1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyUtilities.h"
17 #include "WebAssemblyMachineFunctionInfo.h"
18 #include "WebAssemblySubtarget.h"
19 #include "WebAssemblyTargetMachine.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGNodes.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsWebAssembly.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetOptions.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "wasm-lower"
41 
42 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
43     const TargetMachine &TM, const WebAssemblySubtarget &STI)
44     : TargetLowering(TM), Subtarget(&STI) {
45   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
46 
47   // Booleans always contain 0 or 1.
48   setBooleanContents(ZeroOrOneBooleanContent);
49   // Except in SIMD vectors
50   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
51   // We don't know the microarchitecture here, so just reduce register pressure.
52   setSchedulingPreference(Sched::RegPressure);
53   // Tell ISel that we have a stack pointer.
54   setStackPointerRegisterToSaveRestore(
55       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
56   // Set up the register classes.
57   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
58   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
59   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
60   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
61   if (Subtarget->hasSIMD128()) {
62     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
68   }
69   // Compute derived properties from the register classes.
70   computeRegisterProperties(Subtarget->getRegisterInfo());
71 
72   // Transform loads and stores to pointers in address space 1 to loads and
73   // stores to WebAssembly global variables, outside linear memory.
74   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
75     setOperationAction(ISD::LOAD, T, Custom);
76     setOperationAction(ISD::STORE, T, Custom);
77   }
78   if (Subtarget->hasSIMD128()) {
79     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
80                    MVT::v2f64}) {
81       setOperationAction(ISD::LOAD, T, Custom);
82       setOperationAction(ISD::STORE, T, Custom);
83     }
84   }
85 
86   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
87   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
88   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
89   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
90   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
91   setOperationAction(ISD::BRIND, MVT::Other, Custom);
92 
93   // Take the default expansion for va_arg, va_copy, and va_end. There is no
94   // default action for va_start, so we do that custom.
95   setOperationAction(ISD::VASTART, MVT::Other, Custom);
96   setOperationAction(ISD::VAARG, MVT::Other, Expand);
97   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
98   setOperationAction(ISD::VAEND, MVT::Other, Expand);
99 
100   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
101     // Don't expand the floating-point types to constant pools.
102     setOperationAction(ISD::ConstantFP, T, Legal);
103     // Expand floating-point comparisons.
104     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
105                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
106       setCondCodeAction(CC, T, Expand);
107     // Expand floating-point library function operators.
108     for (auto Op :
109          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
110       setOperationAction(Op, T, Expand);
111     // Note supported floating-point library function operators that otherwise
112     // default to expand.
113     for (auto Op :
114          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
115       setOperationAction(Op, T, Legal);
116     // Support minimum and maximum, which otherwise default to expand.
117     setOperationAction(ISD::FMINIMUM, T, Legal);
118     setOperationAction(ISD::FMAXIMUM, T, Legal);
119     // WebAssembly currently has no builtin f16 support.
120     setOperationAction(ISD::FP16_TO_FP, T, Expand);
121     setOperationAction(ISD::FP_TO_FP16, T, Expand);
122     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
123     setTruncStoreAction(T, MVT::f16, Expand);
124   }
125 
126   // Expand unavailable integer operations.
127   for (auto Op :
128        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
129         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
130         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
131     for (auto T : {MVT::i32, MVT::i64})
132       setOperationAction(Op, T, Expand);
133     if (Subtarget->hasSIMD128())
134       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
135         setOperationAction(Op, T, Expand);
136   }
137 
138   if (Subtarget->hasNontrappingFPToInt())
139     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
140       for (auto T : {MVT::i32, MVT::i64})
141         setOperationAction(Op, T, Custom);
142 
143   // SIMD-specific configuration
144   if (Subtarget->hasSIMD128()) {
145     // Hoist bitcasts out of shuffles
146     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
147 
148     // Combine extends of extract_subvectors into widening ops
149     setTargetDAGCombine(ISD::SIGN_EXTEND);
150     setTargetDAGCombine(ISD::ZERO_EXTEND);
151 
152     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
153     // conversions ops
154     setTargetDAGCombine(ISD::SINT_TO_FP);
155     setTargetDAGCombine(ISD::UINT_TO_FP);
156     setTargetDAGCombine(ISD::FP_EXTEND);
157     setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
158 
159     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
160     // into conversion ops
161     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
162     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
163     setTargetDAGCombine(ISD::FP_ROUND);
164     setTargetDAGCombine(ISD::CONCAT_VECTORS);
165 
166     // Support saturating add for i8x16 and i16x8
167     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
168       for (auto T : {MVT::v16i8, MVT::v8i16})
169         setOperationAction(Op, T, Legal);
170 
171     // Support integer abs
172     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
173       setOperationAction(ISD::ABS, T, Legal);
174 
175     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
176     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
177                    MVT::v2f64})
178       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
179 
180     // We have custom shuffle lowering to expose the shuffle mask
181     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
182                    MVT::v2f64})
183       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
184 
185     // Custom lowering since wasm shifts must have a scalar shift amount
186     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
187       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
188         setOperationAction(Op, T, Custom);
189 
190     // Custom lower lane accesses to expand out variable indices
191     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
192       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
193                      MVT::v2f64})
194         setOperationAction(Op, T, Custom);
195 
196     // There is no i8x16.mul instruction
197     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
198 
199     // There is no vector conditional select instruction
200     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
201                    MVT::v2f64})
202       setOperationAction(ISD::SELECT_CC, T, Expand);
203 
204     // Expand integer operations supported for scalars but not SIMD
205     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
206                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
207       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
208         setOperationAction(Op, T, Expand);
209 
210     // But we do have integer min and max operations
211     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
212       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
213         setOperationAction(Op, T, Legal);
214 
215     // Expand float operations supported for scalars but not SIMD
216     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
217                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
218       for (auto T : {MVT::v4f32, MVT::v2f64})
219         setOperationAction(Op, T, Expand);
220 
221     // Unsigned comparison operations are unavailable for i64x2 vectors.
222     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
223       setCondCodeAction(CC, MVT::v2i64, Custom);
224 
225     // 64x2 conversions are not in the spec
226     for (auto Op :
227          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
228       for (auto T : {MVT::v2i64, MVT::v2f64})
229         setOperationAction(Op, T, Expand);
230 
231     // But saturating fp_to_int converstions are
232     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
233       setOperationAction(Op, MVT::v4i32, Custom);
234   }
235 
236   // As a special case, these operators use the type to mean the type to
237   // sign-extend from.
238   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
239   if (!Subtarget->hasSignExt()) {
240     // Sign extends are legal only when extending a vector extract
241     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
242     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
243       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
244   }
245   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
246     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
247 
248   // Dynamic stack allocation: use the default expansion.
249   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
250   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
251   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
252 
253   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
254   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
255   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
256 
257   // Expand these forms; we pattern-match the forms that we can handle in isel.
258   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
259     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
260       setOperationAction(Op, T, Expand);
261 
262   // We have custom switch handling.
263   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
264 
265   // WebAssembly doesn't have:
266   //  - Floating-point extending loads.
267   //  - Floating-point truncating stores.
268   //  - i1 extending loads.
269   //  - truncating SIMD stores and most extending loads
270   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
271   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
272   for (auto T : MVT::integer_valuetypes())
273     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
274       setLoadExtAction(Ext, T, MVT::i1, Promote);
275   if (Subtarget->hasSIMD128()) {
276     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
277                    MVT::v2f64}) {
278       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
279         if (MVT(T) != MemT) {
280           setTruncStoreAction(T, MemT, Expand);
281           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
282             setLoadExtAction(Ext, T, MemT, Expand);
283         }
284       }
285     }
286     // But some vector extending loads are legal
287     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
288       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
289       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
290       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
291     }
292     // And some truncating stores are legal as well
293     setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
294     setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
295   }
296 
297   // Don't do anything clever with build_pairs
298   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
299 
300   // Trap lowers to wasm unreachable
301   setOperationAction(ISD::TRAP, MVT::Other, Legal);
302   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
303 
304   // Exception handling intrinsics
305   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
306   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
307   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
308 
309   setMaxAtomicSizeInBitsSupported(64);
310 
311   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
312   // consistent with the f64 and f128 names.
313   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
314   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
315 
316   // Define the emscripten name for return address helper.
317   // TODO: when implementing other Wasm backends, make this generic or only do
318   // this on emscripten depending on what they end up doing.
319   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
320 
321   // Always convert switches to br_tables unless there is only one case, which
322   // is equivalent to a simple branch. This reduces code size for wasm, and we
323   // defer possible jump table optimizations to the VM.
324   setMinimumJumpTableEntries(2);
325 }
326 
327 TargetLowering::AtomicExpansionKind
328 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
329   // We have wasm instructions for these
330   switch (AI->getOperation()) {
331   case AtomicRMWInst::Add:
332   case AtomicRMWInst::Sub:
333   case AtomicRMWInst::And:
334   case AtomicRMWInst::Or:
335   case AtomicRMWInst::Xor:
336   case AtomicRMWInst::Xchg:
337     return AtomicExpansionKind::None;
338   default:
339     break;
340   }
341   return AtomicExpansionKind::CmpXChg;
342 }
343 
344 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
345   // Implementation copied from X86TargetLowering.
346   unsigned Opc = VecOp.getOpcode();
347 
348   // Assume target opcodes can't be scalarized.
349   // TODO - do we have any exceptions?
350   if (Opc >= ISD::BUILTIN_OP_END)
351     return false;
352 
353   // If the vector op is not supported, try to convert to scalar.
354   EVT VecVT = VecOp.getValueType();
355   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
356     return true;
357 
358   // If the vector op is supported, but the scalar op is not, the transform may
359   // not be worthwhile.
360   EVT ScalarVT = VecVT.getScalarType();
361   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
362 }
363 
364 FastISel *WebAssemblyTargetLowering::createFastISel(
365     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
366   return WebAssembly::createFastISel(FuncInfo, LibInfo);
367 }
368 
369 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
370                                                       EVT VT) const {
371   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
372   if (BitWidth > 1 && BitWidth < 8)
373     BitWidth = 8;
374 
375   if (BitWidth > 64) {
376     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
377     // the count to be an i32.
378     BitWidth = 32;
379     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
380            "32-bit shift counts ought to be enough for anyone");
381   }
382 
383   MVT Result = MVT::getIntegerVT(BitWidth);
384   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
385          "Unable to represent scalar shift amount type");
386   return Result;
387 }
388 
389 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
390 // undefined result on invalid/overflow, to the WebAssembly opcode, which
391 // traps on invalid/overflow.
392 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
393                                        MachineBasicBlock *BB,
394                                        const TargetInstrInfo &TII,
395                                        bool IsUnsigned, bool Int64,
396                                        bool Float64, unsigned LoweredOpcode) {
397   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
398 
399   Register OutReg = MI.getOperand(0).getReg();
400   Register InReg = MI.getOperand(1).getReg();
401 
402   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
403   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
404   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
405   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
406   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
407   unsigned Eqz = WebAssembly::EQZ_I32;
408   unsigned And = WebAssembly::AND_I32;
409   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
410   int64_t Substitute = IsUnsigned ? 0 : Limit;
411   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
412   auto &Context = BB->getParent()->getFunction().getContext();
413   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
414 
415   const BasicBlock *LLVMBB = BB->getBasicBlock();
416   MachineFunction *F = BB->getParent();
417   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
418   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
419   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
420 
421   MachineFunction::iterator It = ++BB->getIterator();
422   F->insert(It, FalseMBB);
423   F->insert(It, TrueMBB);
424   F->insert(It, DoneMBB);
425 
426   // Transfer the remainder of BB and its successor edges to DoneMBB.
427   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
428   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
429 
430   BB->addSuccessor(TrueMBB);
431   BB->addSuccessor(FalseMBB);
432   TrueMBB->addSuccessor(DoneMBB);
433   FalseMBB->addSuccessor(DoneMBB);
434 
435   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
436   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
437   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
438   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
439   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
440   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
441   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
442 
443   MI.eraseFromParent();
444   // For signed numbers, we can do a single comparison to determine whether
445   // fabs(x) is within range.
446   if (IsUnsigned) {
447     Tmp0 = InReg;
448   } else {
449     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
450   }
451   BuildMI(BB, DL, TII.get(FConst), Tmp1)
452       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
453   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
454 
455   // For unsigned numbers, we have to do a separate comparison with zero.
456   if (IsUnsigned) {
457     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
458     Register SecondCmpReg =
459         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
460     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
461     BuildMI(BB, DL, TII.get(FConst), Tmp1)
462         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
463     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
464     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
465     CmpReg = AndReg;
466   }
467 
468   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
469 
470   // Create the CFG diamond to select between doing the conversion or using
471   // the substitute value.
472   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
473   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
474   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
475   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
476   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
477       .addReg(FalseReg)
478       .addMBB(FalseMBB)
479       .addReg(TrueReg)
480       .addMBB(TrueMBB);
481 
482   return DoneMBB;
483 }
484 
485 static MachineBasicBlock *
486 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
487                  const WebAssemblySubtarget *Subtarget,
488                  const TargetInstrInfo &TII) {
489   MachineInstr &CallParams = *CallResults.getPrevNode();
490   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
491   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
492          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
493 
494   bool IsIndirect = CallParams.getOperand(0).isReg();
495   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
496 
497   unsigned CallOp;
498   if (IsIndirect && IsRetCall) {
499     CallOp = WebAssembly::RET_CALL_INDIRECT;
500   } else if (IsIndirect) {
501     CallOp = WebAssembly::CALL_INDIRECT;
502   } else if (IsRetCall) {
503     CallOp = WebAssembly::RET_CALL;
504   } else {
505     CallOp = WebAssembly::CALL;
506   }
507 
508   MachineFunction &MF = *BB->getParent();
509   const MCInstrDesc &MCID = TII.get(CallOp);
510   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
511 
512   // See if we must truncate the function pointer.
513   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
514   // as 64-bit for uniformity with other pointer types.
515   // See also: WebAssemblyFastISel::selectCall
516   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
517     Register Reg32 =
518         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
519     auto &FnPtr = CallParams.getOperand(0);
520     BuildMI(*BB, CallResults.getIterator(), DL,
521             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
522         .addReg(FnPtr.getReg());
523     FnPtr.setReg(Reg32);
524   }
525 
526   // Move the function pointer to the end of the arguments for indirect calls
527   if (IsIndirect) {
528     auto FnPtr = CallParams.getOperand(0);
529     CallParams.RemoveOperand(0);
530     CallParams.addOperand(FnPtr);
531   }
532 
533   for (auto Def : CallResults.defs())
534     MIB.add(Def);
535 
536   if (IsIndirect) {
537     // Placeholder for the type index.
538     MIB.addImm(0);
539     // The table into which this call_indirect indexes.
540     MCSymbolWasm *Table =
541         WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget);
542     if (Subtarget->hasReferenceTypes()) {
543       MIB.addSym(Table);
544     } else {
545       // For the MVP there is at most one table whose number is 0, but we can't
546       // write a table symbol or issue relocations.  Instead we just ensure the
547       // table is live and write a zero.
548       Table->setNoStrip();
549       MIB.addImm(0);
550     }
551   }
552 
553   for (auto Use : CallParams.uses())
554     MIB.add(Use);
555 
556   BB->insert(CallResults.getIterator(), MIB);
557   CallParams.eraseFromParent();
558   CallResults.eraseFromParent();
559 
560   return BB;
561 }
562 
563 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
564     MachineInstr &MI, MachineBasicBlock *BB) const {
565   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
566   DebugLoc DL = MI.getDebugLoc();
567 
568   switch (MI.getOpcode()) {
569   default:
570     llvm_unreachable("Unexpected instr type to insert");
571   case WebAssembly::FP_TO_SINT_I32_F32:
572     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
573                         WebAssembly::I32_TRUNC_S_F32);
574   case WebAssembly::FP_TO_UINT_I32_F32:
575     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
576                         WebAssembly::I32_TRUNC_U_F32);
577   case WebAssembly::FP_TO_SINT_I64_F32:
578     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
579                         WebAssembly::I64_TRUNC_S_F32);
580   case WebAssembly::FP_TO_UINT_I64_F32:
581     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
582                         WebAssembly::I64_TRUNC_U_F32);
583   case WebAssembly::FP_TO_SINT_I32_F64:
584     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
585                         WebAssembly::I32_TRUNC_S_F64);
586   case WebAssembly::FP_TO_UINT_I32_F64:
587     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
588                         WebAssembly::I32_TRUNC_U_F64);
589   case WebAssembly::FP_TO_SINT_I64_F64:
590     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
591                         WebAssembly::I64_TRUNC_S_F64);
592   case WebAssembly::FP_TO_UINT_I64_F64:
593     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
594                         WebAssembly::I64_TRUNC_U_F64);
595   case WebAssembly::CALL_RESULTS:
596   case WebAssembly::RET_CALL_RESULTS:
597     return LowerCallResults(MI, DL, BB, Subtarget, TII);
598   }
599 }
600 
601 const char *
602 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
603   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
604   case WebAssemblyISD::FIRST_NUMBER:
605   case WebAssemblyISD::FIRST_MEM_OPCODE:
606     break;
607 #define HANDLE_NODETYPE(NODE)                                                  \
608   case WebAssemblyISD::NODE:                                                   \
609     return "WebAssemblyISD::" #NODE;
610 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
611 #include "WebAssemblyISD.def"
612 #undef HANDLE_MEM_NODETYPE
613 #undef HANDLE_NODETYPE
614   }
615   return nullptr;
616 }
617 
618 std::pair<unsigned, const TargetRegisterClass *>
619 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
620     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
621   // First, see if this is a constraint that directly corresponds to a
622   // WebAssembly register class.
623   if (Constraint.size() == 1) {
624     switch (Constraint[0]) {
625     case 'r':
626       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
627       if (Subtarget->hasSIMD128() && VT.isVector()) {
628         if (VT.getSizeInBits() == 128)
629           return std::make_pair(0U, &WebAssembly::V128RegClass);
630       }
631       if (VT.isInteger() && !VT.isVector()) {
632         if (VT.getSizeInBits() <= 32)
633           return std::make_pair(0U, &WebAssembly::I32RegClass);
634         if (VT.getSizeInBits() <= 64)
635           return std::make_pair(0U, &WebAssembly::I64RegClass);
636       }
637       if (VT.isFloatingPoint() && !VT.isVector()) {
638         switch (VT.getSizeInBits()) {
639         case 32:
640           return std::make_pair(0U, &WebAssembly::F32RegClass);
641         case 64:
642           return std::make_pair(0U, &WebAssembly::F64RegClass);
643         default:
644           break;
645         }
646       }
647       break;
648     default:
649       break;
650     }
651   }
652 
653   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
654 }
655 
656 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
657   // Assume ctz is a relatively cheap operation.
658   return true;
659 }
660 
661 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
662   // Assume clz is a relatively cheap operation.
663   return true;
664 }
665 
666 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
667                                                       const AddrMode &AM,
668                                                       Type *Ty, unsigned AS,
669                                                       Instruction *I) const {
670   // WebAssembly offsets are added as unsigned without wrapping. The
671   // isLegalAddressingMode gives us no way to determine if wrapping could be
672   // happening, so we approximate this by accepting only non-negative offsets.
673   if (AM.BaseOffs < 0)
674     return false;
675 
676   // WebAssembly has no scale register operands.
677   if (AM.Scale != 0)
678     return false;
679 
680   // Everything else is legal.
681   return true;
682 }
683 
684 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
685     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
686     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
687   // WebAssembly supports unaligned accesses, though it should be declared
688   // with the p2align attribute on loads and stores which do so, and there
689   // may be a performance impact. We tell LLVM they're "fast" because
690   // for the kinds of things that LLVM uses this for (merging adjacent stores
691   // of constants, etc.), WebAssembly implementations will either want the
692   // unaligned access or they'll split anyway.
693   if (Fast)
694     *Fast = true;
695   return true;
696 }
697 
698 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
699                                               AttributeList Attr) const {
700   // The current thinking is that wasm engines will perform this optimization,
701   // so we can save on code size.
702   return true;
703 }
704 
705 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
706   EVT ExtT = ExtVal.getValueType();
707   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
708   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
709          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
710          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
711 }
712 
713 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
714                                                   LLVMContext &C,
715                                                   EVT VT) const {
716   if (VT.isVector())
717     return VT.changeVectorElementTypeToInteger();
718 
719   // So far, all branch instructions in Wasm take an I32 condition.
720   // The default TargetLowering::getSetCCResultType returns the pointer size,
721   // which would be useful to reduce instruction counts when testing
722   // against 64-bit pointers/values if at some point Wasm supports that.
723   return EVT::getIntegerVT(C, 32);
724 }
725 
726 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
727                                                    const CallInst &I,
728                                                    MachineFunction &MF,
729                                                    unsigned Intrinsic) const {
730   switch (Intrinsic) {
731   case Intrinsic::wasm_memory_atomic_notify:
732     Info.opc = ISD::INTRINSIC_W_CHAIN;
733     Info.memVT = MVT::i32;
734     Info.ptrVal = I.getArgOperand(0);
735     Info.offset = 0;
736     Info.align = Align(4);
737     // atomic.notify instruction does not really load the memory specified with
738     // this argument, but MachineMemOperand should either be load or store, so
739     // we set this to a load.
740     // FIXME Volatile isn't really correct, but currently all LLVM atomic
741     // instructions are treated as volatiles in the backend, so we should be
742     // consistent. The same applies for wasm_atomic_wait intrinsics too.
743     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
744     return true;
745   case Intrinsic::wasm_memory_atomic_wait32:
746     Info.opc = ISD::INTRINSIC_W_CHAIN;
747     Info.memVT = MVT::i32;
748     Info.ptrVal = I.getArgOperand(0);
749     Info.offset = 0;
750     Info.align = Align(4);
751     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
752     return true;
753   case Intrinsic::wasm_memory_atomic_wait64:
754     Info.opc = ISD::INTRINSIC_W_CHAIN;
755     Info.memVT = MVT::i64;
756     Info.ptrVal = I.getArgOperand(0);
757     Info.offset = 0;
758     Info.align = Align(8);
759     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
760     return true;
761   case Intrinsic::wasm_load32_zero:
762   case Intrinsic::wasm_load64_zero:
763     Info.opc = ISD::INTRINSIC_W_CHAIN;
764     Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64;
765     Info.ptrVal = I.getArgOperand(0);
766     Info.offset = 0;
767     Info.align = Align(1);
768     Info.flags = MachineMemOperand::MOLoad;
769     return true;
770   default:
771     return false;
772   }
773 }
774 
775 //===----------------------------------------------------------------------===//
776 // WebAssembly Lowering private implementation.
777 //===----------------------------------------------------------------------===//
778 
779 //===----------------------------------------------------------------------===//
780 // Lowering Code
781 //===----------------------------------------------------------------------===//
782 
783 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
784   MachineFunction &MF = DAG.getMachineFunction();
785   DAG.getContext()->diagnose(
786       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
787 }
788 
789 // Test whether the given calling convention is supported.
790 static bool callingConvSupported(CallingConv::ID CallConv) {
791   // We currently support the language-independent target-independent
792   // conventions. We don't yet have a way to annotate calls with properties like
793   // "cold", and we don't have any call-clobbered registers, so these are mostly
794   // all handled the same.
795   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
796          CallConv == CallingConv::Cold ||
797          CallConv == CallingConv::PreserveMost ||
798          CallConv == CallingConv::PreserveAll ||
799          CallConv == CallingConv::CXX_FAST_TLS ||
800          CallConv == CallingConv::WASM_EmscriptenInvoke ||
801          CallConv == CallingConv::Swift;
802 }
803 
804 SDValue
805 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
806                                      SmallVectorImpl<SDValue> &InVals) const {
807   SelectionDAG &DAG = CLI.DAG;
808   SDLoc DL = CLI.DL;
809   SDValue Chain = CLI.Chain;
810   SDValue Callee = CLI.Callee;
811   MachineFunction &MF = DAG.getMachineFunction();
812   auto Layout = MF.getDataLayout();
813 
814   CallingConv::ID CallConv = CLI.CallConv;
815   if (!callingConvSupported(CallConv))
816     fail(DL, DAG,
817          "WebAssembly doesn't support language-specific or target-specific "
818          "calling conventions yet");
819   if (CLI.IsPatchPoint)
820     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
821 
822   if (CLI.IsTailCall) {
823     auto NoTail = [&](const char *Msg) {
824       if (CLI.CB && CLI.CB->isMustTailCall())
825         fail(DL, DAG, Msg);
826       CLI.IsTailCall = false;
827     };
828 
829     if (!Subtarget->hasTailCall())
830       NoTail("WebAssembly 'tail-call' feature not enabled");
831 
832     // Varargs calls cannot be tail calls because the buffer is on the stack
833     if (CLI.IsVarArg)
834       NoTail("WebAssembly does not support varargs tail calls");
835 
836     // Do not tail call unless caller and callee return types match
837     const Function &F = MF.getFunction();
838     const TargetMachine &TM = getTargetMachine();
839     Type *RetTy = F.getReturnType();
840     SmallVector<MVT, 4> CallerRetTys;
841     SmallVector<MVT, 4> CalleeRetTys;
842     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
843     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
844     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
845                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
846                                  CalleeRetTys.begin());
847     if (!TypesMatch)
848       NoTail("WebAssembly tail call requires caller and callee return types to "
849              "match");
850 
851     // If pointers to local stack values are passed, we cannot tail call
852     if (CLI.CB) {
853       for (auto &Arg : CLI.CB->args()) {
854         Value *Val = Arg.get();
855         // Trace the value back through pointer operations
856         while (true) {
857           Value *Src = Val->stripPointerCastsAndAliases();
858           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
859             Src = GEP->getPointerOperand();
860           if (Val == Src)
861             break;
862           Val = Src;
863         }
864         if (isa<AllocaInst>(Val)) {
865           NoTail(
866               "WebAssembly does not support tail calling with stack arguments");
867           break;
868         }
869       }
870     }
871   }
872 
873   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
874   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
875   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
876 
877   // The generic code may have added an sret argument. If we're lowering an
878   // invoke function, the ABI requires that the function pointer be the first
879   // argument, so we may have to swap the arguments.
880   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
881       Outs[0].Flags.isSRet()) {
882     std::swap(Outs[0], Outs[1]);
883     std::swap(OutVals[0], OutVals[1]);
884   }
885 
886   bool HasSwiftSelfArg = false;
887   bool HasSwiftErrorArg = false;
888   unsigned NumFixedArgs = 0;
889   for (unsigned I = 0; I < Outs.size(); ++I) {
890     const ISD::OutputArg &Out = Outs[I];
891     SDValue &OutVal = OutVals[I];
892     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
893     HasSwiftErrorArg |= Out.Flags.isSwiftError();
894     if (Out.Flags.isNest())
895       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
896     if (Out.Flags.isInAlloca())
897       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
898     if (Out.Flags.isInConsecutiveRegs())
899       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
900     if (Out.Flags.isInConsecutiveRegsLast())
901       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
902     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
903       auto &MFI = MF.getFrameInfo();
904       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
905                                      Out.Flags.getNonZeroByValAlign(),
906                                      /*isSS=*/false);
907       SDValue SizeNode =
908           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
909       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
910       Chain = DAG.getMemcpy(
911           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
912           /*isVolatile*/ false, /*AlwaysInline=*/false,
913           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
914       OutVal = FINode;
915     }
916     // Count the number of fixed args *after* legalization.
917     NumFixedArgs += Out.IsFixed;
918   }
919 
920   bool IsVarArg = CLI.IsVarArg;
921   auto PtrVT = getPointerTy(Layout);
922 
923   // For swiftcc, emit additional swiftself and swifterror arguments
924   // if there aren't. These additional arguments are also added for callee
925   // signature They are necessary to match callee and caller signature for
926   // indirect call.
927   if (CallConv == CallingConv::Swift) {
928     if (!HasSwiftSelfArg) {
929       NumFixedArgs++;
930       ISD::OutputArg Arg;
931       Arg.Flags.setSwiftSelf();
932       CLI.Outs.push_back(Arg);
933       SDValue ArgVal = DAG.getUNDEF(PtrVT);
934       CLI.OutVals.push_back(ArgVal);
935     }
936     if (!HasSwiftErrorArg) {
937       NumFixedArgs++;
938       ISD::OutputArg Arg;
939       Arg.Flags.setSwiftError();
940       CLI.Outs.push_back(Arg);
941       SDValue ArgVal = DAG.getUNDEF(PtrVT);
942       CLI.OutVals.push_back(ArgVal);
943     }
944   }
945 
946   // Analyze operands of the call, assigning locations to each operand.
947   SmallVector<CCValAssign, 16> ArgLocs;
948   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
949 
950   if (IsVarArg) {
951     // Outgoing non-fixed arguments are placed in a buffer. First
952     // compute their offsets and the total amount of buffer space needed.
953     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
954       const ISD::OutputArg &Out = Outs[I];
955       SDValue &Arg = OutVals[I];
956       EVT VT = Arg.getValueType();
957       assert(VT != MVT::iPTR && "Legalized args should be concrete");
958       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
959       Align Alignment =
960           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
961       unsigned Offset =
962           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
963       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
964                                         Offset, VT.getSimpleVT(),
965                                         CCValAssign::Full));
966     }
967   }
968 
969   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
970 
971   SDValue FINode;
972   if (IsVarArg && NumBytes) {
973     // For non-fixed arguments, next emit stores to store the argument values
974     // to the stack buffer at the offsets computed above.
975     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
976                                                  Layout.getStackAlignment(),
977                                                  /*isSS=*/false);
978     unsigned ValNo = 0;
979     SmallVector<SDValue, 8> Chains;
980     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
981       assert(ArgLocs[ValNo].getValNo() == ValNo &&
982              "ArgLocs should remain in order and only hold varargs args");
983       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
984       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
985       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
986                                 DAG.getConstant(Offset, DL, PtrVT));
987       Chains.push_back(
988           DAG.getStore(Chain, DL, Arg, Add,
989                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
990     }
991     if (!Chains.empty())
992       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
993   } else if (IsVarArg) {
994     FINode = DAG.getIntPtrConstant(0, DL);
995   }
996 
997   if (Callee->getOpcode() == ISD::GlobalAddress) {
998     // If the callee is a GlobalAddress node (quite common, every direct call
999     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1000     // doesn't at MO_GOT which is not needed for direct calls.
1001     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1002     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1003                                         getPointerTy(DAG.getDataLayout()),
1004                                         GA->getOffset());
1005     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1006                          getPointerTy(DAG.getDataLayout()), Callee);
1007   }
1008 
1009   // Compute the operands for the CALLn node.
1010   SmallVector<SDValue, 16> Ops;
1011   Ops.push_back(Chain);
1012   Ops.push_back(Callee);
1013 
1014   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1015   // isn't reliable.
1016   Ops.append(OutVals.begin(),
1017              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1018   // Add a pointer to the vararg buffer.
1019   if (IsVarArg)
1020     Ops.push_back(FINode);
1021 
1022   SmallVector<EVT, 8> InTys;
1023   for (const auto &In : Ins) {
1024     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1025     assert(!In.Flags.isNest() && "nest is not valid for return values");
1026     if (In.Flags.isInAlloca())
1027       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1028     if (In.Flags.isInConsecutiveRegs())
1029       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1030     if (In.Flags.isInConsecutiveRegsLast())
1031       fail(DL, DAG,
1032            "WebAssembly hasn't implemented cons regs last return values");
1033     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1034     // registers.
1035     InTys.push_back(In.VT);
1036   }
1037 
1038   if (CLI.IsTailCall) {
1039     // ret_calls do not return values to the current frame
1040     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1041     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1042   }
1043 
1044   InTys.push_back(MVT::Other);
1045   SDVTList InTyList = DAG.getVTList(InTys);
1046   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1047 
1048   for (size_t I = 0; I < Ins.size(); ++I)
1049     InVals.push_back(Res.getValue(I));
1050 
1051   // Return the chain
1052   return Res.getValue(Ins.size());
1053 }
1054 
1055 bool WebAssemblyTargetLowering::CanLowerReturn(
1056     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1057     const SmallVectorImpl<ISD::OutputArg> &Outs,
1058     LLVMContext & /*Context*/) const {
1059   // WebAssembly can only handle returning tuples with multivalue enabled
1060   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1061 }
1062 
1063 SDValue WebAssemblyTargetLowering::LowerReturn(
1064     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1065     const SmallVectorImpl<ISD::OutputArg> &Outs,
1066     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1067     SelectionDAG &DAG) const {
1068   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1069          "MVP WebAssembly can only return up to one value");
1070   if (!callingConvSupported(CallConv))
1071     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1072 
1073   SmallVector<SDValue, 4> RetOps(1, Chain);
1074   RetOps.append(OutVals.begin(), OutVals.end());
1075   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1076 
1077   // Record the number and types of the return values.
1078   for (const ISD::OutputArg &Out : Outs) {
1079     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1080     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1081     assert(Out.IsFixed && "non-fixed return value is not valid");
1082     if (Out.Flags.isInAlloca())
1083       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1084     if (Out.Flags.isInConsecutiveRegs())
1085       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1086     if (Out.Flags.isInConsecutiveRegsLast())
1087       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1088   }
1089 
1090   return Chain;
1091 }
1092 
1093 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1094     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1095     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1096     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1097   if (!callingConvSupported(CallConv))
1098     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1099 
1100   MachineFunction &MF = DAG.getMachineFunction();
1101   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1102 
1103   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1104   // of the incoming values before they're represented by virtual registers.
1105   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1106 
1107   bool HasSwiftErrorArg = false;
1108   bool HasSwiftSelfArg = false;
1109   for (const ISD::InputArg &In : Ins) {
1110     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1111     HasSwiftErrorArg |= In.Flags.isSwiftError();
1112     if (In.Flags.isInAlloca())
1113       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1114     if (In.Flags.isNest())
1115       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1116     if (In.Flags.isInConsecutiveRegs())
1117       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1118     if (In.Flags.isInConsecutiveRegsLast())
1119       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1120     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1121     // registers.
1122     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1123                                            DAG.getTargetConstant(InVals.size(),
1124                                                                  DL, MVT::i32))
1125                              : DAG.getUNDEF(In.VT));
1126 
1127     // Record the number and types of arguments.
1128     MFI->addParam(In.VT);
1129   }
1130 
1131   // For swiftcc, emit additional swiftself and swifterror arguments
1132   // if there aren't. These additional arguments are also added for callee
1133   // signature They are necessary to match callee and caller signature for
1134   // indirect call.
1135   auto PtrVT = getPointerTy(MF.getDataLayout());
1136   if (CallConv == CallingConv::Swift) {
1137     if (!HasSwiftSelfArg) {
1138       MFI->addParam(PtrVT);
1139     }
1140     if (!HasSwiftErrorArg) {
1141       MFI->addParam(PtrVT);
1142     }
1143   }
1144   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1145   // the buffer is passed as an argument.
1146   if (IsVarArg) {
1147     MVT PtrVT = getPointerTy(MF.getDataLayout());
1148     Register VarargVreg =
1149         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1150     MFI->setVarargBufferVreg(VarargVreg);
1151     Chain = DAG.getCopyToReg(
1152         Chain, DL, VarargVreg,
1153         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1154                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1155     MFI->addParam(PtrVT);
1156   }
1157 
1158   // Record the number and types of arguments and results.
1159   SmallVector<MVT, 4> Params;
1160   SmallVector<MVT, 4> Results;
1161   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1162                       MF.getFunction(), DAG.getTarget(), Params, Results);
1163   for (MVT VT : Results)
1164     MFI->addResult(VT);
1165   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1166   // the param logic here with ComputeSignatureVTs
1167   assert(MFI->getParams().size() == Params.size() &&
1168          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1169                     Params.begin()));
1170 
1171   return Chain;
1172 }
1173 
1174 void WebAssemblyTargetLowering::ReplaceNodeResults(
1175     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1176   switch (N->getOpcode()) {
1177   case ISD::SIGN_EXTEND_INREG:
1178     // Do not add any results, signifying that N should not be custom lowered
1179     // after all. This happens because simd128 turns on custom lowering for
1180     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1181     // illegal type.
1182     break;
1183   default:
1184     llvm_unreachable(
1185         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1186   }
1187 }
1188 
1189 //===----------------------------------------------------------------------===//
1190 //  Custom lowering hooks.
1191 //===----------------------------------------------------------------------===//
1192 
1193 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1194                                                   SelectionDAG &DAG) const {
1195   SDLoc DL(Op);
1196   switch (Op.getOpcode()) {
1197   default:
1198     llvm_unreachable("unimplemented operation lowering");
1199     return SDValue();
1200   case ISD::FrameIndex:
1201     return LowerFrameIndex(Op, DAG);
1202   case ISD::GlobalAddress:
1203     return LowerGlobalAddress(Op, DAG);
1204   case ISD::GlobalTLSAddress:
1205     return LowerGlobalTLSAddress(Op, DAG);
1206   case ISD::ExternalSymbol:
1207     return LowerExternalSymbol(Op, DAG);
1208   case ISD::JumpTable:
1209     return LowerJumpTable(Op, DAG);
1210   case ISD::BR_JT:
1211     return LowerBR_JT(Op, DAG);
1212   case ISD::VASTART:
1213     return LowerVASTART(Op, DAG);
1214   case ISD::BlockAddress:
1215   case ISD::BRIND:
1216     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1217     return SDValue();
1218   case ISD::RETURNADDR:
1219     return LowerRETURNADDR(Op, DAG);
1220   case ISD::FRAMEADDR:
1221     return LowerFRAMEADDR(Op, DAG);
1222   case ISD::CopyToReg:
1223     return LowerCopyToReg(Op, DAG);
1224   case ISD::EXTRACT_VECTOR_ELT:
1225   case ISD::INSERT_VECTOR_ELT:
1226     return LowerAccessVectorElement(Op, DAG);
1227   case ISD::INTRINSIC_VOID:
1228   case ISD::INTRINSIC_WO_CHAIN:
1229   case ISD::INTRINSIC_W_CHAIN:
1230     return LowerIntrinsic(Op, DAG);
1231   case ISD::SIGN_EXTEND_INREG:
1232     return LowerSIGN_EXTEND_INREG(Op, DAG);
1233   case ISD::BUILD_VECTOR:
1234     return LowerBUILD_VECTOR(Op, DAG);
1235   case ISD::VECTOR_SHUFFLE:
1236     return LowerVECTOR_SHUFFLE(Op, DAG);
1237   case ISD::SETCC:
1238     return LowerSETCC(Op, DAG);
1239   case ISD::SHL:
1240   case ISD::SRA:
1241   case ISD::SRL:
1242     return LowerShift(Op, DAG);
1243   case ISD::FP_TO_SINT_SAT:
1244   case ISD::FP_TO_UINT_SAT:
1245     return LowerFP_TO_INT_SAT(Op, DAG);
1246   case ISD::LOAD:
1247     return LowerLoad(Op, DAG);
1248   case ISD::STORE:
1249     return LowerStore(Op, DAG);
1250   }
1251 }
1252 
1253 static bool IsWebAssemblyGlobal(SDValue Op) {
1254   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1255     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1256 
1257   return false;
1258 }
1259 
1260 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
1261   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1262   if (!FI)
1263     return None;
1264 
1265   auto &MF = DAG.getMachineFunction();
1266   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1267 }
1268 
1269 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1270                                               SelectionDAG &DAG) const {
1271   SDLoc DL(Op);
1272   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1273   const SDValue &Value = SN->getValue();
1274   const SDValue &Base = SN->getBasePtr();
1275   const SDValue &Offset = SN->getOffset();
1276 
1277   if (IsWebAssemblyGlobal(Base)) {
1278     if (!Offset->isUndef())
1279       report_fatal_error("unexpected offset when storing to webassembly global",
1280                          false);
1281 
1282     SDVTList Tys = DAG.getVTList(MVT::Other);
1283     SDValue Ops[] = {SN->getChain(), Value, Base};
1284     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1285                                    SN->getMemoryVT(), SN->getMemOperand());
1286   }
1287 
1288   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1289     if (!Offset->isUndef())
1290       report_fatal_error("unexpected offset when storing to webassembly local",
1291                          false);
1292 
1293     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1294     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1295     SDValue Ops[] = {SN->getChain(), Idx, Value};
1296     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1297   }
1298 
1299   return Op;
1300 }
1301 
1302 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1303                                              SelectionDAG &DAG) const {
1304   SDLoc DL(Op);
1305   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1306   const SDValue &Base = LN->getBasePtr();
1307   const SDValue &Offset = LN->getOffset();
1308 
1309   if (IsWebAssemblyGlobal(Base)) {
1310     if (!Offset->isUndef())
1311       report_fatal_error(
1312           "unexpected offset when loading from webassembly global", false);
1313 
1314     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1315     SDValue Ops[] = {LN->getChain(), Base};
1316     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1317                                    LN->getMemoryVT(), LN->getMemOperand());
1318   }
1319 
1320   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1321     if (!Offset->isUndef())
1322       report_fatal_error(
1323           "unexpected offset when loading from webassembly local", false);
1324 
1325     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1326     EVT LocalVT = LN->getValueType(0);
1327     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1328                                    {LN->getChain(), Idx});
1329     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1330     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1331     return Result;
1332   }
1333 
1334   return Op;
1335 }
1336 
1337 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1338                                                   SelectionDAG &DAG) const {
1339   SDValue Src = Op.getOperand(2);
1340   if (isa<FrameIndexSDNode>(Src.getNode())) {
1341     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1342     // the FI to some LEA-like instruction, but since we don't have that, we
1343     // need to insert some kind of instruction that can take an FI operand and
1344     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1345     // local.copy between Op and its FI operand.
1346     SDValue Chain = Op.getOperand(0);
1347     SDLoc DL(Op);
1348     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1349     EVT VT = Src.getValueType();
1350     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1351                                                    : WebAssembly::COPY_I64,
1352                                     DL, VT, Src),
1353                  0);
1354     return Op.getNode()->getNumValues() == 1
1355                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1356                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1357                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1358                                                            : SDValue());
1359   }
1360   return SDValue();
1361 }
1362 
1363 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1364                                                    SelectionDAG &DAG) const {
1365   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1366   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1367 }
1368 
1369 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1370                                                    SelectionDAG &DAG) const {
1371   SDLoc DL(Op);
1372 
1373   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1374     fail(DL, DAG,
1375          "Non-Emscripten WebAssembly hasn't implemented "
1376          "__builtin_return_address");
1377     return SDValue();
1378   }
1379 
1380   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1381     return SDValue();
1382 
1383   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1384   MakeLibCallOptions CallOptions;
1385   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1386                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1387       .first;
1388 }
1389 
1390 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1391                                                   SelectionDAG &DAG) const {
1392   // Non-zero depths are not supported by WebAssembly currently. Use the
1393   // legalizer's default expansion, which is to return 0 (what this function is
1394   // documented to do).
1395   if (Op.getConstantOperandVal(0) > 0)
1396     return SDValue();
1397 
1398   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1399   EVT VT = Op.getValueType();
1400   Register FP =
1401       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1402   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1403 }
1404 
1405 SDValue
1406 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1407                                                  SelectionDAG &DAG) const {
1408   SDLoc DL(Op);
1409   const auto *GA = cast<GlobalAddressSDNode>(Op);
1410   MVT PtrVT = getPointerTy(DAG.getDataLayout());
1411 
1412   MachineFunction &MF = DAG.getMachineFunction();
1413   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1414     report_fatal_error("cannot use thread-local storage without bulk memory",
1415                        false);
1416 
1417   const GlobalValue *GV = GA->getGlobal();
1418 
1419   // Currently Emscripten does not support dynamic linking with threads.
1420   // Therefore, if we have thread-local storage, only the local-exec model
1421   // is possible.
1422   // TODO: remove this and implement proper TLS models once Emscripten
1423   // supports dynamic linking with threads.
1424   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1425       !Subtarget->getTargetTriple().isOSEmscripten()) {
1426     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1427                        "non-Emscripten OSes: variable " +
1428                            GV->getName(),
1429                        false);
1430   }
1431 
1432   auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1433                                      : WebAssembly::GLOBAL_GET_I32;
1434   const char *BaseName = MF.createExternalSymbolName("__tls_base");
1435 
1436   SDValue BaseAddr(
1437       DAG.getMachineNode(GlobalGet, DL, PtrVT,
1438                          DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1439       0);
1440 
1441   SDValue TLSOffset = DAG.getTargetGlobalAddress(
1442       GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1443   SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset);
1444 
1445   return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1446 }
1447 
1448 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1449                                                       SelectionDAG &DAG) const {
1450   SDLoc DL(Op);
1451   const auto *GA = cast<GlobalAddressSDNode>(Op);
1452   EVT VT = Op.getValueType();
1453   assert(GA->getTargetFlags() == 0 &&
1454          "Unexpected target flags on generic GlobalAddressSDNode");
1455   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1456     fail(DL, DAG, "Invalid address space for WebAssembly target");
1457 
1458   unsigned OperandFlags = 0;
1459   if (isPositionIndependent()) {
1460     const GlobalValue *GV = GA->getGlobal();
1461     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1462       MachineFunction &MF = DAG.getMachineFunction();
1463       MVT PtrVT = getPointerTy(MF.getDataLayout());
1464       const char *BaseName;
1465       if (GV->getValueType()->isFunctionTy()) {
1466         BaseName = MF.createExternalSymbolName("__table_base");
1467         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1468       }
1469       else {
1470         BaseName = MF.createExternalSymbolName("__memory_base");
1471         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1472       }
1473       SDValue BaseAddr =
1474           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1475                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1476 
1477       SDValue SymAddr = DAG.getNode(
1478           WebAssemblyISD::WrapperPIC, DL, VT,
1479           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1480                                      OperandFlags));
1481 
1482       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1483     } else {
1484       OperandFlags = WebAssemblyII::MO_GOT;
1485     }
1486   }
1487 
1488   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1489                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1490                                                 GA->getOffset(), OperandFlags));
1491 }
1492 
1493 SDValue
1494 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1495                                                SelectionDAG &DAG) const {
1496   SDLoc DL(Op);
1497   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1498   EVT VT = Op.getValueType();
1499   assert(ES->getTargetFlags() == 0 &&
1500          "Unexpected target flags on generic ExternalSymbolSDNode");
1501   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1502                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1503 }
1504 
1505 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1506                                                   SelectionDAG &DAG) const {
1507   // There's no need for a Wrapper node because we always incorporate a jump
1508   // table operand into a BR_TABLE instruction, rather than ever
1509   // materializing it in a register.
1510   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1511   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1512                                 JT->getTargetFlags());
1513 }
1514 
1515 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1516                                               SelectionDAG &DAG) const {
1517   SDLoc DL(Op);
1518   SDValue Chain = Op.getOperand(0);
1519   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1520   SDValue Index = Op.getOperand(2);
1521   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1522 
1523   SmallVector<SDValue, 8> Ops;
1524   Ops.push_back(Chain);
1525   Ops.push_back(Index);
1526 
1527   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1528   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1529 
1530   // Add an operand for each case.
1531   for (auto MBB : MBBs)
1532     Ops.push_back(DAG.getBasicBlock(MBB));
1533 
1534   // Add the first MBB as a dummy default target for now. This will be replaced
1535   // with the proper default target (and the preceding range check eliminated)
1536   // if possible by WebAssemblyFixBrTableDefaults.
1537   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1538   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1539 }
1540 
1541 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1542                                                 SelectionDAG &DAG) const {
1543   SDLoc DL(Op);
1544   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1545 
1546   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1547   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1548 
1549   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1550                                     MFI->getVarargBufferVreg(), PtrVT);
1551   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1552                       MachinePointerInfo(SV));
1553 }
1554 
1555 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex,
1556                                       SelectionDAG &DAG) {
1557   // We only support C++ exceptions for now
1558   int Tag =
1559       cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue();
1560   if (Tag != WebAssembly::CPP_EXCEPTION)
1561     llvm_unreachable("Invalid tag: We only support C++ exceptions for now");
1562   auto &MF = DAG.getMachineFunction();
1563   const auto &TLI = DAG.getTargetLoweringInfo();
1564   MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1565   const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1566   return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT,
1567                      DAG.getTargetExternalSymbol(SymName, PtrVT));
1568 }
1569 
1570 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1571                                                   SelectionDAG &DAG) const {
1572   MachineFunction &MF = DAG.getMachineFunction();
1573   unsigned IntNo;
1574   switch (Op.getOpcode()) {
1575   case ISD::INTRINSIC_VOID:
1576   case ISD::INTRINSIC_W_CHAIN:
1577     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1578     break;
1579   case ISD::INTRINSIC_WO_CHAIN:
1580     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1581     break;
1582   default:
1583     llvm_unreachable("Invalid intrinsic");
1584   }
1585   SDLoc DL(Op);
1586 
1587   switch (IntNo) {
1588   default:
1589     return SDValue(); // Don't custom lower most intrinsics.
1590 
1591   case Intrinsic::wasm_lsda: {
1592     EVT VT = Op.getValueType();
1593     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1594     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1595     auto &Context = MF.getMMI().getContext();
1596     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1597                                             Twine(MF.getFunctionNumber()));
1598     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1599                        DAG.getMCSymbol(S, PtrVT));
1600   }
1601 
1602   case Intrinsic::wasm_throw: {
1603     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1604     return DAG.getNode(WebAssemblyISD::THROW, DL,
1605                        MVT::Other, // outchain type
1606                        {
1607                            Op.getOperand(0), // inchain
1608                            SymNode,          // exception symbol
1609                            Op.getOperand(3)  // thrown value
1610                        });
1611   }
1612 
1613   case Intrinsic::wasm_catch: {
1614     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1615     return DAG.getNode(WebAssemblyISD::CATCH, DL,
1616                        {
1617                            MVT::i32,  // outchain type
1618                            MVT::Other // return value
1619                        },
1620                        {
1621                            Op.getOperand(0), // inchain
1622                            SymNode           // exception symbol
1623                        });
1624   }
1625 
1626   case Intrinsic::wasm_shuffle: {
1627     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1628     SDValue Ops[18];
1629     size_t OpIdx = 0;
1630     Ops[OpIdx++] = Op.getOperand(1);
1631     Ops[OpIdx++] = Op.getOperand(2);
1632     while (OpIdx < 18) {
1633       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1634       if (MaskIdx.isUndef() ||
1635           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1636         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1637       } else {
1638         Ops[OpIdx++] = MaskIdx;
1639       }
1640     }
1641     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1642   }
1643   }
1644 }
1645 
1646 SDValue
1647 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1648                                                   SelectionDAG &DAG) const {
1649   SDLoc DL(Op);
1650   // If sign extension operations are disabled, allow sext_inreg only if operand
1651   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1652   // extension operations, but allowing sext_inreg in this context lets us have
1653   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1654   // everywhere would be simpler in this file, but would necessitate large and
1655   // brittle patterns to undo the expansion and select extract_lane_s
1656   // instructions.
1657   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1658   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1659     return SDValue();
1660 
1661   const SDValue &Extract = Op.getOperand(0);
1662   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1663   if (VecT.getVectorElementType().getSizeInBits() > 32)
1664     return SDValue();
1665   MVT ExtractedLaneT =
1666       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1667   MVT ExtractedVecT =
1668       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1669   if (ExtractedVecT == VecT)
1670     return Op;
1671 
1672   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1673   const SDNode *Index = Extract.getOperand(1).getNode();
1674   if (!isa<ConstantSDNode>(Index))
1675     return SDValue();
1676   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1677   unsigned Scale =
1678       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1679   assert(Scale > 1);
1680   SDValue NewIndex =
1681       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1682   SDValue NewExtract = DAG.getNode(
1683       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1684       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1685   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1686                      Op.getOperand(1));
1687 }
1688 
1689 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1690                                                      SelectionDAG &DAG) const {
1691   SDLoc DL(Op);
1692   const EVT VecT = Op.getValueType();
1693   const EVT LaneT = Op.getOperand(0).getValueType();
1694   const size_t Lanes = Op.getNumOperands();
1695   bool CanSwizzle = VecT == MVT::v16i8;
1696 
1697   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1698   // possible number of lanes at once followed by a sequence of replace_lane
1699   // instructions to individually initialize any remaining lanes.
1700 
1701   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1702   // swizzled lanes should be given greater weight.
1703 
1704   // TODO: Investigate looping rather than always extracting/replacing specific
1705   // lanes to fill gaps.
1706 
1707   auto IsConstant = [](const SDValue &V) {
1708     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1709   };
1710 
1711   // Returns the source vector and index vector pair if they exist. Checks for:
1712   //   (extract_vector_elt
1713   //     $src,
1714   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1715   //   )
1716   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1717     auto Bail = std::make_pair(SDValue(), SDValue());
1718     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1719       return Bail;
1720     const SDValue &SwizzleSrc = Lane->getOperand(0);
1721     const SDValue &IndexExt = Lane->getOperand(1);
1722     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1723       return Bail;
1724     const SDValue &Index = IndexExt->getOperand(0);
1725     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1726       return Bail;
1727     const SDValue &SwizzleIndices = Index->getOperand(0);
1728     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1729         SwizzleIndices.getValueType() != MVT::v16i8 ||
1730         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1731         Index->getConstantOperandVal(1) != I)
1732       return Bail;
1733     return std::make_pair(SwizzleSrc, SwizzleIndices);
1734   };
1735 
1736   // If the lane is extracted from another vector at a constant index, return
1737   // that vector. The source vector must not have more lanes than the dest
1738   // because the shufflevector indices are in terms of the destination lanes and
1739   // would not be able to address the smaller individual source lanes.
1740   auto GetShuffleSrc = [&](const SDValue &Lane) {
1741     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1742       return SDValue();
1743     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
1744       return SDValue();
1745     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
1746         VecT.getVectorNumElements())
1747       return SDValue();
1748     return Lane->getOperand(0);
1749   };
1750 
1751   using ValueEntry = std::pair<SDValue, size_t>;
1752   SmallVector<ValueEntry, 16> SplatValueCounts;
1753 
1754   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1755   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1756 
1757   using ShuffleEntry = std::pair<SDValue, size_t>;
1758   SmallVector<ShuffleEntry, 16> ShuffleCounts;
1759 
1760   auto AddCount = [](auto &Counts, const auto &Val) {
1761     auto CountIt =
1762         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
1763     if (CountIt == Counts.end()) {
1764       Counts.emplace_back(Val, 1);
1765     } else {
1766       CountIt->second++;
1767     }
1768   };
1769 
1770   auto GetMostCommon = [](auto &Counts) {
1771     auto CommonIt =
1772         std::max_element(Counts.begin(), Counts.end(),
1773                          [](auto A, auto B) { return A.second < B.second; });
1774     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1775     return *CommonIt;
1776   };
1777 
1778   size_t NumConstantLanes = 0;
1779 
1780   // Count eligible lanes for each type of vector creation op
1781   for (size_t I = 0; I < Lanes; ++I) {
1782     const SDValue &Lane = Op->getOperand(I);
1783     if (Lane.isUndef())
1784       continue;
1785 
1786     AddCount(SplatValueCounts, Lane);
1787 
1788     if (IsConstant(Lane))
1789       NumConstantLanes++;
1790     if (auto ShuffleSrc = GetShuffleSrc(Lane))
1791       AddCount(ShuffleCounts, ShuffleSrc);
1792     if (CanSwizzle) {
1793       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1794       if (SwizzleSrcs.first)
1795         AddCount(SwizzleCounts, SwizzleSrcs);
1796     }
1797   }
1798 
1799   SDValue SplatValue;
1800   size_t NumSplatLanes;
1801   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1802 
1803   SDValue SwizzleSrc;
1804   SDValue SwizzleIndices;
1805   size_t NumSwizzleLanes = 0;
1806   if (SwizzleCounts.size())
1807     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1808                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1809 
1810   // Shuffles can draw from up to two vectors, so find the two most common
1811   // sources.
1812   SDValue ShuffleSrc1, ShuffleSrc2;
1813   size_t NumShuffleLanes = 0;
1814   if (ShuffleCounts.size()) {
1815     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
1816     ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(),
1817                                        ShuffleCounts.end(),
1818                                        [&](const auto &Pair) {
1819                                          return Pair.first == ShuffleSrc1;
1820                                        }),
1821                         ShuffleCounts.end());
1822   }
1823   if (ShuffleCounts.size()) {
1824     size_t AdditionalShuffleLanes;
1825     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
1826         GetMostCommon(ShuffleCounts);
1827     NumShuffleLanes += AdditionalShuffleLanes;
1828   }
1829 
1830   // Predicate returning true if the lane is properly initialized by the
1831   // original instruction
1832   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1833   SDValue Result;
1834   // Prefer swizzles over shuffles over vector consts over splats
1835   if (NumSwizzleLanes >= NumShuffleLanes &&
1836       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
1837     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1838                          SwizzleIndices);
1839     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1840     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1841       return Swizzled == GetSwizzleSrcs(I, Lane);
1842     };
1843   } else if (NumShuffleLanes >= NumConstantLanes &&
1844              NumShuffleLanes >= NumSplatLanes) {
1845     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
1846     size_t DestLaneCount = VecT.getVectorNumElements();
1847     size_t Scale1 = 1;
1848     size_t Scale2 = 1;
1849     SDValue Src1 = ShuffleSrc1;
1850     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
1851     if (Src1.getValueType() != VecT) {
1852       size_t LaneSize =
1853           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1854       assert(LaneSize > DestLaneSize);
1855       Scale1 = LaneSize / DestLaneSize;
1856       Src1 = DAG.getBitcast(VecT, Src1);
1857     }
1858     if (Src2.getValueType() != VecT) {
1859       size_t LaneSize =
1860           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1861       assert(LaneSize > DestLaneSize);
1862       Scale2 = LaneSize / DestLaneSize;
1863       Src2 = DAG.getBitcast(VecT, Src2);
1864     }
1865 
1866     int Mask[16];
1867     assert(DestLaneCount <= 16);
1868     for (size_t I = 0; I < DestLaneCount; ++I) {
1869       const SDValue &Lane = Op->getOperand(I);
1870       SDValue Src = GetShuffleSrc(Lane);
1871       if (Src == ShuffleSrc1) {
1872         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
1873       } else if (Src && Src == ShuffleSrc2) {
1874         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
1875       } else {
1876         Mask[I] = -1;
1877       }
1878     }
1879     ArrayRef<int> MaskRef(Mask, DestLaneCount);
1880     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
1881     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
1882       auto Src = GetShuffleSrc(Lane);
1883       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
1884     };
1885   } else if (NumConstantLanes >= NumSplatLanes) {
1886     SmallVector<SDValue, 16> ConstLanes;
1887     for (const SDValue &Lane : Op->op_values()) {
1888       if (IsConstant(Lane)) {
1889         ConstLanes.push_back(Lane);
1890       } else if (LaneT.isFloatingPoint()) {
1891         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1892       } else {
1893         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1894       }
1895     }
1896     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1897     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1898       return IsConstant(Lane);
1899     };
1900   } else {
1901     // Use a splat, but possibly a load_splat
1902     LoadSDNode *SplattedLoad;
1903     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1904         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1905       Result = DAG.getMemIntrinsicNode(
1906           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1907           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1908            SplattedLoad->getOffset()},
1909           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1910     } else {
1911       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1912     }
1913     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
1914       return Lane == SplatValue;
1915     };
1916   }
1917 
1918   assert(Result);
1919   assert(IsLaneConstructed);
1920 
1921   // Add replace_lane instructions for any unhandled values
1922   for (size_t I = 0; I < Lanes; ++I) {
1923     const SDValue &Lane = Op->getOperand(I);
1924     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1925       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1926                            DAG.getConstant(I, DL, MVT::i32));
1927   }
1928 
1929   return Result;
1930 }
1931 
1932 SDValue
1933 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1934                                                SelectionDAG &DAG) const {
1935   SDLoc DL(Op);
1936   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1937   MVT VecType = Op.getOperand(0).getSimpleValueType();
1938   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1939   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1940 
1941   // Space for two vector args and sixteen mask indices
1942   SDValue Ops[18];
1943   size_t OpIdx = 0;
1944   Ops[OpIdx++] = Op.getOperand(0);
1945   Ops[OpIdx++] = Op.getOperand(1);
1946 
1947   // Expand mask indices to byte indices and materialize them as operands
1948   for (int M : Mask) {
1949     for (size_t J = 0; J < LaneBytes; ++J) {
1950       // Lower undefs (represented by -1 in mask) to zero
1951       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1952       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1953     }
1954   }
1955 
1956   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1957 }
1958 
1959 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
1960                                               SelectionDAG &DAG) const {
1961   SDLoc DL(Op);
1962   // The legalizer does not know how to expand the unsupported comparison modes
1963   // of i64x2 vectors, so we manually unroll them here.
1964   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
1965   SmallVector<SDValue, 2> LHS, RHS;
1966   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
1967   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
1968   const SDValue &CC = Op->getOperand(2);
1969   auto MakeLane = [&](unsigned I) {
1970     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
1971                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
1972                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
1973   };
1974   return DAG.getBuildVector(Op->getValueType(0), DL,
1975                             {MakeLane(0), MakeLane(1)});
1976 }
1977 
1978 SDValue
1979 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1980                                                     SelectionDAG &DAG) const {
1981   // Allow constant lane indices, expand variable lane indices
1982   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1983   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1984     return Op;
1985   else
1986     // Perform default expansion
1987     return SDValue();
1988 }
1989 
1990 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1991   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1992   // 32-bit and 64-bit unrolled shifts will have proper semantics
1993   if (LaneT.bitsGE(MVT::i32))
1994     return DAG.UnrollVectorOp(Op.getNode());
1995   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1996   SDLoc DL(Op);
1997   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
1998   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
1999   unsigned ShiftOpcode = Op.getOpcode();
2000   SmallVector<SDValue, 16> ShiftedElements;
2001   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2002   SmallVector<SDValue, 16> ShiftElements;
2003   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2004   SmallVector<SDValue, 16> UnrolledOps;
2005   for (size_t i = 0; i < NumLanes; ++i) {
2006     SDValue MaskedShiftValue =
2007         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2008     SDValue ShiftedValue = ShiftedElements[i];
2009     if (ShiftOpcode == ISD::SRA)
2010       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2011                                  ShiftedValue, DAG.getValueType(LaneT));
2012     UnrolledOps.push_back(
2013         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2014   }
2015   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2016 }
2017 
2018 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2019                                               SelectionDAG &DAG) const {
2020   SDLoc DL(Op);
2021 
2022   // Only manually lower vector shifts
2023   assert(Op.getSimpleValueType().isVector());
2024 
2025   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2026   if (!ShiftVal)
2027     return unrollVectorShift(Op, DAG);
2028 
2029   // Use anyext because none of the high bits can affect the shift
2030   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2031 
2032   unsigned Opcode;
2033   switch (Op.getOpcode()) {
2034   case ISD::SHL:
2035     Opcode = WebAssemblyISD::VEC_SHL;
2036     break;
2037   case ISD::SRA:
2038     Opcode = WebAssemblyISD::VEC_SHR_S;
2039     break;
2040   case ISD::SRL:
2041     Opcode = WebAssemblyISD::VEC_SHR_U;
2042     break;
2043   default:
2044     llvm_unreachable("unexpected opcode");
2045   }
2046 
2047   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2048 }
2049 
2050 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2051                                                       SelectionDAG &DAG) const {
2052   SDLoc DL(Op);
2053   EVT ResT = Op.getValueType();
2054   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2055 
2056   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2057       (SatVT == MVT::i32 || SatVT == MVT::i64))
2058     return Op;
2059 
2060   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2061     return Op;
2062 
2063   return SDValue();
2064 }
2065 
2066 //===----------------------------------------------------------------------===//
2067 //   Custom DAG combine hooks
2068 //===----------------------------------------------------------------------===//
2069 static SDValue
2070 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2071   auto &DAG = DCI.DAG;
2072   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2073 
2074   // Hoist vector bitcasts that don't change the number of lanes out of unary
2075   // shuffles, where they are less likely to get in the way of other combines.
2076   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2077   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2078   SDValue Bitcast = N->getOperand(0);
2079   if (Bitcast.getOpcode() != ISD::BITCAST)
2080     return SDValue();
2081   if (!N->getOperand(1).isUndef())
2082     return SDValue();
2083   SDValue CastOp = Bitcast.getOperand(0);
2084   MVT SrcType = CastOp.getSimpleValueType();
2085   MVT DstType = Bitcast.getSimpleValueType();
2086   if (!SrcType.is128BitVector() ||
2087       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2088     return SDValue();
2089   SDValue NewShuffle = DAG.getVectorShuffle(
2090       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2091   return DAG.getBitcast(DstType, NewShuffle);
2092 }
2093 
2094 static SDValue
2095 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2096   auto &DAG = DCI.DAG;
2097   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2098          N->getOpcode() == ISD::ZERO_EXTEND);
2099 
2100   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2101   // possible before the extract_subvector can be expanded.
2102   auto Extract = N->getOperand(0);
2103   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2104     return SDValue();
2105   auto Source = Extract.getOperand(0);
2106   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2107   if (IndexNode == nullptr)
2108     return SDValue();
2109   auto Index = IndexNode->getZExtValue();
2110 
2111   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2112   // extracted subvector is the low or high half of its source.
2113   EVT ResVT = N->getValueType(0);
2114   if (ResVT == MVT::v8i16) {
2115     if (Extract.getValueType() != MVT::v8i8 ||
2116         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2117       return SDValue();
2118   } else if (ResVT == MVT::v4i32) {
2119     if (Extract.getValueType() != MVT::v4i16 ||
2120         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2121       return SDValue();
2122   } else if (ResVT == MVT::v2i64) {
2123     if (Extract.getValueType() != MVT::v2i32 ||
2124         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2125       return SDValue();
2126   } else {
2127     return SDValue();
2128   }
2129 
2130   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2131   bool IsLow = Index == 0;
2132 
2133   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2134                                 : WebAssemblyISD::EXTEND_HIGH_S)
2135                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2136                                 : WebAssemblyISD::EXTEND_HIGH_U);
2137 
2138   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2139 }
2140 
2141 static SDValue
2142 performVectorConvertLowCombine(SDNode *N,
2143                                TargetLowering::DAGCombinerInfo &DCI) {
2144   auto &DAG = DCI.DAG;
2145 
2146   EVT ResVT = N->getValueType(0);
2147   if (ResVT != MVT::v2f64)
2148     return SDValue();
2149 
2150   auto GetWasmConversionOp = [](unsigned Op) {
2151     switch (Op) {
2152     case ISD::SINT_TO_FP:
2153       return WebAssemblyISD::CONVERT_LOW_S;
2154     case ISD::UINT_TO_FP:
2155       return WebAssemblyISD::CONVERT_LOW_U;
2156     case ISD::FP_EXTEND:
2157       return WebAssemblyISD::PROMOTE_LOW;
2158     }
2159     llvm_unreachable("unexpected op");
2160   };
2161 
2162   if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
2163     // Combine this:
2164     //
2165     //   (v2f64 (extract_subvector
2166     //     (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0))
2167     //
2168     // into (f64x2.convert_low_i32x4_{s,u} $x).
2169     //
2170     // Or this:
2171     //
2172     //  (v2f64 (extract_subvector
2173     //    (v4f64 (fp_extend (v4f32 $x))), 0))
2174     //
2175     // into (f64x2.promote_low_f32x4 $x).
2176     auto Conversion = N->getOperand(0);
2177     auto ConversionOp = Conversion.getOpcode();
2178     MVT ExpectedSourceType;
2179     switch (ConversionOp) {
2180     case ISD::SINT_TO_FP:
2181     case ISD::UINT_TO_FP:
2182       ExpectedSourceType = MVT::v4i32;
2183       break;
2184     case ISD::FP_EXTEND:
2185       ExpectedSourceType = MVT::v4f32;
2186       break;
2187     default:
2188       return SDValue();
2189     }
2190 
2191     if (Conversion.getValueType() != MVT::v4f64)
2192       return SDValue();
2193 
2194     auto Source = Conversion.getOperand(0);
2195     if (Source.getValueType() != ExpectedSourceType)
2196       return SDValue();
2197 
2198     auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
2199     if (IndexNode == nullptr || IndexNode->getZExtValue() != 0)
2200       return SDValue();
2201 
2202     auto Op = GetWasmConversionOp(ConversionOp);
2203     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2204   }
2205 
2206   // Combine this:
2207   //
2208   //   (v2f64 ({s,u}int_to_fp
2209   //     (v2i32 (extract_subvector (v4i32 $x), 0))))
2210   //
2211   // into (f64x2.convert_low_i32x4_{s,u} $x).
2212   //
2213   // Or this:
2214   //
2215   //   (v2f64 (fp_extend
2216   //     (v2f32 (extract_subvector (v4f32 $x), 0))))
2217   //
2218   // into (f64x2.promote_low_f32x4 $x).
2219   auto ConversionOp = N->getOpcode();
2220   MVT ExpectedExtractType;
2221   MVT ExpectedSourceType;
2222   switch (ConversionOp) {
2223   case ISD::SINT_TO_FP:
2224   case ISD::UINT_TO_FP:
2225     ExpectedExtractType = MVT::v2i32;
2226     ExpectedSourceType = MVT::v4i32;
2227     break;
2228   case ISD::FP_EXTEND:
2229     ExpectedExtractType = MVT::v2f32;
2230     ExpectedSourceType = MVT::v4f32;
2231     break;
2232   default:
2233     llvm_unreachable("unexpected opcode");
2234   }
2235 
2236   auto Extract = N->getOperand(0);
2237   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2238     return SDValue();
2239 
2240   if (Extract.getValueType() != ExpectedExtractType)
2241     return SDValue();
2242 
2243   auto Source = Extract.getOperand(0);
2244   if (Source.getValueType() != ExpectedSourceType)
2245     return SDValue();
2246 
2247   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2248   if (IndexNode == nullptr || IndexNode->getZExtValue() != 0)
2249     return SDValue();
2250 
2251   unsigned Op = GetWasmConversionOp(ConversionOp);
2252   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2253 }
2254 
2255 static SDValue
2256 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2257   auto &DAG = DCI.DAG;
2258 
2259   auto GetWasmConversionOp = [](unsigned Op) {
2260     switch (Op) {
2261     case ISD::FP_TO_SINT_SAT:
2262       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2263     case ISD::FP_TO_UINT_SAT:
2264       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2265     case ISD::FP_ROUND:
2266       return WebAssemblyISD::DEMOTE_ZERO;
2267     }
2268     llvm_unreachable("unexpected op");
2269   };
2270 
2271   auto IsZeroSplat = [](SDValue SplatVal) {
2272     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2273     APInt SplatValue, SplatUndef;
2274     unsigned SplatBitSize;
2275     bool HasAnyUndefs;
2276     return Splat &&
2277            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2278                                   HasAnyUndefs) &&
2279            SplatValue == 0;
2280   };
2281 
2282   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2283     // Combine this:
2284     //
2285     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2286     //
2287     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2288     //
2289     // Or this:
2290     //
2291     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2292     //
2293     // into (f32x4.demote_zero_f64x2 $x).
2294     EVT ResVT;
2295     EVT ExpectedConversionType;
2296     auto Conversion = N->getOperand(0);
2297     auto ConversionOp = Conversion.getOpcode();
2298     switch (ConversionOp) {
2299     case ISD::FP_TO_SINT_SAT:
2300     case ISD::FP_TO_UINT_SAT:
2301       ResVT = MVT::v4i32;
2302       ExpectedConversionType = MVT::v2i32;
2303       break;
2304     case ISD::FP_ROUND:
2305       ResVT = MVT::v4f32;
2306       ExpectedConversionType = MVT::v2f32;
2307       break;
2308     default:
2309       return SDValue();
2310     }
2311 
2312     if (N->getValueType(0) != ResVT)
2313       return SDValue();
2314 
2315     if (Conversion.getValueType() != ExpectedConversionType)
2316       return SDValue();
2317 
2318     auto Source = Conversion.getOperand(0);
2319     if (Source.getValueType() != MVT::v2f64)
2320       return SDValue();
2321 
2322     if (!IsZeroSplat(N->getOperand(1)) ||
2323         N->getOperand(1).getValueType() != ExpectedConversionType)
2324       return SDValue();
2325 
2326     unsigned Op = GetWasmConversionOp(ConversionOp);
2327     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2328   }
2329 
2330   // Combine this:
2331   //
2332   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2333   //
2334   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2335   //
2336   // Or this:
2337   //
2338   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2339   //
2340   // into (f32x4.demote_zero_f64x2 $x).
2341   EVT ResVT;
2342   auto ConversionOp = N->getOpcode();
2343   switch (ConversionOp) {
2344   case ISD::FP_TO_SINT_SAT:
2345   case ISD::FP_TO_UINT_SAT:
2346     ResVT = MVT::v4i32;
2347     break;
2348   case ISD::FP_ROUND:
2349     ResVT = MVT::v4f32;
2350     break;
2351   default:
2352     llvm_unreachable("unexpected op");
2353   }
2354 
2355   if (N->getValueType(0) != ResVT)
2356     return SDValue();
2357 
2358   auto Concat = N->getOperand(0);
2359   if (Concat.getValueType() != MVT::v4f64)
2360     return SDValue();
2361 
2362   auto Source = Concat.getOperand(0);
2363   if (Source.getValueType() != MVT::v2f64)
2364     return SDValue();
2365 
2366   if (!IsZeroSplat(Concat.getOperand(1)) ||
2367       Concat.getOperand(1).getValueType() != MVT::v2f64)
2368     return SDValue();
2369 
2370   unsigned Op = GetWasmConversionOp(ConversionOp);
2371   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2372 }
2373 
2374 SDValue
2375 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2376                                              DAGCombinerInfo &DCI) const {
2377   switch (N->getOpcode()) {
2378   default:
2379     return SDValue();
2380   case ISD::VECTOR_SHUFFLE:
2381     return performVECTOR_SHUFFLECombine(N, DCI);
2382   case ISD::SIGN_EXTEND:
2383   case ISD::ZERO_EXTEND:
2384     return performVectorExtendCombine(N, DCI);
2385   case ISD::SINT_TO_FP:
2386   case ISD::UINT_TO_FP:
2387   case ISD::FP_EXTEND:
2388   case ISD::EXTRACT_SUBVECTOR:
2389     return performVectorConvertLowCombine(N, DCI);
2390   case ISD::FP_TO_SINT_SAT:
2391   case ISD::FP_TO_UINT_SAT:
2392   case ISD::FP_ROUND:
2393   case ISD::CONCAT_VECTORS:
2394     return performVectorTruncZeroCombine(N, DCI);
2395   }
2396 }
2397