1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // We don't know the microarchitecture here, so just reduce register pressure. 49 setSchedulingPreference(Sched::RegPressure); 50 // Tell ISel that we have a stack pointer. 51 setStackPointerRegisterToSaveRestore( 52 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 53 // Set up the register classes. 54 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 55 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 56 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 57 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 58 if (Subtarget->hasSIMD128()) { 59 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 60 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 63 } 64 if (Subtarget->hasUnimplementedSIMD128()) { 65 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 67 } 68 // Compute derived properties from the register classes. 69 computeRegisterProperties(Subtarget->getRegisterInfo()); 70 71 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 72 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 73 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 74 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 75 setOperationAction(ISD::BRIND, MVT::Other, Custom); 76 77 // Take the default expansion for va_arg, va_copy, and va_end. There is no 78 // default action for va_start, so we do that custom. 79 setOperationAction(ISD::VASTART, MVT::Other, Custom); 80 setOperationAction(ISD::VAARG, MVT::Other, Expand); 81 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 82 setOperationAction(ISD::VAEND, MVT::Other, Expand); 83 84 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 85 // Don't expand the floating-point types to constant pools. 86 setOperationAction(ISD::ConstantFP, T, Legal); 87 // Expand floating-point comparisons. 88 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 89 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 90 setCondCodeAction(CC, T, Expand); 91 // Expand floating-point library function operators. 92 for (auto Op : 93 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 94 setOperationAction(Op, T, Expand); 95 // Note supported floating-point library function operators that otherwise 96 // default to expand. 97 for (auto Op : 98 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 99 setOperationAction(Op, T, Legal); 100 // Support minimum and maximum, which otherwise default to expand. 101 setOperationAction(ISD::FMINIMUM, T, Legal); 102 setOperationAction(ISD::FMAXIMUM, T, Legal); 103 // WebAssembly currently has no builtin f16 support. 104 setOperationAction(ISD::FP16_TO_FP, T, Expand); 105 setOperationAction(ISD::FP_TO_FP16, T, Expand); 106 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 107 setTruncStoreAction(T, MVT::f16, Expand); 108 } 109 110 // Expand unavailable integer operations. 111 for (auto Op : 112 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 113 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 114 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 115 for (auto T : {MVT::i32, MVT::i64}) 116 setOperationAction(Op, T, Expand); 117 if (Subtarget->hasSIMD128()) 118 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasUnimplementedSIMD128()) 121 setOperationAction(Op, MVT::v2i64, Expand); 122 } 123 124 // SIMD-specific configuration 125 if (Subtarget->hasSIMD128()) { 126 // Support saturating add for i8x16 and i16x8 127 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 128 for (auto T : {MVT::v16i8, MVT::v8i16}) 129 setOperationAction(Op, T, Legal); 130 131 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 132 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 133 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 134 if (Subtarget->hasUnimplementedSIMD128()) 135 for (auto T : {MVT::v2i64, MVT::v2f64}) 136 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 137 138 // We have custom shuffle lowering to expose the shuffle mask 139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 140 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 141 if (Subtarget->hasUnimplementedSIMD128()) 142 for (auto T: {MVT::v2i64, MVT::v2f64}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 145 // Custom lowering since wasm shifts must have a scalar shift amount 146 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 148 setOperationAction(Op, T, Custom); 149 if (Subtarget->hasUnimplementedSIMD128()) 150 setOperationAction(Op, MVT::v2i64, Custom); 151 } 152 153 // Custom lower lane accesses to expand out variable indices 154 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 155 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 156 setOperationAction(Op, T, Custom); 157 if (Subtarget->hasUnimplementedSIMD128()) 158 for (auto T : {MVT::v2i64, MVT::v2f64}) 159 setOperationAction(Op, T, Custom); 160 } 161 162 // There is no i64x2.mul instruction 163 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 164 165 // There are no vector select instructions 166 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 168 setOperationAction(Op, T, Expand); 169 if (Subtarget->hasUnimplementedSIMD128()) 170 for (auto T : {MVT::v2i64, MVT::v2f64}) 171 setOperationAction(Op, T, Expand); 172 } 173 174 // Expand integer operations supported for scalars but not SIMD 175 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 176 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 177 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 178 setOperationAction(Op, T, Expand); 179 if (Subtarget->hasUnimplementedSIMD128()) 180 setOperationAction(Op, MVT::v2i64, Expand); 181 } 182 183 // Expand float operations supported for scalars but not SIMD 184 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 185 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 186 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) { 187 setOperationAction(Op, MVT::v4f32, Expand); 188 if (Subtarget->hasUnimplementedSIMD128()) 189 setOperationAction(Op, MVT::v2f64, Expand); 190 } 191 192 // Expand additional SIMD ops that V8 hasn't implemented yet 193 if (!Subtarget->hasUnimplementedSIMD128()) { 194 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 195 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 196 } 197 } 198 199 // As a special case, these operators use the type to mean the type to 200 // sign-extend from. 201 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 202 if (!Subtarget->hasSignExt()) { 203 // Sign extends are legal only when extending a vector extract 204 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 205 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 206 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 207 } 208 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 209 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 210 211 // Dynamic stack allocation: use the default expansion. 212 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 213 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 214 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 215 216 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 217 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 218 219 // Expand these forms; we pattern-match the forms that we can handle in isel. 220 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 221 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 222 setOperationAction(Op, T, Expand); 223 224 // We have custom switch handling. 225 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 226 227 // WebAssembly doesn't have: 228 // - Floating-point extending loads. 229 // - Floating-point truncating stores. 230 // - i1 extending loads. 231 // - extending/truncating SIMD loads/stores 232 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 233 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 234 for (auto T : MVT::integer_valuetypes()) 235 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 236 setLoadExtAction(Ext, T, MVT::i1, Promote); 237 if (Subtarget->hasSIMD128()) { 238 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 239 MVT::v2f64}) { 240 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 241 if (MVT(T) != MemT) { 242 setTruncStoreAction(T, MemT, Expand); 243 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 244 setLoadExtAction(Ext, T, MemT, Expand); 245 } 246 } 247 } 248 } 249 250 // Don't do anything clever with build_pairs 251 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 252 253 // Trap lowers to wasm unreachable 254 setOperationAction(ISD::TRAP, MVT::Other, Legal); 255 256 // Exception handling intrinsics 257 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 258 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 259 260 setMaxAtomicSizeInBitsSupported(64); 261 262 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 263 // consistent with the f64 and f128 names. 264 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 265 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 266 267 // Define the emscripten name for return address helper. 268 // TODO: when implementing other WASM backends, make this generic or only do 269 // this on emscripten depending on what they end up doing. 270 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 271 272 // Always convert switches to br_tables unless there is only one case, which 273 // is equivalent to a simple branch. This reduces code size for wasm, and we 274 // defer possible jump table optimizations to the VM. 275 setMinimumJumpTableEntries(2); 276 } 277 278 TargetLowering::AtomicExpansionKind 279 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 280 // We have wasm instructions for these 281 switch (AI->getOperation()) { 282 case AtomicRMWInst::Add: 283 case AtomicRMWInst::Sub: 284 case AtomicRMWInst::And: 285 case AtomicRMWInst::Or: 286 case AtomicRMWInst::Xor: 287 case AtomicRMWInst::Xchg: 288 return AtomicExpansionKind::None; 289 default: 290 break; 291 } 292 return AtomicExpansionKind::CmpXChg; 293 } 294 295 FastISel *WebAssemblyTargetLowering::createFastISel( 296 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 297 return WebAssembly::createFastISel(FuncInfo, LibInfo); 298 } 299 300 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 301 EVT VT) const { 302 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 303 if (BitWidth > 1 && BitWidth < 8) 304 BitWidth = 8; 305 306 if (BitWidth > 64) { 307 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 308 // the count to be an i32. 309 BitWidth = 32; 310 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 311 "32-bit shift counts ought to be enough for anyone"); 312 } 313 314 MVT Result = MVT::getIntegerVT(BitWidth); 315 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 316 "Unable to represent scalar shift amount type"); 317 return Result; 318 } 319 320 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 321 // undefined result on invalid/overflow, to the WebAssembly opcode, which 322 // traps on invalid/overflow. 323 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 324 MachineBasicBlock *BB, 325 const TargetInstrInfo &TII, 326 bool IsUnsigned, bool Int64, 327 bool Float64, unsigned LoweredOpcode) { 328 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 329 330 Register OutReg = MI.getOperand(0).getReg(); 331 Register InReg = MI.getOperand(1).getReg(); 332 333 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 334 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 335 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 336 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 337 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 338 unsigned Eqz = WebAssembly::EQZ_I32; 339 unsigned And = WebAssembly::AND_I32; 340 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 341 int64_t Substitute = IsUnsigned ? 0 : Limit; 342 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 343 auto &Context = BB->getParent()->getFunction().getContext(); 344 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 345 346 const BasicBlock *LLVMBB = BB->getBasicBlock(); 347 MachineFunction *F = BB->getParent(); 348 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 349 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 350 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 351 352 MachineFunction::iterator It = ++BB->getIterator(); 353 F->insert(It, FalseMBB); 354 F->insert(It, TrueMBB); 355 F->insert(It, DoneMBB); 356 357 // Transfer the remainder of BB and its successor edges to DoneMBB. 358 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 359 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 360 361 BB->addSuccessor(TrueMBB); 362 BB->addSuccessor(FalseMBB); 363 TrueMBB->addSuccessor(DoneMBB); 364 FalseMBB->addSuccessor(DoneMBB); 365 366 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 367 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 368 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 369 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 370 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 371 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 372 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 373 374 MI.eraseFromParent(); 375 // For signed numbers, we can do a single comparison to determine whether 376 // fabs(x) is within range. 377 if (IsUnsigned) { 378 Tmp0 = InReg; 379 } else { 380 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 381 } 382 BuildMI(BB, DL, TII.get(FConst), Tmp1) 383 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 384 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 385 386 // For unsigned numbers, we have to do a separate comparison with zero. 387 if (IsUnsigned) { 388 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 389 Register SecondCmpReg = 390 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 391 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 392 BuildMI(BB, DL, TII.get(FConst), Tmp1) 393 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 394 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 395 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 396 CmpReg = AndReg; 397 } 398 399 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 400 401 // Create the CFG diamond to select between doing the conversion or using 402 // the substitute value. 403 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 404 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 405 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 406 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 407 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 408 .addReg(FalseReg) 409 .addMBB(FalseMBB) 410 .addReg(TrueReg) 411 .addMBB(TrueMBB); 412 413 return DoneMBB; 414 } 415 416 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 417 MachineInstr &MI, MachineBasicBlock *BB) const { 418 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 419 DebugLoc DL = MI.getDebugLoc(); 420 421 switch (MI.getOpcode()) { 422 default: 423 llvm_unreachable("Unexpected instr type to insert"); 424 case WebAssembly::FP_TO_SINT_I32_F32: 425 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 426 WebAssembly::I32_TRUNC_S_F32); 427 case WebAssembly::FP_TO_UINT_I32_F32: 428 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 429 WebAssembly::I32_TRUNC_U_F32); 430 case WebAssembly::FP_TO_SINT_I64_F32: 431 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 432 WebAssembly::I64_TRUNC_S_F32); 433 case WebAssembly::FP_TO_UINT_I64_F32: 434 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 435 WebAssembly::I64_TRUNC_U_F32); 436 case WebAssembly::FP_TO_SINT_I32_F64: 437 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 438 WebAssembly::I32_TRUNC_S_F64); 439 case WebAssembly::FP_TO_UINT_I32_F64: 440 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 441 WebAssembly::I32_TRUNC_U_F64); 442 case WebAssembly::FP_TO_SINT_I64_F64: 443 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 444 WebAssembly::I64_TRUNC_S_F64); 445 case WebAssembly::FP_TO_UINT_I64_F64: 446 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 447 WebAssembly::I64_TRUNC_U_F64); 448 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 449 } 450 } 451 452 const char * 453 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 454 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 455 case WebAssemblyISD::FIRST_NUMBER: 456 break; 457 #define HANDLE_NODETYPE(NODE) \ 458 case WebAssemblyISD::NODE: \ 459 return "WebAssemblyISD::" #NODE; 460 #include "WebAssemblyISD.def" 461 #undef HANDLE_NODETYPE 462 } 463 return nullptr; 464 } 465 466 std::pair<unsigned, const TargetRegisterClass *> 467 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 468 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 469 // First, see if this is a constraint that directly corresponds to a 470 // WebAssembly register class. 471 if (Constraint.size() == 1) { 472 switch (Constraint[0]) { 473 case 'r': 474 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 475 if (Subtarget->hasSIMD128() && VT.isVector()) { 476 if (VT.getSizeInBits() == 128) 477 return std::make_pair(0U, &WebAssembly::V128RegClass); 478 } 479 if (VT.isInteger() && !VT.isVector()) { 480 if (VT.getSizeInBits() <= 32) 481 return std::make_pair(0U, &WebAssembly::I32RegClass); 482 if (VT.getSizeInBits() <= 64) 483 return std::make_pair(0U, &WebAssembly::I64RegClass); 484 } 485 break; 486 default: 487 break; 488 } 489 } 490 491 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 492 } 493 494 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 495 // Assume ctz is a relatively cheap operation. 496 return true; 497 } 498 499 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 500 // Assume clz is a relatively cheap operation. 501 return true; 502 } 503 504 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 505 const AddrMode &AM, 506 Type *Ty, unsigned AS, 507 Instruction *I) const { 508 // WebAssembly offsets are added as unsigned without wrapping. The 509 // isLegalAddressingMode gives us no way to determine if wrapping could be 510 // happening, so we approximate this by accepting only non-negative offsets. 511 if (AM.BaseOffs < 0) 512 return false; 513 514 // WebAssembly has no scale register operands. 515 if (AM.Scale != 0) 516 return false; 517 518 // Everything else is legal. 519 return true; 520 } 521 522 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 523 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 524 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 525 // WebAssembly supports unaligned accesses, though it should be declared 526 // with the p2align attribute on loads and stores which do so, and there 527 // may be a performance impact. We tell LLVM they're "fast" because 528 // for the kinds of things that LLVM uses this for (merging adjacent stores 529 // of constants, etc.), WebAssembly implementations will either want the 530 // unaligned access or they'll split anyway. 531 if (Fast) 532 *Fast = true; 533 return true; 534 } 535 536 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 537 AttributeList Attr) const { 538 // The current thinking is that wasm engines will perform this optimization, 539 // so we can save on code size. 540 return true; 541 } 542 543 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 544 LLVMContext &C, 545 EVT VT) const { 546 if (VT.isVector()) 547 return VT.changeVectorElementTypeToInteger(); 548 549 return TargetLowering::getSetCCResultType(DL, C, VT); 550 } 551 552 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 553 const CallInst &I, 554 MachineFunction &MF, 555 unsigned Intrinsic) const { 556 switch (Intrinsic) { 557 case Intrinsic::wasm_atomic_notify: 558 Info.opc = ISD::INTRINSIC_W_CHAIN; 559 Info.memVT = MVT::i32; 560 Info.ptrVal = I.getArgOperand(0); 561 Info.offset = 0; 562 Info.align = Align(4); 563 // atomic.notify instruction does not really load the memory specified with 564 // this argument, but MachineMemOperand should either be load or store, so 565 // we set this to a load. 566 // FIXME Volatile isn't really correct, but currently all LLVM atomic 567 // instructions are treated as volatiles in the backend, so we should be 568 // consistent. The same applies for wasm_atomic_wait intrinsics too. 569 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 570 return true; 571 case Intrinsic::wasm_atomic_wait_i32: 572 Info.opc = ISD::INTRINSIC_W_CHAIN; 573 Info.memVT = MVT::i32; 574 Info.ptrVal = I.getArgOperand(0); 575 Info.offset = 0; 576 Info.align = Align(4); 577 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 578 return true; 579 case Intrinsic::wasm_atomic_wait_i64: 580 Info.opc = ISD::INTRINSIC_W_CHAIN; 581 Info.memVT = MVT::i64; 582 Info.ptrVal = I.getArgOperand(0); 583 Info.offset = 0; 584 Info.align = Align(8); 585 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 586 return true; 587 default: 588 return false; 589 } 590 } 591 592 //===----------------------------------------------------------------------===// 593 // WebAssembly Lowering private implementation. 594 //===----------------------------------------------------------------------===// 595 596 //===----------------------------------------------------------------------===// 597 // Lowering Code 598 //===----------------------------------------------------------------------===// 599 600 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 601 MachineFunction &MF = DAG.getMachineFunction(); 602 DAG.getContext()->diagnose( 603 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 604 } 605 606 // Test whether the given calling convention is supported. 607 static bool callingConvSupported(CallingConv::ID CallConv) { 608 // We currently support the language-independent target-independent 609 // conventions. We don't yet have a way to annotate calls with properties like 610 // "cold", and we don't have any call-clobbered registers, so these are mostly 611 // all handled the same. 612 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 613 CallConv == CallingConv::Cold || 614 CallConv == CallingConv::PreserveMost || 615 CallConv == CallingConv::PreserveAll || 616 CallConv == CallingConv::CXX_FAST_TLS || 617 CallConv == CallingConv::WASM_EmscriptenInvoke; 618 } 619 620 SDValue 621 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 622 SmallVectorImpl<SDValue> &InVals) const { 623 SelectionDAG &DAG = CLI.DAG; 624 SDLoc DL = CLI.DL; 625 SDValue Chain = CLI.Chain; 626 SDValue Callee = CLI.Callee; 627 MachineFunction &MF = DAG.getMachineFunction(); 628 auto Layout = MF.getDataLayout(); 629 630 CallingConv::ID CallConv = CLI.CallConv; 631 if (!callingConvSupported(CallConv)) 632 fail(DL, DAG, 633 "WebAssembly doesn't support language-specific or target-specific " 634 "calling conventions yet"); 635 if (CLI.IsPatchPoint) 636 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 637 638 if (CLI.IsTailCall) { 639 bool MustTail = CLI.CS && CLI.CS.isMustTailCall(); 640 if (Subtarget->hasTailCall() && !CLI.IsVarArg) { 641 // Do not tail call unless caller and callee return types match 642 const Function &F = MF.getFunction(); 643 const TargetMachine &TM = getTargetMachine(); 644 Type *RetTy = F.getReturnType(); 645 SmallVector<MVT, 4> CallerRetTys; 646 SmallVector<MVT, 4> CalleeRetTys; 647 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 648 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 649 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 650 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 651 CalleeRetTys.begin()); 652 if (!TypesMatch) { 653 // musttail in this case would be an LLVM IR validation failure 654 assert(!MustTail); 655 CLI.IsTailCall = false; 656 } 657 } else { 658 CLI.IsTailCall = false; 659 if (MustTail) { 660 if (CLI.IsVarArg) { 661 // The return would pop the argument buffer 662 fail(DL, DAG, "WebAssembly does not support varargs tail calls"); 663 } else { 664 fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled"); 665 } 666 } 667 } 668 } 669 670 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 671 if (Ins.size() > 1) 672 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 673 674 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 675 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 676 677 // The generic code may have added an sret argument. If we're lowering an 678 // invoke function, the ABI requires that the function pointer be the first 679 // argument, so we may have to swap the arguments. 680 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 681 Outs[0].Flags.isSRet()) { 682 std::swap(Outs[0], Outs[1]); 683 std::swap(OutVals[0], OutVals[1]); 684 } 685 686 unsigned NumFixedArgs = 0; 687 for (unsigned I = 0; I < Outs.size(); ++I) { 688 const ISD::OutputArg &Out = Outs[I]; 689 SDValue &OutVal = OutVals[I]; 690 if (Out.Flags.isNest()) 691 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 692 if (Out.Flags.isInAlloca()) 693 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 694 if (Out.Flags.isInConsecutiveRegs()) 695 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 696 if (Out.Flags.isInConsecutiveRegsLast()) 697 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 698 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 699 auto &MFI = MF.getFrameInfo(); 700 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 701 Out.Flags.getByValAlign(), 702 /*isSS=*/false); 703 SDValue SizeNode = 704 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 705 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 706 Chain = DAG.getMemcpy( 707 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 708 /*isVolatile*/ false, /*AlwaysInline=*/false, 709 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 710 OutVal = FINode; 711 } 712 // Count the number of fixed args *after* legalization. 713 NumFixedArgs += Out.IsFixed; 714 } 715 716 bool IsVarArg = CLI.IsVarArg; 717 auto PtrVT = getPointerTy(Layout); 718 719 // Analyze operands of the call, assigning locations to each operand. 720 SmallVector<CCValAssign, 16> ArgLocs; 721 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 722 723 if (IsVarArg) { 724 // Outgoing non-fixed arguments are placed in a buffer. First 725 // compute their offsets and the total amount of buffer space needed. 726 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 727 const ISD::OutputArg &Out = Outs[I]; 728 SDValue &Arg = OutVals[I]; 729 EVT VT = Arg.getValueType(); 730 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 731 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 732 unsigned Align = std::max(Out.Flags.getOrigAlign(), 733 Layout.getABITypeAlignment(Ty)); 734 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 735 Align); 736 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 737 Offset, VT.getSimpleVT(), 738 CCValAssign::Full)); 739 } 740 } 741 742 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 743 744 SDValue FINode; 745 if (IsVarArg && NumBytes) { 746 // For non-fixed arguments, next emit stores to store the argument values 747 // to the stack buffer at the offsets computed above. 748 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 749 Layout.getStackAlignment(), 750 /*isSS=*/false); 751 unsigned ValNo = 0; 752 SmallVector<SDValue, 8> Chains; 753 for (SDValue Arg : 754 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 755 assert(ArgLocs[ValNo].getValNo() == ValNo && 756 "ArgLocs should remain in order and only hold varargs args"); 757 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 758 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 759 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 760 DAG.getConstant(Offset, DL, PtrVT)); 761 Chains.push_back( 762 DAG.getStore(Chain, DL, Arg, Add, 763 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 764 } 765 if (!Chains.empty()) 766 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 767 } else if (IsVarArg) { 768 FINode = DAG.getIntPtrConstant(0, DL); 769 } 770 771 if (Callee->getOpcode() == ISD::GlobalAddress) { 772 // If the callee is a GlobalAddress node (quite common, every direct call 773 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 774 // doesn't at MO_GOT which is not needed for direct calls. 775 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 776 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 777 getPointerTy(DAG.getDataLayout()), 778 GA->getOffset()); 779 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 780 getPointerTy(DAG.getDataLayout()), Callee); 781 } 782 783 // Compute the operands for the CALLn node. 784 SmallVector<SDValue, 16> Ops; 785 Ops.push_back(Chain); 786 Ops.push_back(Callee); 787 788 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 789 // isn't reliable. 790 Ops.append(OutVals.begin(), 791 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 792 // Add a pointer to the vararg buffer. 793 if (IsVarArg) 794 Ops.push_back(FINode); 795 796 SmallVector<EVT, 8> InTys; 797 for (const auto &In : Ins) { 798 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 799 assert(!In.Flags.isNest() && "nest is not valid for return values"); 800 if (In.Flags.isInAlloca()) 801 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 802 if (In.Flags.isInConsecutiveRegs()) 803 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 804 if (In.Flags.isInConsecutiveRegsLast()) 805 fail(DL, DAG, 806 "WebAssembly hasn't implemented cons regs last return values"); 807 // Ignore In.getOrigAlign() because all our arguments are passed in 808 // registers. 809 InTys.push_back(In.VT); 810 } 811 812 if (CLI.IsTailCall) { 813 // ret_calls do not return values to the current frame 814 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 815 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 816 } 817 818 InTys.push_back(MVT::Other); 819 SDVTList InTyList = DAG.getVTList(InTys); 820 SDValue Res = 821 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 822 DL, InTyList, Ops); 823 if (Ins.empty()) { 824 Chain = Res; 825 } else { 826 InVals.push_back(Res); 827 Chain = Res.getValue(1); 828 } 829 830 return Chain; 831 } 832 833 bool WebAssemblyTargetLowering::CanLowerReturn( 834 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 835 const SmallVectorImpl<ISD::OutputArg> &Outs, 836 LLVMContext & /*Context*/) const { 837 // WebAssembly can't currently handle returning tuples. 838 return Outs.size() <= 1; 839 } 840 841 SDValue WebAssemblyTargetLowering::LowerReturn( 842 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 843 const SmallVectorImpl<ISD::OutputArg> &Outs, 844 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 845 SelectionDAG &DAG) const { 846 assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); 847 if (!callingConvSupported(CallConv)) 848 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 849 850 SmallVector<SDValue, 4> RetOps(1, Chain); 851 RetOps.append(OutVals.begin(), OutVals.end()); 852 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 853 854 // Record the number and types of the return values. 855 for (const ISD::OutputArg &Out : Outs) { 856 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 857 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 858 assert(Out.IsFixed && "non-fixed return value is not valid"); 859 if (Out.Flags.isInAlloca()) 860 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 861 if (Out.Flags.isInConsecutiveRegs()) 862 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 863 if (Out.Flags.isInConsecutiveRegsLast()) 864 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 865 } 866 867 return Chain; 868 } 869 870 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 871 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 872 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 873 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 874 if (!callingConvSupported(CallConv)) 875 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 876 877 MachineFunction &MF = DAG.getMachineFunction(); 878 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 879 880 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 881 // of the incoming values before they're represented by virtual registers. 882 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 883 884 for (const ISD::InputArg &In : Ins) { 885 if (In.Flags.isInAlloca()) 886 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 887 if (In.Flags.isNest()) 888 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 889 if (In.Flags.isInConsecutiveRegs()) 890 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 891 if (In.Flags.isInConsecutiveRegsLast()) 892 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 893 // Ignore In.getOrigAlign() because all our arguments are passed in 894 // registers. 895 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 896 DAG.getTargetConstant(InVals.size(), 897 DL, MVT::i32)) 898 : DAG.getUNDEF(In.VT)); 899 900 // Record the number and types of arguments. 901 MFI->addParam(In.VT); 902 } 903 904 // Varargs are copied into a buffer allocated by the caller, and a pointer to 905 // the buffer is passed as an argument. 906 if (IsVarArg) { 907 MVT PtrVT = getPointerTy(MF.getDataLayout()); 908 Register VarargVreg = 909 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 910 MFI->setVarargBufferVreg(VarargVreg); 911 Chain = DAG.getCopyToReg( 912 Chain, DL, VarargVreg, 913 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 914 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 915 MFI->addParam(PtrVT); 916 } 917 918 // Record the number and types of arguments and results. 919 SmallVector<MVT, 4> Params; 920 SmallVector<MVT, 4> Results; 921 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 922 DAG.getTarget(), Params, Results); 923 for (MVT VT : Results) 924 MFI->addResult(VT); 925 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 926 // the param logic here with ComputeSignatureVTs 927 assert(MFI->getParams().size() == Params.size() && 928 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 929 Params.begin())); 930 931 return Chain; 932 } 933 934 void WebAssemblyTargetLowering::ReplaceNodeResults( 935 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 936 switch (N->getOpcode()) { 937 case ISD::SIGN_EXTEND_INREG: 938 // Do not add any results, signifying that N should not be custom lowered 939 // after all. This happens because simd128 turns on custom lowering for 940 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 941 // illegal type. 942 break; 943 default: 944 llvm_unreachable( 945 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 946 } 947 } 948 949 //===----------------------------------------------------------------------===// 950 // Custom lowering hooks. 951 //===----------------------------------------------------------------------===// 952 953 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 954 SelectionDAG &DAG) const { 955 SDLoc DL(Op); 956 switch (Op.getOpcode()) { 957 default: 958 llvm_unreachable("unimplemented operation lowering"); 959 return SDValue(); 960 case ISD::FrameIndex: 961 return LowerFrameIndex(Op, DAG); 962 case ISD::GlobalAddress: 963 return LowerGlobalAddress(Op, DAG); 964 case ISD::ExternalSymbol: 965 return LowerExternalSymbol(Op, DAG); 966 case ISD::JumpTable: 967 return LowerJumpTable(Op, DAG); 968 case ISD::BR_JT: 969 return LowerBR_JT(Op, DAG); 970 case ISD::VASTART: 971 return LowerVASTART(Op, DAG); 972 case ISD::BlockAddress: 973 case ISD::BRIND: 974 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 975 return SDValue(); 976 case ISD::RETURNADDR: 977 return LowerRETURNADDR(Op, DAG); 978 case ISD::FRAMEADDR: 979 return LowerFRAMEADDR(Op, DAG); 980 case ISD::CopyToReg: 981 return LowerCopyToReg(Op, DAG); 982 case ISD::EXTRACT_VECTOR_ELT: 983 case ISD::INSERT_VECTOR_ELT: 984 return LowerAccessVectorElement(Op, DAG); 985 case ISD::INTRINSIC_VOID: 986 case ISD::INTRINSIC_WO_CHAIN: 987 case ISD::INTRINSIC_W_CHAIN: 988 return LowerIntrinsic(Op, DAG); 989 case ISD::SIGN_EXTEND_INREG: 990 return LowerSIGN_EXTEND_INREG(Op, DAG); 991 case ISD::BUILD_VECTOR: 992 return LowerBUILD_VECTOR(Op, DAG); 993 case ISD::VECTOR_SHUFFLE: 994 return LowerVECTOR_SHUFFLE(Op, DAG); 995 case ISD::SHL: 996 case ISD::SRA: 997 case ISD::SRL: 998 return LowerShift(Op, DAG); 999 } 1000 } 1001 1002 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1003 SelectionDAG &DAG) const { 1004 SDValue Src = Op.getOperand(2); 1005 if (isa<FrameIndexSDNode>(Src.getNode())) { 1006 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1007 // the FI to some LEA-like instruction, but since we don't have that, we 1008 // need to insert some kind of instruction that can take an FI operand and 1009 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1010 // local.copy between Op and its FI operand. 1011 SDValue Chain = Op.getOperand(0); 1012 SDLoc DL(Op); 1013 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1014 EVT VT = Src.getValueType(); 1015 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1016 : WebAssembly::COPY_I64, 1017 DL, VT, Src), 1018 0); 1019 return Op.getNode()->getNumValues() == 1 1020 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1021 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1022 Op.getNumOperands() == 4 ? Op.getOperand(3) 1023 : SDValue()); 1024 } 1025 return SDValue(); 1026 } 1027 1028 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1029 SelectionDAG &DAG) const { 1030 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1031 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1032 } 1033 1034 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1035 SelectionDAG &DAG) const { 1036 SDLoc DL(Op); 1037 1038 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1039 fail(DL, DAG, 1040 "Non-Emscripten WebAssembly hasn't implemented " 1041 "__builtin_return_address"); 1042 return SDValue(); 1043 } 1044 1045 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1046 return SDValue(); 1047 1048 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1049 MakeLibCallOptions CallOptions; 1050 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1051 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1052 .first; 1053 } 1054 1055 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1056 SelectionDAG &DAG) const { 1057 // Non-zero depths are not supported by WebAssembly currently. Use the 1058 // legalizer's default expansion, which is to return 0 (what this function is 1059 // documented to do). 1060 if (Op.getConstantOperandVal(0) > 0) 1061 return SDValue(); 1062 1063 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1064 EVT VT = Op.getValueType(); 1065 Register FP = 1066 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1067 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1068 } 1069 1070 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1071 SelectionDAG &DAG) const { 1072 SDLoc DL(Op); 1073 const auto *GA = cast<GlobalAddressSDNode>(Op); 1074 EVT VT = Op.getValueType(); 1075 assert(GA->getTargetFlags() == 0 && 1076 "Unexpected target flags on generic GlobalAddressSDNode"); 1077 if (GA->getAddressSpace() != 0) 1078 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1079 1080 unsigned OperandFlags = 0; 1081 if (isPositionIndependent()) { 1082 const GlobalValue *GV = GA->getGlobal(); 1083 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1084 MachineFunction &MF = DAG.getMachineFunction(); 1085 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1086 const char *BaseName; 1087 if (GV->getValueType()->isFunctionTy()) { 1088 BaseName = MF.createExternalSymbolName("__table_base"); 1089 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1090 } 1091 else { 1092 BaseName = MF.createExternalSymbolName("__memory_base"); 1093 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1094 } 1095 SDValue BaseAddr = 1096 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1097 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1098 1099 SDValue SymAddr = DAG.getNode( 1100 WebAssemblyISD::WrapperPIC, DL, VT, 1101 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1102 OperandFlags)); 1103 1104 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1105 } else { 1106 OperandFlags = WebAssemblyII::MO_GOT; 1107 } 1108 } 1109 1110 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1111 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1112 GA->getOffset(), OperandFlags)); 1113 } 1114 1115 SDValue 1116 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1117 SelectionDAG &DAG) const { 1118 SDLoc DL(Op); 1119 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1120 EVT VT = Op.getValueType(); 1121 assert(ES->getTargetFlags() == 0 && 1122 "Unexpected target flags on generic ExternalSymbolSDNode"); 1123 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1124 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1125 } 1126 1127 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1128 SelectionDAG &DAG) const { 1129 // There's no need for a Wrapper node because we always incorporate a jump 1130 // table operand into a BR_TABLE instruction, rather than ever 1131 // materializing it in a register. 1132 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1133 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1134 JT->getTargetFlags()); 1135 } 1136 1137 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1138 SelectionDAG &DAG) const { 1139 SDLoc DL(Op); 1140 SDValue Chain = Op.getOperand(0); 1141 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1142 SDValue Index = Op.getOperand(2); 1143 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1144 1145 SmallVector<SDValue, 8> Ops; 1146 Ops.push_back(Chain); 1147 Ops.push_back(Index); 1148 1149 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1150 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1151 1152 // Add an operand for each case. 1153 for (auto MBB : MBBs) 1154 Ops.push_back(DAG.getBasicBlock(MBB)); 1155 1156 // TODO: For now, we just pick something arbitrary for a default case for now. 1157 // We really want to sniff out the guard and put in the real default case (and 1158 // delete the guard). 1159 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1160 1161 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1162 } 1163 1164 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1165 SelectionDAG &DAG) const { 1166 SDLoc DL(Op); 1167 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1168 1169 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1170 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1171 1172 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1173 MFI->getVarargBufferVreg(), PtrVT); 1174 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1175 MachinePointerInfo(SV), 0); 1176 } 1177 1178 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1179 SelectionDAG &DAG) const { 1180 MachineFunction &MF = DAG.getMachineFunction(); 1181 unsigned IntNo; 1182 switch (Op.getOpcode()) { 1183 case ISD::INTRINSIC_VOID: 1184 case ISD::INTRINSIC_W_CHAIN: 1185 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1186 break; 1187 case ISD::INTRINSIC_WO_CHAIN: 1188 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1189 break; 1190 default: 1191 llvm_unreachable("Invalid intrinsic"); 1192 } 1193 SDLoc DL(Op); 1194 1195 switch (IntNo) { 1196 default: 1197 return SDValue(); // Don't custom lower most intrinsics. 1198 1199 case Intrinsic::wasm_lsda: { 1200 EVT VT = Op.getValueType(); 1201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1202 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1203 auto &Context = MF.getMMI().getContext(); 1204 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1205 Twine(MF.getFunctionNumber())); 1206 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1207 DAG.getMCSymbol(S, PtrVT)); 1208 } 1209 1210 case Intrinsic::wasm_throw: { 1211 // We only support C++ exceptions for now 1212 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1213 if (Tag != CPP_EXCEPTION) 1214 llvm_unreachable("Invalid tag!"); 1215 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1216 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1217 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1218 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1219 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1220 return DAG.getNode(WebAssemblyISD::THROW, DL, 1221 MVT::Other, // outchain type 1222 { 1223 Op.getOperand(0), // inchain 1224 SymNode, // exception symbol 1225 Op.getOperand(3) // thrown value 1226 }); 1227 } 1228 } 1229 } 1230 1231 SDValue 1232 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1233 SelectionDAG &DAG) const { 1234 SDLoc DL(Op); 1235 // If sign extension operations are disabled, allow sext_inreg only if operand 1236 // is a vector extract. SIMD does not depend on sign extension operations, but 1237 // allowing sext_inreg in this context lets us have simple patterns to select 1238 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1239 // simpler in this file, but would necessitate large and brittle patterns to 1240 // undo the expansion and select extract_lane_s instructions. 1241 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1242 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1243 const SDValue &Extract = Op.getOperand(0); 1244 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1245 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1246 ->getVT() 1247 .getSimpleVT(); 1248 MVT ExtractedVecT = 1249 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1250 if (ExtractedVecT == VecT) 1251 return Op; 1252 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1253 const SDValue &Index = Extract.getOperand(1); 1254 unsigned IndexVal = 1255 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1256 unsigned Scale = 1257 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1258 assert(Scale > 1); 1259 SDValue NewIndex = 1260 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1261 SDValue NewExtract = DAG.getNode( 1262 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1263 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1264 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), 1265 NewExtract, Op.getOperand(1)); 1266 } 1267 // Otherwise expand 1268 return SDValue(); 1269 } 1270 1271 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1272 SelectionDAG &DAG) const { 1273 SDLoc DL(Op); 1274 const EVT VecT = Op.getValueType(); 1275 const EVT LaneT = Op.getOperand(0).getValueType(); 1276 const size_t Lanes = Op.getNumOperands(); 1277 auto IsConstant = [](const SDValue &V) { 1278 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1279 }; 1280 1281 // Find the most common operand, which is approximately the best to splat 1282 using Entry = std::pair<SDValue, size_t>; 1283 SmallVector<Entry, 16> ValueCounts; 1284 size_t NumConst = 0, NumDynamic = 0; 1285 for (const SDValue &Lane : Op->op_values()) { 1286 if (Lane.isUndef()) { 1287 continue; 1288 } else if (IsConstant(Lane)) { 1289 NumConst++; 1290 } else { 1291 NumDynamic++; 1292 } 1293 auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(), 1294 [&Lane](Entry A) { return A.first == Lane; }); 1295 if (CountIt == ValueCounts.end()) { 1296 ValueCounts.emplace_back(Lane, 1); 1297 } else { 1298 CountIt->second++; 1299 } 1300 } 1301 auto CommonIt = 1302 std::max_element(ValueCounts.begin(), ValueCounts.end(), 1303 [](Entry A, Entry B) { return A.second < B.second; }); 1304 assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector"); 1305 SDValue SplatValue = CommonIt->first; 1306 size_t NumCommon = CommonIt->second; 1307 1308 // If v128.const is available, consider using it instead of a splat 1309 if (Subtarget->hasUnimplementedSIMD128()) { 1310 // {i32,i64,f32,f64}.const opcode, and value 1311 const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes); 1312 // SIMD prefix and opcode 1313 const size_t SplatBytes = 2; 1314 const size_t SplatConstBytes = SplatBytes + ConstBytes; 1315 // SIMD prefix, opcode, and lane index 1316 const size_t ReplaceBytes = 3; 1317 const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes; 1318 // SIMD prefix, v128.const opcode, and 128-bit value 1319 const size_t VecConstBytes = 18; 1320 // Initial v128.const and a replace_lane for each non-const operand 1321 const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes; 1322 // Initial splat and all necessary replace_lanes 1323 const size_t SplatInitBytes = 1324 IsConstant(SplatValue) 1325 // Initial constant splat 1326 ? (SplatConstBytes + 1327 // Constant replace_lanes 1328 (NumConst - NumCommon) * ReplaceConstBytes + 1329 // Dynamic replace_lanes 1330 (NumDynamic * ReplaceBytes)) 1331 // Initial dynamic splat 1332 : (SplatBytes + 1333 // Constant replace_lanes 1334 (NumConst * ReplaceConstBytes) + 1335 // Dynamic replace_lanes 1336 (NumDynamic - NumCommon) * ReplaceBytes); 1337 if (ConstInitBytes < SplatInitBytes) { 1338 // Create build_vector that will lower to initial v128.const 1339 SmallVector<SDValue, 16> ConstLanes; 1340 for (const SDValue &Lane : Op->op_values()) { 1341 if (IsConstant(Lane)) { 1342 ConstLanes.push_back(Lane); 1343 } else if (LaneT.isFloatingPoint()) { 1344 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1345 } else { 1346 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1347 } 1348 } 1349 SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1350 // Add replace_lane instructions for non-const lanes 1351 for (size_t I = 0; I < Lanes; ++I) { 1352 const SDValue &Lane = Op->getOperand(I); 1353 if (!Lane.isUndef() && !IsConstant(Lane)) 1354 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1355 DAG.getConstant(I, DL, MVT::i32)); 1356 } 1357 return Result; 1358 } 1359 } 1360 // Use a splat for the initial vector 1361 SDValue Result; 1362 // Possibly a load_splat 1363 LoadSDNode *SplattedLoad; 1364 if (Subtarget->hasUnimplementedSIMD128() && 1365 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1366 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1367 Result = DAG.getNode(WebAssemblyISD::LOAD_SPLAT, DL, VecT, SplatValue); 1368 } else { 1369 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1370 } 1371 // Add replace_lane instructions for other values 1372 for (size_t I = 0; I < Lanes; ++I) { 1373 const SDValue &Lane = Op->getOperand(I); 1374 if (Lane != SplatValue) 1375 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1376 DAG.getConstant(I, DL, MVT::i32)); 1377 } 1378 return Result; 1379 } 1380 1381 SDValue 1382 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1383 SelectionDAG &DAG) const { 1384 SDLoc DL(Op); 1385 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1386 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1387 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1388 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1389 1390 // Space for two vector args and sixteen mask indices 1391 SDValue Ops[18]; 1392 size_t OpIdx = 0; 1393 Ops[OpIdx++] = Op.getOperand(0); 1394 Ops[OpIdx++] = Op.getOperand(1); 1395 1396 // Expand mask indices to byte indices and materialize them as operands 1397 for (int M : Mask) { 1398 for (size_t J = 0; J < LaneBytes; ++J) { 1399 // Lower undefs (represented by -1 in mask) to zero 1400 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1401 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1402 } 1403 } 1404 1405 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1406 } 1407 1408 SDValue 1409 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1410 SelectionDAG &DAG) const { 1411 // Allow constant lane indices, expand variable lane indices 1412 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1413 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1414 return Op; 1415 else 1416 // Perform default expansion 1417 return SDValue(); 1418 } 1419 1420 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1421 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1422 // 32-bit and 64-bit unrolled shifts will have proper semantics 1423 if (LaneT.bitsGE(MVT::i32)) 1424 return DAG.UnrollVectorOp(Op.getNode()); 1425 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1426 SDLoc DL(Op); 1427 SDValue ShiftVal = Op.getOperand(1); 1428 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1429 SDValue MaskedShiftVal = DAG.getNode( 1430 ISD::AND, // mask opcode 1431 DL, ShiftVal.getValueType(), // masked value type 1432 ShiftVal, // original shift value operand 1433 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1434 ); 1435 1436 return DAG.UnrollVectorOp( 1437 DAG.getNode(Op.getOpcode(), // original shift opcode 1438 DL, Op.getValueType(), // original return type 1439 Op.getOperand(0), // original vector operand, 1440 MaskedShiftVal // new masked shift value operand 1441 ) 1442 .getNode()); 1443 } 1444 1445 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1446 SelectionDAG &DAG) const { 1447 SDLoc DL(Op); 1448 1449 // Only manually lower vector shifts 1450 assert(Op.getSimpleValueType().isVector()); 1451 1452 // Unroll non-splat vector shifts 1453 BuildVectorSDNode *ShiftVec; 1454 SDValue SplatVal; 1455 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1456 !(SplatVal = ShiftVec->getSplatValue())) 1457 return unrollVectorShift(Op, DAG); 1458 1459 // All splats except i64x2 const splats are handled by patterns 1460 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1461 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1462 return Op; 1463 1464 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1465 unsigned Opcode; 1466 switch (Op.getOpcode()) { 1467 case ISD::SHL: 1468 Opcode = WebAssemblyISD::VEC_SHL; 1469 break; 1470 case ISD::SRA: 1471 Opcode = WebAssemblyISD::VEC_SHR_S; 1472 break; 1473 case ISD::SRL: 1474 Opcode = WebAssemblyISD::VEC_SHR_U; 1475 break; 1476 default: 1477 llvm_unreachable("unexpected opcode"); 1478 } 1479 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1480 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1481 DAG.getConstant(Shift, DL, MVT::i32)); 1482 } 1483 1484 //===----------------------------------------------------------------------===// 1485 // WebAssembly Optimization Hooks 1486 //===----------------------------------------------------------------------===// 1487