1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyUtilities.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/SelectionDAGNodes.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 // Transform loads and stores to pointers in address space 1 to loads and 73 // stores to WebAssembly global variables, outside linear memory. 74 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 75 setOperationAction(ISD::LOAD, T, Custom); 76 setOperationAction(ISD::STORE, T, Custom); 77 } 78 if (Subtarget->hasSIMD128()) { 79 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 80 MVT::v2f64}) { 81 setOperationAction(ISD::LOAD, T, Custom); 82 setOperationAction(ISD::STORE, T, Custom); 83 } 84 } 85 86 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 87 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 88 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 89 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 90 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 91 setOperationAction(ISD::BRIND, MVT::Other, Custom); 92 93 // Take the default expansion for va_arg, va_copy, and va_end. There is no 94 // default action for va_start, so we do that custom. 95 setOperationAction(ISD::VASTART, MVT::Other, Custom); 96 setOperationAction(ISD::VAARG, MVT::Other, Expand); 97 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 98 setOperationAction(ISD::VAEND, MVT::Other, Expand); 99 100 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 101 // Don't expand the floating-point types to constant pools. 102 setOperationAction(ISD::ConstantFP, T, Legal); 103 // Expand floating-point comparisons. 104 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 105 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 106 setCondCodeAction(CC, T, Expand); 107 // Expand floating-point library function operators. 108 for (auto Op : 109 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 110 setOperationAction(Op, T, Expand); 111 // Note supported floating-point library function operators that otherwise 112 // default to expand. 113 for (auto Op : 114 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 115 setOperationAction(Op, T, Legal); 116 // Support minimum and maximum, which otherwise default to expand. 117 setOperationAction(ISD::FMINIMUM, T, Legal); 118 setOperationAction(ISD::FMAXIMUM, T, Legal); 119 // WebAssembly currently has no builtin f16 support. 120 setOperationAction(ISD::FP16_TO_FP, T, Expand); 121 setOperationAction(ISD::FP_TO_FP16, T, Expand); 122 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 123 setTruncStoreAction(T, MVT::f16, Expand); 124 } 125 126 // Expand unavailable integer operations. 127 for (auto Op : 128 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 129 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 130 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 131 for (auto T : {MVT::i32, MVT::i64}) 132 setOperationAction(Op, T, Expand); 133 if (Subtarget->hasSIMD128()) 134 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 135 setOperationAction(Op, T, Expand); 136 } 137 138 if (Subtarget->hasNontrappingFPToInt()) 139 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 140 for (auto T : {MVT::i32, MVT::i64}) 141 setOperationAction(Op, T, Custom); 142 143 // SIMD-specific configuration 144 if (Subtarget->hasSIMD128()) { 145 // Hoist bitcasts out of shuffles 146 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 147 148 // Combine extends of extract_subvectors into widening ops 149 setTargetDAGCombine(ISD::SIGN_EXTEND); 150 setTargetDAGCombine(ISD::ZERO_EXTEND); 151 152 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 153 // conversions ops 154 setTargetDAGCombine(ISD::SINT_TO_FP); 155 setTargetDAGCombine(ISD::UINT_TO_FP); 156 setTargetDAGCombine(ISD::FP_EXTEND); 157 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 158 159 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 160 // into conversion ops 161 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 162 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 163 setTargetDAGCombine(ISD::FP_ROUND); 164 setTargetDAGCombine(ISD::CONCAT_VECTORS); 165 166 // Support saturating add for i8x16 and i16x8 167 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 168 for (auto T : {MVT::v16i8, MVT::v8i16}) 169 setOperationAction(Op, T, Legal); 170 171 // Support integer abs 172 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 173 setOperationAction(ISD::ABS, T, Legal); 174 175 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 176 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 177 MVT::v2f64}) 178 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 179 180 // We have custom shuffle lowering to expose the shuffle mask 181 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 182 MVT::v2f64}) 183 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 184 185 // Custom lowering since wasm shifts must have a scalar shift amount 186 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 188 setOperationAction(Op, T, Custom); 189 190 // Custom lower lane accesses to expand out variable indices 191 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 192 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 193 MVT::v2f64}) 194 setOperationAction(Op, T, Custom); 195 196 // There is no i8x16.mul instruction 197 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 198 199 // There is no vector conditional select instruction 200 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 201 MVT::v2f64}) 202 setOperationAction(ISD::SELECT_CC, T, Expand); 203 204 // Expand integer operations supported for scalars but not SIMD 205 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 206 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 207 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 208 setOperationAction(Op, T, Expand); 209 210 // But we do have integer min and max operations 211 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 212 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 213 setOperationAction(Op, T, Legal); 214 215 // Expand float operations supported for scalars but not SIMD 216 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 217 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 218 for (auto T : {MVT::v4f32, MVT::v2f64}) 219 setOperationAction(Op, T, Expand); 220 221 // Unsigned comparison operations are unavailable for i64x2 vectors. 222 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 223 setCondCodeAction(CC, MVT::v2i64, Custom); 224 225 // 64x2 conversions are not in the spec 226 for (auto Op : 227 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 228 for (auto T : {MVT::v2i64, MVT::v2f64}) 229 setOperationAction(Op, T, Expand); 230 231 // But saturating fp_to_int converstions are 232 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 233 setOperationAction(Op, MVT::v4i32, Custom); 234 } 235 236 // As a special case, these operators use the type to mean the type to 237 // sign-extend from. 238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 239 if (!Subtarget->hasSignExt()) { 240 // Sign extends are legal only when extending a vector extract 241 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 242 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 243 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 244 } 245 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 246 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 247 248 // Dynamic stack allocation: use the default expansion. 249 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 250 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 251 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 252 253 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 254 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 255 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 256 257 // Expand these forms; we pattern-match the forms that we can handle in isel. 258 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 259 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 260 setOperationAction(Op, T, Expand); 261 262 // We have custom switch handling. 263 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 264 265 // WebAssembly doesn't have: 266 // - Floating-point extending loads. 267 // - Floating-point truncating stores. 268 // - i1 extending loads. 269 // - truncating SIMD stores and most extending loads 270 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 271 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 272 for (auto T : MVT::integer_valuetypes()) 273 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 274 setLoadExtAction(Ext, T, MVT::i1, Promote); 275 if (Subtarget->hasSIMD128()) { 276 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 277 MVT::v2f64}) { 278 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 279 if (MVT(T) != MemT) { 280 setTruncStoreAction(T, MemT, Expand); 281 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 282 setLoadExtAction(Ext, T, MemT, Expand); 283 } 284 } 285 } 286 // But some vector extending loads are legal 287 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 288 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 289 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 290 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 291 } 292 // And some truncating stores are legal as well 293 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 294 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 295 } 296 297 // Don't do anything clever with build_pairs 298 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 299 300 // Trap lowers to wasm unreachable 301 setOperationAction(ISD::TRAP, MVT::Other, Legal); 302 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 303 304 // Exception handling intrinsics 305 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 306 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 307 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 308 309 setMaxAtomicSizeInBitsSupported(64); 310 311 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 312 // consistent with the f64 and f128 names. 313 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 314 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 315 316 // Define the emscripten name for return address helper. 317 // TODO: when implementing other Wasm backends, make this generic or only do 318 // this on emscripten depending on what they end up doing. 319 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 320 321 // Always convert switches to br_tables unless there is only one case, which 322 // is equivalent to a simple branch. This reduces code size for wasm, and we 323 // defer possible jump table optimizations to the VM. 324 setMinimumJumpTableEntries(2); 325 } 326 327 TargetLowering::AtomicExpansionKind 328 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 329 // We have wasm instructions for these 330 switch (AI->getOperation()) { 331 case AtomicRMWInst::Add: 332 case AtomicRMWInst::Sub: 333 case AtomicRMWInst::And: 334 case AtomicRMWInst::Or: 335 case AtomicRMWInst::Xor: 336 case AtomicRMWInst::Xchg: 337 return AtomicExpansionKind::None; 338 default: 339 break; 340 } 341 return AtomicExpansionKind::CmpXChg; 342 } 343 344 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 345 // Implementation copied from X86TargetLowering. 346 unsigned Opc = VecOp.getOpcode(); 347 348 // Assume target opcodes can't be scalarized. 349 // TODO - do we have any exceptions? 350 if (Opc >= ISD::BUILTIN_OP_END) 351 return false; 352 353 // If the vector op is not supported, try to convert to scalar. 354 EVT VecVT = VecOp.getValueType(); 355 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 356 return true; 357 358 // If the vector op is supported, but the scalar op is not, the transform may 359 // not be worthwhile. 360 EVT ScalarVT = VecVT.getScalarType(); 361 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 362 } 363 364 FastISel *WebAssemblyTargetLowering::createFastISel( 365 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 366 return WebAssembly::createFastISel(FuncInfo, LibInfo); 367 } 368 369 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 370 EVT VT) const { 371 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 372 if (BitWidth > 1 && BitWidth < 8) 373 BitWidth = 8; 374 375 if (BitWidth > 64) { 376 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 377 // the count to be an i32. 378 BitWidth = 32; 379 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 380 "32-bit shift counts ought to be enough for anyone"); 381 } 382 383 MVT Result = MVT::getIntegerVT(BitWidth); 384 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 385 "Unable to represent scalar shift amount type"); 386 return Result; 387 } 388 389 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 390 // undefined result on invalid/overflow, to the WebAssembly opcode, which 391 // traps on invalid/overflow. 392 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 393 MachineBasicBlock *BB, 394 const TargetInstrInfo &TII, 395 bool IsUnsigned, bool Int64, 396 bool Float64, unsigned LoweredOpcode) { 397 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 398 399 Register OutReg = MI.getOperand(0).getReg(); 400 Register InReg = MI.getOperand(1).getReg(); 401 402 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 403 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 404 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 405 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 406 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 407 unsigned Eqz = WebAssembly::EQZ_I32; 408 unsigned And = WebAssembly::AND_I32; 409 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 410 int64_t Substitute = IsUnsigned ? 0 : Limit; 411 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 412 auto &Context = BB->getParent()->getFunction().getContext(); 413 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 414 415 const BasicBlock *LLVMBB = BB->getBasicBlock(); 416 MachineFunction *F = BB->getParent(); 417 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 418 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 419 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 420 421 MachineFunction::iterator It = ++BB->getIterator(); 422 F->insert(It, FalseMBB); 423 F->insert(It, TrueMBB); 424 F->insert(It, DoneMBB); 425 426 // Transfer the remainder of BB and its successor edges to DoneMBB. 427 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 428 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 429 430 BB->addSuccessor(TrueMBB); 431 BB->addSuccessor(FalseMBB); 432 TrueMBB->addSuccessor(DoneMBB); 433 FalseMBB->addSuccessor(DoneMBB); 434 435 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 436 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 437 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 438 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 439 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 440 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 441 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 442 443 MI.eraseFromParent(); 444 // For signed numbers, we can do a single comparison to determine whether 445 // fabs(x) is within range. 446 if (IsUnsigned) { 447 Tmp0 = InReg; 448 } else { 449 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 450 } 451 BuildMI(BB, DL, TII.get(FConst), Tmp1) 452 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 453 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 454 455 // For unsigned numbers, we have to do a separate comparison with zero. 456 if (IsUnsigned) { 457 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 458 Register SecondCmpReg = 459 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 460 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 461 BuildMI(BB, DL, TII.get(FConst), Tmp1) 462 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 463 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 464 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 465 CmpReg = AndReg; 466 } 467 468 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 469 470 // Create the CFG diamond to select between doing the conversion or using 471 // the substitute value. 472 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 473 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 474 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 475 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 476 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 477 .addReg(FalseReg) 478 .addMBB(FalseMBB) 479 .addReg(TrueReg) 480 .addMBB(TrueMBB); 481 482 return DoneMBB; 483 } 484 485 static MachineBasicBlock * 486 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 487 const WebAssemblySubtarget *Subtarget, 488 const TargetInstrInfo &TII) { 489 MachineInstr &CallParams = *CallResults.getPrevNode(); 490 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 491 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 492 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 493 494 bool IsIndirect = CallParams.getOperand(0).isReg(); 495 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 496 497 unsigned CallOp; 498 if (IsIndirect && IsRetCall) { 499 CallOp = WebAssembly::RET_CALL_INDIRECT; 500 } else if (IsIndirect) { 501 CallOp = WebAssembly::CALL_INDIRECT; 502 } else if (IsRetCall) { 503 CallOp = WebAssembly::RET_CALL; 504 } else { 505 CallOp = WebAssembly::CALL; 506 } 507 508 MachineFunction &MF = *BB->getParent(); 509 const MCInstrDesc &MCID = TII.get(CallOp); 510 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 511 512 // See if we must truncate the function pointer. 513 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 514 // as 64-bit for uniformity with other pointer types. 515 // See also: WebAssemblyFastISel::selectCall 516 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 517 Register Reg32 = 518 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 519 auto &FnPtr = CallParams.getOperand(0); 520 BuildMI(*BB, CallResults.getIterator(), DL, 521 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 522 .addReg(FnPtr.getReg()); 523 FnPtr.setReg(Reg32); 524 } 525 526 // Move the function pointer to the end of the arguments for indirect calls 527 if (IsIndirect) { 528 auto FnPtr = CallParams.getOperand(0); 529 CallParams.RemoveOperand(0); 530 CallParams.addOperand(FnPtr); 531 } 532 533 for (auto Def : CallResults.defs()) 534 MIB.add(Def); 535 536 if (IsIndirect) { 537 // Placeholder for the type index. 538 MIB.addImm(0); 539 // The table into which this call_indirect indexes. 540 MCSymbolWasm *Table = 541 WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget); 542 if (Subtarget->hasReferenceTypes()) { 543 MIB.addSym(Table); 544 } else { 545 // For the MVP there is at most one table whose number is 0, but we can't 546 // write a table symbol or issue relocations. Instead we just ensure the 547 // table is live and write a zero. 548 Table->setNoStrip(); 549 MIB.addImm(0); 550 } 551 } 552 553 for (auto Use : CallParams.uses()) 554 MIB.add(Use); 555 556 BB->insert(CallResults.getIterator(), MIB); 557 CallParams.eraseFromParent(); 558 CallResults.eraseFromParent(); 559 560 return BB; 561 } 562 563 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 564 MachineInstr &MI, MachineBasicBlock *BB) const { 565 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 566 DebugLoc DL = MI.getDebugLoc(); 567 568 switch (MI.getOpcode()) { 569 default: 570 llvm_unreachable("Unexpected instr type to insert"); 571 case WebAssembly::FP_TO_SINT_I32_F32: 572 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 573 WebAssembly::I32_TRUNC_S_F32); 574 case WebAssembly::FP_TO_UINT_I32_F32: 575 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 576 WebAssembly::I32_TRUNC_U_F32); 577 case WebAssembly::FP_TO_SINT_I64_F32: 578 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 579 WebAssembly::I64_TRUNC_S_F32); 580 case WebAssembly::FP_TO_UINT_I64_F32: 581 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 582 WebAssembly::I64_TRUNC_U_F32); 583 case WebAssembly::FP_TO_SINT_I32_F64: 584 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 585 WebAssembly::I32_TRUNC_S_F64); 586 case WebAssembly::FP_TO_UINT_I32_F64: 587 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 588 WebAssembly::I32_TRUNC_U_F64); 589 case WebAssembly::FP_TO_SINT_I64_F64: 590 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 591 WebAssembly::I64_TRUNC_S_F64); 592 case WebAssembly::FP_TO_UINT_I64_F64: 593 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 594 WebAssembly::I64_TRUNC_U_F64); 595 case WebAssembly::CALL_RESULTS: 596 case WebAssembly::RET_CALL_RESULTS: 597 return LowerCallResults(MI, DL, BB, Subtarget, TII); 598 } 599 } 600 601 const char * 602 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 603 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 604 case WebAssemblyISD::FIRST_NUMBER: 605 case WebAssemblyISD::FIRST_MEM_OPCODE: 606 break; 607 #define HANDLE_NODETYPE(NODE) \ 608 case WebAssemblyISD::NODE: \ 609 return "WebAssemblyISD::" #NODE; 610 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 611 #include "WebAssemblyISD.def" 612 #undef HANDLE_MEM_NODETYPE 613 #undef HANDLE_NODETYPE 614 } 615 return nullptr; 616 } 617 618 std::pair<unsigned, const TargetRegisterClass *> 619 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 620 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 621 // First, see if this is a constraint that directly corresponds to a 622 // WebAssembly register class. 623 if (Constraint.size() == 1) { 624 switch (Constraint[0]) { 625 case 'r': 626 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 627 if (Subtarget->hasSIMD128() && VT.isVector()) { 628 if (VT.getSizeInBits() == 128) 629 return std::make_pair(0U, &WebAssembly::V128RegClass); 630 } 631 if (VT.isInteger() && !VT.isVector()) { 632 if (VT.getSizeInBits() <= 32) 633 return std::make_pair(0U, &WebAssembly::I32RegClass); 634 if (VT.getSizeInBits() <= 64) 635 return std::make_pair(0U, &WebAssembly::I64RegClass); 636 } 637 if (VT.isFloatingPoint() && !VT.isVector()) { 638 switch (VT.getSizeInBits()) { 639 case 32: 640 return std::make_pair(0U, &WebAssembly::F32RegClass); 641 case 64: 642 return std::make_pair(0U, &WebAssembly::F64RegClass); 643 default: 644 break; 645 } 646 } 647 break; 648 default: 649 break; 650 } 651 } 652 653 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 654 } 655 656 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 657 // Assume ctz is a relatively cheap operation. 658 return true; 659 } 660 661 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 662 // Assume clz is a relatively cheap operation. 663 return true; 664 } 665 666 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 667 const AddrMode &AM, 668 Type *Ty, unsigned AS, 669 Instruction *I) const { 670 // WebAssembly offsets are added as unsigned without wrapping. The 671 // isLegalAddressingMode gives us no way to determine if wrapping could be 672 // happening, so we approximate this by accepting only non-negative offsets. 673 if (AM.BaseOffs < 0) 674 return false; 675 676 // WebAssembly has no scale register operands. 677 if (AM.Scale != 0) 678 return false; 679 680 // Everything else is legal. 681 return true; 682 } 683 684 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 685 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 686 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 687 // WebAssembly supports unaligned accesses, though it should be declared 688 // with the p2align attribute on loads and stores which do so, and there 689 // may be a performance impact. We tell LLVM they're "fast" because 690 // for the kinds of things that LLVM uses this for (merging adjacent stores 691 // of constants, etc.), WebAssembly implementations will either want the 692 // unaligned access or they'll split anyway. 693 if (Fast) 694 *Fast = true; 695 return true; 696 } 697 698 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 699 AttributeList Attr) const { 700 // The current thinking is that wasm engines will perform this optimization, 701 // so we can save on code size. 702 return true; 703 } 704 705 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 706 EVT ExtT = ExtVal.getValueType(); 707 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 708 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 709 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 710 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 711 } 712 713 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 714 LLVMContext &C, 715 EVT VT) const { 716 if (VT.isVector()) 717 return VT.changeVectorElementTypeToInteger(); 718 719 // So far, all branch instructions in Wasm take an I32 condition. 720 // The default TargetLowering::getSetCCResultType returns the pointer size, 721 // which would be useful to reduce instruction counts when testing 722 // against 64-bit pointers/values if at some point Wasm supports that. 723 return EVT::getIntegerVT(C, 32); 724 } 725 726 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 727 const CallInst &I, 728 MachineFunction &MF, 729 unsigned Intrinsic) const { 730 switch (Intrinsic) { 731 case Intrinsic::wasm_memory_atomic_notify: 732 Info.opc = ISD::INTRINSIC_W_CHAIN; 733 Info.memVT = MVT::i32; 734 Info.ptrVal = I.getArgOperand(0); 735 Info.offset = 0; 736 Info.align = Align(4); 737 // atomic.notify instruction does not really load the memory specified with 738 // this argument, but MachineMemOperand should either be load or store, so 739 // we set this to a load. 740 // FIXME Volatile isn't really correct, but currently all LLVM atomic 741 // instructions are treated as volatiles in the backend, so we should be 742 // consistent. The same applies for wasm_atomic_wait intrinsics too. 743 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 744 return true; 745 case Intrinsic::wasm_memory_atomic_wait32: 746 Info.opc = ISD::INTRINSIC_W_CHAIN; 747 Info.memVT = MVT::i32; 748 Info.ptrVal = I.getArgOperand(0); 749 Info.offset = 0; 750 Info.align = Align(4); 751 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 752 return true; 753 case Intrinsic::wasm_memory_atomic_wait64: 754 Info.opc = ISD::INTRINSIC_W_CHAIN; 755 Info.memVT = MVT::i64; 756 Info.ptrVal = I.getArgOperand(0); 757 Info.offset = 0; 758 Info.align = Align(8); 759 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 760 return true; 761 case Intrinsic::wasm_load32_zero: 762 case Intrinsic::wasm_load64_zero: 763 Info.opc = ISD::INTRINSIC_W_CHAIN; 764 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 765 Info.ptrVal = I.getArgOperand(0); 766 Info.offset = 0; 767 Info.align = Align(1); 768 Info.flags = MachineMemOperand::MOLoad; 769 return true; 770 default: 771 return false; 772 } 773 } 774 775 //===----------------------------------------------------------------------===// 776 // WebAssembly Lowering private implementation. 777 //===----------------------------------------------------------------------===// 778 779 //===----------------------------------------------------------------------===// 780 // Lowering Code 781 //===----------------------------------------------------------------------===// 782 783 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 784 MachineFunction &MF = DAG.getMachineFunction(); 785 DAG.getContext()->diagnose( 786 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 787 } 788 789 // Test whether the given calling convention is supported. 790 static bool callingConvSupported(CallingConv::ID CallConv) { 791 // We currently support the language-independent target-independent 792 // conventions. We don't yet have a way to annotate calls with properties like 793 // "cold", and we don't have any call-clobbered registers, so these are mostly 794 // all handled the same. 795 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 796 CallConv == CallingConv::Cold || 797 CallConv == CallingConv::PreserveMost || 798 CallConv == CallingConv::PreserveAll || 799 CallConv == CallingConv::CXX_FAST_TLS || 800 CallConv == CallingConv::WASM_EmscriptenInvoke || 801 CallConv == CallingConv::Swift; 802 } 803 804 SDValue 805 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 806 SmallVectorImpl<SDValue> &InVals) const { 807 SelectionDAG &DAG = CLI.DAG; 808 SDLoc DL = CLI.DL; 809 SDValue Chain = CLI.Chain; 810 SDValue Callee = CLI.Callee; 811 MachineFunction &MF = DAG.getMachineFunction(); 812 auto Layout = MF.getDataLayout(); 813 814 CallingConv::ID CallConv = CLI.CallConv; 815 if (!callingConvSupported(CallConv)) 816 fail(DL, DAG, 817 "WebAssembly doesn't support language-specific or target-specific " 818 "calling conventions yet"); 819 if (CLI.IsPatchPoint) 820 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 821 822 if (CLI.IsTailCall) { 823 auto NoTail = [&](const char *Msg) { 824 if (CLI.CB && CLI.CB->isMustTailCall()) 825 fail(DL, DAG, Msg); 826 CLI.IsTailCall = false; 827 }; 828 829 if (!Subtarget->hasTailCall()) 830 NoTail("WebAssembly 'tail-call' feature not enabled"); 831 832 // Varargs calls cannot be tail calls because the buffer is on the stack 833 if (CLI.IsVarArg) 834 NoTail("WebAssembly does not support varargs tail calls"); 835 836 // Do not tail call unless caller and callee return types match 837 const Function &F = MF.getFunction(); 838 const TargetMachine &TM = getTargetMachine(); 839 Type *RetTy = F.getReturnType(); 840 SmallVector<MVT, 4> CallerRetTys; 841 SmallVector<MVT, 4> CalleeRetTys; 842 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 843 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 844 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 845 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 846 CalleeRetTys.begin()); 847 if (!TypesMatch) 848 NoTail("WebAssembly tail call requires caller and callee return types to " 849 "match"); 850 851 // If pointers to local stack values are passed, we cannot tail call 852 if (CLI.CB) { 853 for (auto &Arg : CLI.CB->args()) { 854 Value *Val = Arg.get(); 855 // Trace the value back through pointer operations 856 while (true) { 857 Value *Src = Val->stripPointerCastsAndAliases(); 858 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 859 Src = GEP->getPointerOperand(); 860 if (Val == Src) 861 break; 862 Val = Src; 863 } 864 if (isa<AllocaInst>(Val)) { 865 NoTail( 866 "WebAssembly does not support tail calling with stack arguments"); 867 break; 868 } 869 } 870 } 871 } 872 873 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 874 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 875 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 876 877 // The generic code may have added an sret argument. If we're lowering an 878 // invoke function, the ABI requires that the function pointer be the first 879 // argument, so we may have to swap the arguments. 880 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 881 Outs[0].Flags.isSRet()) { 882 std::swap(Outs[0], Outs[1]); 883 std::swap(OutVals[0], OutVals[1]); 884 } 885 886 bool HasSwiftSelfArg = false; 887 bool HasSwiftErrorArg = false; 888 unsigned NumFixedArgs = 0; 889 for (unsigned I = 0; I < Outs.size(); ++I) { 890 const ISD::OutputArg &Out = Outs[I]; 891 SDValue &OutVal = OutVals[I]; 892 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 893 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 894 if (Out.Flags.isNest()) 895 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 896 if (Out.Flags.isInAlloca()) 897 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 898 if (Out.Flags.isInConsecutiveRegs()) 899 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 900 if (Out.Flags.isInConsecutiveRegsLast()) 901 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 902 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 903 auto &MFI = MF.getFrameInfo(); 904 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 905 Out.Flags.getNonZeroByValAlign(), 906 /*isSS=*/false); 907 SDValue SizeNode = 908 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 909 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 910 Chain = DAG.getMemcpy( 911 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 912 /*isVolatile*/ false, /*AlwaysInline=*/false, 913 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 914 OutVal = FINode; 915 } 916 // Count the number of fixed args *after* legalization. 917 NumFixedArgs += Out.IsFixed; 918 } 919 920 bool IsVarArg = CLI.IsVarArg; 921 auto PtrVT = getPointerTy(Layout); 922 923 // For swiftcc, emit additional swiftself and swifterror arguments 924 // if there aren't. These additional arguments are also added for callee 925 // signature They are necessary to match callee and caller signature for 926 // indirect call. 927 if (CallConv == CallingConv::Swift) { 928 if (!HasSwiftSelfArg) { 929 NumFixedArgs++; 930 ISD::OutputArg Arg; 931 Arg.Flags.setSwiftSelf(); 932 CLI.Outs.push_back(Arg); 933 SDValue ArgVal = DAG.getUNDEF(PtrVT); 934 CLI.OutVals.push_back(ArgVal); 935 } 936 if (!HasSwiftErrorArg) { 937 NumFixedArgs++; 938 ISD::OutputArg Arg; 939 Arg.Flags.setSwiftError(); 940 CLI.Outs.push_back(Arg); 941 SDValue ArgVal = DAG.getUNDEF(PtrVT); 942 CLI.OutVals.push_back(ArgVal); 943 } 944 } 945 946 // Analyze operands of the call, assigning locations to each operand. 947 SmallVector<CCValAssign, 16> ArgLocs; 948 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 949 950 if (IsVarArg) { 951 // Outgoing non-fixed arguments are placed in a buffer. First 952 // compute their offsets and the total amount of buffer space needed. 953 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 954 const ISD::OutputArg &Out = Outs[I]; 955 SDValue &Arg = OutVals[I]; 956 EVT VT = Arg.getValueType(); 957 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 958 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 959 Align Alignment = 960 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 961 unsigned Offset = 962 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 963 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 964 Offset, VT.getSimpleVT(), 965 CCValAssign::Full)); 966 } 967 } 968 969 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 970 971 SDValue FINode; 972 if (IsVarArg && NumBytes) { 973 // For non-fixed arguments, next emit stores to store the argument values 974 // to the stack buffer at the offsets computed above. 975 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 976 Layout.getStackAlignment(), 977 /*isSS=*/false); 978 unsigned ValNo = 0; 979 SmallVector<SDValue, 8> Chains; 980 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 981 assert(ArgLocs[ValNo].getValNo() == ValNo && 982 "ArgLocs should remain in order and only hold varargs args"); 983 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 984 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 985 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 986 DAG.getConstant(Offset, DL, PtrVT)); 987 Chains.push_back( 988 DAG.getStore(Chain, DL, Arg, Add, 989 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 990 } 991 if (!Chains.empty()) 992 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 993 } else if (IsVarArg) { 994 FINode = DAG.getIntPtrConstant(0, DL); 995 } 996 997 if (Callee->getOpcode() == ISD::GlobalAddress) { 998 // If the callee is a GlobalAddress node (quite common, every direct call 999 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1000 // doesn't at MO_GOT which is not needed for direct calls. 1001 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1002 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1003 getPointerTy(DAG.getDataLayout()), 1004 GA->getOffset()); 1005 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1006 getPointerTy(DAG.getDataLayout()), Callee); 1007 } 1008 1009 // Compute the operands for the CALLn node. 1010 SmallVector<SDValue, 16> Ops; 1011 Ops.push_back(Chain); 1012 Ops.push_back(Callee); 1013 1014 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1015 // isn't reliable. 1016 Ops.append(OutVals.begin(), 1017 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1018 // Add a pointer to the vararg buffer. 1019 if (IsVarArg) 1020 Ops.push_back(FINode); 1021 1022 SmallVector<EVT, 8> InTys; 1023 for (const auto &In : Ins) { 1024 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1025 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1026 if (In.Flags.isInAlloca()) 1027 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1028 if (In.Flags.isInConsecutiveRegs()) 1029 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1030 if (In.Flags.isInConsecutiveRegsLast()) 1031 fail(DL, DAG, 1032 "WebAssembly hasn't implemented cons regs last return values"); 1033 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1034 // registers. 1035 InTys.push_back(In.VT); 1036 } 1037 1038 if (CLI.IsTailCall) { 1039 // ret_calls do not return values to the current frame 1040 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1041 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1042 } 1043 1044 InTys.push_back(MVT::Other); 1045 SDVTList InTyList = DAG.getVTList(InTys); 1046 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1047 1048 for (size_t I = 0; I < Ins.size(); ++I) 1049 InVals.push_back(Res.getValue(I)); 1050 1051 // Return the chain 1052 return Res.getValue(Ins.size()); 1053 } 1054 1055 bool WebAssemblyTargetLowering::CanLowerReturn( 1056 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1057 const SmallVectorImpl<ISD::OutputArg> &Outs, 1058 LLVMContext & /*Context*/) const { 1059 // WebAssembly can only handle returning tuples with multivalue enabled 1060 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1061 } 1062 1063 SDValue WebAssemblyTargetLowering::LowerReturn( 1064 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1065 const SmallVectorImpl<ISD::OutputArg> &Outs, 1066 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1067 SelectionDAG &DAG) const { 1068 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1069 "MVP WebAssembly can only return up to one value"); 1070 if (!callingConvSupported(CallConv)) 1071 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1072 1073 SmallVector<SDValue, 4> RetOps(1, Chain); 1074 RetOps.append(OutVals.begin(), OutVals.end()); 1075 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1076 1077 // Record the number and types of the return values. 1078 for (const ISD::OutputArg &Out : Outs) { 1079 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1080 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1081 assert(Out.IsFixed && "non-fixed return value is not valid"); 1082 if (Out.Flags.isInAlloca()) 1083 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1084 if (Out.Flags.isInConsecutiveRegs()) 1085 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1086 if (Out.Flags.isInConsecutiveRegsLast()) 1087 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1088 } 1089 1090 return Chain; 1091 } 1092 1093 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1094 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1095 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1096 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1097 if (!callingConvSupported(CallConv)) 1098 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1099 1100 MachineFunction &MF = DAG.getMachineFunction(); 1101 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1102 1103 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1104 // of the incoming values before they're represented by virtual registers. 1105 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1106 1107 bool HasSwiftErrorArg = false; 1108 bool HasSwiftSelfArg = false; 1109 for (const ISD::InputArg &In : Ins) { 1110 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1111 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1112 if (In.Flags.isInAlloca()) 1113 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1114 if (In.Flags.isNest()) 1115 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1116 if (In.Flags.isInConsecutiveRegs()) 1117 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1118 if (In.Flags.isInConsecutiveRegsLast()) 1119 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1120 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1121 // registers. 1122 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1123 DAG.getTargetConstant(InVals.size(), 1124 DL, MVT::i32)) 1125 : DAG.getUNDEF(In.VT)); 1126 1127 // Record the number and types of arguments. 1128 MFI->addParam(In.VT); 1129 } 1130 1131 // For swiftcc, emit additional swiftself and swifterror arguments 1132 // if there aren't. These additional arguments are also added for callee 1133 // signature They are necessary to match callee and caller signature for 1134 // indirect call. 1135 auto PtrVT = getPointerTy(MF.getDataLayout()); 1136 if (CallConv == CallingConv::Swift) { 1137 if (!HasSwiftSelfArg) { 1138 MFI->addParam(PtrVT); 1139 } 1140 if (!HasSwiftErrorArg) { 1141 MFI->addParam(PtrVT); 1142 } 1143 } 1144 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1145 // the buffer is passed as an argument. 1146 if (IsVarArg) { 1147 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1148 Register VarargVreg = 1149 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1150 MFI->setVarargBufferVreg(VarargVreg); 1151 Chain = DAG.getCopyToReg( 1152 Chain, DL, VarargVreg, 1153 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1154 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1155 MFI->addParam(PtrVT); 1156 } 1157 1158 // Record the number and types of arguments and results. 1159 SmallVector<MVT, 4> Params; 1160 SmallVector<MVT, 4> Results; 1161 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1162 MF.getFunction(), DAG.getTarget(), Params, Results); 1163 for (MVT VT : Results) 1164 MFI->addResult(VT); 1165 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1166 // the param logic here with ComputeSignatureVTs 1167 assert(MFI->getParams().size() == Params.size() && 1168 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1169 Params.begin())); 1170 1171 return Chain; 1172 } 1173 1174 void WebAssemblyTargetLowering::ReplaceNodeResults( 1175 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1176 switch (N->getOpcode()) { 1177 case ISD::SIGN_EXTEND_INREG: 1178 // Do not add any results, signifying that N should not be custom lowered 1179 // after all. This happens because simd128 turns on custom lowering for 1180 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1181 // illegal type. 1182 break; 1183 default: 1184 llvm_unreachable( 1185 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1186 } 1187 } 1188 1189 //===----------------------------------------------------------------------===// 1190 // Custom lowering hooks. 1191 //===----------------------------------------------------------------------===// 1192 1193 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1194 SelectionDAG &DAG) const { 1195 SDLoc DL(Op); 1196 switch (Op.getOpcode()) { 1197 default: 1198 llvm_unreachable("unimplemented operation lowering"); 1199 return SDValue(); 1200 case ISD::FrameIndex: 1201 return LowerFrameIndex(Op, DAG); 1202 case ISD::GlobalAddress: 1203 return LowerGlobalAddress(Op, DAG); 1204 case ISD::GlobalTLSAddress: 1205 return LowerGlobalTLSAddress(Op, DAG); 1206 case ISD::ExternalSymbol: 1207 return LowerExternalSymbol(Op, DAG); 1208 case ISD::JumpTable: 1209 return LowerJumpTable(Op, DAG); 1210 case ISD::BR_JT: 1211 return LowerBR_JT(Op, DAG); 1212 case ISD::VASTART: 1213 return LowerVASTART(Op, DAG); 1214 case ISD::BlockAddress: 1215 case ISD::BRIND: 1216 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1217 return SDValue(); 1218 case ISD::RETURNADDR: 1219 return LowerRETURNADDR(Op, DAG); 1220 case ISD::FRAMEADDR: 1221 return LowerFRAMEADDR(Op, DAG); 1222 case ISD::CopyToReg: 1223 return LowerCopyToReg(Op, DAG); 1224 case ISD::EXTRACT_VECTOR_ELT: 1225 case ISD::INSERT_VECTOR_ELT: 1226 return LowerAccessVectorElement(Op, DAG); 1227 case ISD::INTRINSIC_VOID: 1228 case ISD::INTRINSIC_WO_CHAIN: 1229 case ISD::INTRINSIC_W_CHAIN: 1230 return LowerIntrinsic(Op, DAG); 1231 case ISD::SIGN_EXTEND_INREG: 1232 return LowerSIGN_EXTEND_INREG(Op, DAG); 1233 case ISD::BUILD_VECTOR: 1234 return LowerBUILD_VECTOR(Op, DAG); 1235 case ISD::VECTOR_SHUFFLE: 1236 return LowerVECTOR_SHUFFLE(Op, DAG); 1237 case ISD::SETCC: 1238 return LowerSETCC(Op, DAG); 1239 case ISD::SHL: 1240 case ISD::SRA: 1241 case ISD::SRL: 1242 return LowerShift(Op, DAG); 1243 case ISD::FP_TO_SINT_SAT: 1244 case ISD::FP_TO_UINT_SAT: 1245 return LowerFP_TO_INT_SAT(Op, DAG); 1246 case ISD::LOAD: 1247 return LowerLoad(Op, DAG); 1248 case ISD::STORE: 1249 return LowerStore(Op, DAG); 1250 } 1251 } 1252 1253 static bool IsWebAssemblyGlobal(SDValue Op) { 1254 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1255 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1256 1257 return false; 1258 } 1259 1260 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1261 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1262 if (!FI) 1263 return None; 1264 1265 auto &MF = DAG.getMachineFunction(); 1266 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1267 } 1268 1269 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1270 SelectionDAG &DAG) const { 1271 SDLoc DL(Op); 1272 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1273 const SDValue &Value = SN->getValue(); 1274 const SDValue &Base = SN->getBasePtr(); 1275 const SDValue &Offset = SN->getOffset(); 1276 1277 if (IsWebAssemblyGlobal(Base)) { 1278 if (!Offset->isUndef()) 1279 report_fatal_error("unexpected offset when storing to webassembly global", 1280 false); 1281 1282 SDVTList Tys = DAG.getVTList(MVT::Other); 1283 SDValue Ops[] = {SN->getChain(), Value, Base}; 1284 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1285 SN->getMemoryVT(), SN->getMemOperand()); 1286 } 1287 1288 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1289 if (!Offset->isUndef()) 1290 report_fatal_error("unexpected offset when storing to webassembly local", 1291 false); 1292 1293 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1294 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1295 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1296 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1297 } 1298 1299 return Op; 1300 } 1301 1302 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1303 SelectionDAG &DAG) const { 1304 SDLoc DL(Op); 1305 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1306 const SDValue &Base = LN->getBasePtr(); 1307 const SDValue &Offset = LN->getOffset(); 1308 1309 if (IsWebAssemblyGlobal(Base)) { 1310 if (!Offset->isUndef()) 1311 report_fatal_error( 1312 "unexpected offset when loading from webassembly global", false); 1313 1314 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1315 SDValue Ops[] = {LN->getChain(), Base}; 1316 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1317 LN->getMemoryVT(), LN->getMemOperand()); 1318 } 1319 1320 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1321 if (!Offset->isUndef()) 1322 report_fatal_error( 1323 "unexpected offset when loading from webassembly local", false); 1324 1325 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1326 EVT LocalVT = LN->getValueType(0); 1327 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1328 {LN->getChain(), Idx}); 1329 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1330 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1331 return Result; 1332 } 1333 1334 return Op; 1335 } 1336 1337 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1338 SelectionDAG &DAG) const { 1339 SDValue Src = Op.getOperand(2); 1340 if (isa<FrameIndexSDNode>(Src.getNode())) { 1341 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1342 // the FI to some LEA-like instruction, but since we don't have that, we 1343 // need to insert some kind of instruction that can take an FI operand and 1344 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1345 // local.copy between Op and its FI operand. 1346 SDValue Chain = Op.getOperand(0); 1347 SDLoc DL(Op); 1348 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1349 EVT VT = Src.getValueType(); 1350 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1351 : WebAssembly::COPY_I64, 1352 DL, VT, Src), 1353 0); 1354 return Op.getNode()->getNumValues() == 1 1355 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1356 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1357 Op.getNumOperands() == 4 ? Op.getOperand(3) 1358 : SDValue()); 1359 } 1360 return SDValue(); 1361 } 1362 1363 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1364 SelectionDAG &DAG) const { 1365 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1366 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1367 } 1368 1369 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1370 SelectionDAG &DAG) const { 1371 SDLoc DL(Op); 1372 1373 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1374 fail(DL, DAG, 1375 "Non-Emscripten WebAssembly hasn't implemented " 1376 "__builtin_return_address"); 1377 return SDValue(); 1378 } 1379 1380 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1381 return SDValue(); 1382 1383 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1384 MakeLibCallOptions CallOptions; 1385 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1386 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1387 .first; 1388 } 1389 1390 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1391 SelectionDAG &DAG) const { 1392 // Non-zero depths are not supported by WebAssembly currently. Use the 1393 // legalizer's default expansion, which is to return 0 (what this function is 1394 // documented to do). 1395 if (Op.getConstantOperandVal(0) > 0) 1396 return SDValue(); 1397 1398 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1399 EVT VT = Op.getValueType(); 1400 Register FP = 1401 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1402 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1403 } 1404 1405 SDValue 1406 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1407 SelectionDAG &DAG) const { 1408 SDLoc DL(Op); 1409 const auto *GA = cast<GlobalAddressSDNode>(Op); 1410 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1411 1412 MachineFunction &MF = DAG.getMachineFunction(); 1413 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1414 report_fatal_error("cannot use thread-local storage without bulk memory", 1415 false); 1416 1417 const GlobalValue *GV = GA->getGlobal(); 1418 1419 // Currently Emscripten does not support dynamic linking with threads. 1420 // Therefore, if we have thread-local storage, only the local-exec model 1421 // is possible. 1422 // TODO: remove this and implement proper TLS models once Emscripten 1423 // supports dynamic linking with threads. 1424 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1425 !Subtarget->getTargetTriple().isOSEmscripten()) { 1426 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1427 "non-Emscripten OSes: variable " + 1428 GV->getName(), 1429 false); 1430 } 1431 1432 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1433 : WebAssembly::GLOBAL_GET_I32; 1434 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1435 1436 SDValue BaseAddr( 1437 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1438 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1439 0); 1440 1441 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1442 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1443 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1444 1445 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1446 } 1447 1448 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1449 SelectionDAG &DAG) const { 1450 SDLoc DL(Op); 1451 const auto *GA = cast<GlobalAddressSDNode>(Op); 1452 EVT VT = Op.getValueType(); 1453 assert(GA->getTargetFlags() == 0 && 1454 "Unexpected target flags on generic GlobalAddressSDNode"); 1455 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1456 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1457 1458 unsigned OperandFlags = 0; 1459 if (isPositionIndependent()) { 1460 const GlobalValue *GV = GA->getGlobal(); 1461 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1462 MachineFunction &MF = DAG.getMachineFunction(); 1463 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1464 const char *BaseName; 1465 if (GV->getValueType()->isFunctionTy()) { 1466 BaseName = MF.createExternalSymbolName("__table_base"); 1467 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1468 } 1469 else { 1470 BaseName = MF.createExternalSymbolName("__memory_base"); 1471 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1472 } 1473 SDValue BaseAddr = 1474 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1475 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1476 1477 SDValue SymAddr = DAG.getNode( 1478 WebAssemblyISD::WrapperPIC, DL, VT, 1479 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1480 OperandFlags)); 1481 1482 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1483 } else { 1484 OperandFlags = WebAssemblyII::MO_GOT; 1485 } 1486 } 1487 1488 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1489 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1490 GA->getOffset(), OperandFlags)); 1491 } 1492 1493 SDValue 1494 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1495 SelectionDAG &DAG) const { 1496 SDLoc DL(Op); 1497 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1498 EVT VT = Op.getValueType(); 1499 assert(ES->getTargetFlags() == 0 && 1500 "Unexpected target flags on generic ExternalSymbolSDNode"); 1501 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1502 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1503 } 1504 1505 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1506 SelectionDAG &DAG) const { 1507 // There's no need for a Wrapper node because we always incorporate a jump 1508 // table operand into a BR_TABLE instruction, rather than ever 1509 // materializing it in a register. 1510 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1511 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1512 JT->getTargetFlags()); 1513 } 1514 1515 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1516 SelectionDAG &DAG) const { 1517 SDLoc DL(Op); 1518 SDValue Chain = Op.getOperand(0); 1519 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1520 SDValue Index = Op.getOperand(2); 1521 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1522 1523 SmallVector<SDValue, 8> Ops; 1524 Ops.push_back(Chain); 1525 Ops.push_back(Index); 1526 1527 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1528 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1529 1530 // Add an operand for each case. 1531 for (auto MBB : MBBs) 1532 Ops.push_back(DAG.getBasicBlock(MBB)); 1533 1534 // Add the first MBB as a dummy default target for now. This will be replaced 1535 // with the proper default target (and the preceding range check eliminated) 1536 // if possible by WebAssemblyFixBrTableDefaults. 1537 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1538 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1539 } 1540 1541 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1542 SelectionDAG &DAG) const { 1543 SDLoc DL(Op); 1544 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1545 1546 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1547 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1548 1549 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1550 MFI->getVarargBufferVreg(), PtrVT); 1551 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1552 MachinePointerInfo(SV)); 1553 } 1554 1555 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1556 SelectionDAG &DAG) { 1557 // We only support C++ exceptions for now 1558 int Tag = 1559 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1560 if (Tag != WebAssembly::CPP_EXCEPTION) 1561 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1562 auto &MF = DAG.getMachineFunction(); 1563 const auto &TLI = DAG.getTargetLoweringInfo(); 1564 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1565 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1566 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1567 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1568 } 1569 1570 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1571 SelectionDAG &DAG) const { 1572 MachineFunction &MF = DAG.getMachineFunction(); 1573 unsigned IntNo; 1574 switch (Op.getOpcode()) { 1575 case ISD::INTRINSIC_VOID: 1576 case ISD::INTRINSIC_W_CHAIN: 1577 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1578 break; 1579 case ISD::INTRINSIC_WO_CHAIN: 1580 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1581 break; 1582 default: 1583 llvm_unreachable("Invalid intrinsic"); 1584 } 1585 SDLoc DL(Op); 1586 1587 switch (IntNo) { 1588 default: 1589 return SDValue(); // Don't custom lower most intrinsics. 1590 1591 case Intrinsic::wasm_lsda: { 1592 EVT VT = Op.getValueType(); 1593 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1594 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1595 auto &Context = MF.getMMI().getContext(); 1596 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1597 Twine(MF.getFunctionNumber())); 1598 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1599 DAG.getMCSymbol(S, PtrVT)); 1600 } 1601 1602 case Intrinsic::wasm_throw: { 1603 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1604 return DAG.getNode(WebAssemblyISD::THROW, DL, 1605 MVT::Other, // outchain type 1606 { 1607 Op.getOperand(0), // inchain 1608 SymNode, // exception symbol 1609 Op.getOperand(3) // thrown value 1610 }); 1611 } 1612 1613 case Intrinsic::wasm_catch: { 1614 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1615 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1616 { 1617 MVT::i32, // outchain type 1618 MVT::Other // return value 1619 }, 1620 { 1621 Op.getOperand(0), // inchain 1622 SymNode // exception symbol 1623 }); 1624 } 1625 1626 case Intrinsic::wasm_shuffle: { 1627 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1628 SDValue Ops[18]; 1629 size_t OpIdx = 0; 1630 Ops[OpIdx++] = Op.getOperand(1); 1631 Ops[OpIdx++] = Op.getOperand(2); 1632 while (OpIdx < 18) { 1633 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1634 if (MaskIdx.isUndef() || 1635 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1636 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1637 } else { 1638 Ops[OpIdx++] = MaskIdx; 1639 } 1640 } 1641 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1642 } 1643 } 1644 } 1645 1646 SDValue 1647 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1648 SelectionDAG &DAG) const { 1649 SDLoc DL(Op); 1650 // If sign extension operations are disabled, allow sext_inreg only if operand 1651 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1652 // extension operations, but allowing sext_inreg in this context lets us have 1653 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1654 // everywhere would be simpler in this file, but would necessitate large and 1655 // brittle patterns to undo the expansion and select extract_lane_s 1656 // instructions. 1657 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1658 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1659 return SDValue(); 1660 1661 const SDValue &Extract = Op.getOperand(0); 1662 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1663 if (VecT.getVectorElementType().getSizeInBits() > 32) 1664 return SDValue(); 1665 MVT ExtractedLaneT = 1666 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1667 MVT ExtractedVecT = 1668 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1669 if (ExtractedVecT == VecT) 1670 return Op; 1671 1672 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1673 const SDNode *Index = Extract.getOperand(1).getNode(); 1674 if (!isa<ConstantSDNode>(Index)) 1675 return SDValue(); 1676 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1677 unsigned Scale = 1678 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1679 assert(Scale > 1); 1680 SDValue NewIndex = 1681 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1682 SDValue NewExtract = DAG.getNode( 1683 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1684 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1685 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1686 Op.getOperand(1)); 1687 } 1688 1689 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1690 SelectionDAG &DAG) const { 1691 SDLoc DL(Op); 1692 const EVT VecT = Op.getValueType(); 1693 const EVT LaneT = Op.getOperand(0).getValueType(); 1694 const size_t Lanes = Op.getNumOperands(); 1695 bool CanSwizzle = VecT == MVT::v16i8; 1696 1697 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1698 // possible number of lanes at once followed by a sequence of replace_lane 1699 // instructions to individually initialize any remaining lanes. 1700 1701 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1702 // swizzled lanes should be given greater weight. 1703 1704 // TODO: Investigate looping rather than always extracting/replacing specific 1705 // lanes to fill gaps. 1706 1707 auto IsConstant = [](const SDValue &V) { 1708 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1709 }; 1710 1711 // Returns the source vector and index vector pair if they exist. Checks for: 1712 // (extract_vector_elt 1713 // $src, 1714 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1715 // ) 1716 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1717 auto Bail = std::make_pair(SDValue(), SDValue()); 1718 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1719 return Bail; 1720 const SDValue &SwizzleSrc = Lane->getOperand(0); 1721 const SDValue &IndexExt = Lane->getOperand(1); 1722 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1723 return Bail; 1724 const SDValue &Index = IndexExt->getOperand(0); 1725 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1726 return Bail; 1727 const SDValue &SwizzleIndices = Index->getOperand(0); 1728 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1729 SwizzleIndices.getValueType() != MVT::v16i8 || 1730 Index->getOperand(1)->getOpcode() != ISD::Constant || 1731 Index->getConstantOperandVal(1) != I) 1732 return Bail; 1733 return std::make_pair(SwizzleSrc, SwizzleIndices); 1734 }; 1735 1736 // If the lane is extracted from another vector at a constant index, return 1737 // that vector. The source vector must not have more lanes than the dest 1738 // because the shufflevector indices are in terms of the destination lanes and 1739 // would not be able to address the smaller individual source lanes. 1740 auto GetShuffleSrc = [&](const SDValue &Lane) { 1741 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1742 return SDValue(); 1743 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1744 return SDValue(); 1745 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1746 VecT.getVectorNumElements()) 1747 return SDValue(); 1748 return Lane->getOperand(0); 1749 }; 1750 1751 using ValueEntry = std::pair<SDValue, size_t>; 1752 SmallVector<ValueEntry, 16> SplatValueCounts; 1753 1754 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1755 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1756 1757 using ShuffleEntry = std::pair<SDValue, size_t>; 1758 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1759 1760 auto AddCount = [](auto &Counts, const auto &Val) { 1761 auto CountIt = 1762 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1763 if (CountIt == Counts.end()) { 1764 Counts.emplace_back(Val, 1); 1765 } else { 1766 CountIt->second++; 1767 } 1768 }; 1769 1770 auto GetMostCommon = [](auto &Counts) { 1771 auto CommonIt = 1772 std::max_element(Counts.begin(), Counts.end(), 1773 [](auto A, auto B) { return A.second < B.second; }); 1774 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1775 return *CommonIt; 1776 }; 1777 1778 size_t NumConstantLanes = 0; 1779 1780 // Count eligible lanes for each type of vector creation op 1781 for (size_t I = 0; I < Lanes; ++I) { 1782 const SDValue &Lane = Op->getOperand(I); 1783 if (Lane.isUndef()) 1784 continue; 1785 1786 AddCount(SplatValueCounts, Lane); 1787 1788 if (IsConstant(Lane)) 1789 NumConstantLanes++; 1790 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1791 AddCount(ShuffleCounts, ShuffleSrc); 1792 if (CanSwizzle) { 1793 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1794 if (SwizzleSrcs.first) 1795 AddCount(SwizzleCounts, SwizzleSrcs); 1796 } 1797 } 1798 1799 SDValue SplatValue; 1800 size_t NumSplatLanes; 1801 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1802 1803 SDValue SwizzleSrc; 1804 SDValue SwizzleIndices; 1805 size_t NumSwizzleLanes = 0; 1806 if (SwizzleCounts.size()) 1807 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1808 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1809 1810 // Shuffles can draw from up to two vectors, so find the two most common 1811 // sources. 1812 SDValue ShuffleSrc1, ShuffleSrc2; 1813 size_t NumShuffleLanes = 0; 1814 if (ShuffleCounts.size()) { 1815 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1816 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1817 ShuffleCounts.end(), 1818 [&](const auto &Pair) { 1819 return Pair.first == ShuffleSrc1; 1820 }), 1821 ShuffleCounts.end()); 1822 } 1823 if (ShuffleCounts.size()) { 1824 size_t AdditionalShuffleLanes; 1825 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 1826 GetMostCommon(ShuffleCounts); 1827 NumShuffleLanes += AdditionalShuffleLanes; 1828 } 1829 1830 // Predicate returning true if the lane is properly initialized by the 1831 // original instruction 1832 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1833 SDValue Result; 1834 // Prefer swizzles over shuffles over vector consts over splats 1835 if (NumSwizzleLanes >= NumShuffleLanes && 1836 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 1837 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1838 SwizzleIndices); 1839 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1840 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1841 return Swizzled == GetSwizzleSrcs(I, Lane); 1842 }; 1843 } else if (NumShuffleLanes >= NumConstantLanes && 1844 NumShuffleLanes >= NumSplatLanes) { 1845 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 1846 size_t DestLaneCount = VecT.getVectorNumElements(); 1847 size_t Scale1 = 1; 1848 size_t Scale2 = 1; 1849 SDValue Src1 = ShuffleSrc1; 1850 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 1851 if (Src1.getValueType() != VecT) { 1852 size_t LaneSize = 1853 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1854 assert(LaneSize > DestLaneSize); 1855 Scale1 = LaneSize / DestLaneSize; 1856 Src1 = DAG.getBitcast(VecT, Src1); 1857 } 1858 if (Src2.getValueType() != VecT) { 1859 size_t LaneSize = 1860 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1861 assert(LaneSize > DestLaneSize); 1862 Scale2 = LaneSize / DestLaneSize; 1863 Src2 = DAG.getBitcast(VecT, Src2); 1864 } 1865 1866 int Mask[16]; 1867 assert(DestLaneCount <= 16); 1868 for (size_t I = 0; I < DestLaneCount; ++I) { 1869 const SDValue &Lane = Op->getOperand(I); 1870 SDValue Src = GetShuffleSrc(Lane); 1871 if (Src == ShuffleSrc1) { 1872 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 1873 } else if (Src && Src == ShuffleSrc2) { 1874 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 1875 } else { 1876 Mask[I] = -1; 1877 } 1878 } 1879 ArrayRef<int> MaskRef(Mask, DestLaneCount); 1880 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 1881 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 1882 auto Src = GetShuffleSrc(Lane); 1883 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 1884 }; 1885 } else if (NumConstantLanes >= NumSplatLanes) { 1886 SmallVector<SDValue, 16> ConstLanes; 1887 for (const SDValue &Lane : Op->op_values()) { 1888 if (IsConstant(Lane)) { 1889 ConstLanes.push_back(Lane); 1890 } else if (LaneT.isFloatingPoint()) { 1891 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1892 } else { 1893 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1894 } 1895 } 1896 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1897 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1898 return IsConstant(Lane); 1899 }; 1900 } else { 1901 // Use a splat, but possibly a load_splat 1902 LoadSDNode *SplattedLoad; 1903 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1904 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1905 Result = DAG.getMemIntrinsicNode( 1906 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1907 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1908 SplattedLoad->getOffset()}, 1909 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1910 } else { 1911 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1912 } 1913 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1914 return Lane == SplatValue; 1915 }; 1916 } 1917 1918 assert(Result); 1919 assert(IsLaneConstructed); 1920 1921 // Add replace_lane instructions for any unhandled values 1922 for (size_t I = 0; I < Lanes; ++I) { 1923 const SDValue &Lane = Op->getOperand(I); 1924 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1925 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1926 DAG.getConstant(I, DL, MVT::i32)); 1927 } 1928 1929 return Result; 1930 } 1931 1932 SDValue 1933 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1934 SelectionDAG &DAG) const { 1935 SDLoc DL(Op); 1936 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1937 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1938 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1939 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1940 1941 // Space for two vector args and sixteen mask indices 1942 SDValue Ops[18]; 1943 size_t OpIdx = 0; 1944 Ops[OpIdx++] = Op.getOperand(0); 1945 Ops[OpIdx++] = Op.getOperand(1); 1946 1947 // Expand mask indices to byte indices and materialize them as operands 1948 for (int M : Mask) { 1949 for (size_t J = 0; J < LaneBytes; ++J) { 1950 // Lower undefs (represented by -1 in mask) to zero 1951 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1952 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1953 } 1954 } 1955 1956 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1957 } 1958 1959 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1960 SelectionDAG &DAG) const { 1961 SDLoc DL(Op); 1962 // The legalizer does not know how to expand the unsupported comparison modes 1963 // of i64x2 vectors, so we manually unroll them here. 1964 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1965 SmallVector<SDValue, 2> LHS, RHS; 1966 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1967 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1968 const SDValue &CC = Op->getOperand(2); 1969 auto MakeLane = [&](unsigned I) { 1970 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1971 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1972 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1973 }; 1974 return DAG.getBuildVector(Op->getValueType(0), DL, 1975 {MakeLane(0), MakeLane(1)}); 1976 } 1977 1978 SDValue 1979 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1980 SelectionDAG &DAG) const { 1981 // Allow constant lane indices, expand variable lane indices 1982 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1983 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1984 return Op; 1985 else 1986 // Perform default expansion 1987 return SDValue(); 1988 } 1989 1990 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1991 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1992 // 32-bit and 64-bit unrolled shifts will have proper semantics 1993 if (LaneT.bitsGE(MVT::i32)) 1994 return DAG.UnrollVectorOp(Op.getNode()); 1995 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1996 SDLoc DL(Op); 1997 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1998 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1999 unsigned ShiftOpcode = Op.getOpcode(); 2000 SmallVector<SDValue, 16> ShiftedElements; 2001 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2002 SmallVector<SDValue, 16> ShiftElements; 2003 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2004 SmallVector<SDValue, 16> UnrolledOps; 2005 for (size_t i = 0; i < NumLanes; ++i) { 2006 SDValue MaskedShiftValue = 2007 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2008 SDValue ShiftedValue = ShiftedElements[i]; 2009 if (ShiftOpcode == ISD::SRA) 2010 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2011 ShiftedValue, DAG.getValueType(LaneT)); 2012 UnrolledOps.push_back( 2013 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2014 } 2015 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2016 } 2017 2018 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2019 SelectionDAG &DAG) const { 2020 SDLoc DL(Op); 2021 2022 // Only manually lower vector shifts 2023 assert(Op.getSimpleValueType().isVector()); 2024 2025 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2026 if (!ShiftVal) 2027 return unrollVectorShift(Op, DAG); 2028 2029 // Use anyext because none of the high bits can affect the shift 2030 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2031 2032 unsigned Opcode; 2033 switch (Op.getOpcode()) { 2034 case ISD::SHL: 2035 Opcode = WebAssemblyISD::VEC_SHL; 2036 break; 2037 case ISD::SRA: 2038 Opcode = WebAssemblyISD::VEC_SHR_S; 2039 break; 2040 case ISD::SRL: 2041 Opcode = WebAssemblyISD::VEC_SHR_U; 2042 break; 2043 default: 2044 llvm_unreachable("unexpected opcode"); 2045 } 2046 2047 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2048 } 2049 2050 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2051 SelectionDAG &DAG) const { 2052 SDLoc DL(Op); 2053 EVT ResT = Op.getValueType(); 2054 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2055 2056 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2057 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2058 return Op; 2059 2060 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2061 return Op; 2062 2063 return SDValue(); 2064 } 2065 2066 //===----------------------------------------------------------------------===// 2067 // Custom DAG combine hooks 2068 //===----------------------------------------------------------------------===// 2069 static SDValue 2070 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2071 auto &DAG = DCI.DAG; 2072 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2073 2074 // Hoist vector bitcasts that don't change the number of lanes out of unary 2075 // shuffles, where they are less likely to get in the way of other combines. 2076 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2077 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2078 SDValue Bitcast = N->getOperand(0); 2079 if (Bitcast.getOpcode() != ISD::BITCAST) 2080 return SDValue(); 2081 if (!N->getOperand(1).isUndef()) 2082 return SDValue(); 2083 SDValue CastOp = Bitcast.getOperand(0); 2084 MVT SrcType = CastOp.getSimpleValueType(); 2085 MVT DstType = Bitcast.getSimpleValueType(); 2086 if (!SrcType.is128BitVector() || 2087 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2088 return SDValue(); 2089 SDValue NewShuffle = DAG.getVectorShuffle( 2090 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2091 return DAG.getBitcast(DstType, NewShuffle); 2092 } 2093 2094 static SDValue 2095 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2096 auto &DAG = DCI.DAG; 2097 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2098 N->getOpcode() == ISD::ZERO_EXTEND); 2099 2100 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2101 // possible before the extract_subvector can be expanded. 2102 auto Extract = N->getOperand(0); 2103 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2104 return SDValue(); 2105 auto Source = Extract.getOperand(0); 2106 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2107 if (IndexNode == nullptr) 2108 return SDValue(); 2109 auto Index = IndexNode->getZExtValue(); 2110 2111 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2112 // extracted subvector is the low or high half of its source. 2113 EVT ResVT = N->getValueType(0); 2114 if (ResVT == MVT::v8i16) { 2115 if (Extract.getValueType() != MVT::v8i8 || 2116 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2117 return SDValue(); 2118 } else if (ResVT == MVT::v4i32) { 2119 if (Extract.getValueType() != MVT::v4i16 || 2120 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2121 return SDValue(); 2122 } else if (ResVT == MVT::v2i64) { 2123 if (Extract.getValueType() != MVT::v2i32 || 2124 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2125 return SDValue(); 2126 } else { 2127 return SDValue(); 2128 } 2129 2130 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2131 bool IsLow = Index == 0; 2132 2133 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2134 : WebAssemblyISD::EXTEND_HIGH_S) 2135 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2136 : WebAssemblyISD::EXTEND_HIGH_U); 2137 2138 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2139 } 2140 2141 static SDValue 2142 performVectorConvertLowCombine(SDNode *N, 2143 TargetLowering::DAGCombinerInfo &DCI) { 2144 auto &DAG = DCI.DAG; 2145 2146 EVT ResVT = N->getValueType(0); 2147 if (ResVT != MVT::v2f64) 2148 return SDValue(); 2149 2150 auto GetWasmConversionOp = [](unsigned Op) { 2151 switch (Op) { 2152 case ISD::SINT_TO_FP: 2153 return WebAssemblyISD::CONVERT_LOW_S; 2154 case ISD::UINT_TO_FP: 2155 return WebAssemblyISD::CONVERT_LOW_U; 2156 case ISD::FP_EXTEND: 2157 return WebAssemblyISD::PROMOTE_LOW; 2158 } 2159 llvm_unreachable("unexpected op"); 2160 }; 2161 2162 if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) { 2163 // Combine this: 2164 // 2165 // (v2f64 (extract_subvector 2166 // (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0)) 2167 // 2168 // into (f64x2.convert_low_i32x4_{s,u} $x). 2169 // 2170 // Or this: 2171 // 2172 // (v2f64 (extract_subvector 2173 // (v4f64 (fp_extend (v4f32 $x))), 0)) 2174 // 2175 // into (f64x2.promote_low_f32x4 $x). 2176 auto Conversion = N->getOperand(0); 2177 auto ConversionOp = Conversion.getOpcode(); 2178 MVT ExpectedSourceType; 2179 switch (ConversionOp) { 2180 case ISD::SINT_TO_FP: 2181 case ISD::UINT_TO_FP: 2182 ExpectedSourceType = MVT::v4i32; 2183 break; 2184 case ISD::FP_EXTEND: 2185 ExpectedSourceType = MVT::v4f32; 2186 break; 2187 default: 2188 return SDValue(); 2189 } 2190 2191 if (Conversion.getValueType() != MVT::v4f64) 2192 return SDValue(); 2193 2194 auto Source = Conversion.getOperand(0); 2195 if (Source.getValueType() != ExpectedSourceType) 2196 return SDValue(); 2197 2198 auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2199 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2200 return SDValue(); 2201 2202 auto Op = GetWasmConversionOp(ConversionOp); 2203 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2204 } 2205 2206 // Combine this: 2207 // 2208 // (v2f64 ({s,u}int_to_fp 2209 // (v2i32 (extract_subvector (v4i32 $x), 0)))) 2210 // 2211 // into (f64x2.convert_low_i32x4_{s,u} $x). 2212 // 2213 // Or this: 2214 // 2215 // (v2f64 (fp_extend 2216 // (v2f32 (extract_subvector (v4f32 $x), 0)))) 2217 // 2218 // into (f64x2.promote_low_f32x4 $x). 2219 auto ConversionOp = N->getOpcode(); 2220 MVT ExpectedExtractType; 2221 MVT ExpectedSourceType; 2222 switch (ConversionOp) { 2223 case ISD::SINT_TO_FP: 2224 case ISD::UINT_TO_FP: 2225 ExpectedExtractType = MVT::v2i32; 2226 ExpectedSourceType = MVT::v4i32; 2227 break; 2228 case ISD::FP_EXTEND: 2229 ExpectedExtractType = MVT::v2f32; 2230 ExpectedSourceType = MVT::v4f32; 2231 break; 2232 default: 2233 llvm_unreachable("unexpected opcode"); 2234 } 2235 2236 auto Extract = N->getOperand(0); 2237 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2238 return SDValue(); 2239 2240 if (Extract.getValueType() != ExpectedExtractType) 2241 return SDValue(); 2242 2243 auto Source = Extract.getOperand(0); 2244 if (Source.getValueType() != ExpectedSourceType) 2245 return SDValue(); 2246 2247 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2248 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2249 return SDValue(); 2250 2251 unsigned Op = GetWasmConversionOp(ConversionOp); 2252 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2253 } 2254 2255 static SDValue 2256 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2257 auto &DAG = DCI.DAG; 2258 2259 auto GetWasmConversionOp = [](unsigned Op) { 2260 switch (Op) { 2261 case ISD::FP_TO_SINT_SAT: 2262 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2263 case ISD::FP_TO_UINT_SAT: 2264 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2265 case ISD::FP_ROUND: 2266 return WebAssemblyISD::DEMOTE_ZERO; 2267 } 2268 llvm_unreachable("unexpected op"); 2269 }; 2270 2271 auto IsZeroSplat = [](SDValue SplatVal) { 2272 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2273 APInt SplatValue, SplatUndef; 2274 unsigned SplatBitSize; 2275 bool HasAnyUndefs; 2276 return Splat && 2277 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2278 HasAnyUndefs) && 2279 SplatValue == 0; 2280 }; 2281 2282 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2283 // Combine this: 2284 // 2285 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2286 // 2287 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2288 // 2289 // Or this: 2290 // 2291 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2292 // 2293 // into (f32x4.demote_zero_f64x2 $x). 2294 EVT ResVT; 2295 EVT ExpectedConversionType; 2296 auto Conversion = N->getOperand(0); 2297 auto ConversionOp = Conversion.getOpcode(); 2298 switch (ConversionOp) { 2299 case ISD::FP_TO_SINT_SAT: 2300 case ISD::FP_TO_UINT_SAT: 2301 ResVT = MVT::v4i32; 2302 ExpectedConversionType = MVT::v2i32; 2303 break; 2304 case ISD::FP_ROUND: 2305 ResVT = MVT::v4f32; 2306 ExpectedConversionType = MVT::v2f32; 2307 break; 2308 default: 2309 return SDValue(); 2310 } 2311 2312 if (N->getValueType(0) != ResVT) 2313 return SDValue(); 2314 2315 if (Conversion.getValueType() != ExpectedConversionType) 2316 return SDValue(); 2317 2318 auto Source = Conversion.getOperand(0); 2319 if (Source.getValueType() != MVT::v2f64) 2320 return SDValue(); 2321 2322 if (!IsZeroSplat(N->getOperand(1)) || 2323 N->getOperand(1).getValueType() != ExpectedConversionType) 2324 return SDValue(); 2325 2326 unsigned Op = GetWasmConversionOp(ConversionOp); 2327 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2328 } 2329 2330 // Combine this: 2331 // 2332 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2333 // 2334 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2335 // 2336 // Or this: 2337 // 2338 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2339 // 2340 // into (f32x4.demote_zero_f64x2 $x). 2341 EVT ResVT; 2342 auto ConversionOp = N->getOpcode(); 2343 switch (ConversionOp) { 2344 case ISD::FP_TO_SINT_SAT: 2345 case ISD::FP_TO_UINT_SAT: 2346 ResVT = MVT::v4i32; 2347 break; 2348 case ISD::FP_ROUND: 2349 ResVT = MVT::v4f32; 2350 break; 2351 default: 2352 llvm_unreachable("unexpected op"); 2353 } 2354 2355 if (N->getValueType(0) != ResVT) 2356 return SDValue(); 2357 2358 auto Concat = N->getOperand(0); 2359 if (Concat.getValueType() != MVT::v4f64) 2360 return SDValue(); 2361 2362 auto Source = Concat.getOperand(0); 2363 if (Source.getValueType() != MVT::v2f64) 2364 return SDValue(); 2365 2366 if (!IsZeroSplat(Concat.getOperand(1)) || 2367 Concat.getOperand(1).getValueType() != MVT::v2f64) 2368 return SDValue(); 2369 2370 unsigned Op = GetWasmConversionOp(ConversionOp); 2371 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2372 } 2373 2374 SDValue 2375 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2376 DAGCombinerInfo &DCI) const { 2377 switch (N->getOpcode()) { 2378 default: 2379 return SDValue(); 2380 case ISD::VECTOR_SHUFFLE: 2381 return performVECTOR_SHUFFLECombine(N, DCI); 2382 case ISD::SIGN_EXTEND: 2383 case ISD::ZERO_EXTEND: 2384 return performVectorExtendCombine(N, DCI); 2385 case ISD::SINT_TO_FP: 2386 case ISD::UINT_TO_FP: 2387 case ISD::FP_EXTEND: 2388 case ISD::EXTRACT_SUBVECTOR: 2389 return performVectorConvertLowCombine(N, DCI); 2390 case ISD::FP_TO_SINT_SAT: 2391 case ISD::FP_TO_UINT_SAT: 2392 case ISD::FP_ROUND: 2393 case ISD::CONCAT_VECTORS: 2394 return performVectorTruncZeroCombine(N, DCI); 2395 } 2396 } 2397