1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 66 } 67 // Compute derived properties from the register classes. 68 computeRegisterProperties(Subtarget->getRegisterInfo()); 69 70 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 71 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 72 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 73 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 74 setOperationAction(ISD::BRIND, MVT::Other, Custom); 75 76 // Take the default expansion for va_arg, va_copy, and va_end. There is no 77 // default action for va_start, so we do that custom. 78 setOperationAction(ISD::VASTART, MVT::Other, Custom); 79 setOperationAction(ISD::VAARG, MVT::Other, Expand); 80 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 81 setOperationAction(ISD::VAEND, MVT::Other, Expand); 82 83 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 84 // Don't expand the floating-point types to constant pools. 85 setOperationAction(ISD::ConstantFP, T, Legal); 86 // Expand floating-point comparisons. 87 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 88 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 89 setCondCodeAction(CC, T, Expand); 90 // Expand floating-point library function operators. 91 for (auto Op : 92 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 93 setOperationAction(Op, T, Expand); 94 // Note supported floating-point library function operators that otherwise 95 // default to expand. 96 for (auto Op : 97 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 98 setOperationAction(Op, T, Legal); 99 // Support minimum and maximum, which otherwise default to expand. 100 setOperationAction(ISD::FMINIMUM, T, Legal); 101 setOperationAction(ISD::FMAXIMUM, T, Legal); 102 // WebAssembly currently has no builtin f16 support. 103 setOperationAction(ISD::FP16_TO_FP, T, Expand); 104 setOperationAction(ISD::FP_TO_FP16, T, Expand); 105 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 106 setTruncStoreAction(T, MVT::f16, Expand); 107 } 108 109 // Expand unavailable integer operations. 110 for (auto Op : 111 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 112 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 113 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 114 for (auto T : {MVT::i32, MVT::i64}) 115 setOperationAction(Op, T, Expand); 116 if (Subtarget->hasSIMD128()) 117 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 118 setOperationAction(Op, T, Expand); 119 } 120 121 // SIMD-specific configuration 122 if (Subtarget->hasSIMD128()) { 123 // Hoist bitcasts out of shuffles 124 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 125 126 // Combine extends of extract_subvectors into widening ops 127 setTargetDAGCombine(ISD::SIGN_EXTEND); 128 setTargetDAGCombine(ISD::ZERO_EXTEND); 129 130 // Support saturating add for i8x16 and i16x8 131 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 132 for (auto T : {MVT::v16i8, MVT::v8i16}) 133 setOperationAction(Op, T, Legal); 134 135 // Support integer abs 136 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 137 setOperationAction(ISD::ABS, T, Legal); 138 139 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 140 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 141 MVT::v2f64}) 142 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 143 144 // We have custom shuffle lowering to expose the shuffle mask 145 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 146 MVT::v2f64}) 147 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 148 149 // Custom lowering since wasm shifts must have a scalar shift amount 150 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 151 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 152 setOperationAction(Op, T, Custom); 153 154 // Custom lower lane accesses to expand out variable indices 155 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 156 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 157 MVT::v2f64}) 158 setOperationAction(Op, T, Custom); 159 160 // There is no i8x16.mul instruction 161 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 162 163 // There is no vector conditional select instruction 164 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 165 MVT::v2f64}) 166 setOperationAction(ISD::SELECT_CC, T, Expand); 167 168 // Expand integer operations supported for scalars but not SIMD 169 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 170 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 171 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 172 setOperationAction(Op, T, Expand); 173 174 // But we do have integer min and max operations 175 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 176 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 177 setOperationAction(Op, T, Legal); 178 179 // Expand float operations supported for scalars but not SIMD 180 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 181 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 182 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 183 for (auto T : {MVT::v4f32, MVT::v2f64}) 184 setOperationAction(Op, T, Expand); 185 186 // Expand operations not supported for i64x2 vectors 187 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 188 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 189 190 // 64x2 conversions are not in the spec 191 for (auto Op : 192 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 193 for (auto T : {MVT::v2i64, MVT::v2f64}) 194 setOperationAction(Op, T, Expand); 195 } 196 197 // As a special case, these operators use the type to mean the type to 198 // sign-extend from. 199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 200 if (!Subtarget->hasSignExt()) { 201 // Sign extends are legal only when extending a vector extract 202 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 203 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 204 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 205 } 206 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 207 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 208 209 // Dynamic stack allocation: use the default expansion. 210 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 211 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 212 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 213 214 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 215 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 216 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 217 218 // Expand these forms; we pattern-match the forms that we can handle in isel. 219 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 220 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 221 setOperationAction(Op, T, Expand); 222 223 // We have custom switch handling. 224 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 225 226 // WebAssembly doesn't have: 227 // - Floating-point extending loads. 228 // - Floating-point truncating stores. 229 // - i1 extending loads. 230 // - truncating SIMD stores and most extending loads 231 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 232 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 233 for (auto T : MVT::integer_valuetypes()) 234 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 235 setLoadExtAction(Ext, T, MVT::i1, Promote); 236 if (Subtarget->hasSIMD128()) { 237 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 238 MVT::v2f64}) { 239 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 240 if (MVT(T) != MemT) { 241 setTruncStoreAction(T, MemT, Expand); 242 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 243 setLoadExtAction(Ext, T, MemT, Expand); 244 } 245 } 246 } 247 // But some vector extending loads are legal 248 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 249 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 250 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 251 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 252 } 253 // And some truncating stores are legal as well 254 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 255 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 256 } 257 258 // Don't do anything clever with build_pairs 259 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 260 261 // Trap lowers to wasm unreachable 262 setOperationAction(ISD::TRAP, MVT::Other, Legal); 263 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 264 265 // Exception handling intrinsics 266 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 267 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 268 269 setMaxAtomicSizeInBitsSupported(64); 270 271 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 272 // consistent with the f64 and f128 names. 273 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 274 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 275 276 // Define the emscripten name for return address helper. 277 // TODO: when implementing other WASM backends, make this generic or only do 278 // this on emscripten depending on what they end up doing. 279 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 280 281 // Always convert switches to br_tables unless there is only one case, which 282 // is equivalent to a simple branch. This reduces code size for wasm, and we 283 // defer possible jump table optimizations to the VM. 284 setMinimumJumpTableEntries(2); 285 } 286 287 TargetLowering::AtomicExpansionKind 288 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 289 // We have wasm instructions for these 290 switch (AI->getOperation()) { 291 case AtomicRMWInst::Add: 292 case AtomicRMWInst::Sub: 293 case AtomicRMWInst::And: 294 case AtomicRMWInst::Or: 295 case AtomicRMWInst::Xor: 296 case AtomicRMWInst::Xchg: 297 return AtomicExpansionKind::None; 298 default: 299 break; 300 } 301 return AtomicExpansionKind::CmpXChg; 302 } 303 304 FastISel *WebAssemblyTargetLowering::createFastISel( 305 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 306 return WebAssembly::createFastISel(FuncInfo, LibInfo); 307 } 308 309 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 310 EVT VT) const { 311 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 312 if (BitWidth > 1 && BitWidth < 8) 313 BitWidth = 8; 314 315 if (BitWidth > 64) { 316 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 317 // the count to be an i32. 318 BitWidth = 32; 319 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 320 "32-bit shift counts ought to be enough for anyone"); 321 } 322 323 MVT Result = MVT::getIntegerVT(BitWidth); 324 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 325 "Unable to represent scalar shift amount type"); 326 return Result; 327 } 328 329 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 330 // undefined result on invalid/overflow, to the WebAssembly opcode, which 331 // traps on invalid/overflow. 332 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 333 MachineBasicBlock *BB, 334 const TargetInstrInfo &TII, 335 bool IsUnsigned, bool Int64, 336 bool Float64, unsigned LoweredOpcode) { 337 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 338 339 Register OutReg = MI.getOperand(0).getReg(); 340 Register InReg = MI.getOperand(1).getReg(); 341 342 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 343 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 344 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 345 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 346 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 347 unsigned Eqz = WebAssembly::EQZ_I32; 348 unsigned And = WebAssembly::AND_I32; 349 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 350 int64_t Substitute = IsUnsigned ? 0 : Limit; 351 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 352 auto &Context = BB->getParent()->getFunction().getContext(); 353 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 354 355 const BasicBlock *LLVMBB = BB->getBasicBlock(); 356 MachineFunction *F = BB->getParent(); 357 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 358 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 359 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 360 361 MachineFunction::iterator It = ++BB->getIterator(); 362 F->insert(It, FalseMBB); 363 F->insert(It, TrueMBB); 364 F->insert(It, DoneMBB); 365 366 // Transfer the remainder of BB and its successor edges to DoneMBB. 367 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 368 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 369 370 BB->addSuccessor(TrueMBB); 371 BB->addSuccessor(FalseMBB); 372 TrueMBB->addSuccessor(DoneMBB); 373 FalseMBB->addSuccessor(DoneMBB); 374 375 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 376 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 377 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 378 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 379 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 380 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 381 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 382 383 MI.eraseFromParent(); 384 // For signed numbers, we can do a single comparison to determine whether 385 // fabs(x) is within range. 386 if (IsUnsigned) { 387 Tmp0 = InReg; 388 } else { 389 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 390 } 391 BuildMI(BB, DL, TII.get(FConst), Tmp1) 392 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 393 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 394 395 // For unsigned numbers, we have to do a separate comparison with zero. 396 if (IsUnsigned) { 397 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 398 Register SecondCmpReg = 399 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 400 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 401 BuildMI(BB, DL, TII.get(FConst), Tmp1) 402 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 403 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 404 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 405 CmpReg = AndReg; 406 } 407 408 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 409 410 // Create the CFG diamond to select between doing the conversion or using 411 // the substitute value. 412 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 413 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 414 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 415 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 416 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 417 .addReg(FalseReg) 418 .addMBB(FalseMBB) 419 .addReg(TrueReg) 420 .addMBB(TrueMBB); 421 422 return DoneMBB; 423 } 424 425 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 426 DebugLoc DL, MachineBasicBlock *BB, 427 const TargetInstrInfo &TII) { 428 MachineInstr &CallParams = *CallResults.getPrevNode(); 429 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 430 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 431 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 432 433 bool IsIndirect = CallParams.getOperand(0).isReg(); 434 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 435 436 unsigned CallOp; 437 if (IsIndirect && IsRetCall) { 438 CallOp = WebAssembly::RET_CALL_INDIRECT; 439 } else if (IsIndirect) { 440 CallOp = WebAssembly::CALL_INDIRECT; 441 } else if (IsRetCall) { 442 CallOp = WebAssembly::RET_CALL; 443 } else { 444 CallOp = WebAssembly::CALL; 445 } 446 447 MachineFunction &MF = *BB->getParent(); 448 const MCInstrDesc &MCID = TII.get(CallOp); 449 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 450 451 // See if we must truncate the function pointer. 452 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 453 // as 64-bit for uniformity with other pointer types. 454 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 455 Register Reg32 = 456 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 457 auto &FnPtr = CallParams.getOperand(0); 458 BuildMI(*BB, CallResults.getIterator(), DL, 459 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 460 .addReg(FnPtr.getReg()); 461 FnPtr.setReg(Reg32); 462 } 463 464 // Move the function pointer to the end of the arguments for indirect calls 465 if (IsIndirect) { 466 auto FnPtr = CallParams.getOperand(0); 467 CallParams.RemoveOperand(0); 468 CallParams.addOperand(FnPtr); 469 } 470 471 for (auto Def : CallResults.defs()) 472 MIB.add(Def); 473 474 // Add placeholders for the type index and immediate flags 475 if (IsIndirect) { 476 MIB.addImm(0); 477 MIB.addImm(0); 478 } 479 480 for (auto Use : CallParams.uses()) 481 MIB.add(Use); 482 483 BB->insert(CallResults.getIterator(), MIB); 484 CallParams.eraseFromParent(); 485 CallResults.eraseFromParent(); 486 487 return BB; 488 } 489 490 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 491 MachineInstr &MI, MachineBasicBlock *BB) const { 492 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 493 DebugLoc DL = MI.getDebugLoc(); 494 495 switch (MI.getOpcode()) { 496 default: 497 llvm_unreachable("Unexpected instr type to insert"); 498 case WebAssembly::FP_TO_SINT_I32_F32: 499 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 500 WebAssembly::I32_TRUNC_S_F32); 501 case WebAssembly::FP_TO_UINT_I32_F32: 502 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 503 WebAssembly::I32_TRUNC_U_F32); 504 case WebAssembly::FP_TO_SINT_I64_F32: 505 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 506 WebAssembly::I64_TRUNC_S_F32); 507 case WebAssembly::FP_TO_UINT_I64_F32: 508 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 509 WebAssembly::I64_TRUNC_U_F32); 510 case WebAssembly::FP_TO_SINT_I32_F64: 511 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 512 WebAssembly::I32_TRUNC_S_F64); 513 case WebAssembly::FP_TO_UINT_I32_F64: 514 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 515 WebAssembly::I32_TRUNC_U_F64); 516 case WebAssembly::FP_TO_SINT_I64_F64: 517 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 518 WebAssembly::I64_TRUNC_S_F64); 519 case WebAssembly::FP_TO_UINT_I64_F64: 520 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 521 WebAssembly::I64_TRUNC_U_F64); 522 case WebAssembly::CALL_RESULTS: 523 case WebAssembly::RET_CALL_RESULTS: 524 return LowerCallResults(MI, DL, BB, TII); 525 } 526 } 527 528 const char * 529 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 530 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 531 case WebAssemblyISD::FIRST_NUMBER: 532 case WebAssemblyISD::FIRST_MEM_OPCODE: 533 break; 534 #define HANDLE_NODETYPE(NODE) \ 535 case WebAssemblyISD::NODE: \ 536 return "WebAssemblyISD::" #NODE; 537 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 538 #include "WebAssemblyISD.def" 539 #undef HANDLE_MEM_NODETYPE 540 #undef HANDLE_NODETYPE 541 } 542 return nullptr; 543 } 544 545 std::pair<unsigned, const TargetRegisterClass *> 546 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 547 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 548 // First, see if this is a constraint that directly corresponds to a 549 // WebAssembly register class. 550 if (Constraint.size() == 1) { 551 switch (Constraint[0]) { 552 case 'r': 553 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 554 if (Subtarget->hasSIMD128() && VT.isVector()) { 555 if (VT.getSizeInBits() == 128) 556 return std::make_pair(0U, &WebAssembly::V128RegClass); 557 } 558 if (VT.isInteger() && !VT.isVector()) { 559 if (VT.getSizeInBits() <= 32) 560 return std::make_pair(0U, &WebAssembly::I32RegClass); 561 if (VT.getSizeInBits() <= 64) 562 return std::make_pair(0U, &WebAssembly::I64RegClass); 563 } 564 break; 565 default: 566 break; 567 } 568 } 569 570 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 571 } 572 573 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 574 // Assume ctz is a relatively cheap operation. 575 return true; 576 } 577 578 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 579 // Assume clz is a relatively cheap operation. 580 return true; 581 } 582 583 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 584 const AddrMode &AM, 585 Type *Ty, unsigned AS, 586 Instruction *I) const { 587 // WebAssembly offsets are added as unsigned without wrapping. The 588 // isLegalAddressingMode gives us no way to determine if wrapping could be 589 // happening, so we approximate this by accepting only non-negative offsets. 590 if (AM.BaseOffs < 0) 591 return false; 592 593 // WebAssembly has no scale register operands. 594 if (AM.Scale != 0) 595 return false; 596 597 // Everything else is legal. 598 return true; 599 } 600 601 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 602 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 603 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 604 // WebAssembly supports unaligned accesses, though it should be declared 605 // with the p2align attribute on loads and stores which do so, and there 606 // may be a performance impact. We tell LLVM they're "fast" because 607 // for the kinds of things that LLVM uses this for (merging adjacent stores 608 // of constants, etc.), WebAssembly implementations will either want the 609 // unaligned access or they'll split anyway. 610 if (Fast) 611 *Fast = true; 612 return true; 613 } 614 615 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 616 AttributeList Attr) const { 617 // The current thinking is that wasm engines will perform this optimization, 618 // so we can save on code size. 619 return true; 620 } 621 622 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 623 MVT ExtT = ExtVal.getSimpleValueType(); 624 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 625 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 626 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 627 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 628 } 629 630 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 631 LLVMContext &C, 632 EVT VT) const { 633 if (VT.isVector()) 634 return VT.changeVectorElementTypeToInteger(); 635 636 // So far, all branch instructions in Wasm take an I32 condition. 637 // The default TargetLowering::getSetCCResultType returns the pointer size, 638 // which would be useful to reduce instruction counts when testing 639 // against 64-bit pointers/values if at some point Wasm supports that. 640 return EVT::getIntegerVT(C, 32); 641 } 642 643 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 644 const CallInst &I, 645 MachineFunction &MF, 646 unsigned Intrinsic) const { 647 switch (Intrinsic) { 648 case Intrinsic::wasm_atomic_notify: 649 Info.opc = ISD::INTRINSIC_W_CHAIN; 650 Info.memVT = MVT::i32; 651 Info.ptrVal = I.getArgOperand(0); 652 Info.offset = 0; 653 Info.align = Align(4); 654 // atomic.notify instruction does not really load the memory specified with 655 // this argument, but MachineMemOperand should either be load or store, so 656 // we set this to a load. 657 // FIXME Volatile isn't really correct, but currently all LLVM atomic 658 // instructions are treated as volatiles in the backend, so we should be 659 // consistent. The same applies for wasm_atomic_wait intrinsics too. 660 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 661 return true; 662 case Intrinsic::wasm_atomic_wait_i32: 663 Info.opc = ISD::INTRINSIC_W_CHAIN; 664 Info.memVT = MVT::i32; 665 Info.ptrVal = I.getArgOperand(0); 666 Info.offset = 0; 667 Info.align = Align(4); 668 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 669 return true; 670 case Intrinsic::wasm_atomic_wait_i64: 671 Info.opc = ISD::INTRINSIC_W_CHAIN; 672 Info.memVT = MVT::i64; 673 Info.ptrVal = I.getArgOperand(0); 674 Info.offset = 0; 675 Info.align = Align(8); 676 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 677 return true; 678 default: 679 return false; 680 } 681 } 682 683 //===----------------------------------------------------------------------===// 684 // WebAssembly Lowering private implementation. 685 //===----------------------------------------------------------------------===// 686 687 //===----------------------------------------------------------------------===// 688 // Lowering Code 689 //===----------------------------------------------------------------------===// 690 691 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 692 MachineFunction &MF = DAG.getMachineFunction(); 693 DAG.getContext()->diagnose( 694 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 695 } 696 697 // Test whether the given calling convention is supported. 698 static bool callingConvSupported(CallingConv::ID CallConv) { 699 // We currently support the language-independent target-independent 700 // conventions. We don't yet have a way to annotate calls with properties like 701 // "cold", and we don't have any call-clobbered registers, so these are mostly 702 // all handled the same. 703 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 704 CallConv == CallingConv::Cold || 705 CallConv == CallingConv::PreserveMost || 706 CallConv == CallingConv::PreserveAll || 707 CallConv == CallingConv::CXX_FAST_TLS || 708 CallConv == CallingConv::WASM_EmscriptenInvoke || 709 CallConv == CallingConv::Swift; 710 } 711 712 SDValue 713 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 714 SmallVectorImpl<SDValue> &InVals) const { 715 SelectionDAG &DAG = CLI.DAG; 716 SDLoc DL = CLI.DL; 717 SDValue Chain = CLI.Chain; 718 SDValue Callee = CLI.Callee; 719 MachineFunction &MF = DAG.getMachineFunction(); 720 auto Layout = MF.getDataLayout(); 721 722 CallingConv::ID CallConv = CLI.CallConv; 723 if (!callingConvSupported(CallConv)) 724 fail(DL, DAG, 725 "WebAssembly doesn't support language-specific or target-specific " 726 "calling conventions yet"); 727 if (CLI.IsPatchPoint) 728 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 729 730 if (CLI.IsTailCall) { 731 auto NoTail = [&](const char *Msg) { 732 if (CLI.CB && CLI.CB->isMustTailCall()) 733 fail(DL, DAG, Msg); 734 CLI.IsTailCall = false; 735 }; 736 737 if (!Subtarget->hasTailCall()) 738 NoTail("WebAssembly 'tail-call' feature not enabled"); 739 740 // Varargs calls cannot be tail calls because the buffer is on the stack 741 if (CLI.IsVarArg) 742 NoTail("WebAssembly does not support varargs tail calls"); 743 744 // Do not tail call unless caller and callee return types match 745 const Function &F = MF.getFunction(); 746 const TargetMachine &TM = getTargetMachine(); 747 Type *RetTy = F.getReturnType(); 748 SmallVector<MVT, 4> CallerRetTys; 749 SmallVector<MVT, 4> CalleeRetTys; 750 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 751 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 752 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 753 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 754 CalleeRetTys.begin()); 755 if (!TypesMatch) 756 NoTail("WebAssembly tail call requires caller and callee return types to " 757 "match"); 758 759 // If pointers to local stack values are passed, we cannot tail call 760 if (CLI.CB) { 761 for (auto &Arg : CLI.CB->args()) { 762 Value *Val = Arg.get(); 763 // Trace the value back through pointer operations 764 while (true) { 765 Value *Src = Val->stripPointerCastsAndAliases(); 766 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 767 Src = GEP->getPointerOperand(); 768 if (Val == Src) 769 break; 770 Val = Src; 771 } 772 if (isa<AllocaInst>(Val)) { 773 NoTail( 774 "WebAssembly does not support tail calling with stack arguments"); 775 break; 776 } 777 } 778 } 779 } 780 781 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 782 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 783 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 784 785 // The generic code may have added an sret argument. If we're lowering an 786 // invoke function, the ABI requires that the function pointer be the first 787 // argument, so we may have to swap the arguments. 788 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 789 Outs[0].Flags.isSRet()) { 790 std::swap(Outs[0], Outs[1]); 791 std::swap(OutVals[0], OutVals[1]); 792 } 793 794 bool HasSwiftSelfArg = false; 795 bool HasSwiftErrorArg = false; 796 unsigned NumFixedArgs = 0; 797 for (unsigned I = 0; I < Outs.size(); ++I) { 798 const ISD::OutputArg &Out = Outs[I]; 799 SDValue &OutVal = OutVals[I]; 800 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 801 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 802 if (Out.Flags.isNest()) 803 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 804 if (Out.Flags.isInAlloca()) 805 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 806 if (Out.Flags.isInConsecutiveRegs()) 807 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 808 if (Out.Flags.isInConsecutiveRegsLast()) 809 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 810 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 811 auto &MFI = MF.getFrameInfo(); 812 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 813 Out.Flags.getNonZeroByValAlign(), 814 /*isSS=*/false); 815 SDValue SizeNode = 816 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 817 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 818 Chain = DAG.getMemcpy( 819 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 820 /*isVolatile*/ false, /*AlwaysInline=*/false, 821 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 822 OutVal = FINode; 823 } 824 // Count the number of fixed args *after* legalization. 825 NumFixedArgs += Out.IsFixed; 826 } 827 828 bool IsVarArg = CLI.IsVarArg; 829 auto PtrVT = getPointerTy(Layout); 830 831 // For swiftcc, emit additional swiftself and swifterror arguments 832 // if there aren't. These additional arguments are also added for callee 833 // signature They are necessary to match callee and caller signature for 834 // indirect call. 835 if (CallConv == CallingConv::Swift) { 836 if (!HasSwiftSelfArg) { 837 NumFixedArgs++; 838 ISD::OutputArg Arg; 839 Arg.Flags.setSwiftSelf(); 840 CLI.Outs.push_back(Arg); 841 SDValue ArgVal = DAG.getUNDEF(PtrVT); 842 CLI.OutVals.push_back(ArgVal); 843 } 844 if (!HasSwiftErrorArg) { 845 NumFixedArgs++; 846 ISD::OutputArg Arg; 847 Arg.Flags.setSwiftError(); 848 CLI.Outs.push_back(Arg); 849 SDValue ArgVal = DAG.getUNDEF(PtrVT); 850 CLI.OutVals.push_back(ArgVal); 851 } 852 } 853 854 // Analyze operands of the call, assigning locations to each operand. 855 SmallVector<CCValAssign, 16> ArgLocs; 856 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 857 858 if (IsVarArg) { 859 // Outgoing non-fixed arguments are placed in a buffer. First 860 // compute their offsets and the total amount of buffer space needed. 861 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 862 const ISD::OutputArg &Out = Outs[I]; 863 SDValue &Arg = OutVals[I]; 864 EVT VT = Arg.getValueType(); 865 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 866 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 867 Align Alignment = 868 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 869 unsigned Offset = 870 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 871 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 872 Offset, VT.getSimpleVT(), 873 CCValAssign::Full)); 874 } 875 } 876 877 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 878 879 SDValue FINode; 880 if (IsVarArg && NumBytes) { 881 // For non-fixed arguments, next emit stores to store the argument values 882 // to the stack buffer at the offsets computed above. 883 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 884 Layout.getStackAlignment(), 885 /*isSS=*/false); 886 unsigned ValNo = 0; 887 SmallVector<SDValue, 8> Chains; 888 for (SDValue Arg : 889 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 890 assert(ArgLocs[ValNo].getValNo() == ValNo && 891 "ArgLocs should remain in order and only hold varargs args"); 892 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 893 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 894 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 895 DAG.getConstant(Offset, DL, PtrVT)); 896 Chains.push_back( 897 DAG.getStore(Chain, DL, Arg, Add, 898 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 899 } 900 if (!Chains.empty()) 901 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 902 } else if (IsVarArg) { 903 FINode = DAG.getIntPtrConstant(0, DL); 904 } 905 906 if (Callee->getOpcode() == ISD::GlobalAddress) { 907 // If the callee is a GlobalAddress node (quite common, every direct call 908 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 909 // doesn't at MO_GOT which is not needed for direct calls. 910 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 911 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 912 getPointerTy(DAG.getDataLayout()), 913 GA->getOffset()); 914 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 915 getPointerTy(DAG.getDataLayout()), Callee); 916 } 917 918 // Compute the operands for the CALLn node. 919 SmallVector<SDValue, 16> Ops; 920 Ops.push_back(Chain); 921 Ops.push_back(Callee); 922 923 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 924 // isn't reliable. 925 Ops.append(OutVals.begin(), 926 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 927 // Add a pointer to the vararg buffer. 928 if (IsVarArg) 929 Ops.push_back(FINode); 930 931 SmallVector<EVT, 8> InTys; 932 for (const auto &In : Ins) { 933 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 934 assert(!In.Flags.isNest() && "nest is not valid for return values"); 935 if (In.Flags.isInAlloca()) 936 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 937 if (In.Flags.isInConsecutiveRegs()) 938 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 939 if (In.Flags.isInConsecutiveRegsLast()) 940 fail(DL, DAG, 941 "WebAssembly hasn't implemented cons regs last return values"); 942 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 943 // registers. 944 InTys.push_back(In.VT); 945 } 946 947 if (CLI.IsTailCall) { 948 // ret_calls do not return values to the current frame 949 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 950 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 951 } 952 953 InTys.push_back(MVT::Other); 954 SDVTList InTyList = DAG.getVTList(InTys); 955 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 956 957 for (size_t I = 0; I < Ins.size(); ++I) 958 InVals.push_back(Res.getValue(I)); 959 960 // Return the chain 961 return Res.getValue(Ins.size()); 962 } 963 964 bool WebAssemblyTargetLowering::CanLowerReturn( 965 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 966 const SmallVectorImpl<ISD::OutputArg> &Outs, 967 LLVMContext & /*Context*/) const { 968 // WebAssembly can only handle returning tuples with multivalue enabled 969 return Subtarget->hasMultivalue() || Outs.size() <= 1; 970 } 971 972 SDValue WebAssemblyTargetLowering::LowerReturn( 973 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 974 const SmallVectorImpl<ISD::OutputArg> &Outs, 975 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 976 SelectionDAG &DAG) const { 977 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 978 "MVP WebAssembly can only return up to one value"); 979 if (!callingConvSupported(CallConv)) 980 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 981 982 SmallVector<SDValue, 4> RetOps(1, Chain); 983 RetOps.append(OutVals.begin(), OutVals.end()); 984 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 985 986 // Record the number and types of the return values. 987 for (const ISD::OutputArg &Out : Outs) { 988 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 989 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 990 assert(Out.IsFixed && "non-fixed return value is not valid"); 991 if (Out.Flags.isInAlloca()) 992 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 993 if (Out.Flags.isInConsecutiveRegs()) 994 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 995 if (Out.Flags.isInConsecutiveRegsLast()) 996 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 997 } 998 999 return Chain; 1000 } 1001 1002 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1003 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1004 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1005 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1006 if (!callingConvSupported(CallConv)) 1007 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1008 1009 MachineFunction &MF = DAG.getMachineFunction(); 1010 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1011 1012 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1013 // of the incoming values before they're represented by virtual registers. 1014 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1015 1016 bool HasSwiftErrorArg = false; 1017 bool HasSwiftSelfArg = false; 1018 for (const ISD::InputArg &In : Ins) { 1019 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1020 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1021 if (In.Flags.isInAlloca()) 1022 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1023 if (In.Flags.isNest()) 1024 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1025 if (In.Flags.isInConsecutiveRegs()) 1026 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1027 if (In.Flags.isInConsecutiveRegsLast()) 1028 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1029 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1030 // registers. 1031 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1032 DAG.getTargetConstant(InVals.size(), 1033 DL, MVT::i32)) 1034 : DAG.getUNDEF(In.VT)); 1035 1036 // Record the number and types of arguments. 1037 MFI->addParam(In.VT); 1038 } 1039 1040 // For swiftcc, emit additional swiftself and swifterror arguments 1041 // if there aren't. These additional arguments are also added for callee 1042 // signature They are necessary to match callee and caller signature for 1043 // indirect call. 1044 auto PtrVT = getPointerTy(MF.getDataLayout()); 1045 if (CallConv == CallingConv::Swift) { 1046 if (!HasSwiftSelfArg) { 1047 MFI->addParam(PtrVT); 1048 } 1049 if (!HasSwiftErrorArg) { 1050 MFI->addParam(PtrVT); 1051 } 1052 } 1053 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1054 // the buffer is passed as an argument. 1055 if (IsVarArg) { 1056 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1057 Register VarargVreg = 1058 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1059 MFI->setVarargBufferVreg(VarargVreg); 1060 Chain = DAG.getCopyToReg( 1061 Chain, DL, VarargVreg, 1062 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1063 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1064 MFI->addParam(PtrVT); 1065 } 1066 1067 // Record the number and types of arguments and results. 1068 SmallVector<MVT, 4> Params; 1069 SmallVector<MVT, 4> Results; 1070 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1071 MF.getFunction(), DAG.getTarget(), Params, Results); 1072 for (MVT VT : Results) 1073 MFI->addResult(VT); 1074 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1075 // the param logic here with ComputeSignatureVTs 1076 assert(MFI->getParams().size() == Params.size() && 1077 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1078 Params.begin())); 1079 1080 return Chain; 1081 } 1082 1083 void WebAssemblyTargetLowering::ReplaceNodeResults( 1084 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1085 switch (N->getOpcode()) { 1086 case ISD::SIGN_EXTEND_INREG: 1087 // Do not add any results, signifying that N should not be custom lowered 1088 // after all. This happens because simd128 turns on custom lowering for 1089 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1090 // illegal type. 1091 break; 1092 default: 1093 llvm_unreachable( 1094 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1095 } 1096 } 1097 1098 //===----------------------------------------------------------------------===// 1099 // Custom lowering hooks. 1100 //===----------------------------------------------------------------------===// 1101 1102 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1103 SelectionDAG &DAG) const { 1104 SDLoc DL(Op); 1105 switch (Op.getOpcode()) { 1106 default: 1107 llvm_unreachable("unimplemented operation lowering"); 1108 return SDValue(); 1109 case ISD::FrameIndex: 1110 return LowerFrameIndex(Op, DAG); 1111 case ISD::GlobalAddress: 1112 return LowerGlobalAddress(Op, DAG); 1113 case ISD::ExternalSymbol: 1114 return LowerExternalSymbol(Op, DAG); 1115 case ISD::JumpTable: 1116 return LowerJumpTable(Op, DAG); 1117 case ISD::BR_JT: 1118 return LowerBR_JT(Op, DAG); 1119 case ISD::VASTART: 1120 return LowerVASTART(Op, DAG); 1121 case ISD::BlockAddress: 1122 case ISD::BRIND: 1123 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1124 return SDValue(); 1125 case ISD::RETURNADDR: 1126 return LowerRETURNADDR(Op, DAG); 1127 case ISD::FRAMEADDR: 1128 return LowerFRAMEADDR(Op, DAG); 1129 case ISD::CopyToReg: 1130 return LowerCopyToReg(Op, DAG); 1131 case ISD::EXTRACT_VECTOR_ELT: 1132 case ISD::INSERT_VECTOR_ELT: 1133 return LowerAccessVectorElement(Op, DAG); 1134 case ISD::INTRINSIC_VOID: 1135 case ISD::INTRINSIC_WO_CHAIN: 1136 case ISD::INTRINSIC_W_CHAIN: 1137 return LowerIntrinsic(Op, DAG); 1138 case ISD::SIGN_EXTEND_INREG: 1139 return LowerSIGN_EXTEND_INREG(Op, DAG); 1140 case ISD::BUILD_VECTOR: 1141 return LowerBUILD_VECTOR(Op, DAG); 1142 case ISD::VECTOR_SHUFFLE: 1143 return LowerVECTOR_SHUFFLE(Op, DAG); 1144 case ISD::SETCC: 1145 return LowerSETCC(Op, DAG); 1146 case ISD::SHL: 1147 case ISD::SRA: 1148 case ISD::SRL: 1149 return LowerShift(Op, DAG); 1150 } 1151 } 1152 1153 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1154 SelectionDAG &DAG) const { 1155 SDValue Src = Op.getOperand(2); 1156 if (isa<FrameIndexSDNode>(Src.getNode())) { 1157 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1158 // the FI to some LEA-like instruction, but since we don't have that, we 1159 // need to insert some kind of instruction that can take an FI operand and 1160 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1161 // local.copy between Op and its FI operand. 1162 SDValue Chain = Op.getOperand(0); 1163 SDLoc DL(Op); 1164 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1165 EVT VT = Src.getValueType(); 1166 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1167 : WebAssembly::COPY_I64, 1168 DL, VT, Src), 1169 0); 1170 return Op.getNode()->getNumValues() == 1 1171 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1172 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1173 Op.getNumOperands() == 4 ? Op.getOperand(3) 1174 : SDValue()); 1175 } 1176 return SDValue(); 1177 } 1178 1179 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1180 SelectionDAG &DAG) const { 1181 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1182 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1183 } 1184 1185 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1186 SelectionDAG &DAG) const { 1187 SDLoc DL(Op); 1188 1189 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1190 fail(DL, DAG, 1191 "Non-Emscripten WebAssembly hasn't implemented " 1192 "__builtin_return_address"); 1193 return SDValue(); 1194 } 1195 1196 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1197 return SDValue(); 1198 1199 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1200 MakeLibCallOptions CallOptions; 1201 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1202 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1203 .first; 1204 } 1205 1206 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1207 SelectionDAG &DAG) const { 1208 // Non-zero depths are not supported by WebAssembly currently. Use the 1209 // legalizer's default expansion, which is to return 0 (what this function is 1210 // documented to do). 1211 if (Op.getConstantOperandVal(0) > 0) 1212 return SDValue(); 1213 1214 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1215 EVT VT = Op.getValueType(); 1216 Register FP = 1217 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1218 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1219 } 1220 1221 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1222 SelectionDAG &DAG) const { 1223 SDLoc DL(Op); 1224 const auto *GA = cast<GlobalAddressSDNode>(Op); 1225 EVT VT = Op.getValueType(); 1226 assert(GA->getTargetFlags() == 0 && 1227 "Unexpected target flags on generic GlobalAddressSDNode"); 1228 if (GA->getAddressSpace() != 0) 1229 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1230 1231 unsigned OperandFlags = 0; 1232 if (isPositionIndependent()) { 1233 const GlobalValue *GV = GA->getGlobal(); 1234 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1235 MachineFunction &MF = DAG.getMachineFunction(); 1236 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1237 const char *BaseName; 1238 if (GV->getValueType()->isFunctionTy()) { 1239 BaseName = MF.createExternalSymbolName("__table_base"); 1240 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1241 } 1242 else { 1243 BaseName = MF.createExternalSymbolName("__memory_base"); 1244 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1245 } 1246 SDValue BaseAddr = 1247 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1248 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1249 1250 SDValue SymAddr = DAG.getNode( 1251 WebAssemblyISD::WrapperPIC, DL, VT, 1252 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1253 OperandFlags)); 1254 1255 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1256 } else { 1257 OperandFlags = WebAssemblyII::MO_GOT; 1258 } 1259 } 1260 1261 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1262 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1263 GA->getOffset(), OperandFlags)); 1264 } 1265 1266 SDValue 1267 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1268 SelectionDAG &DAG) const { 1269 SDLoc DL(Op); 1270 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1271 EVT VT = Op.getValueType(); 1272 assert(ES->getTargetFlags() == 0 && 1273 "Unexpected target flags on generic ExternalSymbolSDNode"); 1274 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1275 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1276 } 1277 1278 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1279 SelectionDAG &DAG) const { 1280 // There's no need for a Wrapper node because we always incorporate a jump 1281 // table operand into a BR_TABLE instruction, rather than ever 1282 // materializing it in a register. 1283 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1284 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1285 JT->getTargetFlags()); 1286 } 1287 1288 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1289 SelectionDAG &DAG) const { 1290 SDLoc DL(Op); 1291 SDValue Chain = Op.getOperand(0); 1292 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1293 SDValue Index = Op.getOperand(2); 1294 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1295 1296 SmallVector<SDValue, 8> Ops; 1297 Ops.push_back(Chain); 1298 Ops.push_back(Index); 1299 1300 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1301 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1302 1303 // Add an operand for each case. 1304 for (auto MBB : MBBs) 1305 Ops.push_back(DAG.getBasicBlock(MBB)); 1306 1307 // Add the first MBB as a dummy default target for now. This will be replaced 1308 // with the proper default target (and the preceding range check eliminated) 1309 // if possible by WebAssemblyFixBrTableDefaults. 1310 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1311 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1312 } 1313 1314 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1315 SelectionDAG &DAG) const { 1316 SDLoc DL(Op); 1317 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1318 1319 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1320 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1321 1322 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1323 MFI->getVarargBufferVreg(), PtrVT); 1324 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1325 MachinePointerInfo(SV), 0); 1326 } 1327 1328 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1329 SelectionDAG &DAG) const { 1330 MachineFunction &MF = DAG.getMachineFunction(); 1331 unsigned IntNo; 1332 switch (Op.getOpcode()) { 1333 case ISD::INTRINSIC_VOID: 1334 case ISD::INTRINSIC_W_CHAIN: 1335 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1336 break; 1337 case ISD::INTRINSIC_WO_CHAIN: 1338 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1339 break; 1340 default: 1341 llvm_unreachable("Invalid intrinsic"); 1342 } 1343 SDLoc DL(Op); 1344 1345 switch (IntNo) { 1346 default: 1347 return SDValue(); // Don't custom lower most intrinsics. 1348 1349 case Intrinsic::wasm_lsda: { 1350 EVT VT = Op.getValueType(); 1351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1352 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1353 auto &Context = MF.getMMI().getContext(); 1354 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1355 Twine(MF.getFunctionNumber())); 1356 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1357 DAG.getMCSymbol(S, PtrVT)); 1358 } 1359 1360 case Intrinsic::wasm_throw: { 1361 // We only support C++ exceptions for now 1362 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1363 if (Tag != CPP_EXCEPTION) 1364 llvm_unreachable("Invalid tag!"); 1365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1366 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1367 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1368 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1369 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1370 return DAG.getNode(WebAssemblyISD::THROW, DL, 1371 MVT::Other, // outchain type 1372 { 1373 Op.getOperand(0), // inchain 1374 SymNode, // exception symbol 1375 Op.getOperand(3) // thrown value 1376 }); 1377 } 1378 1379 case Intrinsic::wasm_shuffle: { 1380 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1381 SDValue Ops[18]; 1382 size_t OpIdx = 0; 1383 Ops[OpIdx++] = Op.getOperand(1); 1384 Ops[OpIdx++] = Op.getOperand(2); 1385 while (OpIdx < 18) { 1386 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1387 if (MaskIdx.isUndef() || 1388 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1389 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1390 } else { 1391 Ops[OpIdx++] = MaskIdx; 1392 } 1393 } 1394 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1395 } 1396 } 1397 } 1398 1399 SDValue 1400 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1401 SelectionDAG &DAG) const { 1402 SDLoc DL(Op); 1403 // If sign extension operations are disabled, allow sext_inreg only if operand 1404 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1405 // extension operations, but allowing sext_inreg in this context lets us have 1406 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1407 // everywhere would be simpler in this file, but would necessitate large and 1408 // brittle patterns to undo the expansion and select extract_lane_s 1409 // instructions. 1410 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1411 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1412 return SDValue(); 1413 1414 const SDValue &Extract = Op.getOperand(0); 1415 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1416 if (VecT.getVectorElementType().getSizeInBits() > 32) 1417 return SDValue(); 1418 MVT ExtractedLaneT = 1419 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1420 MVT ExtractedVecT = 1421 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1422 if (ExtractedVecT == VecT) 1423 return Op; 1424 1425 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1426 const SDNode *Index = Extract.getOperand(1).getNode(); 1427 if (!isa<ConstantSDNode>(Index)) 1428 return SDValue(); 1429 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1430 unsigned Scale = 1431 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1432 assert(Scale > 1); 1433 SDValue NewIndex = 1434 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1435 SDValue NewExtract = DAG.getNode( 1436 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1437 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1438 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1439 Op.getOperand(1)); 1440 } 1441 1442 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1443 SelectionDAG &DAG) const { 1444 SDLoc DL(Op); 1445 const EVT VecT = Op.getValueType(); 1446 const EVT LaneT = Op.getOperand(0).getValueType(); 1447 const size_t Lanes = Op.getNumOperands(); 1448 bool CanSwizzle = VecT == MVT::v16i8; 1449 1450 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1451 // possible number of lanes at once followed by a sequence of replace_lane 1452 // instructions to individually initialize any remaining lanes. 1453 1454 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1455 // swizzled lanes should be given greater weight. 1456 1457 // TODO: Investigate building vectors by shuffling together vectors built by 1458 // separately specialized means. 1459 1460 auto IsConstant = [](const SDValue &V) { 1461 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1462 }; 1463 1464 // Returns the source vector and index vector pair if they exist. Checks for: 1465 // (extract_vector_elt 1466 // $src, 1467 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1468 // ) 1469 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1470 auto Bail = std::make_pair(SDValue(), SDValue()); 1471 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1472 return Bail; 1473 const SDValue &SwizzleSrc = Lane->getOperand(0); 1474 const SDValue &IndexExt = Lane->getOperand(1); 1475 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1476 return Bail; 1477 const SDValue &Index = IndexExt->getOperand(0); 1478 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1479 return Bail; 1480 const SDValue &SwizzleIndices = Index->getOperand(0); 1481 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1482 SwizzleIndices.getValueType() != MVT::v16i8 || 1483 Index->getOperand(1)->getOpcode() != ISD::Constant || 1484 Index->getConstantOperandVal(1) != I) 1485 return Bail; 1486 return std::make_pair(SwizzleSrc, SwizzleIndices); 1487 }; 1488 1489 using ValueEntry = std::pair<SDValue, size_t>; 1490 SmallVector<ValueEntry, 16> SplatValueCounts; 1491 1492 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1493 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1494 1495 auto AddCount = [](auto &Counts, const auto &Val) { 1496 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1497 [&Val](auto E) { return E.first == Val; }); 1498 if (CountIt == Counts.end()) { 1499 Counts.emplace_back(Val, 1); 1500 } else { 1501 CountIt->second++; 1502 } 1503 }; 1504 1505 auto GetMostCommon = [](auto &Counts) { 1506 auto CommonIt = 1507 std::max_element(Counts.begin(), Counts.end(), 1508 [](auto A, auto B) { return A.second < B.second; }); 1509 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1510 return *CommonIt; 1511 }; 1512 1513 size_t NumConstantLanes = 0; 1514 1515 // Count eligible lanes for each type of vector creation op 1516 for (size_t I = 0; I < Lanes; ++I) { 1517 const SDValue &Lane = Op->getOperand(I); 1518 if (Lane.isUndef()) 1519 continue; 1520 1521 AddCount(SplatValueCounts, Lane); 1522 1523 if (IsConstant(Lane)) { 1524 NumConstantLanes++; 1525 } else if (CanSwizzle) { 1526 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1527 if (SwizzleSrcs.first) 1528 AddCount(SwizzleCounts, SwizzleSrcs); 1529 } 1530 } 1531 1532 SDValue SplatValue; 1533 size_t NumSplatLanes; 1534 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1535 1536 SDValue SwizzleSrc; 1537 SDValue SwizzleIndices; 1538 size_t NumSwizzleLanes = 0; 1539 if (SwizzleCounts.size()) 1540 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1541 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1542 1543 // Predicate returning true if the lane is properly initialized by the 1544 // original instruction 1545 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1546 SDValue Result; 1547 // Prefer swizzles over vector consts over splats 1548 if (NumSwizzleLanes >= NumSplatLanes && 1549 (!Subtarget->hasUnimplementedSIMD128() || 1550 NumSwizzleLanes >= NumConstantLanes)) { 1551 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1552 SwizzleIndices); 1553 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1554 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1555 return Swizzled == GetSwizzleSrcs(I, Lane); 1556 }; 1557 } else if (NumConstantLanes >= NumSplatLanes && 1558 Subtarget->hasUnimplementedSIMD128()) { 1559 SmallVector<SDValue, 16> ConstLanes; 1560 for (const SDValue &Lane : Op->op_values()) { 1561 if (IsConstant(Lane)) { 1562 ConstLanes.push_back(Lane); 1563 } else if (LaneT.isFloatingPoint()) { 1564 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1565 } else { 1566 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1567 } 1568 } 1569 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1570 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1571 return IsConstant(Lane); 1572 }; 1573 } 1574 if (!Result) { 1575 // Use a splat, but possibly a load_splat 1576 LoadSDNode *SplattedLoad; 1577 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1578 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1579 Result = DAG.getMemIntrinsicNode( 1580 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1581 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1582 SplattedLoad->getOffset()}, 1583 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1584 } else { 1585 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1586 } 1587 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1588 return Lane == SplatValue; 1589 }; 1590 } 1591 1592 // Add replace_lane instructions for any unhandled values 1593 for (size_t I = 0; I < Lanes; ++I) { 1594 const SDValue &Lane = Op->getOperand(I); 1595 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1596 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1597 DAG.getConstant(I, DL, MVT::i32)); 1598 } 1599 1600 return Result; 1601 } 1602 1603 SDValue 1604 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1605 SelectionDAG &DAG) const { 1606 SDLoc DL(Op); 1607 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1608 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1609 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1610 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1611 1612 // Space for two vector args and sixteen mask indices 1613 SDValue Ops[18]; 1614 size_t OpIdx = 0; 1615 Ops[OpIdx++] = Op.getOperand(0); 1616 Ops[OpIdx++] = Op.getOperand(1); 1617 1618 // Expand mask indices to byte indices and materialize them as operands 1619 for (int M : Mask) { 1620 for (size_t J = 0; J < LaneBytes; ++J) { 1621 // Lower undefs (represented by -1 in mask) to zero 1622 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1623 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1624 } 1625 } 1626 1627 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1628 } 1629 1630 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1631 SelectionDAG &DAG) const { 1632 SDLoc DL(Op); 1633 // The legalizer does not know how to expand the comparison modes of i64x2 1634 // vectors because no comparison modes are supported. We could solve this by 1635 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1636 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1637 // comparisons here. 1638 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1639 SmallVector<SDValue, 2> LHS, RHS; 1640 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1641 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1642 const SDValue &CC = Op->getOperand(2); 1643 auto MakeLane = [&](unsigned I) { 1644 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1645 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1646 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1647 }; 1648 return DAG.getBuildVector(Op->getValueType(0), DL, 1649 {MakeLane(0), MakeLane(1)}); 1650 } 1651 1652 SDValue 1653 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1654 SelectionDAG &DAG) const { 1655 // Allow constant lane indices, expand variable lane indices 1656 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1657 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1658 return Op; 1659 else 1660 // Perform default expansion 1661 return SDValue(); 1662 } 1663 1664 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1665 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1666 // 32-bit and 64-bit unrolled shifts will have proper semantics 1667 if (LaneT.bitsGE(MVT::i32)) 1668 return DAG.UnrollVectorOp(Op.getNode()); 1669 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1670 SDLoc DL(Op); 1671 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1672 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1673 unsigned ShiftOpcode = Op.getOpcode(); 1674 SmallVector<SDValue, 16> ShiftedElements; 1675 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1676 SmallVector<SDValue, 16> ShiftElements; 1677 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1678 SmallVector<SDValue, 16> UnrolledOps; 1679 for (size_t i = 0; i < NumLanes; ++i) { 1680 SDValue MaskedShiftValue = 1681 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1682 SDValue ShiftedValue = ShiftedElements[i]; 1683 if (ShiftOpcode == ISD::SRA) 1684 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1685 ShiftedValue, DAG.getValueType(LaneT)); 1686 UnrolledOps.push_back( 1687 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1688 } 1689 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1690 } 1691 1692 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1693 SelectionDAG &DAG) const { 1694 SDLoc DL(Op); 1695 1696 // Only manually lower vector shifts 1697 assert(Op.getSimpleValueType().isVector()); 1698 1699 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1700 if (!ShiftVal) 1701 return unrollVectorShift(Op, DAG); 1702 1703 // Use anyext because none of the high bits can affect the shift 1704 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1705 1706 unsigned Opcode; 1707 switch (Op.getOpcode()) { 1708 case ISD::SHL: 1709 Opcode = WebAssemblyISD::VEC_SHL; 1710 break; 1711 case ISD::SRA: 1712 Opcode = WebAssemblyISD::VEC_SHR_S; 1713 break; 1714 case ISD::SRL: 1715 Opcode = WebAssemblyISD::VEC_SHR_U; 1716 break; 1717 default: 1718 llvm_unreachable("unexpected opcode"); 1719 } 1720 1721 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1722 } 1723 1724 //===----------------------------------------------------------------------===// 1725 // Custom DAG combine hooks 1726 //===----------------------------------------------------------------------===// 1727 static SDValue 1728 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1729 auto &DAG = DCI.DAG; 1730 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1731 1732 // Hoist vector bitcasts that don't change the number of lanes out of unary 1733 // shuffles, where they are less likely to get in the way of other combines. 1734 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1735 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1736 SDValue Bitcast = N->getOperand(0); 1737 if (Bitcast.getOpcode() != ISD::BITCAST) 1738 return SDValue(); 1739 if (!N->getOperand(1).isUndef()) 1740 return SDValue(); 1741 SDValue CastOp = Bitcast.getOperand(0); 1742 MVT SrcType = CastOp.getSimpleValueType(); 1743 MVT DstType = Bitcast.getSimpleValueType(); 1744 if (!SrcType.is128BitVector() || 1745 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1746 return SDValue(); 1747 SDValue NewShuffle = DAG.getVectorShuffle( 1748 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1749 return DAG.getBitcast(DstType, NewShuffle); 1750 } 1751 1752 static SDValue performVectorWidenCombine(SDNode *N, 1753 TargetLowering::DAGCombinerInfo &DCI) { 1754 auto &DAG = DCI.DAG; 1755 assert(N->getOpcode() == ISD::SIGN_EXTEND || 1756 N->getOpcode() == ISD::ZERO_EXTEND); 1757 1758 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 1759 // possible before the extract_subvector can be expanded. 1760 auto Extract = N->getOperand(0); 1761 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 1762 return SDValue(); 1763 auto Source = Extract.getOperand(0); 1764 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 1765 if (IndexNode == nullptr) 1766 return SDValue(); 1767 auto Index = IndexNode->getZExtValue(); 1768 1769 // Only v8i8 and v4i16 extracts can be widened, and only if the extracted 1770 // subvector is the low or high half of its source. 1771 EVT ResVT = N->getValueType(0); 1772 if (ResVT == MVT::v8i16) { 1773 if (Extract.getValueType() != MVT::v8i8 || 1774 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 1775 return SDValue(); 1776 } else if (ResVT == MVT::v4i32) { 1777 if (Extract.getValueType() != MVT::v4i16 || 1778 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 1779 return SDValue(); 1780 } else { 1781 return SDValue(); 1782 } 1783 1784 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 1785 bool IsLow = Index == 0; 1786 1787 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S 1788 : WebAssemblyISD::WIDEN_HIGH_S) 1789 : (IsLow ? WebAssemblyISD::WIDEN_LOW_U 1790 : WebAssemblyISD::WIDEN_HIGH_U); 1791 1792 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 1793 } 1794 1795 SDValue 1796 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 1797 DAGCombinerInfo &DCI) const { 1798 switch (N->getOpcode()) { 1799 default: 1800 return SDValue(); 1801 case ISD::VECTOR_SHUFFLE: 1802 return performVECTOR_SHUFFLECombine(N, DCI); 1803 case ISD::SIGN_EXTEND: 1804 case ISD::ZERO_EXTEND: 1805 return performVectorWidenCombine(N, DCI); 1806 } 1807 } 1808