1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // WebAssembly does not produce floating-point exceptions on normal floating 49 // point operations. 50 setHasFloatingPointExceptions(false); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 } 67 if (Subtarget->hasUnimplementedSIMD128()) { 68 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 70 } 71 // Compute derived properties from the register classes. 72 computeRegisterProperties(Subtarget->getRegisterInfo()); 73 74 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 75 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 76 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 77 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 78 setOperationAction(ISD::BRIND, MVT::Other, Custom); 79 80 // Take the default expansion for va_arg, va_copy, and va_end. There is no 81 // default action for va_start, so we do that custom. 82 setOperationAction(ISD::VASTART, MVT::Other, Custom); 83 setOperationAction(ISD::VAARG, MVT::Other, Expand); 84 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 85 setOperationAction(ISD::VAEND, MVT::Other, Expand); 86 87 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 88 // Don't expand the floating-point types to constant pools. 89 setOperationAction(ISD::ConstantFP, T, Legal); 90 // Expand floating-point comparisons. 91 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 92 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 93 setCondCodeAction(CC, T, Expand); 94 // Expand floating-point library function operators. 95 for (auto Op : 96 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 97 setOperationAction(Op, T, Expand); 98 // Note supported floating-point library function operators that otherwise 99 // default to expand. 100 for (auto Op : 101 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 102 setOperationAction(Op, T, Legal); 103 // Support minimum and maximum, which otherwise default to expand. 104 setOperationAction(ISD::FMINIMUM, T, Legal); 105 setOperationAction(ISD::FMAXIMUM, T, Legal); 106 // WebAssembly currently has no builtin f16 support. 107 setOperationAction(ISD::FP16_TO_FP, T, Expand); 108 setOperationAction(ISD::FP_TO_FP16, T, Expand); 109 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 110 setTruncStoreAction(T, MVT::f16, Expand); 111 } 112 113 // Expand unavailable integer operations. 114 for (auto Op : 115 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 116 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 117 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 118 for (auto T : {MVT::i32, MVT::i64}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasSIMD128()) 121 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 122 setOperationAction(Op, T, Expand); 123 if (Subtarget->hasUnimplementedSIMD128()) 124 setOperationAction(Op, MVT::v2i64, Expand); 125 } 126 127 // SIMD-specific configuration 128 if (Subtarget->hasSIMD128()) { 129 // Support saturating add for i8x16 and i16x8 130 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 131 for (auto T : {MVT::v16i8, MVT::v8i16}) 132 setOperationAction(Op, T, Legal); 133 134 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 135 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 136 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 137 if (Subtarget->hasUnimplementedSIMD128()) 138 for (auto T : {MVT::v2i64, MVT::v2f64}) 139 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 140 141 // We have custom shuffle lowering to expose the shuffle mask 142 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 if (Subtarget->hasUnimplementedSIMD128()) 145 for (auto T: {MVT::v2i64, MVT::v2f64}) 146 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 147 148 // Custom lowering since wasm shifts must have a scalar shift amount 149 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 150 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 151 setOperationAction(Op, T, Custom); 152 if (Subtarget->hasUnimplementedSIMD128()) 153 setOperationAction(Op, MVT::v2i64, Custom); 154 } 155 156 // Custom lower lane accesses to expand out variable indices 157 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 158 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 159 setOperationAction(Op, T, Custom); 160 if (Subtarget->hasUnimplementedSIMD128()) 161 for (auto T : {MVT::v2i64, MVT::v2f64}) 162 setOperationAction(Op, T, Custom); 163 } 164 165 // There is no i64x2.mul instruction 166 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 167 168 // There are no vector select instructions 169 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 170 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 171 setOperationAction(Op, T, Expand); 172 if (Subtarget->hasUnimplementedSIMD128()) 173 for (auto T : {MVT::v2i64, MVT::v2f64}) 174 setOperationAction(Op, T, Expand); 175 } 176 177 // Expand integer operations supported for scalars but not SIMD 178 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 179 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 180 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 181 setOperationAction(Op, T, Expand); 182 if (Subtarget->hasUnimplementedSIMD128()) 183 setOperationAction(Op, MVT::v2i64, Expand); 184 } 185 186 // Expand float operations supported for scalars but not SIMD 187 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 188 ISD::FCOPYSIGN}) { 189 setOperationAction(Op, MVT::v4f32, Expand); 190 if (Subtarget->hasUnimplementedSIMD128()) 191 setOperationAction(Op, MVT::v2f64, Expand); 192 } 193 194 // Expand additional SIMD ops that V8 hasn't implemented yet 195 if (!Subtarget->hasUnimplementedSIMD128()) { 196 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 197 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 198 } 199 } 200 201 // As a special case, these operators use the type to mean the type to 202 // sign-extend from. 203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 204 if (!Subtarget->hasSignExt()) { 205 // Sign extends are legal only when extending a vector extract 206 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 207 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 208 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 209 } 210 for (auto T : MVT::integer_vector_valuetypes()) 211 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 212 213 // Dynamic stack allocation: use the default expansion. 214 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 215 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 216 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 217 218 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 219 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 220 221 // Expand these forms; we pattern-match the forms that we can handle in isel. 222 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 223 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 224 setOperationAction(Op, T, Expand); 225 226 // We have custom switch handling. 227 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 228 229 // WebAssembly doesn't have: 230 // - Floating-point extending loads. 231 // - Floating-point truncating stores. 232 // - i1 extending loads. 233 // - extending/truncating SIMD loads/stores 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 235 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 236 for (auto T : MVT::integer_valuetypes()) 237 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 238 setLoadExtAction(Ext, T, MVT::i1, Promote); 239 if (Subtarget->hasSIMD128()) { 240 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 241 MVT::v2f64}) { 242 for (auto MemT : MVT::vector_valuetypes()) { 243 if (MVT(T) != MemT) { 244 setTruncStoreAction(T, MemT, Expand); 245 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 246 setLoadExtAction(Ext, T, MemT, Expand); 247 } 248 } 249 } 250 } 251 252 // Don't do anything clever with build_pairs 253 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 254 255 // Trap lowers to wasm unreachable 256 setOperationAction(ISD::TRAP, MVT::Other, Legal); 257 258 // Exception handling intrinsics 259 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 260 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 261 262 setMaxAtomicSizeInBitsSupported(64); 263 264 if (Subtarget->hasBulkMemory()) { 265 // Use memory.copy and friends over multiple loads and stores 266 MaxStoresPerMemcpy = 1; 267 MaxStoresPerMemcpyOptSize = 1; 268 MaxStoresPerMemmove = 1; 269 MaxStoresPerMemmoveOptSize = 1; 270 MaxStoresPerMemset = 1; 271 MaxStoresPerMemsetOptSize = 1; 272 } 273 } 274 275 TargetLowering::AtomicExpansionKind 276 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 277 // We have wasm instructions for these 278 switch (AI->getOperation()) { 279 case AtomicRMWInst::Add: 280 case AtomicRMWInst::Sub: 281 case AtomicRMWInst::And: 282 case AtomicRMWInst::Or: 283 case AtomicRMWInst::Xor: 284 case AtomicRMWInst::Xchg: 285 return AtomicExpansionKind::None; 286 default: 287 break; 288 } 289 return AtomicExpansionKind::CmpXChg; 290 } 291 292 FastISel *WebAssemblyTargetLowering::createFastISel( 293 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 294 return WebAssembly::createFastISel(FuncInfo, LibInfo); 295 } 296 297 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 298 EVT VT) const { 299 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 300 if (BitWidth > 1 && BitWidth < 8) 301 BitWidth = 8; 302 303 if (BitWidth > 64) { 304 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 305 // the count to be an i32. 306 BitWidth = 32; 307 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 308 "32-bit shift counts ought to be enough for anyone"); 309 } 310 311 MVT Result = MVT::getIntegerVT(BitWidth); 312 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 313 "Unable to represent scalar shift amount type"); 314 return Result; 315 } 316 317 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 318 // undefined result on invalid/overflow, to the WebAssembly opcode, which 319 // traps on invalid/overflow. 320 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 321 MachineBasicBlock *BB, 322 const TargetInstrInfo &TII, 323 bool IsUnsigned, bool Int64, 324 bool Float64, unsigned LoweredOpcode) { 325 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 326 327 unsigned OutReg = MI.getOperand(0).getReg(); 328 unsigned InReg = MI.getOperand(1).getReg(); 329 330 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 331 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 332 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 333 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 334 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 335 unsigned Eqz = WebAssembly::EQZ_I32; 336 unsigned And = WebAssembly::AND_I32; 337 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 338 int64_t Substitute = IsUnsigned ? 0 : Limit; 339 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 340 auto &Context = BB->getParent()->getFunction().getContext(); 341 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 342 343 const BasicBlock *LLVMBB = BB->getBasicBlock(); 344 MachineFunction *F = BB->getParent(); 345 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 346 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 347 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 348 349 MachineFunction::iterator It = ++BB->getIterator(); 350 F->insert(It, FalseMBB); 351 F->insert(It, TrueMBB); 352 F->insert(It, DoneMBB); 353 354 // Transfer the remainder of BB and its successor edges to DoneMBB. 355 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 356 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 357 358 BB->addSuccessor(TrueMBB); 359 BB->addSuccessor(FalseMBB); 360 TrueMBB->addSuccessor(DoneMBB); 361 FalseMBB->addSuccessor(DoneMBB); 362 363 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 364 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 365 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 366 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 367 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 368 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 369 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 370 371 MI.eraseFromParent(); 372 // For signed numbers, we can do a single comparison to determine whether 373 // fabs(x) is within range. 374 if (IsUnsigned) { 375 Tmp0 = InReg; 376 } else { 377 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 378 } 379 BuildMI(BB, DL, TII.get(FConst), Tmp1) 380 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 381 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 382 383 // For unsigned numbers, we have to do a separate comparison with zero. 384 if (IsUnsigned) { 385 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 386 unsigned SecondCmpReg = 387 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 388 unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 389 BuildMI(BB, DL, TII.get(FConst), Tmp1) 390 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 391 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 392 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 393 CmpReg = AndReg; 394 } 395 396 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 397 398 // Create the CFG diamond to select between doing the conversion or using 399 // the substitute value. 400 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 401 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 402 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 403 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 404 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 405 .addReg(FalseReg) 406 .addMBB(FalseMBB) 407 .addReg(TrueReg) 408 .addMBB(TrueMBB); 409 410 return DoneMBB; 411 } 412 413 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 414 MachineInstr &MI, MachineBasicBlock *BB) const { 415 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 416 DebugLoc DL = MI.getDebugLoc(); 417 418 switch (MI.getOpcode()) { 419 default: 420 llvm_unreachable("Unexpected instr type to insert"); 421 case WebAssembly::FP_TO_SINT_I32_F32: 422 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 423 WebAssembly::I32_TRUNC_S_F32); 424 case WebAssembly::FP_TO_UINT_I32_F32: 425 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 426 WebAssembly::I32_TRUNC_U_F32); 427 case WebAssembly::FP_TO_SINT_I64_F32: 428 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 429 WebAssembly::I64_TRUNC_S_F32); 430 case WebAssembly::FP_TO_UINT_I64_F32: 431 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 432 WebAssembly::I64_TRUNC_U_F32); 433 case WebAssembly::FP_TO_SINT_I32_F64: 434 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 435 WebAssembly::I32_TRUNC_S_F64); 436 case WebAssembly::FP_TO_UINT_I32_F64: 437 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 438 WebAssembly::I32_TRUNC_U_F64); 439 case WebAssembly::FP_TO_SINT_I64_F64: 440 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 441 WebAssembly::I64_TRUNC_S_F64); 442 case WebAssembly::FP_TO_UINT_I64_F64: 443 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 444 WebAssembly::I64_TRUNC_U_F64); 445 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 446 } 447 } 448 449 const char * 450 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 451 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 452 case WebAssemblyISD::FIRST_NUMBER: 453 break; 454 #define HANDLE_NODETYPE(NODE) \ 455 case WebAssemblyISD::NODE: \ 456 return "WebAssemblyISD::" #NODE; 457 #include "WebAssemblyISD.def" 458 #undef HANDLE_NODETYPE 459 } 460 return nullptr; 461 } 462 463 std::pair<unsigned, const TargetRegisterClass *> 464 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 465 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 466 // First, see if this is a constraint that directly corresponds to a 467 // WebAssembly register class. 468 if (Constraint.size() == 1) { 469 switch (Constraint[0]) { 470 case 'r': 471 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 472 if (Subtarget->hasSIMD128() && VT.isVector()) { 473 if (VT.getSizeInBits() == 128) 474 return std::make_pair(0U, &WebAssembly::V128RegClass); 475 } 476 if (VT.isInteger() && !VT.isVector()) { 477 if (VT.getSizeInBits() <= 32) 478 return std::make_pair(0U, &WebAssembly::I32RegClass); 479 if (VT.getSizeInBits() <= 64) 480 return std::make_pair(0U, &WebAssembly::I64RegClass); 481 } 482 break; 483 default: 484 break; 485 } 486 } 487 488 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 489 } 490 491 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 492 // Assume ctz is a relatively cheap operation. 493 return true; 494 } 495 496 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 497 // Assume clz is a relatively cheap operation. 498 return true; 499 } 500 501 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 502 const AddrMode &AM, 503 Type *Ty, unsigned AS, 504 Instruction *I) const { 505 // WebAssembly offsets are added as unsigned without wrapping. The 506 // isLegalAddressingMode gives us no way to determine if wrapping could be 507 // happening, so we approximate this by accepting only non-negative offsets. 508 if (AM.BaseOffs < 0) 509 return false; 510 511 // WebAssembly has no scale register operands. 512 if (AM.Scale != 0) 513 return false; 514 515 // Everything else is legal. 516 return true; 517 } 518 519 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 520 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const { 521 // WebAssembly supports unaligned accesses, though it should be declared 522 // with the p2align attribute on loads and stores which do so, and there 523 // may be a performance impact. We tell LLVM they're "fast" because 524 // for the kinds of things that LLVM uses this for (merging adjacent stores 525 // of constants, etc.), WebAssembly implementations will either want the 526 // unaligned access or they'll split anyway. 527 if (Fast) 528 *Fast = true; 529 return true; 530 } 531 532 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 533 AttributeList Attr) const { 534 // The current thinking is that wasm engines will perform this optimization, 535 // so we can save on code size. 536 return true; 537 } 538 539 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 540 LLVMContext &C, 541 EVT VT) const { 542 if (VT.isVector()) 543 return VT.changeVectorElementTypeToInteger(); 544 545 return TargetLowering::getSetCCResultType(DL, C, VT); 546 } 547 548 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 549 const CallInst &I, 550 MachineFunction &MF, 551 unsigned Intrinsic) const { 552 switch (Intrinsic) { 553 case Intrinsic::wasm_atomic_notify: 554 Info.opc = ISD::INTRINSIC_W_CHAIN; 555 Info.memVT = MVT::i32; 556 Info.ptrVal = I.getArgOperand(0); 557 Info.offset = 0; 558 Info.align = 4; 559 // atomic.notify instruction does not really load the memory specified with 560 // this argument, but MachineMemOperand should either be load or store, so 561 // we set this to a load. 562 // FIXME Volatile isn't really correct, but currently all LLVM atomic 563 // instructions are treated as volatiles in the backend, so we should be 564 // consistent. The same applies for wasm_atomic_wait intrinsics too. 565 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 566 return true; 567 case Intrinsic::wasm_atomic_wait_i32: 568 Info.opc = ISD::INTRINSIC_W_CHAIN; 569 Info.memVT = MVT::i32; 570 Info.ptrVal = I.getArgOperand(0); 571 Info.offset = 0; 572 Info.align = 4; 573 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 574 return true; 575 case Intrinsic::wasm_atomic_wait_i64: 576 Info.opc = ISD::INTRINSIC_W_CHAIN; 577 Info.memVT = MVT::i64; 578 Info.ptrVal = I.getArgOperand(0); 579 Info.offset = 0; 580 Info.align = 8; 581 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 582 return true; 583 default: 584 return false; 585 } 586 } 587 588 //===----------------------------------------------------------------------===// 589 // WebAssembly Lowering private implementation. 590 //===----------------------------------------------------------------------===// 591 592 //===----------------------------------------------------------------------===// 593 // Lowering Code 594 //===----------------------------------------------------------------------===// 595 596 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 597 MachineFunction &MF = DAG.getMachineFunction(); 598 DAG.getContext()->diagnose( 599 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 600 } 601 602 // Test whether the given calling convention is supported. 603 static bool callingConvSupported(CallingConv::ID CallConv) { 604 // We currently support the language-independent target-independent 605 // conventions. We don't yet have a way to annotate calls with properties like 606 // "cold", and we don't have any call-clobbered registers, so these are mostly 607 // all handled the same. 608 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 609 CallConv == CallingConv::Cold || 610 CallConv == CallingConv::PreserveMost || 611 CallConv == CallingConv::PreserveAll || 612 CallConv == CallingConv::CXX_FAST_TLS; 613 } 614 615 SDValue 616 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 617 SmallVectorImpl<SDValue> &InVals) const { 618 SelectionDAG &DAG = CLI.DAG; 619 SDLoc DL = CLI.DL; 620 SDValue Chain = CLI.Chain; 621 SDValue Callee = CLI.Callee; 622 MachineFunction &MF = DAG.getMachineFunction(); 623 auto Layout = MF.getDataLayout(); 624 625 CallingConv::ID CallConv = CLI.CallConv; 626 if (!callingConvSupported(CallConv)) 627 fail(DL, DAG, 628 "WebAssembly doesn't support language-specific or target-specific " 629 "calling conventions yet"); 630 if (CLI.IsPatchPoint) 631 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 632 633 // WebAssembly doesn't currently support explicit tail calls. If they are 634 // required, fail. Otherwise, just disable them. 635 if ((CallConv == CallingConv::Fast && CLI.IsTailCall && 636 MF.getTarget().Options.GuaranteedTailCallOpt) || 637 (CLI.CS && CLI.CS.isMustTailCall())) 638 fail(DL, DAG, "WebAssembly doesn't support tail call yet"); 639 CLI.IsTailCall = false; 640 641 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 642 if (Ins.size() > 1) 643 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 644 645 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 646 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 647 unsigned NumFixedArgs = 0; 648 for (unsigned I = 0; I < Outs.size(); ++I) { 649 const ISD::OutputArg &Out = Outs[I]; 650 SDValue &OutVal = OutVals[I]; 651 if (Out.Flags.isNest()) 652 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 653 if (Out.Flags.isInAlloca()) 654 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 655 if (Out.Flags.isInConsecutiveRegs()) 656 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 657 if (Out.Flags.isInConsecutiveRegsLast()) 658 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 659 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 660 auto &MFI = MF.getFrameInfo(); 661 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 662 Out.Flags.getByValAlign(), 663 /*isSS=*/false); 664 SDValue SizeNode = 665 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 666 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 667 Chain = DAG.getMemcpy( 668 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 669 /*isVolatile*/ false, /*AlwaysInline=*/false, 670 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 671 OutVal = FINode; 672 } 673 // Count the number of fixed args *after* legalization. 674 NumFixedArgs += Out.IsFixed; 675 } 676 677 bool IsVarArg = CLI.IsVarArg; 678 auto PtrVT = getPointerTy(Layout); 679 680 // Analyze operands of the call, assigning locations to each operand. 681 SmallVector<CCValAssign, 16> ArgLocs; 682 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 683 684 if (IsVarArg) { 685 // Outgoing non-fixed arguments are placed in a buffer. First 686 // compute their offsets and the total amount of buffer space needed. 687 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 688 const ISD::OutputArg &Out = Outs[I]; 689 SDValue &Arg = OutVals[I]; 690 EVT VT = Arg.getValueType(); 691 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 692 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 693 unsigned Align = std::max(Out.Flags.getOrigAlign(), 694 Layout.getABITypeAlignment(Ty)); 695 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 696 Align); 697 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 698 Offset, VT.getSimpleVT(), 699 CCValAssign::Full)); 700 } 701 } 702 703 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 704 705 SDValue FINode; 706 if (IsVarArg && NumBytes) { 707 // For non-fixed arguments, next emit stores to store the argument values 708 // to the stack buffer at the offsets computed above. 709 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 710 Layout.getStackAlignment(), 711 /*isSS=*/false); 712 unsigned ValNo = 0; 713 SmallVector<SDValue, 8> Chains; 714 for (SDValue Arg : 715 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 716 assert(ArgLocs[ValNo].getValNo() == ValNo && 717 "ArgLocs should remain in order and only hold varargs args"); 718 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 719 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 720 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 721 DAG.getConstant(Offset, DL, PtrVT)); 722 Chains.push_back( 723 DAG.getStore(Chain, DL, Arg, Add, 724 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 725 } 726 if (!Chains.empty()) 727 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 728 } else if (IsVarArg) { 729 FINode = DAG.getIntPtrConstant(0, DL); 730 } 731 732 if (Callee->getOpcode() == ISD::GlobalAddress) { 733 // If the callee is a GlobalAddress node (quite common, every direct call 734 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 735 // doesn't at MO_GOT which is not needed for direct calls. 736 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 737 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 738 getPointerTy(DAG.getDataLayout()), 739 GA->getOffset()); 740 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 741 getPointerTy(DAG.getDataLayout()), Callee); 742 } 743 744 // Compute the operands for the CALLn node. 745 SmallVector<SDValue, 16> Ops; 746 Ops.push_back(Chain); 747 Ops.push_back(Callee); 748 749 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 750 // isn't reliable. 751 Ops.append(OutVals.begin(), 752 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 753 // Add a pointer to the vararg buffer. 754 if (IsVarArg) 755 Ops.push_back(FINode); 756 757 SmallVector<EVT, 8> InTys; 758 for (const auto &In : Ins) { 759 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 760 assert(!In.Flags.isNest() && "nest is not valid for return values"); 761 if (In.Flags.isInAlloca()) 762 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 763 if (In.Flags.isInConsecutiveRegs()) 764 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 765 if (In.Flags.isInConsecutiveRegsLast()) 766 fail(DL, DAG, 767 "WebAssembly hasn't implemented cons regs last return values"); 768 // Ignore In.getOrigAlign() because all our arguments are passed in 769 // registers. 770 InTys.push_back(In.VT); 771 } 772 InTys.push_back(MVT::Other); 773 SDVTList InTyList = DAG.getVTList(InTys); 774 SDValue Res = 775 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 776 DL, InTyList, Ops); 777 if (Ins.empty()) { 778 Chain = Res; 779 } else { 780 InVals.push_back(Res); 781 Chain = Res.getValue(1); 782 } 783 784 return Chain; 785 } 786 787 bool WebAssemblyTargetLowering::CanLowerReturn( 788 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 789 const SmallVectorImpl<ISD::OutputArg> &Outs, 790 LLVMContext & /*Context*/) const { 791 // WebAssembly can't currently handle returning tuples. 792 return Outs.size() <= 1; 793 } 794 795 SDValue WebAssemblyTargetLowering::LowerReturn( 796 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 797 const SmallVectorImpl<ISD::OutputArg> &Outs, 798 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 799 SelectionDAG &DAG) const { 800 assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); 801 if (!callingConvSupported(CallConv)) 802 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 803 804 SmallVector<SDValue, 4> RetOps(1, Chain); 805 RetOps.append(OutVals.begin(), OutVals.end()); 806 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 807 808 // Record the number and types of the return values. 809 for (const ISD::OutputArg &Out : Outs) { 810 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 811 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 812 assert(Out.IsFixed && "non-fixed return value is not valid"); 813 if (Out.Flags.isInAlloca()) 814 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 815 if (Out.Flags.isInConsecutiveRegs()) 816 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 817 if (Out.Flags.isInConsecutiveRegsLast()) 818 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 819 } 820 821 return Chain; 822 } 823 824 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 825 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 826 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 827 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 828 if (!callingConvSupported(CallConv)) 829 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 830 831 MachineFunction &MF = DAG.getMachineFunction(); 832 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 833 834 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 835 // of the incoming values before they're represented by virtual registers. 836 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 837 838 for (const ISD::InputArg &In : Ins) { 839 if (In.Flags.isInAlloca()) 840 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 841 if (In.Flags.isNest()) 842 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 843 if (In.Flags.isInConsecutiveRegs()) 844 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 845 if (In.Flags.isInConsecutiveRegsLast()) 846 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 847 // Ignore In.getOrigAlign() because all our arguments are passed in 848 // registers. 849 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 850 DAG.getTargetConstant(InVals.size(), 851 DL, MVT::i32)) 852 : DAG.getUNDEF(In.VT)); 853 854 // Record the number and types of arguments. 855 MFI->addParam(In.VT); 856 } 857 858 // Varargs are copied into a buffer allocated by the caller, and a pointer to 859 // the buffer is passed as an argument. 860 if (IsVarArg) { 861 MVT PtrVT = getPointerTy(MF.getDataLayout()); 862 unsigned VarargVreg = 863 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 864 MFI->setVarargBufferVreg(VarargVreg); 865 Chain = DAG.getCopyToReg( 866 Chain, DL, VarargVreg, 867 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 868 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 869 MFI->addParam(PtrVT); 870 } 871 872 // Record the number and types of arguments and results. 873 SmallVector<MVT, 4> Params; 874 SmallVector<MVT, 4> Results; 875 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 876 DAG.getTarget(), Params, Results); 877 for (MVT VT : Results) 878 MFI->addResult(VT); 879 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 880 // the param logic here with ComputeSignatureVTs 881 assert(MFI->getParams().size() == Params.size() && 882 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 883 Params.begin())); 884 885 return Chain; 886 } 887 888 //===----------------------------------------------------------------------===// 889 // Custom lowering hooks. 890 //===----------------------------------------------------------------------===// 891 892 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 893 SelectionDAG &DAG) const { 894 SDLoc DL(Op); 895 switch (Op.getOpcode()) { 896 default: 897 llvm_unreachable("unimplemented operation lowering"); 898 return SDValue(); 899 case ISD::FrameIndex: 900 return LowerFrameIndex(Op, DAG); 901 case ISD::GlobalAddress: 902 return LowerGlobalAddress(Op, DAG); 903 case ISD::ExternalSymbol: 904 return LowerExternalSymbol(Op, DAG); 905 case ISD::JumpTable: 906 return LowerJumpTable(Op, DAG); 907 case ISD::BR_JT: 908 return LowerBR_JT(Op, DAG); 909 case ISD::VASTART: 910 return LowerVASTART(Op, DAG); 911 case ISD::BlockAddress: 912 case ISD::BRIND: 913 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 914 return SDValue(); 915 case ISD::RETURNADDR: // Probably nothing meaningful can be returned here. 916 fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address"); 917 return SDValue(); 918 case ISD::FRAMEADDR: 919 return LowerFRAMEADDR(Op, DAG); 920 case ISD::CopyToReg: 921 return LowerCopyToReg(Op, DAG); 922 case ISD::EXTRACT_VECTOR_ELT: 923 case ISD::INSERT_VECTOR_ELT: 924 return LowerAccessVectorElement(Op, DAG); 925 case ISD::INTRINSIC_VOID: 926 case ISD::INTRINSIC_WO_CHAIN: 927 case ISD::INTRINSIC_W_CHAIN: 928 return LowerIntrinsic(Op, DAG); 929 case ISD::SIGN_EXTEND_INREG: 930 return LowerSIGN_EXTEND_INREG(Op, DAG); 931 case ISD::BUILD_VECTOR: 932 return LowerBUILD_VECTOR(Op, DAG); 933 case ISD::VECTOR_SHUFFLE: 934 return LowerVECTOR_SHUFFLE(Op, DAG); 935 case ISD::SHL: 936 case ISD::SRA: 937 case ISD::SRL: 938 return LowerShift(Op, DAG); 939 } 940 } 941 942 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 943 SelectionDAG &DAG) const { 944 SDValue Src = Op.getOperand(2); 945 if (isa<FrameIndexSDNode>(Src.getNode())) { 946 // CopyToReg nodes don't support FrameIndex operands. Other targets select 947 // the FI to some LEA-like instruction, but since we don't have that, we 948 // need to insert some kind of instruction that can take an FI operand and 949 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 950 // local.copy between Op and its FI operand. 951 SDValue Chain = Op.getOperand(0); 952 SDLoc DL(Op); 953 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 954 EVT VT = Src.getValueType(); 955 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 956 : WebAssembly::COPY_I64, 957 DL, VT, Src), 958 0); 959 return Op.getNode()->getNumValues() == 1 960 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 961 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 962 Op.getNumOperands() == 4 ? Op.getOperand(3) 963 : SDValue()); 964 } 965 return SDValue(); 966 } 967 968 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 969 SelectionDAG &DAG) const { 970 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 971 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 972 } 973 974 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 975 SelectionDAG &DAG) const { 976 // Non-zero depths are not supported by WebAssembly currently. Use the 977 // legalizer's default expansion, which is to return 0 (what this function is 978 // documented to do). 979 if (Op.getConstantOperandVal(0) > 0) 980 return SDValue(); 981 982 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 983 EVT VT = Op.getValueType(); 984 unsigned FP = 985 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 986 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 987 } 988 989 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 990 SelectionDAG &DAG) const { 991 SDLoc DL(Op); 992 const auto *GA = cast<GlobalAddressSDNode>(Op); 993 EVT VT = Op.getValueType(); 994 assert(GA->getTargetFlags() == 0 && 995 "Unexpected target flags on generic GlobalAddressSDNode"); 996 if (GA->getAddressSpace() != 0) 997 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 998 999 unsigned Flags = 0; 1000 if (isPositionIndependent()) { 1001 const GlobalValue *GV = GA->getGlobal(); 1002 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1003 MachineFunction &MF = DAG.getMachineFunction(); 1004 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1005 const char *BaseName; 1006 if (GV->getValueType()->isFunctionTy()) 1007 BaseName = MF.createExternalSymbolName("__table_base"); 1008 else 1009 BaseName = MF.createExternalSymbolName("__memory_base"); 1010 SDValue BaseAddr = 1011 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1012 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1013 1014 SDValue SymAddr = DAG.getNode( 1015 WebAssemblyISD::WrapperPIC, DL, VT, 1016 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset())); 1017 1018 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1019 } else { 1020 Flags |= WebAssemblyII::MO_GOT; 1021 } 1022 } 1023 1024 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1025 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1026 GA->getOffset(), Flags)); 1027 } 1028 1029 SDValue 1030 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1031 SelectionDAG &DAG) const { 1032 SDLoc DL(Op); 1033 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1034 EVT VT = Op.getValueType(); 1035 assert(ES->getTargetFlags() == 0 && 1036 "Unexpected target flags on generic ExternalSymbolSDNode"); 1037 // Set the TargetFlags to MO_SYMBOL_FUNCTION which indicates that this is a 1038 // "function" symbol rather than a data symbol. We do this unconditionally 1039 // even though we don't know anything about the symbol other than its name, 1040 // because all external symbols used in target-independent SelectionDAG code 1041 // are for functions. 1042 return DAG.getNode( 1043 WebAssemblyISD::Wrapper, DL, VT, 1044 DAG.getTargetExternalSymbol(ES->getSymbol(), VT, 1045 WebAssemblyII::MO_SYMBOL_FUNCTION)); 1046 } 1047 1048 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1049 SelectionDAG &DAG) const { 1050 // There's no need for a Wrapper node because we always incorporate a jump 1051 // table operand into a BR_TABLE instruction, rather than ever 1052 // materializing it in a register. 1053 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1054 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1055 JT->getTargetFlags()); 1056 } 1057 1058 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1059 SelectionDAG &DAG) const { 1060 SDLoc DL(Op); 1061 SDValue Chain = Op.getOperand(0); 1062 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1063 SDValue Index = Op.getOperand(2); 1064 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1065 1066 SmallVector<SDValue, 8> Ops; 1067 Ops.push_back(Chain); 1068 Ops.push_back(Index); 1069 1070 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1071 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1072 1073 // Add an operand for each case. 1074 for (auto MBB : MBBs) 1075 Ops.push_back(DAG.getBasicBlock(MBB)); 1076 1077 // TODO: For now, we just pick something arbitrary for a default case for now. 1078 // We really want to sniff out the guard and put in the real default case (and 1079 // delete the guard). 1080 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1081 1082 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1083 } 1084 1085 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1086 SelectionDAG &DAG) const { 1087 SDLoc DL(Op); 1088 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1089 1090 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1091 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1092 1093 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1094 MFI->getVarargBufferVreg(), PtrVT); 1095 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1096 MachinePointerInfo(SV), 0); 1097 } 1098 1099 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1100 SelectionDAG &DAG) const { 1101 MachineFunction &MF = DAG.getMachineFunction(); 1102 unsigned IntNo; 1103 switch (Op.getOpcode()) { 1104 case ISD::INTRINSIC_VOID: 1105 case ISD::INTRINSIC_W_CHAIN: 1106 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1107 break; 1108 case ISD::INTRINSIC_WO_CHAIN: 1109 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1110 break; 1111 default: 1112 llvm_unreachable("Invalid intrinsic"); 1113 } 1114 SDLoc DL(Op); 1115 1116 switch (IntNo) { 1117 default: 1118 return SDValue(); // Don't custom lower most intrinsics. 1119 1120 case Intrinsic::wasm_lsda: { 1121 EVT VT = Op.getValueType(); 1122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1123 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1124 auto &Context = MF.getMMI().getContext(); 1125 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1126 Twine(MF.getFunctionNumber())); 1127 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1128 DAG.getMCSymbol(S, PtrVT)); 1129 } 1130 1131 case Intrinsic::wasm_throw: { 1132 // We only support C++ exceptions for now 1133 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1134 if (Tag != CPP_EXCEPTION) 1135 llvm_unreachable("Invalid tag!"); 1136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1137 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1138 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1139 SDValue SymNode = 1140 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1141 DAG.getTargetExternalSymbol( 1142 SymName, PtrVT, WebAssemblyII::MO_SYMBOL_EVENT)); 1143 return DAG.getNode(WebAssemblyISD::THROW, DL, 1144 MVT::Other, // outchain type 1145 { 1146 Op.getOperand(0), // inchain 1147 SymNode, // exception symbol 1148 Op.getOperand(3) // thrown value 1149 }); 1150 } 1151 } 1152 } 1153 1154 SDValue 1155 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1156 SelectionDAG &DAG) const { 1157 // If sign extension operations are disabled, allow sext_inreg only if operand 1158 // is a vector extract. SIMD does not depend on sign extension operations, but 1159 // allowing sext_inreg in this context lets us have simple patterns to select 1160 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1161 // simpler in this file, but would necessitate large and brittle patterns to 1162 // undo the expansion and select extract_lane_s instructions. 1163 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1164 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) 1165 return Op; 1166 // Otherwise expand 1167 return SDValue(); 1168 } 1169 1170 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1171 SelectionDAG &DAG) const { 1172 SDLoc DL(Op); 1173 const EVT VecT = Op.getValueType(); 1174 const EVT LaneT = Op.getOperand(0).getValueType(); 1175 const size_t Lanes = Op.getNumOperands(); 1176 auto IsConstant = [](const SDValue &V) { 1177 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1178 }; 1179 1180 // Find the most common operand, which is approximately the best to splat 1181 using Entry = std::pair<SDValue, size_t>; 1182 SmallVector<Entry, 16> ValueCounts; 1183 size_t NumConst = 0, NumDynamic = 0; 1184 for (const SDValue &Lane : Op->op_values()) { 1185 if (Lane.isUndef()) { 1186 continue; 1187 } else if (IsConstant(Lane)) { 1188 NumConst++; 1189 } else { 1190 NumDynamic++; 1191 } 1192 auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(), 1193 [&Lane](Entry A) { return A.first == Lane; }); 1194 if (CountIt == ValueCounts.end()) { 1195 ValueCounts.emplace_back(Lane, 1); 1196 } else { 1197 CountIt->second++; 1198 } 1199 } 1200 auto CommonIt = 1201 std::max_element(ValueCounts.begin(), ValueCounts.end(), 1202 [](Entry A, Entry B) { return A.second < B.second; }); 1203 assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector"); 1204 SDValue SplatValue = CommonIt->first; 1205 size_t NumCommon = CommonIt->second; 1206 1207 // If v128.const is available, consider using it instead of a splat 1208 if (Subtarget->hasUnimplementedSIMD128()) { 1209 // {i32,i64,f32,f64}.const opcode, and value 1210 const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes); 1211 // SIMD prefix and opcode 1212 const size_t SplatBytes = 2; 1213 const size_t SplatConstBytes = SplatBytes + ConstBytes; 1214 // SIMD prefix, opcode, and lane index 1215 const size_t ReplaceBytes = 3; 1216 const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes; 1217 // SIMD prefix, v128.const opcode, and 128-bit value 1218 const size_t VecConstBytes = 18; 1219 // Initial v128.const and a replace_lane for each non-const operand 1220 const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes; 1221 // Initial splat and all necessary replace_lanes 1222 const size_t SplatInitBytes = 1223 IsConstant(SplatValue) 1224 // Initial constant splat 1225 ? (SplatConstBytes + 1226 // Constant replace_lanes 1227 (NumConst - NumCommon) * ReplaceConstBytes + 1228 // Dynamic replace_lanes 1229 (NumDynamic * ReplaceBytes)) 1230 // Initial dynamic splat 1231 : (SplatBytes + 1232 // Constant replace_lanes 1233 (NumConst * ReplaceConstBytes) + 1234 // Dynamic replace_lanes 1235 (NumDynamic - NumCommon) * ReplaceBytes); 1236 if (ConstInitBytes < SplatInitBytes) { 1237 // Create build_vector that will lower to initial v128.const 1238 SmallVector<SDValue, 16> ConstLanes; 1239 for (const SDValue &Lane : Op->op_values()) { 1240 if (IsConstant(Lane)) { 1241 ConstLanes.push_back(Lane); 1242 } else if (LaneT.isFloatingPoint()) { 1243 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1244 } else { 1245 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1246 } 1247 } 1248 SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1249 // Add replace_lane instructions for non-const lanes 1250 for (size_t I = 0; I < Lanes; ++I) { 1251 const SDValue &Lane = Op->getOperand(I); 1252 if (!Lane.isUndef() && !IsConstant(Lane)) 1253 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1254 DAG.getConstant(I, DL, MVT::i32)); 1255 } 1256 return Result; 1257 } 1258 } 1259 // Use a splat for the initial vector 1260 SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1261 // Add replace_lane instructions for other values 1262 for (size_t I = 0; I < Lanes; ++I) { 1263 const SDValue &Lane = Op->getOperand(I); 1264 if (Lane != SplatValue) 1265 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1266 DAG.getConstant(I, DL, MVT::i32)); 1267 } 1268 return Result; 1269 } 1270 1271 SDValue 1272 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1273 SelectionDAG &DAG) const { 1274 SDLoc DL(Op); 1275 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1276 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1277 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1278 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1279 1280 // Space for two vector args and sixteen mask indices 1281 SDValue Ops[18]; 1282 size_t OpIdx = 0; 1283 Ops[OpIdx++] = Op.getOperand(0); 1284 Ops[OpIdx++] = Op.getOperand(1); 1285 1286 // Expand mask indices to byte indices and materialize them as operands 1287 for (int M : Mask) { 1288 for (size_t J = 0; J < LaneBytes; ++J) { 1289 // Lower undefs (represented by -1 in mask) to zero 1290 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1291 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1292 } 1293 } 1294 1295 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1296 } 1297 1298 SDValue 1299 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1300 SelectionDAG &DAG) const { 1301 // Allow constant lane indices, expand variable lane indices 1302 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1303 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1304 return Op; 1305 else 1306 // Perform default expansion 1307 return SDValue(); 1308 } 1309 1310 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1311 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1312 // 32-bit and 64-bit unrolled shifts will have proper semantics 1313 if (LaneT.bitsGE(MVT::i32)) 1314 return DAG.UnrollVectorOp(Op.getNode()); 1315 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1316 SDLoc DL(Op); 1317 SDValue ShiftVal = Op.getOperand(1); 1318 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1319 SDValue MaskedShiftVal = DAG.getNode( 1320 ISD::AND, // mask opcode 1321 DL, ShiftVal.getValueType(), // masked value type 1322 ShiftVal, // original shift value operand 1323 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1324 ); 1325 1326 return DAG.UnrollVectorOp( 1327 DAG.getNode(Op.getOpcode(), // original shift opcode 1328 DL, Op.getValueType(), // original return type 1329 Op.getOperand(0), // original vector operand, 1330 MaskedShiftVal // new masked shift value operand 1331 ) 1332 .getNode()); 1333 } 1334 1335 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1336 SelectionDAG &DAG) const { 1337 SDLoc DL(Op); 1338 1339 // Only manually lower vector shifts 1340 assert(Op.getSimpleValueType().isVector()); 1341 1342 // Expand all vector shifts until V8 fixes its implementation 1343 // TODO: remove this once V8 is fixed 1344 if (!Subtarget->hasUnimplementedSIMD128()) 1345 return unrollVectorShift(Op, DAG); 1346 1347 // Unroll non-splat vector shifts 1348 BuildVectorSDNode *ShiftVec; 1349 SDValue SplatVal; 1350 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1351 !(SplatVal = ShiftVec->getSplatValue())) 1352 return unrollVectorShift(Op, DAG); 1353 1354 // All splats except i64x2 const splats are handled by patterns 1355 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1356 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1357 return Op; 1358 1359 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1360 unsigned Opcode; 1361 switch (Op.getOpcode()) { 1362 case ISD::SHL: 1363 Opcode = WebAssemblyISD::VEC_SHL; 1364 break; 1365 case ISD::SRA: 1366 Opcode = WebAssemblyISD::VEC_SHR_S; 1367 break; 1368 case ISD::SRL: 1369 Opcode = WebAssemblyISD::VEC_SHR_U; 1370 break; 1371 default: 1372 llvm_unreachable("unexpected opcode"); 1373 } 1374 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1375 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1376 DAG.getConstant(Shift, DL, MVT::i32)); 1377 } 1378 1379 //===----------------------------------------------------------------------===// 1380 // WebAssembly Optimization Hooks 1381 //===----------------------------------------------------------------------===// 1382