1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssemblyMachineFunctionInfo.h"
19 #include "WebAssemblySubtarget.h"
20 #include "WebAssemblyTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/WasmEHFuncInfo.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicsWebAssembly.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetOptions.h"
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "wasm-lower"
43 
44 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
45     const TargetMachine &TM, const WebAssemblySubtarget &STI)
46     : TargetLowering(TM), Subtarget(&STI) {
47   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
48 
49   // Booleans always contain 0 or 1.
50   setBooleanContents(ZeroOrOneBooleanContent);
51   // Except in SIMD vectors
52   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
53   // We don't know the microarchitecture here, so just reduce register pressure.
54   setSchedulingPreference(Sched::RegPressure);
55   // Tell ISel that we have a stack pointer.
56   setStackPointerRegisterToSaveRestore(
57       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
58   // Set up the register classes.
59   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
60   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
61   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
62   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
63   if (Subtarget->hasSIMD128()) {
64     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
68     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
69     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
70   }
71   if (Subtarget->hasReferenceTypes()) {
72     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
73     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
74   }
75   // Compute derived properties from the register classes.
76   computeRegisterProperties(Subtarget->getRegisterInfo());
77 
78   // Transform loads and stores to pointers in address space 1 to loads and
79   // stores to WebAssembly global variables, outside linear memory.
80   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
81     setOperationAction(ISD::LOAD, T, Custom);
82     setOperationAction(ISD::STORE, T, Custom);
83   }
84   if (Subtarget->hasSIMD128()) {
85     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
86                    MVT::v2f64}) {
87       setOperationAction(ISD::LOAD, T, Custom);
88       setOperationAction(ISD::STORE, T, Custom);
89     }
90   }
91   if (Subtarget->hasReferenceTypes()) {
92     for (auto T : {MVT::externref, MVT::funcref}) {
93       setOperationAction(ISD::LOAD, T, Custom);
94       setOperationAction(ISD::STORE, T, Custom);
95     }
96   }
97 
98   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
99   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
100   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
101   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
102   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
103   setOperationAction(ISD::BRIND, MVT::Other, Custom);
104 
105   // Take the default expansion for va_arg, va_copy, and va_end. There is no
106   // default action for va_start, so we do that custom.
107   setOperationAction(ISD::VASTART, MVT::Other, Custom);
108   setOperationAction(ISD::VAARG, MVT::Other, Expand);
109   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
110   setOperationAction(ISD::VAEND, MVT::Other, Expand);
111 
112   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
113     // Don't expand the floating-point types to constant pools.
114     setOperationAction(ISD::ConstantFP, T, Legal);
115     // Expand floating-point comparisons.
116     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
117                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
118       setCondCodeAction(CC, T, Expand);
119     // Expand floating-point library function operators.
120     for (auto Op :
121          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
122       setOperationAction(Op, T, Expand);
123     // Note supported floating-point library function operators that otherwise
124     // default to expand.
125     for (auto Op :
126          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
127       setOperationAction(Op, T, Legal);
128     // Support minimum and maximum, which otherwise default to expand.
129     setOperationAction(ISD::FMINIMUM, T, Legal);
130     setOperationAction(ISD::FMAXIMUM, T, Legal);
131     // WebAssembly currently has no builtin f16 support.
132     setOperationAction(ISD::FP16_TO_FP, T, Expand);
133     setOperationAction(ISD::FP_TO_FP16, T, Expand);
134     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
135     setTruncStoreAction(T, MVT::f16, Expand);
136   }
137 
138   // Expand unavailable integer operations.
139   for (auto Op :
140        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
141         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
142         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
143     for (auto T : {MVT::i32, MVT::i64})
144       setOperationAction(Op, T, Expand);
145     if (Subtarget->hasSIMD128())
146       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
147         setOperationAction(Op, T, Expand);
148   }
149 
150   if (Subtarget->hasNontrappingFPToInt())
151     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
152       for (auto T : {MVT::i32, MVT::i64})
153         setOperationAction(Op, T, Custom);
154 
155   // SIMD-specific configuration
156   if (Subtarget->hasSIMD128()) {
157     // Hoist bitcasts out of shuffles
158     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
159 
160     // Combine extends of extract_subvectors into widening ops
161     setTargetDAGCombine(ISD::SIGN_EXTEND);
162     setTargetDAGCombine(ISD::ZERO_EXTEND);
163 
164     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
165     // conversions ops
166     setTargetDAGCombine(ISD::SINT_TO_FP);
167     setTargetDAGCombine(ISD::UINT_TO_FP);
168     setTargetDAGCombine(ISD::FP_EXTEND);
169     setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
170 
171     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
172     // into conversion ops
173     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
174     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
175     setTargetDAGCombine(ISD::FP_ROUND);
176     setTargetDAGCombine(ISD::CONCAT_VECTORS);
177 
178     // Support saturating add for i8x16 and i16x8
179     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
180       for (auto T : {MVT::v16i8, MVT::v8i16})
181         setOperationAction(Op, T, Legal);
182 
183     // Support integer abs
184     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
185       setOperationAction(ISD::ABS, T, Legal);
186 
187     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
188     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
189                    MVT::v2f64})
190       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
191 
192     // We have custom shuffle lowering to expose the shuffle mask
193     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
194                    MVT::v2f64})
195       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
196 
197     // Custom lowering since wasm shifts must have a scalar shift amount
198     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
199       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
200         setOperationAction(Op, T, Custom);
201 
202     // Custom lower lane accesses to expand out variable indices
203     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
204       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
205                      MVT::v2f64})
206         setOperationAction(Op, T, Custom);
207 
208     // There is no i8x16.mul instruction
209     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
210 
211     // There is no vector conditional select instruction
212     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
213                    MVT::v2f64})
214       setOperationAction(ISD::SELECT_CC, T, Expand);
215 
216     // Expand integer operations supported for scalars but not SIMD
217     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
218                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
219       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
220         setOperationAction(Op, T, Expand);
221 
222     // But we do have integer min and max operations
223     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
224       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
225         setOperationAction(Op, T, Legal);
226 
227     // And we have popcnt for i8x16
228     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
229 
230     // Expand float operations supported for scalars but not SIMD
231     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
232                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
233       for (auto T : {MVT::v4f32, MVT::v2f64})
234         setOperationAction(Op, T, Expand);
235 
236     // Unsigned comparison operations are unavailable for i64x2 vectors.
237     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
238       setCondCodeAction(CC, MVT::v2i64, Custom);
239 
240     // 64x2 conversions are not in the spec
241     for (auto Op :
242          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
243       for (auto T : {MVT::v2i64, MVT::v2f64})
244         setOperationAction(Op, T, Expand);
245 
246     // But saturating fp_to_int converstions are
247     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
248       setOperationAction(Op, MVT::v4i32, Custom);
249   }
250 
251   // As a special case, these operators use the type to mean the type to
252   // sign-extend from.
253   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
254   if (!Subtarget->hasSignExt()) {
255     // Sign extends are legal only when extending a vector extract
256     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
257     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
258       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
259   }
260   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
261     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
262 
263   // Dynamic stack allocation: use the default expansion.
264   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
265   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
266   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
267 
268   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
269   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
270   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
271 
272   // Expand these forms; we pattern-match the forms that we can handle in isel.
273   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
274     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
275       setOperationAction(Op, T, Expand);
276 
277   // We have custom switch handling.
278   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
279 
280   // WebAssembly doesn't have:
281   //  - Floating-point extending loads.
282   //  - Floating-point truncating stores.
283   //  - i1 extending loads.
284   //  - truncating SIMD stores and most extending loads
285   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
286   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
287   for (auto T : MVT::integer_valuetypes())
288     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
289       setLoadExtAction(Ext, T, MVT::i1, Promote);
290   if (Subtarget->hasSIMD128()) {
291     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
292                    MVT::v2f64}) {
293       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
294         if (MVT(T) != MemT) {
295           setTruncStoreAction(T, MemT, Expand);
296           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
297             setLoadExtAction(Ext, T, MemT, Expand);
298         }
299       }
300     }
301     // But some vector extending loads are legal
302     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
303       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
304       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
305       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
306     }
307     // And some truncating stores are legal as well
308     setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
309     setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
310   }
311 
312   // Don't do anything clever with build_pairs
313   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
314 
315   // Trap lowers to wasm unreachable
316   setOperationAction(ISD::TRAP, MVT::Other, Legal);
317   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
318 
319   // Exception handling intrinsics
320   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
321   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
322   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
323 
324   setMaxAtomicSizeInBitsSupported(64);
325 
326   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
327   // consistent with the f64 and f128 names.
328   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
329   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
330 
331   // Define the emscripten name for return address helper.
332   // TODO: when implementing other Wasm backends, make this generic or only do
333   // this on emscripten depending on what they end up doing.
334   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
335 
336   // Always convert switches to br_tables unless there is only one case, which
337   // is equivalent to a simple branch. This reduces code size for wasm, and we
338   // defer possible jump table optimizations to the VM.
339   setMinimumJumpTableEntries(2);
340 }
341 
342 TargetLowering::AtomicExpansionKind
343 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
344   // We have wasm instructions for these
345   switch (AI->getOperation()) {
346   case AtomicRMWInst::Add:
347   case AtomicRMWInst::Sub:
348   case AtomicRMWInst::And:
349   case AtomicRMWInst::Or:
350   case AtomicRMWInst::Xor:
351   case AtomicRMWInst::Xchg:
352     return AtomicExpansionKind::None;
353   default:
354     break;
355   }
356   return AtomicExpansionKind::CmpXChg;
357 }
358 
359 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
360   // Implementation copied from X86TargetLowering.
361   unsigned Opc = VecOp.getOpcode();
362 
363   // Assume target opcodes can't be scalarized.
364   // TODO - do we have any exceptions?
365   if (Opc >= ISD::BUILTIN_OP_END)
366     return false;
367 
368   // If the vector op is not supported, try to convert to scalar.
369   EVT VecVT = VecOp.getValueType();
370   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
371     return true;
372 
373   // If the vector op is supported, but the scalar op is not, the transform may
374   // not be worthwhile.
375   EVT ScalarVT = VecVT.getScalarType();
376   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
377 }
378 
379 FastISel *WebAssemblyTargetLowering::createFastISel(
380     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
381   return WebAssembly::createFastISel(FuncInfo, LibInfo);
382 }
383 
384 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
385                                                       EVT VT) const {
386   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
387   if (BitWidth > 1 && BitWidth < 8)
388     BitWidth = 8;
389 
390   if (BitWidth > 64) {
391     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
392     // the count to be an i32.
393     BitWidth = 32;
394     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
395            "32-bit shift counts ought to be enough for anyone");
396   }
397 
398   MVT Result = MVT::getIntegerVT(BitWidth);
399   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
400          "Unable to represent scalar shift amount type");
401   return Result;
402 }
403 
404 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
405 // undefined result on invalid/overflow, to the WebAssembly opcode, which
406 // traps on invalid/overflow.
407 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
408                                        MachineBasicBlock *BB,
409                                        const TargetInstrInfo &TII,
410                                        bool IsUnsigned, bool Int64,
411                                        bool Float64, unsigned LoweredOpcode) {
412   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
413 
414   Register OutReg = MI.getOperand(0).getReg();
415   Register InReg = MI.getOperand(1).getReg();
416 
417   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
418   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
419   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
420   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
421   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
422   unsigned Eqz = WebAssembly::EQZ_I32;
423   unsigned And = WebAssembly::AND_I32;
424   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
425   int64_t Substitute = IsUnsigned ? 0 : Limit;
426   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
427   auto &Context = BB->getParent()->getFunction().getContext();
428   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
429 
430   const BasicBlock *LLVMBB = BB->getBasicBlock();
431   MachineFunction *F = BB->getParent();
432   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
433   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
434   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
435 
436   MachineFunction::iterator It = ++BB->getIterator();
437   F->insert(It, FalseMBB);
438   F->insert(It, TrueMBB);
439   F->insert(It, DoneMBB);
440 
441   // Transfer the remainder of BB and its successor edges to DoneMBB.
442   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
443   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
444 
445   BB->addSuccessor(TrueMBB);
446   BB->addSuccessor(FalseMBB);
447   TrueMBB->addSuccessor(DoneMBB);
448   FalseMBB->addSuccessor(DoneMBB);
449 
450   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
451   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
452   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
453   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
454   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
455   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
456   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
457 
458   MI.eraseFromParent();
459   // For signed numbers, we can do a single comparison to determine whether
460   // fabs(x) is within range.
461   if (IsUnsigned) {
462     Tmp0 = InReg;
463   } else {
464     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
465   }
466   BuildMI(BB, DL, TII.get(FConst), Tmp1)
467       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
468   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
469 
470   // For unsigned numbers, we have to do a separate comparison with zero.
471   if (IsUnsigned) {
472     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
473     Register SecondCmpReg =
474         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
475     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
476     BuildMI(BB, DL, TII.get(FConst), Tmp1)
477         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
478     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
479     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
480     CmpReg = AndReg;
481   }
482 
483   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
484 
485   // Create the CFG diamond to select between doing the conversion or using
486   // the substitute value.
487   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
488   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
489   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
490   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
491   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
492       .addReg(FalseReg)
493       .addMBB(FalseMBB)
494       .addReg(TrueReg)
495       .addMBB(TrueMBB);
496 
497   return DoneMBB;
498 }
499 
500 static MachineBasicBlock *
501 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
502                  const WebAssemblySubtarget *Subtarget,
503                  const TargetInstrInfo &TII) {
504   MachineInstr &CallParams = *CallResults.getPrevNode();
505   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
506   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
507          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
508 
509   bool IsIndirect = CallParams.getOperand(0).isReg();
510   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
511 
512   bool IsFuncrefCall = false;
513   if (IsIndirect) {
514     Register Reg = CallParams.getOperand(0).getReg();
515     const MachineFunction *MF = BB->getParent();
516     const MachineRegisterInfo &MRI = MF->getRegInfo();
517     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
518     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
519     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
520   }
521 
522   unsigned CallOp;
523   if (IsIndirect && IsRetCall) {
524     CallOp = WebAssembly::RET_CALL_INDIRECT;
525   } else if (IsIndirect) {
526     CallOp = WebAssembly::CALL_INDIRECT;
527   } else if (IsRetCall) {
528     CallOp = WebAssembly::RET_CALL;
529   } else {
530     CallOp = WebAssembly::CALL;
531   }
532 
533   MachineFunction &MF = *BB->getParent();
534   const MCInstrDesc &MCID = TII.get(CallOp);
535   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
536 
537   // See if we must truncate the function pointer.
538   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
539   // as 64-bit for uniformity with other pointer types.
540   // See also: WebAssemblyFastISel::selectCall
541   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
542     Register Reg32 =
543         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
544     auto &FnPtr = CallParams.getOperand(0);
545     BuildMI(*BB, CallResults.getIterator(), DL,
546             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
547         .addReg(FnPtr.getReg());
548     FnPtr.setReg(Reg32);
549   }
550 
551   // Move the function pointer to the end of the arguments for indirect calls
552   if (IsIndirect) {
553     auto FnPtr = CallParams.getOperand(0);
554     CallParams.RemoveOperand(0);
555     CallParams.addOperand(FnPtr);
556   }
557 
558   for (auto Def : CallResults.defs())
559     MIB.add(Def);
560 
561   if (IsIndirect) {
562     // Placeholder for the type index.
563     MIB.addImm(0);
564     // The table into which this call_indirect indexes.
565     MCSymbolWasm *Table = IsFuncrefCall
566                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
567                                     MF.getContext(), Subtarget)
568                               : WebAssembly::getOrCreateFunctionTableSymbol(
569                                     MF.getContext(), Subtarget);
570     if (Subtarget->hasReferenceTypes()) {
571       MIB.addSym(Table);
572     } else {
573       // For the MVP there is at most one table whose number is 0, but we can't
574       // write a table symbol or issue relocations.  Instead we just ensure the
575       // table is live and write a zero.
576       Table->setNoStrip();
577       MIB.addImm(0);
578     }
579   }
580 
581   for (auto Use : CallParams.uses())
582     MIB.add(Use);
583 
584   BB->insert(CallResults.getIterator(), MIB);
585   CallParams.eraseFromParent();
586   CallResults.eraseFromParent();
587 
588   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
589   // table slot with ref.null upon call_indirect return.
590   //
591   // This generates the following code, which comes right after a call_indirect
592   // of a funcref:
593   //
594   //    i32.const 0
595   //    ref.null func
596   //    table.set __funcref_call_table
597   if (IsIndirect && IsFuncrefCall) {
598     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
599         MF.getContext(), Subtarget);
600     Register RegZero =
601         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
602     MachineInstr *Const0 =
603         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
604     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
605 
606     Register RegFuncref =
607         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
608     MachineInstr *RefNull =
609         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref)
610             .addImm(static_cast<int32_t>(WebAssembly::HeapType::Funcref));
611     BB->insertAfter(Const0->getIterator(), RefNull);
612 
613     MachineInstr *TableSet =
614         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
615             .addSym(Table)
616             .addReg(RegZero)
617             .addReg(RegFuncref);
618     BB->insertAfter(RefNull->getIterator(), TableSet);
619   }
620 
621   return BB;
622 }
623 
624 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
625     MachineInstr &MI, MachineBasicBlock *BB) const {
626   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
627   DebugLoc DL = MI.getDebugLoc();
628 
629   switch (MI.getOpcode()) {
630   default:
631     llvm_unreachable("Unexpected instr type to insert");
632   case WebAssembly::FP_TO_SINT_I32_F32:
633     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
634                         WebAssembly::I32_TRUNC_S_F32);
635   case WebAssembly::FP_TO_UINT_I32_F32:
636     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
637                         WebAssembly::I32_TRUNC_U_F32);
638   case WebAssembly::FP_TO_SINT_I64_F32:
639     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
640                         WebAssembly::I64_TRUNC_S_F32);
641   case WebAssembly::FP_TO_UINT_I64_F32:
642     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
643                         WebAssembly::I64_TRUNC_U_F32);
644   case WebAssembly::FP_TO_SINT_I32_F64:
645     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
646                         WebAssembly::I32_TRUNC_S_F64);
647   case WebAssembly::FP_TO_UINT_I32_F64:
648     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
649                         WebAssembly::I32_TRUNC_U_F64);
650   case WebAssembly::FP_TO_SINT_I64_F64:
651     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
652                         WebAssembly::I64_TRUNC_S_F64);
653   case WebAssembly::FP_TO_UINT_I64_F64:
654     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
655                         WebAssembly::I64_TRUNC_U_F64);
656   case WebAssembly::CALL_RESULTS:
657   case WebAssembly::RET_CALL_RESULTS:
658     return LowerCallResults(MI, DL, BB, Subtarget, TII);
659   }
660 }
661 
662 const char *
663 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
664   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
665   case WebAssemblyISD::FIRST_NUMBER:
666   case WebAssemblyISD::FIRST_MEM_OPCODE:
667     break;
668 #define HANDLE_NODETYPE(NODE)                                                  \
669   case WebAssemblyISD::NODE:                                                   \
670     return "WebAssemblyISD::" #NODE;
671 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
672 #include "WebAssemblyISD.def"
673 #undef HANDLE_MEM_NODETYPE
674 #undef HANDLE_NODETYPE
675   }
676   return nullptr;
677 }
678 
679 std::pair<unsigned, const TargetRegisterClass *>
680 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
681     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
682   // First, see if this is a constraint that directly corresponds to a
683   // WebAssembly register class.
684   if (Constraint.size() == 1) {
685     switch (Constraint[0]) {
686     case 'r':
687       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
688       if (Subtarget->hasSIMD128() && VT.isVector()) {
689         if (VT.getSizeInBits() == 128)
690           return std::make_pair(0U, &WebAssembly::V128RegClass);
691       }
692       if (VT.isInteger() && !VT.isVector()) {
693         if (VT.getSizeInBits() <= 32)
694           return std::make_pair(0U, &WebAssembly::I32RegClass);
695         if (VT.getSizeInBits() <= 64)
696           return std::make_pair(0U, &WebAssembly::I64RegClass);
697       }
698       if (VT.isFloatingPoint() && !VT.isVector()) {
699         switch (VT.getSizeInBits()) {
700         case 32:
701           return std::make_pair(0U, &WebAssembly::F32RegClass);
702         case 64:
703           return std::make_pair(0U, &WebAssembly::F64RegClass);
704         default:
705           break;
706         }
707       }
708       break;
709     default:
710       break;
711     }
712   }
713 
714   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
715 }
716 
717 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
718   // Assume ctz is a relatively cheap operation.
719   return true;
720 }
721 
722 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
723   // Assume clz is a relatively cheap operation.
724   return true;
725 }
726 
727 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
728                                                       const AddrMode &AM,
729                                                       Type *Ty, unsigned AS,
730                                                       Instruction *I) const {
731   // WebAssembly offsets are added as unsigned without wrapping. The
732   // isLegalAddressingMode gives us no way to determine if wrapping could be
733   // happening, so we approximate this by accepting only non-negative offsets.
734   if (AM.BaseOffs < 0)
735     return false;
736 
737   // WebAssembly has no scale register operands.
738   if (AM.Scale != 0)
739     return false;
740 
741   // Everything else is legal.
742   return true;
743 }
744 
745 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
746     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
747     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
748   // WebAssembly supports unaligned accesses, though it should be declared
749   // with the p2align attribute on loads and stores which do so, and there
750   // may be a performance impact. We tell LLVM they're "fast" because
751   // for the kinds of things that LLVM uses this for (merging adjacent stores
752   // of constants, etc.), WebAssembly implementations will either want the
753   // unaligned access or they'll split anyway.
754   if (Fast)
755     *Fast = true;
756   return true;
757 }
758 
759 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
760                                               AttributeList Attr) const {
761   // The current thinking is that wasm engines will perform this optimization,
762   // so we can save on code size.
763   return true;
764 }
765 
766 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
767   EVT ExtT = ExtVal.getValueType();
768   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
769   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
770          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
771          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
772 }
773 
774 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
775                                                   LLVMContext &C,
776                                                   EVT VT) const {
777   if (VT.isVector())
778     return VT.changeVectorElementTypeToInteger();
779 
780   // So far, all branch instructions in Wasm take an I32 condition.
781   // The default TargetLowering::getSetCCResultType returns the pointer size,
782   // which would be useful to reduce instruction counts when testing
783   // against 64-bit pointers/values if at some point Wasm supports that.
784   return EVT::getIntegerVT(C, 32);
785 }
786 
787 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
788                                                    const CallInst &I,
789                                                    MachineFunction &MF,
790                                                    unsigned Intrinsic) const {
791   switch (Intrinsic) {
792   case Intrinsic::wasm_memory_atomic_notify:
793     Info.opc = ISD::INTRINSIC_W_CHAIN;
794     Info.memVT = MVT::i32;
795     Info.ptrVal = I.getArgOperand(0);
796     Info.offset = 0;
797     Info.align = Align(4);
798     // atomic.notify instruction does not really load the memory specified with
799     // this argument, but MachineMemOperand should either be load or store, so
800     // we set this to a load.
801     // FIXME Volatile isn't really correct, but currently all LLVM atomic
802     // instructions are treated as volatiles in the backend, so we should be
803     // consistent. The same applies for wasm_atomic_wait intrinsics too.
804     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
805     return true;
806   case Intrinsic::wasm_memory_atomic_wait32:
807     Info.opc = ISD::INTRINSIC_W_CHAIN;
808     Info.memVT = MVT::i32;
809     Info.ptrVal = I.getArgOperand(0);
810     Info.offset = 0;
811     Info.align = Align(4);
812     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
813     return true;
814   case Intrinsic::wasm_memory_atomic_wait64:
815     Info.opc = ISD::INTRINSIC_W_CHAIN;
816     Info.memVT = MVT::i64;
817     Info.ptrVal = I.getArgOperand(0);
818     Info.offset = 0;
819     Info.align = Align(8);
820     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
821     return true;
822   default:
823     return false;
824   }
825 }
826 
827 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
828     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
829     const SelectionDAG &DAG, unsigned Depth) const {
830   switch (Op.getOpcode()) {
831   default:
832     break;
833   case ISD::INTRINSIC_WO_CHAIN: {
834     unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
835     switch (IntNo) {
836     default:
837       break;
838     case Intrinsic::wasm_bitmask: {
839       unsigned BitWidth = Known.getBitWidth();
840       EVT VT = Op.getOperand(1).getSimpleValueType();
841       unsigned PossibleBits = VT.getVectorNumElements();
842       APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
843       Known.Zero |= ZeroMask;
844       break;
845     }
846     }
847   }
848   }
849 }
850 
851 //===----------------------------------------------------------------------===//
852 // WebAssembly Lowering private implementation.
853 //===----------------------------------------------------------------------===//
854 
855 //===----------------------------------------------------------------------===//
856 // Lowering Code
857 //===----------------------------------------------------------------------===//
858 
859 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
860   MachineFunction &MF = DAG.getMachineFunction();
861   DAG.getContext()->diagnose(
862       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
863 }
864 
865 // Test whether the given calling convention is supported.
866 static bool callingConvSupported(CallingConv::ID CallConv) {
867   // We currently support the language-independent target-independent
868   // conventions. We don't yet have a way to annotate calls with properties like
869   // "cold", and we don't have any call-clobbered registers, so these are mostly
870   // all handled the same.
871   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
872          CallConv == CallingConv::Cold ||
873          CallConv == CallingConv::PreserveMost ||
874          CallConv == CallingConv::PreserveAll ||
875          CallConv == CallingConv::CXX_FAST_TLS ||
876          CallConv == CallingConv::WASM_EmscriptenInvoke ||
877          CallConv == CallingConv::Swift;
878 }
879 
880 SDValue
881 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
882                                      SmallVectorImpl<SDValue> &InVals) const {
883   SelectionDAG &DAG = CLI.DAG;
884   SDLoc DL = CLI.DL;
885   SDValue Chain = CLI.Chain;
886   SDValue Callee = CLI.Callee;
887   MachineFunction &MF = DAG.getMachineFunction();
888   auto Layout = MF.getDataLayout();
889 
890   CallingConv::ID CallConv = CLI.CallConv;
891   if (!callingConvSupported(CallConv))
892     fail(DL, DAG,
893          "WebAssembly doesn't support language-specific or target-specific "
894          "calling conventions yet");
895   if (CLI.IsPatchPoint)
896     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
897 
898   if (CLI.IsTailCall) {
899     auto NoTail = [&](const char *Msg) {
900       if (CLI.CB && CLI.CB->isMustTailCall())
901         fail(DL, DAG, Msg);
902       CLI.IsTailCall = false;
903     };
904 
905     if (!Subtarget->hasTailCall())
906       NoTail("WebAssembly 'tail-call' feature not enabled");
907 
908     // Varargs calls cannot be tail calls because the buffer is on the stack
909     if (CLI.IsVarArg)
910       NoTail("WebAssembly does not support varargs tail calls");
911 
912     // Do not tail call unless caller and callee return types match
913     const Function &F = MF.getFunction();
914     const TargetMachine &TM = getTargetMachine();
915     Type *RetTy = F.getReturnType();
916     SmallVector<MVT, 4> CallerRetTys;
917     SmallVector<MVT, 4> CalleeRetTys;
918     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
919     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
920     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
921                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
922                                  CalleeRetTys.begin());
923     if (!TypesMatch)
924       NoTail("WebAssembly tail call requires caller and callee return types to "
925              "match");
926 
927     // If pointers to local stack values are passed, we cannot tail call
928     if (CLI.CB) {
929       for (auto &Arg : CLI.CB->args()) {
930         Value *Val = Arg.get();
931         // Trace the value back through pointer operations
932         while (true) {
933           Value *Src = Val->stripPointerCastsAndAliases();
934           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
935             Src = GEP->getPointerOperand();
936           if (Val == Src)
937             break;
938           Val = Src;
939         }
940         if (isa<AllocaInst>(Val)) {
941           NoTail(
942               "WebAssembly does not support tail calling with stack arguments");
943           break;
944         }
945       }
946     }
947   }
948 
949   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
950   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
951   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
952 
953   // The generic code may have added an sret argument. If we're lowering an
954   // invoke function, the ABI requires that the function pointer be the first
955   // argument, so we may have to swap the arguments.
956   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
957       Outs[0].Flags.isSRet()) {
958     std::swap(Outs[0], Outs[1]);
959     std::swap(OutVals[0], OutVals[1]);
960   }
961 
962   bool HasSwiftSelfArg = false;
963   bool HasSwiftErrorArg = false;
964   unsigned NumFixedArgs = 0;
965   for (unsigned I = 0; I < Outs.size(); ++I) {
966     const ISD::OutputArg &Out = Outs[I];
967     SDValue &OutVal = OutVals[I];
968     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
969     HasSwiftErrorArg |= Out.Flags.isSwiftError();
970     if (Out.Flags.isNest())
971       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
972     if (Out.Flags.isInAlloca())
973       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
974     if (Out.Flags.isInConsecutiveRegs())
975       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
976     if (Out.Flags.isInConsecutiveRegsLast())
977       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
978     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
979       auto &MFI = MF.getFrameInfo();
980       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
981                                      Out.Flags.getNonZeroByValAlign(),
982                                      /*isSS=*/false);
983       SDValue SizeNode =
984           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
985       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
986       Chain = DAG.getMemcpy(
987           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
988           /*isVolatile*/ false, /*AlwaysInline=*/false,
989           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
990       OutVal = FINode;
991     }
992     // Count the number of fixed args *after* legalization.
993     NumFixedArgs += Out.IsFixed;
994   }
995 
996   bool IsVarArg = CLI.IsVarArg;
997   auto PtrVT = getPointerTy(Layout);
998 
999   // For swiftcc, emit additional swiftself and swifterror arguments
1000   // if there aren't. These additional arguments are also added for callee
1001   // signature They are necessary to match callee and caller signature for
1002   // indirect call.
1003   if (CallConv == CallingConv::Swift) {
1004     if (!HasSwiftSelfArg) {
1005       NumFixedArgs++;
1006       ISD::OutputArg Arg;
1007       Arg.Flags.setSwiftSelf();
1008       CLI.Outs.push_back(Arg);
1009       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1010       CLI.OutVals.push_back(ArgVal);
1011     }
1012     if (!HasSwiftErrorArg) {
1013       NumFixedArgs++;
1014       ISD::OutputArg Arg;
1015       Arg.Flags.setSwiftError();
1016       CLI.Outs.push_back(Arg);
1017       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1018       CLI.OutVals.push_back(ArgVal);
1019     }
1020   }
1021 
1022   // Analyze operands of the call, assigning locations to each operand.
1023   SmallVector<CCValAssign, 16> ArgLocs;
1024   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1025 
1026   if (IsVarArg) {
1027     // Outgoing non-fixed arguments are placed in a buffer. First
1028     // compute their offsets and the total amount of buffer space needed.
1029     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1030       const ISD::OutputArg &Out = Outs[I];
1031       SDValue &Arg = OutVals[I];
1032       EVT VT = Arg.getValueType();
1033       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1034       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1035       Align Alignment =
1036           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1037       unsigned Offset =
1038           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1039       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1040                                         Offset, VT.getSimpleVT(),
1041                                         CCValAssign::Full));
1042     }
1043   }
1044 
1045   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1046 
1047   SDValue FINode;
1048   if (IsVarArg && NumBytes) {
1049     // For non-fixed arguments, next emit stores to store the argument values
1050     // to the stack buffer at the offsets computed above.
1051     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1052                                                  Layout.getStackAlignment(),
1053                                                  /*isSS=*/false);
1054     unsigned ValNo = 0;
1055     SmallVector<SDValue, 8> Chains;
1056     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1057       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1058              "ArgLocs should remain in order and only hold varargs args");
1059       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1060       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1061       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1062                                 DAG.getConstant(Offset, DL, PtrVT));
1063       Chains.push_back(
1064           DAG.getStore(Chain, DL, Arg, Add,
1065                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1066     }
1067     if (!Chains.empty())
1068       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1069   } else if (IsVarArg) {
1070     FINode = DAG.getIntPtrConstant(0, DL);
1071   }
1072 
1073   if (Callee->getOpcode() == ISD::GlobalAddress) {
1074     // If the callee is a GlobalAddress node (quite common, every direct call
1075     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1076     // doesn't at MO_GOT which is not needed for direct calls.
1077     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1078     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1079                                         getPointerTy(DAG.getDataLayout()),
1080                                         GA->getOffset());
1081     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1082                          getPointerTy(DAG.getDataLayout()), Callee);
1083   }
1084 
1085   // Compute the operands for the CALLn node.
1086   SmallVector<SDValue, 16> Ops;
1087   Ops.push_back(Chain);
1088   Ops.push_back(Callee);
1089 
1090   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1091   // isn't reliable.
1092   Ops.append(OutVals.begin(),
1093              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1094   // Add a pointer to the vararg buffer.
1095   if (IsVarArg)
1096     Ops.push_back(FINode);
1097 
1098   SmallVector<EVT, 8> InTys;
1099   for (const auto &In : Ins) {
1100     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1101     assert(!In.Flags.isNest() && "nest is not valid for return values");
1102     if (In.Flags.isInAlloca())
1103       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1104     if (In.Flags.isInConsecutiveRegs())
1105       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1106     if (In.Flags.isInConsecutiveRegsLast())
1107       fail(DL, DAG,
1108            "WebAssembly hasn't implemented cons regs last return values");
1109     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1110     // registers.
1111     InTys.push_back(In.VT);
1112   }
1113 
1114   // Lastly, if this is a call to a funcref we need to add an instruction
1115   // table.set to the chain and transform the call.
1116   if (CLI.CB && isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
1117     // In the absence of function references proposal where a funcref call is
1118     // lowered to call_ref, using reference types we generate a table.set to set
1119     // the funcref to a special table used solely for this purpose, followed by
1120     // a call_indirect. Here we just generate the table set, and return the
1121     // SDValue of the table.set so that LowerCall can finalize the lowering by
1122     // generating the call_indirect.
1123     SDValue Chain = Ops[0];
1124 
1125     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1126         MF.getContext(), Subtarget);
1127     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1128     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1129     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1130     SDValue TableSet = DAG.getMemIntrinsicNode(
1131         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1132         MVT::funcref,
1133         // Machine Mem Operand args
1134         MachinePointerInfo(WasmAddressSpace::FUNCREF),
1135         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1136         MachineMemOperand::MOStore);
1137 
1138     Ops[0] = TableSet; // The new chain is the TableSet itself
1139   }
1140 
1141   if (CLI.IsTailCall) {
1142     // ret_calls do not return values to the current frame
1143     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1144     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1145   }
1146 
1147   InTys.push_back(MVT::Other);
1148   SDVTList InTyList = DAG.getVTList(InTys);
1149   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1150 
1151   for (size_t I = 0; I < Ins.size(); ++I)
1152     InVals.push_back(Res.getValue(I));
1153 
1154   // Return the chain
1155   return Res.getValue(Ins.size());
1156 }
1157 
1158 bool WebAssemblyTargetLowering::CanLowerReturn(
1159     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1160     const SmallVectorImpl<ISD::OutputArg> &Outs,
1161     LLVMContext & /*Context*/) const {
1162   // WebAssembly can only handle returning tuples with multivalue enabled
1163   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1164 }
1165 
1166 SDValue WebAssemblyTargetLowering::LowerReturn(
1167     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1168     const SmallVectorImpl<ISD::OutputArg> &Outs,
1169     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1170     SelectionDAG &DAG) const {
1171   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1172          "MVP WebAssembly can only return up to one value");
1173   if (!callingConvSupported(CallConv))
1174     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1175 
1176   SmallVector<SDValue, 4> RetOps(1, Chain);
1177   RetOps.append(OutVals.begin(), OutVals.end());
1178   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1179 
1180   // Record the number and types of the return values.
1181   for (const ISD::OutputArg &Out : Outs) {
1182     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1183     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1184     assert(Out.IsFixed && "non-fixed return value is not valid");
1185     if (Out.Flags.isInAlloca())
1186       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1187     if (Out.Flags.isInConsecutiveRegs())
1188       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1189     if (Out.Flags.isInConsecutiveRegsLast())
1190       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1191   }
1192 
1193   return Chain;
1194 }
1195 
1196 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1197     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1198     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1199     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1200   if (!callingConvSupported(CallConv))
1201     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1202 
1203   MachineFunction &MF = DAG.getMachineFunction();
1204   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1205 
1206   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1207   // of the incoming values before they're represented by virtual registers.
1208   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1209 
1210   bool HasSwiftErrorArg = false;
1211   bool HasSwiftSelfArg = false;
1212   for (const ISD::InputArg &In : Ins) {
1213     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1214     HasSwiftErrorArg |= In.Flags.isSwiftError();
1215     if (In.Flags.isInAlloca())
1216       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1217     if (In.Flags.isNest())
1218       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1219     if (In.Flags.isInConsecutiveRegs())
1220       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1221     if (In.Flags.isInConsecutiveRegsLast())
1222       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1223     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1224     // registers.
1225     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1226                                            DAG.getTargetConstant(InVals.size(),
1227                                                                  DL, MVT::i32))
1228                              : DAG.getUNDEF(In.VT));
1229 
1230     // Record the number and types of arguments.
1231     MFI->addParam(In.VT);
1232   }
1233 
1234   // For swiftcc, emit additional swiftself and swifterror arguments
1235   // if there aren't. These additional arguments are also added for callee
1236   // signature They are necessary to match callee and caller signature for
1237   // indirect call.
1238   auto PtrVT = getPointerTy(MF.getDataLayout());
1239   if (CallConv == CallingConv::Swift) {
1240     if (!HasSwiftSelfArg) {
1241       MFI->addParam(PtrVT);
1242     }
1243     if (!HasSwiftErrorArg) {
1244       MFI->addParam(PtrVT);
1245     }
1246   }
1247   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1248   // the buffer is passed as an argument.
1249   if (IsVarArg) {
1250     MVT PtrVT = getPointerTy(MF.getDataLayout());
1251     Register VarargVreg =
1252         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1253     MFI->setVarargBufferVreg(VarargVreg);
1254     Chain = DAG.getCopyToReg(
1255         Chain, DL, VarargVreg,
1256         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1257                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1258     MFI->addParam(PtrVT);
1259   }
1260 
1261   // Record the number and types of arguments and results.
1262   SmallVector<MVT, 4> Params;
1263   SmallVector<MVT, 4> Results;
1264   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1265                       MF.getFunction(), DAG.getTarget(), Params, Results);
1266   for (MVT VT : Results)
1267     MFI->addResult(VT);
1268   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1269   // the param logic here with ComputeSignatureVTs
1270   assert(MFI->getParams().size() == Params.size() &&
1271          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1272                     Params.begin()));
1273 
1274   return Chain;
1275 }
1276 
1277 void WebAssemblyTargetLowering::ReplaceNodeResults(
1278     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1279   switch (N->getOpcode()) {
1280   case ISD::SIGN_EXTEND_INREG:
1281     // Do not add any results, signifying that N should not be custom lowered
1282     // after all. This happens because simd128 turns on custom lowering for
1283     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1284     // illegal type.
1285     break;
1286   default:
1287     llvm_unreachable(
1288         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1289   }
1290 }
1291 
1292 //===----------------------------------------------------------------------===//
1293 //  Custom lowering hooks.
1294 //===----------------------------------------------------------------------===//
1295 
1296 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1297                                                   SelectionDAG &DAG) const {
1298   SDLoc DL(Op);
1299   switch (Op.getOpcode()) {
1300   default:
1301     llvm_unreachable("unimplemented operation lowering");
1302     return SDValue();
1303   case ISD::FrameIndex:
1304     return LowerFrameIndex(Op, DAG);
1305   case ISD::GlobalAddress:
1306     return LowerGlobalAddress(Op, DAG);
1307   case ISD::GlobalTLSAddress:
1308     return LowerGlobalTLSAddress(Op, DAG);
1309   case ISD::ExternalSymbol:
1310     return LowerExternalSymbol(Op, DAG);
1311   case ISD::JumpTable:
1312     return LowerJumpTable(Op, DAG);
1313   case ISD::BR_JT:
1314     return LowerBR_JT(Op, DAG);
1315   case ISD::VASTART:
1316     return LowerVASTART(Op, DAG);
1317   case ISD::BlockAddress:
1318   case ISD::BRIND:
1319     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1320     return SDValue();
1321   case ISD::RETURNADDR:
1322     return LowerRETURNADDR(Op, DAG);
1323   case ISD::FRAMEADDR:
1324     return LowerFRAMEADDR(Op, DAG);
1325   case ISD::CopyToReg:
1326     return LowerCopyToReg(Op, DAG);
1327   case ISD::EXTRACT_VECTOR_ELT:
1328   case ISD::INSERT_VECTOR_ELT:
1329     return LowerAccessVectorElement(Op, DAG);
1330   case ISD::INTRINSIC_VOID:
1331   case ISD::INTRINSIC_WO_CHAIN:
1332   case ISD::INTRINSIC_W_CHAIN:
1333     return LowerIntrinsic(Op, DAG);
1334   case ISD::SIGN_EXTEND_INREG:
1335     return LowerSIGN_EXTEND_INREG(Op, DAG);
1336   case ISD::BUILD_VECTOR:
1337     return LowerBUILD_VECTOR(Op, DAG);
1338   case ISD::VECTOR_SHUFFLE:
1339     return LowerVECTOR_SHUFFLE(Op, DAG);
1340   case ISD::SETCC:
1341     return LowerSETCC(Op, DAG);
1342   case ISD::SHL:
1343   case ISD::SRA:
1344   case ISD::SRL:
1345     return LowerShift(Op, DAG);
1346   case ISD::FP_TO_SINT_SAT:
1347   case ISD::FP_TO_UINT_SAT:
1348     return LowerFP_TO_INT_SAT(Op, DAG);
1349   case ISD::LOAD:
1350     return LowerLoad(Op, DAG);
1351   case ISD::STORE:
1352     return LowerStore(Op, DAG);
1353   }
1354 }
1355 
1356 static bool IsWebAssemblyGlobal(SDValue Op) {
1357   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1358     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1359 
1360   return false;
1361 }
1362 
1363 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
1364   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1365   if (!FI)
1366     return None;
1367 
1368   auto &MF = DAG.getMachineFunction();
1369   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1370 }
1371 
1372 bool WebAssemblyTargetLowering::isFuncrefType(const Type *Ty) {
1373   return isa<PointerType>(Ty) &&
1374          Ty->getPointerAddressSpace() == WasmAddressSpace::FUNCREF;
1375 }
1376 
1377 bool WebAssemblyTargetLowering::isExternrefType(const Type *Ty) {
1378   return isa<PointerType>(Ty) &&
1379          Ty->getPointerAddressSpace() == WasmAddressSpace::EXTERNREF;
1380 }
1381 
1382 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1383                                               SelectionDAG &DAG) const {
1384   SDLoc DL(Op);
1385   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1386   const SDValue &Value = SN->getValue();
1387   const SDValue &Base = SN->getBasePtr();
1388   const SDValue &Offset = SN->getOffset();
1389 
1390   if (IsWebAssemblyGlobal(Base)) {
1391     if (!Offset->isUndef())
1392       report_fatal_error("unexpected offset when storing to webassembly global",
1393                          false);
1394 
1395     SDVTList Tys = DAG.getVTList(MVT::Other);
1396     SDValue Ops[] = {SN->getChain(), Value, Base};
1397     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1398                                    SN->getMemoryVT(), SN->getMemOperand());
1399   }
1400 
1401   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1402     if (!Offset->isUndef())
1403       report_fatal_error("unexpected offset when storing to webassembly local",
1404                          false);
1405 
1406     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1407     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1408     SDValue Ops[] = {SN->getChain(), Idx, Value};
1409     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1410   }
1411 
1412   return Op;
1413 }
1414 
1415 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1416                                              SelectionDAG &DAG) const {
1417   SDLoc DL(Op);
1418   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1419   const SDValue &Base = LN->getBasePtr();
1420   const SDValue &Offset = LN->getOffset();
1421 
1422   if (IsWebAssemblyGlobal(Base)) {
1423     if (!Offset->isUndef())
1424       report_fatal_error(
1425           "unexpected offset when loading from webassembly global", false);
1426 
1427     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1428     SDValue Ops[] = {LN->getChain(), Base};
1429     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1430                                    LN->getMemoryVT(), LN->getMemOperand());
1431   }
1432 
1433   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1434     if (!Offset->isUndef())
1435       report_fatal_error(
1436           "unexpected offset when loading from webassembly local", false);
1437 
1438     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1439     EVT LocalVT = LN->getValueType(0);
1440     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1441                                    {LN->getChain(), Idx});
1442     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1443     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1444     return Result;
1445   }
1446 
1447   return Op;
1448 }
1449 
1450 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1451                                                   SelectionDAG &DAG) const {
1452   SDValue Src = Op.getOperand(2);
1453   if (isa<FrameIndexSDNode>(Src.getNode())) {
1454     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1455     // the FI to some LEA-like instruction, but since we don't have that, we
1456     // need to insert some kind of instruction that can take an FI operand and
1457     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1458     // local.copy between Op and its FI operand.
1459     SDValue Chain = Op.getOperand(0);
1460     SDLoc DL(Op);
1461     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1462     EVT VT = Src.getValueType();
1463     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1464                                                    : WebAssembly::COPY_I64,
1465                                     DL, VT, Src),
1466                  0);
1467     return Op.getNode()->getNumValues() == 1
1468                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1469                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1470                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1471                                                            : SDValue());
1472   }
1473   return SDValue();
1474 }
1475 
1476 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1477                                                    SelectionDAG &DAG) const {
1478   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1479   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1480 }
1481 
1482 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1483                                                    SelectionDAG &DAG) const {
1484   SDLoc DL(Op);
1485 
1486   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1487     fail(DL, DAG,
1488          "Non-Emscripten WebAssembly hasn't implemented "
1489          "__builtin_return_address");
1490     return SDValue();
1491   }
1492 
1493   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1494     return SDValue();
1495 
1496   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1497   MakeLibCallOptions CallOptions;
1498   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1499                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1500       .first;
1501 }
1502 
1503 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1504                                                   SelectionDAG &DAG) const {
1505   // Non-zero depths are not supported by WebAssembly currently. Use the
1506   // legalizer's default expansion, which is to return 0 (what this function is
1507   // documented to do).
1508   if (Op.getConstantOperandVal(0) > 0)
1509     return SDValue();
1510 
1511   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1512   EVT VT = Op.getValueType();
1513   Register FP =
1514       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1515   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1516 }
1517 
1518 SDValue
1519 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1520                                                  SelectionDAG &DAG) const {
1521   SDLoc DL(Op);
1522   const auto *GA = cast<GlobalAddressSDNode>(Op);
1523   MVT PtrVT = getPointerTy(DAG.getDataLayout());
1524 
1525   MachineFunction &MF = DAG.getMachineFunction();
1526   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1527     report_fatal_error("cannot use thread-local storage without bulk memory",
1528                        false);
1529 
1530   const GlobalValue *GV = GA->getGlobal();
1531 
1532   // Currently Emscripten does not support dynamic linking with threads.
1533   // Therefore, if we have thread-local storage, only the local-exec model
1534   // is possible.
1535   // TODO: remove this and implement proper TLS models once Emscripten
1536   // supports dynamic linking with threads.
1537   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1538       !Subtarget->getTargetTriple().isOSEmscripten()) {
1539     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1540                        "non-Emscripten OSes: variable " +
1541                            GV->getName(),
1542                        false);
1543   }
1544 
1545   auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1546                                      : WebAssembly::GLOBAL_GET_I32;
1547   const char *BaseName = MF.createExternalSymbolName("__tls_base");
1548 
1549   SDValue BaseAddr(
1550       DAG.getMachineNode(GlobalGet, DL, PtrVT,
1551                          DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1552       0);
1553 
1554   SDValue TLSOffset = DAG.getTargetGlobalAddress(
1555       GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1556   SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset);
1557 
1558   return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1559 }
1560 
1561 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1562                                                       SelectionDAG &DAG) const {
1563   SDLoc DL(Op);
1564   const auto *GA = cast<GlobalAddressSDNode>(Op);
1565   EVT VT = Op.getValueType();
1566   assert(GA->getTargetFlags() == 0 &&
1567          "Unexpected target flags on generic GlobalAddressSDNode");
1568   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1569     fail(DL, DAG, "Invalid address space for WebAssembly target");
1570 
1571   unsigned OperandFlags = 0;
1572   if (isPositionIndependent()) {
1573     const GlobalValue *GV = GA->getGlobal();
1574     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1575       MachineFunction &MF = DAG.getMachineFunction();
1576       MVT PtrVT = getPointerTy(MF.getDataLayout());
1577       const char *BaseName;
1578       if (GV->getValueType()->isFunctionTy()) {
1579         BaseName = MF.createExternalSymbolName("__table_base");
1580         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1581       }
1582       else {
1583         BaseName = MF.createExternalSymbolName("__memory_base");
1584         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1585       }
1586       SDValue BaseAddr =
1587           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1588                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1589 
1590       SDValue SymAddr = DAG.getNode(
1591           WebAssemblyISD::WrapperPIC, DL, VT,
1592           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1593                                      OperandFlags));
1594 
1595       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1596     } else {
1597       OperandFlags = WebAssemblyII::MO_GOT;
1598     }
1599   }
1600 
1601   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1602                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1603                                                 GA->getOffset(), OperandFlags));
1604 }
1605 
1606 SDValue
1607 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1608                                                SelectionDAG &DAG) const {
1609   SDLoc DL(Op);
1610   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1611   EVT VT = Op.getValueType();
1612   assert(ES->getTargetFlags() == 0 &&
1613          "Unexpected target flags on generic ExternalSymbolSDNode");
1614   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1615                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1616 }
1617 
1618 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1619                                                   SelectionDAG &DAG) const {
1620   // There's no need for a Wrapper node because we always incorporate a jump
1621   // table operand into a BR_TABLE instruction, rather than ever
1622   // materializing it in a register.
1623   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1624   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1625                                 JT->getTargetFlags());
1626 }
1627 
1628 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1629                                               SelectionDAG &DAG) const {
1630   SDLoc DL(Op);
1631   SDValue Chain = Op.getOperand(0);
1632   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1633   SDValue Index = Op.getOperand(2);
1634   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1635 
1636   SmallVector<SDValue, 8> Ops;
1637   Ops.push_back(Chain);
1638   Ops.push_back(Index);
1639 
1640   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1641   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1642 
1643   // Add an operand for each case.
1644   for (auto MBB : MBBs)
1645     Ops.push_back(DAG.getBasicBlock(MBB));
1646 
1647   // Add the first MBB as a dummy default target for now. This will be replaced
1648   // with the proper default target (and the preceding range check eliminated)
1649   // if possible by WebAssemblyFixBrTableDefaults.
1650   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1651   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1652 }
1653 
1654 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1655                                                 SelectionDAG &DAG) const {
1656   SDLoc DL(Op);
1657   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1658 
1659   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1660   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1661 
1662   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1663                                     MFI->getVarargBufferVreg(), PtrVT);
1664   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1665                       MachinePointerInfo(SV));
1666 }
1667 
1668 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex,
1669                                       SelectionDAG &DAG) {
1670   // We only support C++ exceptions for now
1671   int Tag =
1672       cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue();
1673   if (Tag != WebAssembly::CPP_EXCEPTION)
1674     llvm_unreachable("Invalid tag: We only support C++ exceptions for now");
1675   auto &MF = DAG.getMachineFunction();
1676   const auto &TLI = DAG.getTargetLoweringInfo();
1677   MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1678   const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1679   return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT,
1680                      DAG.getTargetExternalSymbol(SymName, PtrVT));
1681 }
1682 
1683 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1684                                                   SelectionDAG &DAG) const {
1685   MachineFunction &MF = DAG.getMachineFunction();
1686   unsigned IntNo;
1687   switch (Op.getOpcode()) {
1688   case ISD::INTRINSIC_VOID:
1689   case ISD::INTRINSIC_W_CHAIN:
1690     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1691     break;
1692   case ISD::INTRINSIC_WO_CHAIN:
1693     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1694     break;
1695   default:
1696     llvm_unreachable("Invalid intrinsic");
1697   }
1698   SDLoc DL(Op);
1699 
1700   switch (IntNo) {
1701   default:
1702     return SDValue(); // Don't custom lower most intrinsics.
1703 
1704   case Intrinsic::wasm_lsda: {
1705     EVT VT = Op.getValueType();
1706     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1707     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1708     auto &Context = MF.getMMI().getContext();
1709     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1710                                             Twine(MF.getFunctionNumber()));
1711     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1712                        DAG.getMCSymbol(S, PtrVT));
1713   }
1714 
1715   case Intrinsic::wasm_throw: {
1716     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1717     return DAG.getNode(WebAssemblyISD::THROW, DL,
1718                        MVT::Other, // outchain type
1719                        {
1720                            Op.getOperand(0), // inchain
1721                            SymNode,          // exception symbol
1722                            Op.getOperand(3)  // thrown value
1723                        });
1724   }
1725 
1726   case Intrinsic::wasm_catch: {
1727     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1728     return DAG.getNode(WebAssemblyISD::CATCH, DL,
1729                        {
1730                            MVT::i32,  // outchain type
1731                            MVT::Other // return value
1732                        },
1733                        {
1734                            Op.getOperand(0), // inchain
1735                            SymNode           // exception symbol
1736                        });
1737   }
1738 
1739   case Intrinsic::wasm_shuffle: {
1740     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1741     SDValue Ops[18];
1742     size_t OpIdx = 0;
1743     Ops[OpIdx++] = Op.getOperand(1);
1744     Ops[OpIdx++] = Op.getOperand(2);
1745     while (OpIdx < 18) {
1746       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1747       if (MaskIdx.isUndef() ||
1748           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1749         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1750       } else {
1751         Ops[OpIdx++] = MaskIdx;
1752       }
1753     }
1754     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1755   }
1756   }
1757 }
1758 
1759 SDValue
1760 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1761                                                   SelectionDAG &DAG) const {
1762   SDLoc DL(Op);
1763   // If sign extension operations are disabled, allow sext_inreg only if operand
1764   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1765   // extension operations, but allowing sext_inreg in this context lets us have
1766   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1767   // everywhere would be simpler in this file, but would necessitate large and
1768   // brittle patterns to undo the expansion and select extract_lane_s
1769   // instructions.
1770   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1771   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1772     return SDValue();
1773 
1774   const SDValue &Extract = Op.getOperand(0);
1775   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1776   if (VecT.getVectorElementType().getSizeInBits() > 32)
1777     return SDValue();
1778   MVT ExtractedLaneT =
1779       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1780   MVT ExtractedVecT =
1781       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1782   if (ExtractedVecT == VecT)
1783     return Op;
1784 
1785   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1786   const SDNode *Index = Extract.getOperand(1).getNode();
1787   if (!isa<ConstantSDNode>(Index))
1788     return SDValue();
1789   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1790   unsigned Scale =
1791       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1792   assert(Scale > 1);
1793   SDValue NewIndex =
1794       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1795   SDValue NewExtract = DAG.getNode(
1796       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1797       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1798   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1799                      Op.getOperand(1));
1800 }
1801 
1802 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1803                                                      SelectionDAG &DAG) const {
1804   SDLoc DL(Op);
1805   const EVT VecT = Op.getValueType();
1806   const EVT LaneT = Op.getOperand(0).getValueType();
1807   const size_t Lanes = Op.getNumOperands();
1808   bool CanSwizzle = VecT == MVT::v16i8;
1809 
1810   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1811   // possible number of lanes at once followed by a sequence of replace_lane
1812   // instructions to individually initialize any remaining lanes.
1813 
1814   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1815   // swizzled lanes should be given greater weight.
1816 
1817   // TODO: Investigate looping rather than always extracting/replacing specific
1818   // lanes to fill gaps.
1819 
1820   auto IsConstant = [](const SDValue &V) {
1821     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1822   };
1823 
1824   // Returns the source vector and index vector pair if they exist. Checks for:
1825   //   (extract_vector_elt
1826   //     $src,
1827   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1828   //   )
1829   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1830     auto Bail = std::make_pair(SDValue(), SDValue());
1831     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1832       return Bail;
1833     const SDValue &SwizzleSrc = Lane->getOperand(0);
1834     const SDValue &IndexExt = Lane->getOperand(1);
1835     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1836       return Bail;
1837     const SDValue &Index = IndexExt->getOperand(0);
1838     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1839       return Bail;
1840     const SDValue &SwizzleIndices = Index->getOperand(0);
1841     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1842         SwizzleIndices.getValueType() != MVT::v16i8 ||
1843         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1844         Index->getConstantOperandVal(1) != I)
1845       return Bail;
1846     return std::make_pair(SwizzleSrc, SwizzleIndices);
1847   };
1848 
1849   // If the lane is extracted from another vector at a constant index, return
1850   // that vector. The source vector must not have more lanes than the dest
1851   // because the shufflevector indices are in terms of the destination lanes and
1852   // would not be able to address the smaller individual source lanes.
1853   auto GetShuffleSrc = [&](const SDValue &Lane) {
1854     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1855       return SDValue();
1856     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
1857       return SDValue();
1858     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
1859         VecT.getVectorNumElements())
1860       return SDValue();
1861     return Lane->getOperand(0);
1862   };
1863 
1864   using ValueEntry = std::pair<SDValue, size_t>;
1865   SmallVector<ValueEntry, 16> SplatValueCounts;
1866 
1867   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1868   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1869 
1870   using ShuffleEntry = std::pair<SDValue, size_t>;
1871   SmallVector<ShuffleEntry, 16> ShuffleCounts;
1872 
1873   auto AddCount = [](auto &Counts, const auto &Val) {
1874     auto CountIt =
1875         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
1876     if (CountIt == Counts.end()) {
1877       Counts.emplace_back(Val, 1);
1878     } else {
1879       CountIt->second++;
1880     }
1881   };
1882 
1883   auto GetMostCommon = [](auto &Counts) {
1884     auto CommonIt =
1885         std::max_element(Counts.begin(), Counts.end(),
1886                          [](auto A, auto B) { return A.second < B.second; });
1887     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1888     return *CommonIt;
1889   };
1890 
1891   size_t NumConstantLanes = 0;
1892 
1893   // Count eligible lanes for each type of vector creation op
1894   for (size_t I = 0; I < Lanes; ++I) {
1895     const SDValue &Lane = Op->getOperand(I);
1896     if (Lane.isUndef())
1897       continue;
1898 
1899     AddCount(SplatValueCounts, Lane);
1900 
1901     if (IsConstant(Lane))
1902       NumConstantLanes++;
1903     if (auto ShuffleSrc = GetShuffleSrc(Lane))
1904       AddCount(ShuffleCounts, ShuffleSrc);
1905     if (CanSwizzle) {
1906       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1907       if (SwizzleSrcs.first)
1908         AddCount(SwizzleCounts, SwizzleSrcs);
1909     }
1910   }
1911 
1912   SDValue SplatValue;
1913   size_t NumSplatLanes;
1914   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1915 
1916   SDValue SwizzleSrc;
1917   SDValue SwizzleIndices;
1918   size_t NumSwizzleLanes = 0;
1919   if (SwizzleCounts.size())
1920     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1921                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1922 
1923   // Shuffles can draw from up to two vectors, so find the two most common
1924   // sources.
1925   SDValue ShuffleSrc1, ShuffleSrc2;
1926   size_t NumShuffleLanes = 0;
1927   if (ShuffleCounts.size()) {
1928     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
1929     ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(),
1930                                        ShuffleCounts.end(),
1931                                        [&](const auto &Pair) {
1932                                          return Pair.first == ShuffleSrc1;
1933                                        }),
1934                         ShuffleCounts.end());
1935   }
1936   if (ShuffleCounts.size()) {
1937     size_t AdditionalShuffleLanes;
1938     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
1939         GetMostCommon(ShuffleCounts);
1940     NumShuffleLanes += AdditionalShuffleLanes;
1941   }
1942 
1943   // Predicate returning true if the lane is properly initialized by the
1944   // original instruction
1945   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1946   SDValue Result;
1947   // Prefer swizzles over shuffles over vector consts over splats
1948   if (NumSwizzleLanes >= NumShuffleLanes &&
1949       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
1950     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1951                          SwizzleIndices);
1952     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1953     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1954       return Swizzled == GetSwizzleSrcs(I, Lane);
1955     };
1956   } else if (NumShuffleLanes >= NumConstantLanes &&
1957              NumShuffleLanes >= NumSplatLanes) {
1958     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
1959     size_t DestLaneCount = VecT.getVectorNumElements();
1960     size_t Scale1 = 1;
1961     size_t Scale2 = 1;
1962     SDValue Src1 = ShuffleSrc1;
1963     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
1964     if (Src1.getValueType() != VecT) {
1965       size_t LaneSize =
1966           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1967       assert(LaneSize > DestLaneSize);
1968       Scale1 = LaneSize / DestLaneSize;
1969       Src1 = DAG.getBitcast(VecT, Src1);
1970     }
1971     if (Src2.getValueType() != VecT) {
1972       size_t LaneSize =
1973           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1974       assert(LaneSize > DestLaneSize);
1975       Scale2 = LaneSize / DestLaneSize;
1976       Src2 = DAG.getBitcast(VecT, Src2);
1977     }
1978 
1979     int Mask[16];
1980     assert(DestLaneCount <= 16);
1981     for (size_t I = 0; I < DestLaneCount; ++I) {
1982       const SDValue &Lane = Op->getOperand(I);
1983       SDValue Src = GetShuffleSrc(Lane);
1984       if (Src == ShuffleSrc1) {
1985         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
1986       } else if (Src && Src == ShuffleSrc2) {
1987         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
1988       } else {
1989         Mask[I] = -1;
1990       }
1991     }
1992     ArrayRef<int> MaskRef(Mask, DestLaneCount);
1993     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
1994     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
1995       auto Src = GetShuffleSrc(Lane);
1996       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
1997     };
1998   } else if (NumConstantLanes >= NumSplatLanes) {
1999     SmallVector<SDValue, 16> ConstLanes;
2000     for (const SDValue &Lane : Op->op_values()) {
2001       if (IsConstant(Lane)) {
2002         ConstLanes.push_back(Lane);
2003       } else if (LaneT.isFloatingPoint()) {
2004         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2005       } else {
2006         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2007       }
2008     }
2009     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2010     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2011       return IsConstant(Lane);
2012     };
2013   } else {
2014     // Use a splat, but possibly a load_splat
2015     LoadSDNode *SplattedLoad;
2016     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
2017         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
2018       Result = DAG.getMemIntrinsicNode(
2019           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
2020           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
2021            SplattedLoad->getOffset()},
2022           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
2023     } else {
2024       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2025     }
2026     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2027       return Lane == SplatValue;
2028     };
2029   }
2030 
2031   assert(Result);
2032   assert(IsLaneConstructed);
2033 
2034   // Add replace_lane instructions for any unhandled values
2035   for (size_t I = 0; I < Lanes; ++I) {
2036     const SDValue &Lane = Op->getOperand(I);
2037     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2038       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2039                            DAG.getConstant(I, DL, MVT::i32));
2040   }
2041 
2042   return Result;
2043 }
2044 
2045 SDValue
2046 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2047                                                SelectionDAG &DAG) const {
2048   SDLoc DL(Op);
2049   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2050   MVT VecType = Op.getOperand(0).getSimpleValueType();
2051   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2052   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2053 
2054   // Space for two vector args and sixteen mask indices
2055   SDValue Ops[18];
2056   size_t OpIdx = 0;
2057   Ops[OpIdx++] = Op.getOperand(0);
2058   Ops[OpIdx++] = Op.getOperand(1);
2059 
2060   // Expand mask indices to byte indices and materialize them as operands
2061   for (int M : Mask) {
2062     for (size_t J = 0; J < LaneBytes; ++J) {
2063       // Lower undefs (represented by -1 in mask) to zero
2064       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
2065       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2066     }
2067   }
2068 
2069   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2070 }
2071 
2072 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2073                                               SelectionDAG &DAG) const {
2074   SDLoc DL(Op);
2075   // The legalizer does not know how to expand the unsupported comparison modes
2076   // of i64x2 vectors, so we manually unroll them here.
2077   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2078   SmallVector<SDValue, 2> LHS, RHS;
2079   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2080   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2081   const SDValue &CC = Op->getOperand(2);
2082   auto MakeLane = [&](unsigned I) {
2083     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2084                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2085                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2086   };
2087   return DAG.getBuildVector(Op->getValueType(0), DL,
2088                             {MakeLane(0), MakeLane(1)});
2089 }
2090 
2091 SDValue
2092 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2093                                                     SelectionDAG &DAG) const {
2094   // Allow constant lane indices, expand variable lane indices
2095   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2096   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
2097     return Op;
2098   else
2099     // Perform default expansion
2100     return SDValue();
2101 }
2102 
2103 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2104   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2105   // 32-bit and 64-bit unrolled shifts will have proper semantics
2106   if (LaneT.bitsGE(MVT::i32))
2107     return DAG.UnrollVectorOp(Op.getNode());
2108   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2109   SDLoc DL(Op);
2110   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2111   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2112   unsigned ShiftOpcode = Op.getOpcode();
2113   SmallVector<SDValue, 16> ShiftedElements;
2114   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2115   SmallVector<SDValue, 16> ShiftElements;
2116   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2117   SmallVector<SDValue, 16> UnrolledOps;
2118   for (size_t i = 0; i < NumLanes; ++i) {
2119     SDValue MaskedShiftValue =
2120         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2121     SDValue ShiftedValue = ShiftedElements[i];
2122     if (ShiftOpcode == ISD::SRA)
2123       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2124                                  ShiftedValue, DAG.getValueType(LaneT));
2125     UnrolledOps.push_back(
2126         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2127   }
2128   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2129 }
2130 
2131 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2132                                               SelectionDAG &DAG) const {
2133   SDLoc DL(Op);
2134 
2135   // Only manually lower vector shifts
2136   assert(Op.getSimpleValueType().isVector());
2137 
2138   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2139   if (!ShiftVal)
2140     return unrollVectorShift(Op, DAG);
2141 
2142   // Use anyext because none of the high bits can affect the shift
2143   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2144 
2145   unsigned Opcode;
2146   switch (Op.getOpcode()) {
2147   case ISD::SHL:
2148     Opcode = WebAssemblyISD::VEC_SHL;
2149     break;
2150   case ISD::SRA:
2151     Opcode = WebAssemblyISD::VEC_SHR_S;
2152     break;
2153   case ISD::SRL:
2154     Opcode = WebAssemblyISD::VEC_SHR_U;
2155     break;
2156   default:
2157     llvm_unreachable("unexpected opcode");
2158   }
2159 
2160   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2161 }
2162 
2163 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2164                                                       SelectionDAG &DAG) const {
2165   SDLoc DL(Op);
2166   EVT ResT = Op.getValueType();
2167   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2168 
2169   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2170       (SatVT == MVT::i32 || SatVT == MVT::i64))
2171     return Op;
2172 
2173   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2174     return Op;
2175 
2176   return SDValue();
2177 }
2178 
2179 //===----------------------------------------------------------------------===//
2180 //   Custom DAG combine hooks
2181 //===----------------------------------------------------------------------===//
2182 static SDValue
2183 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2184   auto &DAG = DCI.DAG;
2185   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2186 
2187   // Hoist vector bitcasts that don't change the number of lanes out of unary
2188   // shuffles, where they are less likely to get in the way of other combines.
2189   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2190   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2191   SDValue Bitcast = N->getOperand(0);
2192   if (Bitcast.getOpcode() != ISD::BITCAST)
2193     return SDValue();
2194   if (!N->getOperand(1).isUndef())
2195     return SDValue();
2196   SDValue CastOp = Bitcast.getOperand(0);
2197   MVT SrcType = CastOp.getSimpleValueType();
2198   MVT DstType = Bitcast.getSimpleValueType();
2199   if (!SrcType.is128BitVector() ||
2200       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2201     return SDValue();
2202   SDValue NewShuffle = DAG.getVectorShuffle(
2203       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2204   return DAG.getBitcast(DstType, NewShuffle);
2205 }
2206 
2207 static SDValue
2208 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2209   auto &DAG = DCI.DAG;
2210   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2211          N->getOpcode() == ISD::ZERO_EXTEND);
2212 
2213   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2214   // possible before the extract_subvector can be expanded.
2215   auto Extract = N->getOperand(0);
2216   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2217     return SDValue();
2218   auto Source = Extract.getOperand(0);
2219   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2220   if (IndexNode == nullptr)
2221     return SDValue();
2222   auto Index = IndexNode->getZExtValue();
2223 
2224   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2225   // extracted subvector is the low or high half of its source.
2226   EVT ResVT = N->getValueType(0);
2227   if (ResVT == MVT::v8i16) {
2228     if (Extract.getValueType() != MVT::v8i8 ||
2229         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2230       return SDValue();
2231   } else if (ResVT == MVT::v4i32) {
2232     if (Extract.getValueType() != MVT::v4i16 ||
2233         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2234       return SDValue();
2235   } else if (ResVT == MVT::v2i64) {
2236     if (Extract.getValueType() != MVT::v2i32 ||
2237         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2238       return SDValue();
2239   } else {
2240     return SDValue();
2241   }
2242 
2243   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2244   bool IsLow = Index == 0;
2245 
2246   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2247                                 : WebAssemblyISD::EXTEND_HIGH_S)
2248                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2249                                 : WebAssemblyISD::EXTEND_HIGH_U);
2250 
2251   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2252 }
2253 
2254 static SDValue
2255 performVectorConvertLowCombine(SDNode *N,
2256                                TargetLowering::DAGCombinerInfo &DCI) {
2257   auto &DAG = DCI.DAG;
2258 
2259   EVT ResVT = N->getValueType(0);
2260   if (ResVT != MVT::v2f64)
2261     return SDValue();
2262 
2263   auto GetWasmConversionOp = [](unsigned Op) {
2264     switch (Op) {
2265     case ISD::SINT_TO_FP:
2266       return WebAssemblyISD::CONVERT_LOW_S;
2267     case ISD::UINT_TO_FP:
2268       return WebAssemblyISD::CONVERT_LOW_U;
2269     case ISD::FP_EXTEND:
2270       return WebAssemblyISD::PROMOTE_LOW;
2271     }
2272     llvm_unreachable("unexpected op");
2273   };
2274 
2275   if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
2276     // Combine this:
2277     //
2278     //   (v2f64 (extract_subvector
2279     //     (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0))
2280     //
2281     // into (f64x2.convert_low_i32x4_{s,u} $x).
2282     //
2283     // Or this:
2284     //
2285     //  (v2f64 (extract_subvector
2286     //    (v4f64 (fp_extend (v4f32 $x))), 0))
2287     //
2288     // into (f64x2.promote_low_f32x4 $x).
2289     auto Conversion = N->getOperand(0);
2290     auto ConversionOp = Conversion.getOpcode();
2291     MVT ExpectedSourceType;
2292     switch (ConversionOp) {
2293     case ISD::SINT_TO_FP:
2294     case ISD::UINT_TO_FP:
2295       ExpectedSourceType = MVT::v4i32;
2296       break;
2297     case ISD::FP_EXTEND:
2298       ExpectedSourceType = MVT::v4f32;
2299       break;
2300     default:
2301       return SDValue();
2302     }
2303 
2304     if (Conversion.getValueType() != MVT::v4f64)
2305       return SDValue();
2306 
2307     auto Source = Conversion.getOperand(0);
2308     if (Source.getValueType() != ExpectedSourceType)
2309       return SDValue();
2310 
2311     auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
2312     if (IndexNode == nullptr || IndexNode->getZExtValue() != 0)
2313       return SDValue();
2314 
2315     auto Op = GetWasmConversionOp(ConversionOp);
2316     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2317   }
2318 
2319   // Combine this:
2320   //
2321   //   (v2f64 ({s,u}int_to_fp
2322   //     (v2i32 (extract_subvector (v4i32 $x), 0))))
2323   //
2324   // into (f64x2.convert_low_i32x4_{s,u} $x).
2325   //
2326   // Or this:
2327   //
2328   //   (v2f64 (fp_extend
2329   //     (v2f32 (extract_subvector (v4f32 $x), 0))))
2330   //
2331   // into (f64x2.promote_low_f32x4 $x).
2332   auto ConversionOp = N->getOpcode();
2333   MVT ExpectedExtractType;
2334   MVT ExpectedSourceType;
2335   switch (ConversionOp) {
2336   case ISD::SINT_TO_FP:
2337   case ISD::UINT_TO_FP:
2338     ExpectedExtractType = MVT::v2i32;
2339     ExpectedSourceType = MVT::v4i32;
2340     break;
2341   case ISD::FP_EXTEND:
2342     ExpectedExtractType = MVT::v2f32;
2343     ExpectedSourceType = MVT::v4f32;
2344     break;
2345   default:
2346     llvm_unreachable("unexpected opcode");
2347   }
2348 
2349   auto Extract = N->getOperand(0);
2350   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2351     return SDValue();
2352 
2353   if (Extract.getValueType() != ExpectedExtractType)
2354     return SDValue();
2355 
2356   auto Source = Extract.getOperand(0);
2357   if (Source.getValueType() != ExpectedSourceType)
2358     return SDValue();
2359 
2360   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2361   if (IndexNode == nullptr || IndexNode->getZExtValue() != 0)
2362     return SDValue();
2363 
2364   unsigned Op = GetWasmConversionOp(ConversionOp);
2365   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2366 }
2367 
2368 static SDValue
2369 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2370   auto &DAG = DCI.DAG;
2371 
2372   auto GetWasmConversionOp = [](unsigned Op) {
2373     switch (Op) {
2374     case ISD::FP_TO_SINT_SAT:
2375       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2376     case ISD::FP_TO_UINT_SAT:
2377       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2378     case ISD::FP_ROUND:
2379       return WebAssemblyISD::DEMOTE_ZERO;
2380     }
2381     llvm_unreachable("unexpected op");
2382   };
2383 
2384   auto IsZeroSplat = [](SDValue SplatVal) {
2385     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2386     APInt SplatValue, SplatUndef;
2387     unsigned SplatBitSize;
2388     bool HasAnyUndefs;
2389     return Splat &&
2390            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2391                                   HasAnyUndefs) &&
2392            SplatValue == 0;
2393   };
2394 
2395   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2396     // Combine this:
2397     //
2398     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2399     //
2400     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2401     //
2402     // Or this:
2403     //
2404     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2405     //
2406     // into (f32x4.demote_zero_f64x2 $x).
2407     EVT ResVT;
2408     EVT ExpectedConversionType;
2409     auto Conversion = N->getOperand(0);
2410     auto ConversionOp = Conversion.getOpcode();
2411     switch (ConversionOp) {
2412     case ISD::FP_TO_SINT_SAT:
2413     case ISD::FP_TO_UINT_SAT:
2414       ResVT = MVT::v4i32;
2415       ExpectedConversionType = MVT::v2i32;
2416       break;
2417     case ISD::FP_ROUND:
2418       ResVT = MVT::v4f32;
2419       ExpectedConversionType = MVT::v2f32;
2420       break;
2421     default:
2422       return SDValue();
2423     }
2424 
2425     if (N->getValueType(0) != ResVT)
2426       return SDValue();
2427 
2428     if (Conversion.getValueType() != ExpectedConversionType)
2429       return SDValue();
2430 
2431     auto Source = Conversion.getOperand(0);
2432     if (Source.getValueType() != MVT::v2f64)
2433       return SDValue();
2434 
2435     if (!IsZeroSplat(N->getOperand(1)) ||
2436         N->getOperand(1).getValueType() != ExpectedConversionType)
2437       return SDValue();
2438 
2439     unsigned Op = GetWasmConversionOp(ConversionOp);
2440     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2441   }
2442 
2443   // Combine this:
2444   //
2445   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2446   //
2447   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2448   //
2449   // Or this:
2450   //
2451   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2452   //
2453   // into (f32x4.demote_zero_f64x2 $x).
2454   EVT ResVT;
2455   auto ConversionOp = N->getOpcode();
2456   switch (ConversionOp) {
2457   case ISD::FP_TO_SINT_SAT:
2458   case ISD::FP_TO_UINT_SAT:
2459     ResVT = MVT::v4i32;
2460     break;
2461   case ISD::FP_ROUND:
2462     ResVT = MVT::v4f32;
2463     break;
2464   default:
2465     llvm_unreachable("unexpected op");
2466   }
2467 
2468   if (N->getValueType(0) != ResVT)
2469     return SDValue();
2470 
2471   auto Concat = N->getOperand(0);
2472   if (Concat.getValueType() != MVT::v4f64)
2473     return SDValue();
2474 
2475   auto Source = Concat.getOperand(0);
2476   if (Source.getValueType() != MVT::v2f64)
2477     return SDValue();
2478 
2479   if (!IsZeroSplat(Concat.getOperand(1)) ||
2480       Concat.getOperand(1).getValueType() != MVT::v2f64)
2481     return SDValue();
2482 
2483   unsigned Op = GetWasmConversionOp(ConversionOp);
2484   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2485 }
2486 
2487 SDValue
2488 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2489                                              DAGCombinerInfo &DCI) const {
2490   switch (N->getOpcode()) {
2491   default:
2492     return SDValue();
2493   case ISD::VECTOR_SHUFFLE:
2494     return performVECTOR_SHUFFLECombine(N, DCI);
2495   case ISD::SIGN_EXTEND:
2496   case ISD::ZERO_EXTEND:
2497     return performVectorExtendCombine(N, DCI);
2498   case ISD::SINT_TO_FP:
2499   case ISD::UINT_TO_FP:
2500   case ISD::FP_EXTEND:
2501   case ISD::EXTRACT_SUBVECTOR:
2502     return performVectorConvertLowCombine(N, DCI);
2503   case ISD::FP_TO_SINT_SAT:
2504   case ISD::FP_TO_UINT_SAT:
2505   case ISD::FP_ROUND:
2506   case ISD::CONCAT_VECTORS:
2507     return performVectorTruncZeroCombine(N, DCI);
2508   }
2509 }
2510