1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "wasm-lower"
38 
39 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
40     const TargetMachine &TM, const WebAssemblySubtarget &STI)
41     : TargetLowering(TM), Subtarget(&STI) {
42   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
43 
44   // Booleans always contain 0 or 1.
45   setBooleanContents(ZeroOrOneBooleanContent);
46   // Except in SIMD vectors
47   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
48   // WebAssembly does not produce floating-point exceptions on normal floating
49   // point operations.
50   setHasFloatingPointExceptions(false);
51   // We don't know the microarchitecture here, so just reduce register pressure.
52   setSchedulingPreference(Sched::RegPressure);
53   // Tell ISel that we have a stack pointer.
54   setStackPointerRegisterToSaveRestore(
55       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
56   // Set up the register classes.
57   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
58   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
59   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
60   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
61   if (Subtarget->hasSIMD128()) {
62     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
66   }
67   if (Subtarget->hasUnimplementedSIMD128()) {
68     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
69     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
70   }
71   // Compute derived properties from the register classes.
72   computeRegisterProperties(Subtarget->getRegisterInfo());
73 
74   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
75   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
76   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
77   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
78   setOperationAction(ISD::BRIND, MVT::Other, Custom);
79 
80   // Take the default expansion for va_arg, va_copy, and va_end. There is no
81   // default action for va_start, so we do that custom.
82   setOperationAction(ISD::VASTART, MVT::Other, Custom);
83   setOperationAction(ISD::VAARG, MVT::Other, Expand);
84   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
85   setOperationAction(ISD::VAEND, MVT::Other, Expand);
86 
87   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
88     // Don't expand the floating-point types to constant pools.
89     setOperationAction(ISD::ConstantFP, T, Legal);
90     // Expand floating-point comparisons.
91     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
92                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
93       setCondCodeAction(CC, T, Expand);
94     // Expand floating-point library function operators.
95     for (auto Op :
96          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
97       setOperationAction(Op, T, Expand);
98     // Note supported floating-point library function operators that otherwise
99     // default to expand.
100     for (auto Op :
101          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
102       setOperationAction(Op, T, Legal);
103     // Support minimum and maximum, which otherwise default to expand.
104     setOperationAction(ISD::FMINIMUM, T, Legal);
105     setOperationAction(ISD::FMAXIMUM, T, Legal);
106     // WebAssembly currently has no builtin f16 support.
107     setOperationAction(ISD::FP16_TO_FP, T, Expand);
108     setOperationAction(ISD::FP_TO_FP16, T, Expand);
109     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
110     setTruncStoreAction(T, MVT::f16, Expand);
111   }
112 
113   // Expand unavailable integer operations.
114   for (auto Op :
115        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
116         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
117         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
118     for (auto T : {MVT::i32, MVT::i64})
119       setOperationAction(Op, T, Expand);
120     if (Subtarget->hasSIMD128())
121       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
122         setOperationAction(Op, T, Expand);
123     if (Subtarget->hasUnimplementedSIMD128())
124       setOperationAction(Op, MVT::v2i64, Expand);
125   }
126 
127   // SIMD-specific configuration
128   if (Subtarget->hasSIMD128()) {
129     // Support saturating add for i8x16 and i16x8
130     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
131       for (auto T : {MVT::v16i8, MVT::v8i16})
132         setOperationAction(Op, T, Legal);
133 
134     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
135     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
136       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
137     if (Subtarget->hasUnimplementedSIMD128())
138       for (auto T : {MVT::v2i64, MVT::v2f64})
139         setOperationAction(ISD::BUILD_VECTOR, T, Custom);
140 
141     // We have custom shuffle lowering to expose the shuffle mask
142     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
143       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
144     if (Subtarget->hasUnimplementedSIMD128())
145       for (auto T: {MVT::v2i64, MVT::v2f64})
146         setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
147 
148     // Custom lowering since wasm shifts must have a scalar shift amount
149     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
150       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
151         setOperationAction(Op, T, Custom);
152       if (Subtarget->hasUnimplementedSIMD128())
153         setOperationAction(Op, MVT::v2i64, Custom);
154     }
155 
156     // Custom lower lane accesses to expand out variable indices
157     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
158       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
159         setOperationAction(Op, T, Custom);
160       if (Subtarget->hasUnimplementedSIMD128())
161         for (auto T : {MVT::v2i64, MVT::v2f64})
162           setOperationAction(Op, T, Custom);
163     }
164 
165     // There is no i64x2.mul instruction
166     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
167 
168     // There are no vector select instructions
169     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
170       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
171         setOperationAction(Op, T, Expand);
172       if (Subtarget->hasUnimplementedSIMD128())
173         for (auto T : {MVT::v2i64, MVT::v2f64})
174           setOperationAction(Op, T, Expand);
175     }
176 
177     // Expand integer operations supported for scalars but not SIMD
178     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
179                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
180       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
181         setOperationAction(Op, T, Expand);
182       if (Subtarget->hasUnimplementedSIMD128())
183         setOperationAction(Op, MVT::v2i64, Expand);
184     }
185 
186     // Expand float operations supported for scalars but not SIMD
187     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
188                     ISD::FCOPYSIGN}) {
189       setOperationAction(Op, MVT::v4f32, Expand);
190       if (Subtarget->hasUnimplementedSIMD128())
191         setOperationAction(Op, MVT::v2f64, Expand);
192     }
193 
194     // Expand additional SIMD ops that V8 hasn't implemented yet
195     if (!Subtarget->hasUnimplementedSIMD128()) {
196       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
197       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
198     }
199   }
200 
201   // As a special case, these operators use the type to mean the type to
202   // sign-extend from.
203   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
204   if (!Subtarget->hasSignExt()) {
205     // Sign extends are legal only when extending a vector extract
206     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
207     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
208       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
209   }
210   for (auto T : MVT::integer_vector_valuetypes())
211     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
212 
213   // Dynamic stack allocation: use the default expansion.
214   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
215   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
216   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
217 
218   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
219   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
220 
221   // Expand these forms; we pattern-match the forms that we can handle in isel.
222   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
223     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
224       setOperationAction(Op, T, Expand);
225 
226   // We have custom switch handling.
227   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
228 
229   // WebAssembly doesn't have:
230   //  - Floating-point extending loads.
231   //  - Floating-point truncating stores.
232   //  - i1 extending loads.
233   //  - extending/truncating SIMD loads/stores
234   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
235   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
236   for (auto T : MVT::integer_valuetypes())
237     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
238       setLoadExtAction(Ext, T, MVT::i1, Promote);
239   if (Subtarget->hasSIMD128()) {
240     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
241                    MVT::v2f64}) {
242       for (auto MemT : MVT::vector_valuetypes()) {
243         if (MVT(T) != MemT) {
244           setTruncStoreAction(T, MemT, Expand);
245           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
246             setLoadExtAction(Ext, T, MemT, Expand);
247         }
248       }
249     }
250   }
251 
252   // Don't do anything clever with build_pairs
253   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
254 
255   // Trap lowers to wasm unreachable
256   setOperationAction(ISD::TRAP, MVT::Other, Legal);
257 
258   // Exception handling intrinsics
259   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
260   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
261 
262   setMaxAtomicSizeInBitsSupported(64);
263 
264   if (Subtarget->hasBulkMemory()) {
265     // Use memory.copy and friends over multiple loads and stores
266     MaxStoresPerMemcpy = 1;
267     MaxStoresPerMemcpyOptSize = 1;
268     MaxStoresPerMemmove = 1;
269     MaxStoresPerMemmoveOptSize = 1;
270     MaxStoresPerMemset = 1;
271     MaxStoresPerMemsetOptSize = 1;
272   }
273 }
274 
275 TargetLowering::AtomicExpansionKind
276 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
277   // We have wasm instructions for these
278   switch (AI->getOperation()) {
279   case AtomicRMWInst::Add:
280   case AtomicRMWInst::Sub:
281   case AtomicRMWInst::And:
282   case AtomicRMWInst::Or:
283   case AtomicRMWInst::Xor:
284   case AtomicRMWInst::Xchg:
285     return AtomicExpansionKind::None;
286   default:
287     break;
288   }
289   return AtomicExpansionKind::CmpXChg;
290 }
291 
292 FastISel *WebAssemblyTargetLowering::createFastISel(
293     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
294   return WebAssembly::createFastISel(FuncInfo, LibInfo);
295 }
296 
297 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
298                                                       EVT VT) const {
299   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
300   if (BitWidth > 1 && BitWidth < 8)
301     BitWidth = 8;
302 
303   if (BitWidth > 64) {
304     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
305     // the count to be an i32.
306     BitWidth = 32;
307     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
308            "32-bit shift counts ought to be enough for anyone");
309   }
310 
311   MVT Result = MVT::getIntegerVT(BitWidth);
312   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
313          "Unable to represent scalar shift amount type");
314   return Result;
315 }
316 
317 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
318 // undefined result on invalid/overflow, to the WebAssembly opcode, which
319 // traps on invalid/overflow.
320 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
321                                        MachineBasicBlock *BB,
322                                        const TargetInstrInfo &TII,
323                                        bool IsUnsigned, bool Int64,
324                                        bool Float64, unsigned LoweredOpcode) {
325   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
326 
327   unsigned OutReg = MI.getOperand(0).getReg();
328   unsigned InReg = MI.getOperand(1).getReg();
329 
330   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
331   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
332   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
333   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
334   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
335   unsigned Eqz = WebAssembly::EQZ_I32;
336   unsigned And = WebAssembly::AND_I32;
337   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
338   int64_t Substitute = IsUnsigned ? 0 : Limit;
339   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
340   auto &Context = BB->getParent()->getFunction().getContext();
341   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
342 
343   const BasicBlock *LLVMBB = BB->getBasicBlock();
344   MachineFunction *F = BB->getParent();
345   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
346   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
347   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
348 
349   MachineFunction::iterator It = ++BB->getIterator();
350   F->insert(It, FalseMBB);
351   F->insert(It, TrueMBB);
352   F->insert(It, DoneMBB);
353 
354   // Transfer the remainder of BB and its successor edges to DoneMBB.
355   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
356   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
357 
358   BB->addSuccessor(TrueMBB);
359   BB->addSuccessor(FalseMBB);
360   TrueMBB->addSuccessor(DoneMBB);
361   FalseMBB->addSuccessor(DoneMBB);
362 
363   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
364   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
365   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
366   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
367   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
368   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
369   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
370 
371   MI.eraseFromParent();
372   // For signed numbers, we can do a single comparison to determine whether
373   // fabs(x) is within range.
374   if (IsUnsigned) {
375     Tmp0 = InReg;
376   } else {
377     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
378   }
379   BuildMI(BB, DL, TII.get(FConst), Tmp1)
380       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
381   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
382 
383   // For unsigned numbers, we have to do a separate comparison with zero.
384   if (IsUnsigned) {
385     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
386     unsigned SecondCmpReg =
387         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
388     unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
389     BuildMI(BB, DL, TII.get(FConst), Tmp1)
390         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
391     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
392     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
393     CmpReg = AndReg;
394   }
395 
396   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
397 
398   // Create the CFG diamond to select between doing the conversion or using
399   // the substitute value.
400   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
401   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
402   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
403   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
404   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
405       .addReg(FalseReg)
406       .addMBB(FalseMBB)
407       .addReg(TrueReg)
408       .addMBB(TrueMBB);
409 
410   return DoneMBB;
411 }
412 
413 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
414     MachineInstr &MI, MachineBasicBlock *BB) const {
415   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
416   DebugLoc DL = MI.getDebugLoc();
417 
418   switch (MI.getOpcode()) {
419   default:
420     llvm_unreachable("Unexpected instr type to insert");
421   case WebAssembly::FP_TO_SINT_I32_F32:
422     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
423                         WebAssembly::I32_TRUNC_S_F32);
424   case WebAssembly::FP_TO_UINT_I32_F32:
425     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
426                         WebAssembly::I32_TRUNC_U_F32);
427   case WebAssembly::FP_TO_SINT_I64_F32:
428     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
429                         WebAssembly::I64_TRUNC_S_F32);
430   case WebAssembly::FP_TO_UINT_I64_F32:
431     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
432                         WebAssembly::I64_TRUNC_U_F32);
433   case WebAssembly::FP_TO_SINT_I32_F64:
434     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
435                         WebAssembly::I32_TRUNC_S_F64);
436   case WebAssembly::FP_TO_UINT_I32_F64:
437     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
438                         WebAssembly::I32_TRUNC_U_F64);
439   case WebAssembly::FP_TO_SINT_I64_F64:
440     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
441                         WebAssembly::I64_TRUNC_S_F64);
442   case WebAssembly::FP_TO_UINT_I64_F64:
443     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
444                         WebAssembly::I64_TRUNC_U_F64);
445     llvm_unreachable("Unexpected instruction to emit with custom inserter");
446   }
447 }
448 
449 const char *
450 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
451   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
452   case WebAssemblyISD::FIRST_NUMBER:
453     break;
454 #define HANDLE_NODETYPE(NODE)                                                  \
455   case WebAssemblyISD::NODE:                                                   \
456     return "WebAssemblyISD::" #NODE;
457 #include "WebAssemblyISD.def"
458 #undef HANDLE_NODETYPE
459   }
460   return nullptr;
461 }
462 
463 std::pair<unsigned, const TargetRegisterClass *>
464 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
465     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
466   // First, see if this is a constraint that directly corresponds to a
467   // WebAssembly register class.
468   if (Constraint.size() == 1) {
469     switch (Constraint[0]) {
470     case 'r':
471       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
472       if (Subtarget->hasSIMD128() && VT.isVector()) {
473         if (VT.getSizeInBits() == 128)
474           return std::make_pair(0U, &WebAssembly::V128RegClass);
475       }
476       if (VT.isInteger() && !VT.isVector()) {
477         if (VT.getSizeInBits() <= 32)
478           return std::make_pair(0U, &WebAssembly::I32RegClass);
479         if (VT.getSizeInBits() <= 64)
480           return std::make_pair(0U, &WebAssembly::I64RegClass);
481       }
482       break;
483     default:
484       break;
485     }
486   }
487 
488   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
489 }
490 
491 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
492   // Assume ctz is a relatively cheap operation.
493   return true;
494 }
495 
496 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
497   // Assume clz is a relatively cheap operation.
498   return true;
499 }
500 
501 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
502                                                       const AddrMode &AM,
503                                                       Type *Ty, unsigned AS,
504                                                       Instruction *I) const {
505   // WebAssembly offsets are added as unsigned without wrapping. The
506   // isLegalAddressingMode gives us no way to determine if wrapping could be
507   // happening, so we approximate this by accepting only non-negative offsets.
508   if (AM.BaseOffs < 0)
509     return false;
510 
511   // WebAssembly has no scale register operands.
512   if (AM.Scale != 0)
513     return false;
514 
515   // Everything else is legal.
516   return true;
517 }
518 
519 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
520     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const {
521   // WebAssembly supports unaligned accesses, though it should be declared
522   // with the p2align attribute on loads and stores which do so, and there
523   // may be a performance impact. We tell LLVM they're "fast" because
524   // for the kinds of things that LLVM uses this for (merging adjacent stores
525   // of constants, etc.), WebAssembly implementations will either want the
526   // unaligned access or they'll split anyway.
527   if (Fast)
528     *Fast = true;
529   return true;
530 }
531 
532 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
533                                               AttributeList Attr) const {
534   // The current thinking is that wasm engines will perform this optimization,
535   // so we can save on code size.
536   return true;
537 }
538 
539 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
540                                                   LLVMContext &C,
541                                                   EVT VT) const {
542   if (VT.isVector())
543     return VT.changeVectorElementTypeToInteger();
544 
545   return TargetLowering::getSetCCResultType(DL, C, VT);
546 }
547 
548 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
549                                                    const CallInst &I,
550                                                    MachineFunction &MF,
551                                                    unsigned Intrinsic) const {
552   switch (Intrinsic) {
553   case Intrinsic::wasm_atomic_notify:
554     Info.opc = ISD::INTRINSIC_W_CHAIN;
555     Info.memVT = MVT::i32;
556     Info.ptrVal = I.getArgOperand(0);
557     Info.offset = 0;
558     Info.align = 4;
559     // atomic.notify instruction does not really load the memory specified with
560     // this argument, but MachineMemOperand should either be load or store, so
561     // we set this to a load.
562     // FIXME Volatile isn't really correct, but currently all LLVM atomic
563     // instructions are treated as volatiles in the backend, so we should be
564     // consistent. The same applies for wasm_atomic_wait intrinsics too.
565     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
566     return true;
567   case Intrinsic::wasm_atomic_wait_i32:
568     Info.opc = ISD::INTRINSIC_W_CHAIN;
569     Info.memVT = MVT::i32;
570     Info.ptrVal = I.getArgOperand(0);
571     Info.offset = 0;
572     Info.align = 4;
573     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
574     return true;
575   case Intrinsic::wasm_atomic_wait_i64:
576     Info.opc = ISD::INTRINSIC_W_CHAIN;
577     Info.memVT = MVT::i64;
578     Info.ptrVal = I.getArgOperand(0);
579     Info.offset = 0;
580     Info.align = 8;
581     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
582     return true;
583   default:
584     return false;
585   }
586 }
587 
588 //===----------------------------------------------------------------------===//
589 // WebAssembly Lowering private implementation.
590 //===----------------------------------------------------------------------===//
591 
592 //===----------------------------------------------------------------------===//
593 // Lowering Code
594 //===----------------------------------------------------------------------===//
595 
596 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
597   MachineFunction &MF = DAG.getMachineFunction();
598   DAG.getContext()->diagnose(
599       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
600 }
601 
602 // Test whether the given calling convention is supported.
603 static bool callingConvSupported(CallingConv::ID CallConv) {
604   // We currently support the language-independent target-independent
605   // conventions. We don't yet have a way to annotate calls with properties like
606   // "cold", and we don't have any call-clobbered registers, so these are mostly
607   // all handled the same.
608   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
609          CallConv == CallingConv::Cold ||
610          CallConv == CallingConv::PreserveMost ||
611          CallConv == CallingConv::PreserveAll ||
612          CallConv == CallingConv::CXX_FAST_TLS;
613 }
614 
615 SDValue
616 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
617                                      SmallVectorImpl<SDValue> &InVals) const {
618   SelectionDAG &DAG = CLI.DAG;
619   SDLoc DL = CLI.DL;
620   SDValue Chain = CLI.Chain;
621   SDValue Callee = CLI.Callee;
622   MachineFunction &MF = DAG.getMachineFunction();
623   auto Layout = MF.getDataLayout();
624 
625   CallingConv::ID CallConv = CLI.CallConv;
626   if (!callingConvSupported(CallConv))
627     fail(DL, DAG,
628          "WebAssembly doesn't support language-specific or target-specific "
629          "calling conventions yet");
630   if (CLI.IsPatchPoint)
631     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
632 
633   // WebAssembly doesn't currently support explicit tail calls. If they are
634   // required, fail. Otherwise, just disable them.
635   if ((CallConv == CallingConv::Fast && CLI.IsTailCall &&
636        MF.getTarget().Options.GuaranteedTailCallOpt) ||
637       (CLI.CS && CLI.CS.isMustTailCall()))
638     fail(DL, DAG, "WebAssembly doesn't support tail call yet");
639   CLI.IsTailCall = false;
640 
641   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
642   if (Ins.size() > 1)
643     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
644 
645   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
646   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
647   unsigned NumFixedArgs = 0;
648   for (unsigned I = 0; I < Outs.size(); ++I) {
649     const ISD::OutputArg &Out = Outs[I];
650     SDValue &OutVal = OutVals[I];
651     if (Out.Flags.isNest())
652       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
653     if (Out.Flags.isInAlloca())
654       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
655     if (Out.Flags.isInConsecutiveRegs())
656       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
657     if (Out.Flags.isInConsecutiveRegsLast())
658       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
659     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
660       auto &MFI = MF.getFrameInfo();
661       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
662                                      Out.Flags.getByValAlign(),
663                                      /*isSS=*/false);
664       SDValue SizeNode =
665           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
666       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
667       Chain = DAG.getMemcpy(
668           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
669           /*isVolatile*/ false, /*AlwaysInline=*/false,
670           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
671       OutVal = FINode;
672     }
673     // Count the number of fixed args *after* legalization.
674     NumFixedArgs += Out.IsFixed;
675   }
676 
677   bool IsVarArg = CLI.IsVarArg;
678   auto PtrVT = getPointerTy(Layout);
679 
680   // Analyze operands of the call, assigning locations to each operand.
681   SmallVector<CCValAssign, 16> ArgLocs;
682   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
683 
684   if (IsVarArg) {
685     // Outgoing non-fixed arguments are placed in a buffer. First
686     // compute their offsets and the total amount of buffer space needed.
687     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
688       const ISD::OutputArg &Out = Outs[I];
689       SDValue &Arg = OutVals[I];
690       EVT VT = Arg.getValueType();
691       assert(VT != MVT::iPTR && "Legalized args should be concrete");
692       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
693       unsigned Align = std::max(Out.Flags.getOrigAlign(),
694                                 Layout.getABITypeAlignment(Ty));
695       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
696                                              Align);
697       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
698                                         Offset, VT.getSimpleVT(),
699                                         CCValAssign::Full));
700     }
701   }
702 
703   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
704 
705   SDValue FINode;
706   if (IsVarArg && NumBytes) {
707     // For non-fixed arguments, next emit stores to store the argument values
708     // to the stack buffer at the offsets computed above.
709     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
710                                                  Layout.getStackAlignment(),
711                                                  /*isSS=*/false);
712     unsigned ValNo = 0;
713     SmallVector<SDValue, 8> Chains;
714     for (SDValue Arg :
715          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
716       assert(ArgLocs[ValNo].getValNo() == ValNo &&
717              "ArgLocs should remain in order and only hold varargs args");
718       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
719       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
720       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
721                                 DAG.getConstant(Offset, DL, PtrVT));
722       Chains.push_back(
723           DAG.getStore(Chain, DL, Arg, Add,
724                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
725     }
726     if (!Chains.empty())
727       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
728   } else if (IsVarArg) {
729     FINode = DAG.getIntPtrConstant(0, DL);
730   }
731 
732   if (Callee->getOpcode() == ISD::GlobalAddress) {
733     // If the callee is a GlobalAddress node (quite common, every direct call
734     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
735     // doesn't at MO_GOT which is not needed for direct calls.
736     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
737     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
738                                         getPointerTy(DAG.getDataLayout()),
739                                         GA->getOffset());
740     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
741                          getPointerTy(DAG.getDataLayout()), Callee);
742   }
743 
744   // Compute the operands for the CALLn node.
745   SmallVector<SDValue, 16> Ops;
746   Ops.push_back(Chain);
747   Ops.push_back(Callee);
748 
749   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
750   // isn't reliable.
751   Ops.append(OutVals.begin(),
752              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
753   // Add a pointer to the vararg buffer.
754   if (IsVarArg)
755     Ops.push_back(FINode);
756 
757   SmallVector<EVT, 8> InTys;
758   for (const auto &In : Ins) {
759     assert(!In.Flags.isByVal() && "byval is not valid for return values");
760     assert(!In.Flags.isNest() && "nest is not valid for return values");
761     if (In.Flags.isInAlloca())
762       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
763     if (In.Flags.isInConsecutiveRegs())
764       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
765     if (In.Flags.isInConsecutiveRegsLast())
766       fail(DL, DAG,
767            "WebAssembly hasn't implemented cons regs last return values");
768     // Ignore In.getOrigAlign() because all our arguments are passed in
769     // registers.
770     InTys.push_back(In.VT);
771   }
772   InTys.push_back(MVT::Other);
773   SDVTList InTyList = DAG.getVTList(InTys);
774   SDValue Res =
775       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
776                   DL, InTyList, Ops);
777   if (Ins.empty()) {
778     Chain = Res;
779   } else {
780     InVals.push_back(Res);
781     Chain = Res.getValue(1);
782   }
783 
784   return Chain;
785 }
786 
787 bool WebAssemblyTargetLowering::CanLowerReturn(
788     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
789     const SmallVectorImpl<ISD::OutputArg> &Outs,
790     LLVMContext & /*Context*/) const {
791   // WebAssembly can't currently handle returning tuples.
792   return Outs.size() <= 1;
793 }
794 
795 SDValue WebAssemblyTargetLowering::LowerReturn(
796     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
797     const SmallVectorImpl<ISD::OutputArg> &Outs,
798     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
799     SelectionDAG &DAG) const {
800   assert(Outs.size() <= 1 && "WebAssembly can only return up to one value");
801   if (!callingConvSupported(CallConv))
802     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
803 
804   SmallVector<SDValue, 4> RetOps(1, Chain);
805   RetOps.append(OutVals.begin(), OutVals.end());
806   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
807 
808   // Record the number and types of the return values.
809   for (const ISD::OutputArg &Out : Outs) {
810     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
811     assert(!Out.Flags.isNest() && "nest is not valid for return values");
812     assert(Out.IsFixed && "non-fixed return value is not valid");
813     if (Out.Flags.isInAlloca())
814       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
815     if (Out.Flags.isInConsecutiveRegs())
816       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
817     if (Out.Flags.isInConsecutiveRegsLast())
818       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
819   }
820 
821   return Chain;
822 }
823 
824 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
825     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
826     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
827     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
828   if (!callingConvSupported(CallConv))
829     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
830 
831   MachineFunction &MF = DAG.getMachineFunction();
832   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
833 
834   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
835   // of the incoming values before they're represented by virtual registers.
836   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
837 
838   for (const ISD::InputArg &In : Ins) {
839     if (In.Flags.isInAlloca())
840       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
841     if (In.Flags.isNest())
842       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
843     if (In.Flags.isInConsecutiveRegs())
844       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
845     if (In.Flags.isInConsecutiveRegsLast())
846       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
847     // Ignore In.getOrigAlign() because all our arguments are passed in
848     // registers.
849     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
850                                            DAG.getTargetConstant(InVals.size(),
851                                                                  DL, MVT::i32))
852                              : DAG.getUNDEF(In.VT));
853 
854     // Record the number and types of arguments.
855     MFI->addParam(In.VT);
856   }
857 
858   // Varargs are copied into a buffer allocated by the caller, and a pointer to
859   // the buffer is passed as an argument.
860   if (IsVarArg) {
861     MVT PtrVT = getPointerTy(MF.getDataLayout());
862     unsigned VarargVreg =
863         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
864     MFI->setVarargBufferVreg(VarargVreg);
865     Chain = DAG.getCopyToReg(
866         Chain, DL, VarargVreg,
867         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
868                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
869     MFI->addParam(PtrVT);
870   }
871 
872   // Record the number and types of arguments and results.
873   SmallVector<MVT, 4> Params;
874   SmallVector<MVT, 4> Results;
875   computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
876                       DAG.getTarget(), Params, Results);
877   for (MVT VT : Results)
878     MFI->addResult(VT);
879   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
880   // the param logic here with ComputeSignatureVTs
881   assert(MFI->getParams().size() == Params.size() &&
882          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
883                     Params.begin()));
884 
885   return Chain;
886 }
887 
888 //===----------------------------------------------------------------------===//
889 //  Custom lowering hooks.
890 //===----------------------------------------------------------------------===//
891 
892 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
893                                                   SelectionDAG &DAG) const {
894   SDLoc DL(Op);
895   switch (Op.getOpcode()) {
896   default:
897     llvm_unreachable("unimplemented operation lowering");
898     return SDValue();
899   case ISD::FrameIndex:
900     return LowerFrameIndex(Op, DAG);
901   case ISD::GlobalAddress:
902     return LowerGlobalAddress(Op, DAG);
903   case ISD::ExternalSymbol:
904     return LowerExternalSymbol(Op, DAG);
905   case ISD::JumpTable:
906     return LowerJumpTable(Op, DAG);
907   case ISD::BR_JT:
908     return LowerBR_JT(Op, DAG);
909   case ISD::VASTART:
910     return LowerVASTART(Op, DAG);
911   case ISD::BlockAddress:
912   case ISD::BRIND:
913     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
914     return SDValue();
915   case ISD::RETURNADDR: // Probably nothing meaningful can be returned here.
916     fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address");
917     return SDValue();
918   case ISD::FRAMEADDR:
919     return LowerFRAMEADDR(Op, DAG);
920   case ISD::CopyToReg:
921     return LowerCopyToReg(Op, DAG);
922   case ISD::EXTRACT_VECTOR_ELT:
923   case ISD::INSERT_VECTOR_ELT:
924     return LowerAccessVectorElement(Op, DAG);
925   case ISD::INTRINSIC_VOID:
926   case ISD::INTRINSIC_WO_CHAIN:
927   case ISD::INTRINSIC_W_CHAIN:
928     return LowerIntrinsic(Op, DAG);
929   case ISD::SIGN_EXTEND_INREG:
930     return LowerSIGN_EXTEND_INREG(Op, DAG);
931   case ISD::BUILD_VECTOR:
932     return LowerBUILD_VECTOR(Op, DAG);
933   case ISD::VECTOR_SHUFFLE:
934     return LowerVECTOR_SHUFFLE(Op, DAG);
935   case ISD::SHL:
936   case ISD::SRA:
937   case ISD::SRL:
938     return LowerShift(Op, DAG);
939   }
940 }
941 
942 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
943                                                   SelectionDAG &DAG) const {
944   SDValue Src = Op.getOperand(2);
945   if (isa<FrameIndexSDNode>(Src.getNode())) {
946     // CopyToReg nodes don't support FrameIndex operands. Other targets select
947     // the FI to some LEA-like instruction, but since we don't have that, we
948     // need to insert some kind of instruction that can take an FI operand and
949     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
950     // local.copy between Op and its FI operand.
951     SDValue Chain = Op.getOperand(0);
952     SDLoc DL(Op);
953     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
954     EVT VT = Src.getValueType();
955     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
956                                                    : WebAssembly::COPY_I64,
957                                     DL, VT, Src),
958                  0);
959     return Op.getNode()->getNumValues() == 1
960                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
961                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
962                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
963                                                            : SDValue());
964   }
965   return SDValue();
966 }
967 
968 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
969                                                    SelectionDAG &DAG) const {
970   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
971   return DAG.getTargetFrameIndex(FI, Op.getValueType());
972 }
973 
974 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
975                                                   SelectionDAG &DAG) const {
976   // Non-zero depths are not supported by WebAssembly currently. Use the
977   // legalizer's default expansion, which is to return 0 (what this function is
978   // documented to do).
979   if (Op.getConstantOperandVal(0) > 0)
980     return SDValue();
981 
982   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
983   EVT VT = Op.getValueType();
984   unsigned FP =
985       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
986   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
987 }
988 
989 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
990                                                       SelectionDAG &DAG) const {
991   SDLoc DL(Op);
992   const auto *GA = cast<GlobalAddressSDNode>(Op);
993   EVT VT = Op.getValueType();
994   assert(GA->getTargetFlags() == 0 &&
995          "Unexpected target flags on generic GlobalAddressSDNode");
996   if (GA->getAddressSpace() != 0)
997     fail(DL, DAG, "WebAssembly only expects the 0 address space");
998 
999   unsigned Flags = 0;
1000   if (isPositionIndependent()) {
1001     const GlobalValue *GV = GA->getGlobal();
1002     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1003       MachineFunction &MF = DAG.getMachineFunction();
1004       MVT PtrVT = getPointerTy(MF.getDataLayout());
1005       const char *BaseName;
1006       if (GV->getValueType()->isFunctionTy())
1007         BaseName = MF.createExternalSymbolName("__table_base");
1008       else
1009         BaseName = MF.createExternalSymbolName("__memory_base");
1010       SDValue BaseAddr =
1011           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1012                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1013 
1014       SDValue SymAddr = DAG.getNode(
1015           WebAssemblyISD::WrapperPIC, DL, VT,
1016           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset()));
1017 
1018       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1019     } else {
1020       Flags |= WebAssemblyII::MO_GOT;
1021     }
1022   }
1023 
1024   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1025                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1026                                                 GA->getOffset(), Flags));
1027 }
1028 
1029 SDValue
1030 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1031                                                SelectionDAG &DAG) const {
1032   SDLoc DL(Op);
1033   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1034   EVT VT = Op.getValueType();
1035   assert(ES->getTargetFlags() == 0 &&
1036          "Unexpected target flags on generic ExternalSymbolSDNode");
1037   // Set the TargetFlags to MO_SYMBOL_FUNCTION which indicates that this is a
1038   // "function" symbol rather than a data symbol. We do this unconditionally
1039   // even though we don't know anything about the symbol other than its name,
1040   // because all external symbols used in target-independent SelectionDAG code
1041   // are for functions.
1042   return DAG.getNode(
1043       WebAssemblyISD::Wrapper, DL, VT,
1044       DAG.getTargetExternalSymbol(ES->getSymbol(), VT,
1045                                   WebAssemblyII::MO_SYMBOL_FUNCTION));
1046 }
1047 
1048 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1049                                                   SelectionDAG &DAG) const {
1050   // There's no need for a Wrapper node because we always incorporate a jump
1051   // table operand into a BR_TABLE instruction, rather than ever
1052   // materializing it in a register.
1053   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1054   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1055                                 JT->getTargetFlags());
1056 }
1057 
1058 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1059                                               SelectionDAG &DAG) const {
1060   SDLoc DL(Op);
1061   SDValue Chain = Op.getOperand(0);
1062   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1063   SDValue Index = Op.getOperand(2);
1064   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1065 
1066   SmallVector<SDValue, 8> Ops;
1067   Ops.push_back(Chain);
1068   Ops.push_back(Index);
1069 
1070   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1071   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1072 
1073   // Add an operand for each case.
1074   for (auto MBB : MBBs)
1075     Ops.push_back(DAG.getBasicBlock(MBB));
1076 
1077   // TODO: For now, we just pick something arbitrary for a default case for now.
1078   // We really want to sniff out the guard and put in the real default case (and
1079   // delete the guard).
1080   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1081 
1082   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1083 }
1084 
1085 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1086                                                 SelectionDAG &DAG) const {
1087   SDLoc DL(Op);
1088   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1089 
1090   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1091   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1092 
1093   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1094                                     MFI->getVarargBufferVreg(), PtrVT);
1095   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1096                       MachinePointerInfo(SV), 0);
1097 }
1098 
1099 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1100                                                   SelectionDAG &DAG) const {
1101   MachineFunction &MF = DAG.getMachineFunction();
1102   unsigned IntNo;
1103   switch (Op.getOpcode()) {
1104   case ISD::INTRINSIC_VOID:
1105   case ISD::INTRINSIC_W_CHAIN:
1106     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1107     break;
1108   case ISD::INTRINSIC_WO_CHAIN:
1109     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1110     break;
1111   default:
1112     llvm_unreachable("Invalid intrinsic");
1113   }
1114   SDLoc DL(Op);
1115 
1116   switch (IntNo) {
1117   default:
1118     return SDValue(); // Don't custom lower most intrinsics.
1119 
1120   case Intrinsic::wasm_lsda: {
1121     EVT VT = Op.getValueType();
1122     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1123     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1124     auto &Context = MF.getMMI().getContext();
1125     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1126                                             Twine(MF.getFunctionNumber()));
1127     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1128                        DAG.getMCSymbol(S, PtrVT));
1129   }
1130 
1131   case Intrinsic::wasm_throw: {
1132     // We only support C++ exceptions for now
1133     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1134     if (Tag != CPP_EXCEPTION)
1135       llvm_unreachable("Invalid tag!");
1136     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1137     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1138     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1139     SDValue SymNode =
1140         DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1141                     DAG.getTargetExternalSymbol(
1142                         SymName, PtrVT, WebAssemblyII::MO_SYMBOL_EVENT));
1143     return DAG.getNode(WebAssemblyISD::THROW, DL,
1144                        MVT::Other, // outchain type
1145                        {
1146                            Op.getOperand(0), // inchain
1147                            SymNode,          // exception symbol
1148                            Op.getOperand(3)  // thrown value
1149                        });
1150   }
1151   }
1152 }
1153 
1154 SDValue
1155 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1156                                                   SelectionDAG &DAG) const {
1157   // If sign extension operations are disabled, allow sext_inreg only if operand
1158   // is a vector extract. SIMD does not depend on sign extension operations, but
1159   // allowing sext_inreg in this context lets us have simple patterns to select
1160   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1161   // simpler in this file, but would necessitate large and brittle patterns to
1162   // undo the expansion and select extract_lane_s instructions.
1163   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1164   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT)
1165     return Op;
1166   // Otherwise expand
1167   return SDValue();
1168 }
1169 
1170 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1171                                                      SelectionDAG &DAG) const {
1172   SDLoc DL(Op);
1173   const EVT VecT = Op.getValueType();
1174   const EVT LaneT = Op.getOperand(0).getValueType();
1175   const size_t Lanes = Op.getNumOperands();
1176   auto IsConstant = [](const SDValue &V) {
1177     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1178   };
1179 
1180   // Find the most common operand, which is approximately the best to splat
1181   using Entry = std::pair<SDValue, size_t>;
1182   SmallVector<Entry, 16> ValueCounts;
1183   size_t NumConst = 0, NumDynamic = 0;
1184   for (const SDValue &Lane : Op->op_values()) {
1185     if (Lane.isUndef()) {
1186       continue;
1187     } else if (IsConstant(Lane)) {
1188       NumConst++;
1189     } else {
1190       NumDynamic++;
1191     }
1192     auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(),
1193                                 [&Lane](Entry A) { return A.first == Lane; });
1194     if (CountIt == ValueCounts.end()) {
1195       ValueCounts.emplace_back(Lane, 1);
1196     } else {
1197       CountIt->second++;
1198     }
1199   }
1200   auto CommonIt =
1201       std::max_element(ValueCounts.begin(), ValueCounts.end(),
1202                        [](Entry A, Entry B) { return A.second < B.second; });
1203   assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector");
1204   SDValue SplatValue = CommonIt->first;
1205   size_t NumCommon = CommonIt->second;
1206 
1207   // If v128.const is available, consider using it instead of a splat
1208   if (Subtarget->hasUnimplementedSIMD128()) {
1209     // {i32,i64,f32,f64}.const opcode, and value
1210     const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes);
1211     // SIMD prefix and opcode
1212     const size_t SplatBytes = 2;
1213     const size_t SplatConstBytes = SplatBytes + ConstBytes;
1214     // SIMD prefix, opcode, and lane index
1215     const size_t ReplaceBytes = 3;
1216     const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes;
1217     // SIMD prefix, v128.const opcode, and 128-bit value
1218     const size_t VecConstBytes = 18;
1219     // Initial v128.const and a replace_lane for each non-const operand
1220     const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes;
1221     // Initial splat and all necessary replace_lanes
1222     const size_t SplatInitBytes =
1223         IsConstant(SplatValue)
1224             // Initial constant splat
1225             ? (SplatConstBytes +
1226                // Constant replace_lanes
1227                (NumConst - NumCommon) * ReplaceConstBytes +
1228                // Dynamic replace_lanes
1229                (NumDynamic * ReplaceBytes))
1230             // Initial dynamic splat
1231             : (SplatBytes +
1232                // Constant replace_lanes
1233                (NumConst * ReplaceConstBytes) +
1234                // Dynamic replace_lanes
1235                (NumDynamic - NumCommon) * ReplaceBytes);
1236     if (ConstInitBytes < SplatInitBytes) {
1237       // Create build_vector that will lower to initial v128.const
1238       SmallVector<SDValue, 16> ConstLanes;
1239       for (const SDValue &Lane : Op->op_values()) {
1240         if (IsConstant(Lane)) {
1241           ConstLanes.push_back(Lane);
1242         } else if (LaneT.isFloatingPoint()) {
1243           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1244         } else {
1245           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1246         }
1247       }
1248       SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1249       // Add replace_lane instructions for non-const lanes
1250       for (size_t I = 0; I < Lanes; ++I) {
1251         const SDValue &Lane = Op->getOperand(I);
1252         if (!Lane.isUndef() && !IsConstant(Lane))
1253           Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1254                                DAG.getConstant(I, DL, MVT::i32));
1255       }
1256       return Result;
1257     }
1258   }
1259   // Use a splat for the initial vector
1260   SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1261   // Add replace_lane instructions for other values
1262   for (size_t I = 0; I < Lanes; ++I) {
1263     const SDValue &Lane = Op->getOperand(I);
1264     if (Lane != SplatValue)
1265       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1266                            DAG.getConstant(I, DL, MVT::i32));
1267   }
1268   return Result;
1269 }
1270 
1271 SDValue
1272 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1273                                                SelectionDAG &DAG) const {
1274   SDLoc DL(Op);
1275   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1276   MVT VecType = Op.getOperand(0).getSimpleValueType();
1277   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1278   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1279 
1280   // Space for two vector args and sixteen mask indices
1281   SDValue Ops[18];
1282   size_t OpIdx = 0;
1283   Ops[OpIdx++] = Op.getOperand(0);
1284   Ops[OpIdx++] = Op.getOperand(1);
1285 
1286   // Expand mask indices to byte indices and materialize them as operands
1287   for (int M : Mask) {
1288     for (size_t J = 0; J < LaneBytes; ++J) {
1289       // Lower undefs (represented by -1 in mask) to zero
1290       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1291       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1292     }
1293   }
1294 
1295   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1296 }
1297 
1298 SDValue
1299 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1300                                                     SelectionDAG &DAG) const {
1301   // Allow constant lane indices, expand variable lane indices
1302   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1303   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1304     return Op;
1305   else
1306     // Perform default expansion
1307     return SDValue();
1308 }
1309 
1310 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1311   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1312   // 32-bit and 64-bit unrolled shifts will have proper semantics
1313   if (LaneT.bitsGE(MVT::i32))
1314     return DAG.UnrollVectorOp(Op.getNode());
1315   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1316   SDLoc DL(Op);
1317   SDValue ShiftVal = Op.getOperand(1);
1318   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1319   SDValue MaskedShiftVal = DAG.getNode(
1320       ISD::AND,                    // mask opcode
1321       DL, ShiftVal.getValueType(), // masked value type
1322       ShiftVal,                    // original shift value operand
1323       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1324   );
1325 
1326   return DAG.UnrollVectorOp(
1327       DAG.getNode(Op.getOpcode(),        // original shift opcode
1328                   DL, Op.getValueType(), // original return type
1329                   Op.getOperand(0),      // original vector operand,
1330                   MaskedShiftVal         // new masked shift value operand
1331                   )
1332           .getNode());
1333 }
1334 
1335 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1336                                               SelectionDAG &DAG) const {
1337   SDLoc DL(Op);
1338 
1339   // Only manually lower vector shifts
1340   assert(Op.getSimpleValueType().isVector());
1341 
1342   // Expand all vector shifts until V8 fixes its implementation
1343   // TODO: remove this once V8 is fixed
1344   if (!Subtarget->hasUnimplementedSIMD128())
1345     return unrollVectorShift(Op, DAG);
1346 
1347   // Unroll non-splat vector shifts
1348   BuildVectorSDNode *ShiftVec;
1349   SDValue SplatVal;
1350   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1351       !(SplatVal = ShiftVec->getSplatValue()))
1352     return unrollVectorShift(Op, DAG);
1353 
1354   // All splats except i64x2 const splats are handled by patterns
1355   auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1356   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1357     return Op;
1358 
1359   // i64x2 const splats are custom lowered to avoid unnecessary wraps
1360   unsigned Opcode;
1361   switch (Op.getOpcode()) {
1362   case ISD::SHL:
1363     Opcode = WebAssemblyISD::VEC_SHL;
1364     break;
1365   case ISD::SRA:
1366     Opcode = WebAssemblyISD::VEC_SHR_S;
1367     break;
1368   case ISD::SRL:
1369     Opcode = WebAssemblyISD::VEC_SHR_U;
1370     break;
1371   default:
1372     llvm_unreachable("unexpected opcode");
1373   }
1374   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1375   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1376                      DAG.getConstant(Shift, DL, MVT::i32));
1377 }
1378 
1379 //===----------------------------------------------------------------------===//
1380 //                          WebAssembly Optimization Hooks
1381 //===----------------------------------------------------------------------===//
1382