the preceding range check eliminated) 1318 // if possible by WebAssemblyFixBrTableDefaults. 1319 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1320 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1321 } 1322 1323 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1324 SelectionDAG &DAG) const { 1325 SDLoc DL(Op); 1326 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1327 1328 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1329 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1330 1331 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1332 MFI->getVarargBufferVreg(), PtrVT); 1333 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1334 MachinePointerInfo(SV)); 1335 } 1336 1337 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1338 SelectionDAG &DAG) const { 1339 MachineFunction &MF = DAG.getMachineFunction(); 1340 unsigned IntNo; 1341 switch (Op.getOpcode()) { 1342 case ISD::INTRINSIC_VOID: 1343 case ISD::INTRINSIC_W_CHAIN: 1344 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1345 break; 1346 case ISD::INTRINSIC_WO_CHAIN: 1347 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1348 break; 1349 default: 1350 llvm_unreachable("Invalid intrinsic"); 1351 } 1352 SDLoc DL(Op); 1353 1354 switch (IntNo) { 1355 default: 1356 return SDValue(); // Don't custom lower most intrinsics. 1357 1358 case Intrinsic::wasm_lsda: { 1359 EVT VT = Op.getValueType(); 1360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1361 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1362 auto &Context = MF.getMMI().getContext(); 1363 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1364 Twine(MF.getFunctionNumber())); 1365 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1366 DAG.getMCSymbol(S, PtrVT)); 1367 } 1368 1369 case Intrinsic::wasm_throw: { 1370 // We only support C++ exceptions for now 1371 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1372 if (Tag != CPP_EXCEPTION) 1373 llvm_unreachable("Invalid tag!"); 1374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1375 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1376 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1377 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1378 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1379 return DAG.getNode(WebAssemblyISD::THROW, DL, 1380 MVT::Other, // outchain type 1381 { 1382 Op.getOperand(0), // inchain 1383 SymNode, // exception symbol 1384 Op.getOperand(3) // thrown value 1385 }); 1386 } 1387 1388 case Intrinsic::wasm_shuffle: { 1389 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1390 SDValue Ops[18]; 1391 size_t OpIdx = 0; 1392 Ops[OpIdx++] = Op.getOperand(1); 1393 Ops[OpIdx++] = Op.getOperand(2); 1394 while (OpIdx < 18) { 1395 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1396 if (MaskIdx.isUndef() || 1397 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1398 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1399 } else { 1400 Ops[OpIdx++] = MaskIdx; 1401 } 1402 } 1403 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1404 } 1405 } 1406 } 1407 1408 SDValue 1409 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1410 SelectionDAG &DAG) const { 1411 SDLoc DL(Op); 1412 // If sign extension operations are disabled, allow sext_inreg only if operand 1413 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1414 // extension operations, but allowing sext_inreg in this context lets us have 1415 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1416 // everywhere would be simpler in this file, but would necessitate large and 1417 // brittle patterns to undo the expansion and select extract_lane_s 1418 // instructions. 1419 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1420 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1421 return SDValue(); 1422 1423 const SDValue &Extract = Op.getOperand(0); 1424 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1425 if (VecT.getVectorElementType().getSizeInBits() > 32) 1426 return SDValue(); 1427 MVT ExtractedLaneT = 1428 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1429 MVT ExtractedVecT = 1430 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1431 if (ExtractedVecT == VecT) 1432 return Op; 1433 1434 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1435 const SDNode *Index = Extract.getOperand(1).getNode(); 1436 if (!isa<ConstantSDNode>(Index)) 1437 return SDValue(); 1438 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1439 unsigned Scale = 1440 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1441 assert(Scale > 1); 1442 SDValue NewIndex = 1443 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1444 SDValue NewExtract = DAG.getNode( 1445 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1446 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1447 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1448 Op.getOperand(1)); 1449 } 1450 1451 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1452 SelectionDAG &DAG) const { 1453 SDLoc DL(Op); 1454 const EVT VecT = Op.getValueType(); 1455 const EVT LaneT = Op.getOperand(0).getValueType(); 1456 const size_t Lanes = Op.getNumOperands(); 1457 bool CanSwizzle = VecT == MVT::v16i8; 1458 1459 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1460 // possible number of lanes at once followed by a sequence of replace_lane 1461 // instructions to individually initialize any remaining lanes. 1462 1463 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1464 // swizzled lanes should be given greater weight. 1465 1466 // TODO: Investigate building vectors by shuffling together vectors built by 1467 // separately specialized means. 1468 1469 auto IsConstant = [](const SDValue &V) { 1470 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1471 }; 1472 1473 // Returns the source vector and index vector pair if they exist. Checks for: 1474 // (extract_vector_elt 1475 // $src, 1476 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1477 // ) 1478 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1479 auto Bail = std::make_pair(SDValue(), SDValue()); 1480 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1481 return Bail; 1482 const SDValue &SwizzleSrc = Lane->getOperand(0); 1483 const SDValue &IndexExt = Lane->getOperand(1); 1484 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1485 return Bail; 1486 const SDValue &Index = IndexExt->getOperand(0); 1487 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1488 return Bail; 1489 const SDValue &SwizzleIndices = Index->getOperand(0); 1490 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1491 SwizzleIndices.getValueType() != MVT::v16i8 || 1492 Index->getOperand(1)->getOpcode() != ISD::Constant || 1493 Index->getConstantOperandVal(1) != I) 1494 return Bail; 1495 return std::make_pair(SwizzleSrc, SwizzleIndices); 1496 }; 1497 1498 using ValueEntry = std::pair<SDValue, size_t>; 1499 SmallVector<ValueEntry, 16> SplatValueCounts; 1500 1501 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1502 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1503 1504 auto AddCount = [](auto &Counts, const auto &Val) { 1505 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1506 [&Val](auto E) { return E.first == Val; }); 1507 if (CountIt == Counts.end()) { 1508 Counts.emplace_back(Val, 1); 1509 } else { 1510 CountIt->second++; 1511 } 1512 }; 1513 1514 auto GetMostCommon = [](auto &Counts) { 1515 auto CommonIt = 1516 std::max_element(Counts.begin(), Counts.end(), 1517 [](auto A, auto B) { return A.second < B.second; }); 1518 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1519 return *CommonIt; 1520 }; 1521 1522 size_t NumConstantLanes = 0; 1523 1524 // Count eligible lanes for each type of vector creation op 1525 for (size_t I = 0; I < Lanes; ++I) { 1526 const SDValue &Lane = Op->getOperand(I); 1527 if (Lane.isUndef()) 1528 continue; 1529 1530 AddCount(SplatValueCounts, Lane); 1531 1532 if (IsConstant(Lane)) { 1533 NumConstantLanes++; 1534 } else if (CanSwizzle) { 1535 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1536 if (SwizzleSrcs.first) 1537 AddCount(SwizzleCounts, SwizzleSrcs); 1538 } 1539 } 1540 1541 SDValue SplatValue; 1542 size_t NumSplatLanes; 1543 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1544 1545 SDValue SwizzleSrc; 1546 SDValue SwizzleIndices; 1547 size_t NumSwizzleLanes = 0; 1548 if (SwizzleCounts.size()) 1549 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1550 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1551 1552 // Predicate returning true if the lane is properly initialized by the 1553 // original instruction 1554 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1555 SDValue Result; 1556 // Prefer swizzles over vector consts over splats 1557 if (NumSwizzleLanes >= NumSplatLanes && 1558 (!Subtarget->hasUnimplementedSIMD128() || 1559 NumSwizzleLanes >= NumConstantLanes)) { 1560 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1561 SwizzleIndices); 1562 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1563 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1564 return Swizzled == GetSwizzleSrcs(I, Lane); 1565 }; 1566 } else if (NumConstantLanes >= NumSplatLanes && 1567 Subtarget->hasUnimplementedSIMD128()) { 1568 SmallVector<SDValue, 16> ConstLanes; 1569 for (const SDValue &Lane : Op->op_values()) { 1570 if (IsConstant(Lane)) { 1571 ConstLanes.push_back(Lane); 1572 } else if (LaneT.isFloatingPoint()) { 1573 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1574 } else { 1575 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1576 } 1577 } 1578 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1579 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1580 return IsConstant(Lane); 1581 }; 1582 } 1583 if (!Result) { 1584 // Use a splat, but possibly a load_splat 1585 LoadSDNode *SplattedLoad; 1586 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1587 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1588 Result = DAG.getMemIntrinsicNode( 1589 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1590 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1591 SplattedLoad->getOffset()}, 1592 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1593 } else { 1594 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1595 } 1596 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1597 return Lane == SplatValue; 1598 }; 1599 } 1600 1601 // Add replace_lane instructions for any unhandled values 1602 for (size_t I = 0; I < Lanes; ++I) { 1603 const SDValue &Lane = Op->getOperand(I); 1604 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1605 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1606 DAG.getConstant(I, DL, MVT::i32)); 1607 } 1608 1609 return Result; 1610 } 1611 1612 SDValue 1613 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1614 SelectionDAG &DAG) const { 1615 SDLoc DL(Op); 1616 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1617 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1618 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1619 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1620 1621 // Space for two vector args and sixteen mask indices 1622 SDValue Ops[18]; 1623 size_t OpIdx = 0; 1624 Ops[OpIdx++] = Op.getOperand(0); 1625 Ops[OpIdx++] = Op.getOperand(1); 1626 1627 // Expand mask indices to byte indices and materialize them as operands 1628 for (int M : Mask) { 1629 for (size_t J = 0; J < LaneBytes; ++J) { 1630 // Lower undefs (represented by -1 in mask) to zero 1631 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1632 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1633 } 1634 } 1635 1636 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1637 } 1638 1639 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1640 SelectionDAG &DAG) const { 1641 SDLoc DL(Op); 1642 // The legalizer does not know how to expand the comparison modes of i64x2 1643 // vectors because no comparison modes are supported. We could solve this by 1644 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1645 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1646 // comparisons here. 1647 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1648 SmallVector<SDValue, 2> LHS, RHS; 1649 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1650 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1651 const SDValue &CC = Op->getOperand(2); 1652 auto MakeLane = [&](unsigned I) { 1653 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1654 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1655 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1656 }; 1657 return DAG.getBuildVector(Op->getValueType(0), DL, 1658 {MakeLane(0), MakeLane(1)}); 1659 } 1660 1661 SDValue 1662 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1663 SelectionDAG &DAG) const { 1664 // Allow constant lane indices, expand variable lane indices 1665 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1666 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1667 return Op; 1668 else 1669 // Perform default expansion 1670 return SDValue(); 1671 } 1672 1673 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1674 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1675 // 32-bit and 64-bit unrolled shifts will have proper semantics 1676 if (LaneT.bitsGE(MVT::i32)) 1677 return DAG.UnrollVectorOp(Op.getNode()); 1678 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1679 SDLoc DL(Op); 1680 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1681 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1682 unsigned ShiftOpcode = Op.getOpcode(); 1683 SmallVector<SDValue, 16> ShiftedElements; 1684 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1685 SmallVector<SDValue, 16> ShiftElements; 1686 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1687 SmallVector<SDValue, 16> UnrolledOps; 1688 for (size_t i = 0; i < NumLanes; ++i) { 1689 SDValue MaskedShiftValue = 1690 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1691 SDValue ShiftedValue = ShiftedElements[i]; 1692 if (ShiftOpcode == ISD::SRA) 1693 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1694 ShiftedValue, DAG.getValueType(LaneT)); 1695 UnrolledOps.push_back( 1696 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1697 } 1698 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1699 } 1700 1701 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1702 SelectionDAG &DAG) const { 1703 SDLoc DL(Op); 1704 1705 // Only manually lower vector shifts 1706 assert(Op.getSimpleValueType().isVector()); 1707 1708 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1709 if (!ShiftVal) 1710 return unrollVectorShift(Op, DAG); 1711 1712 // Use anyext because none of the high bits can affect the shift 1713 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1714 1715 unsigned Opcode; 1716 switch (Op.getOpcode()) { 1717 case ISD::SHL: 1718 Opcode = WebAssemblyISD::VEC_SHL; 1719 break; 1720 case ISD::SRA: 1721 Opcode = WebAssemblyISD::VEC_SHR_S; 1722 break; 1723 case ISD::SRL: 1724 Opcode = WebAssemblyISD::VEC_SHR_U; 1725 break; 1726 default: 1727 llvm_unreachable("unexpected opcode"); 1728 } 1729 1730 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1731 } 1732 1733 //===----------------------------------------------------------------------===// 1734 // Custom DAG combine hooks 1735 //===----------------------------------------------------------------------===// 1736 static SDValue 1737 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1738 auto &DAG = DCI.DAG; 1739 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1740 1741 // Hoist vector bitcasts that don't change the number of lanes out of unary 1742 // shuffles, where they are less likely to get in the way of other combines. 1743 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1744 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1745 SDValue Bitcast = N->getOperand(0); 1746 if (Bitcast.getOpcode() != ISD::BITCAST) 1747 return SDValue(); 1748 if (!N->getOperand(1).isUndef()) 1749 return SDValue(); 1750 SDValue CastOp = Bitcast.getOperand(0); 1751 MVT SrcType = CastOp.getSimpleValueType(); 1752 MVT DstType = Bitcast.getSimpleValueType(); 1753 if (!SrcType.is128BitVector() || 1754 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1755 return SDValue(); 1756 SDValue NewShuffle = DAG.getVectorShuffle( 1757 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1758 return DAG.getBitcast(DstType, NewShuffle); 1759 } 1760 1761 static SDValue performVectorWidenCombine(SDNode *N, 1762 TargetLowering::DAGCombinerInfo &DCI) { 1763 auto &DAG = DCI.DAG; 1764 assert(N->getOpcode() == ISD::SIGN_EXTEND || 1765 N->getOpcode() == ISD::ZERO_EXTEND); 1766 1767 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 1768 // possible before the extract_subvector can be expanded. 1769 auto Extract = N->getOperand(0); 1770 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 1771 return SDValue(); 1772 auto Source = Extract.getOperand(0); 1773 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 1774 if (IndexNode == nullptr) 1775 return SDValue(); 1776 auto Index = IndexNode->getZExtValue(); 1777 1778 // Only v8i8 and v4i16 extracts can be widened, and only if the extracted 1779 // subvector is the low or high half of its source. 1780 EVT ResVT = N->getValueType(0); 1781 if (ResVT == MVT::v8i16) { 1782 if (Extract.getValueType() != MVT::v8i8 || 1783 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 1784 return SDValue(); 1785 } else if (ResVT == MVT::v4i32) { 1786 if (Extract.getValueType() != MVT::v4i16 || 1787 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 1788 return SDValue(); 1789 } else { 1790 return SDValue(); 1791 } 1792 1793 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 1794 bool IsLow = Index == 0; 1795 1796 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S 1797 : WebAssemblyISD::WIDEN_HIGH_S) 1798 : (IsLow ? WebAssemblyISD::WIDEN_LOW_U 1799 : WebAssemblyISD::WIDEN_HIGH_U); 1800 1801 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 1802 } 1803 1804 SDValue 1805 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 1806 DAGCombinerInfo &DCI) const { 1807 switch (N->getOpcode()) { 1808 default: 1809 return SDValue(); 1810 case ISD::VECTOR_SHUFFLE: 1811 return performVECTOR_SHUFFLECombine(N, DCI); 1812 case ISD::SIGN_EXTEND: 1813 case ISD::ZERO_EXTEND: 1814 return performVectorWidenCombine(N, DCI); 1815 } 1816 } 1817