1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/IntrinsicsWebAssembly.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "wasm-lower"
40 
41 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
42     const TargetMachine &TM, const WebAssemblySubtarget &STI)
43     : TargetLowering(TM), Subtarget(&STI) {
44   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
45 
46   // Booleans always contain 0 or 1.
47   setBooleanContents(ZeroOrOneBooleanContent);
48   // Except in SIMD vectors
49   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
50   // We don't know the microarchitecture here, so just reduce register pressure.
51   setSchedulingPreference(Sched::RegPressure);
52   // Tell ISel that we have a stack pointer.
53   setStackPointerRegisterToSaveRestore(
54       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
55   // Set up the register classes.
56   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
57   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
58   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
59   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
60   if (Subtarget->hasSIMD128()) {
61     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
62     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
67   }
68   // Compute derived properties from the register classes.
69   computeRegisterProperties(Subtarget->getRegisterInfo());
70 
71   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
72   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
73   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
74   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
75   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
76   setOperationAction(ISD::BRIND, MVT::Other, Custom);
77 
78   // Take the default expansion for va_arg, va_copy, and va_end. There is no
79   // default action for va_start, so we do that custom.
80   setOperationAction(ISD::VASTART, MVT::Other, Custom);
81   setOperationAction(ISD::VAARG, MVT::Other, Expand);
82   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
83   setOperationAction(ISD::VAEND, MVT::Other, Expand);
84 
85   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
86     // Don't expand the floating-point types to constant pools.
87     setOperationAction(ISD::ConstantFP, T, Legal);
88     // Expand floating-point comparisons.
89     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
90                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
91       setCondCodeAction(CC, T, Expand);
92     // Expand floating-point library function operators.
93     for (auto Op :
94          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
95       setOperationAction(Op, T, Expand);
96     // Note supported floating-point library function operators that otherwise
97     // default to expand.
98     for (auto Op :
99          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
100       setOperationAction(Op, T, Legal);
101     // Support minimum and maximum, which otherwise default to expand.
102     setOperationAction(ISD::FMINIMUM, T, Legal);
103     setOperationAction(ISD::FMAXIMUM, T, Legal);
104     // WebAssembly currently has no builtin f16 support.
105     setOperationAction(ISD::FP16_TO_FP, T, Expand);
106     setOperationAction(ISD::FP_TO_FP16, T, Expand);
107     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
108     setTruncStoreAction(T, MVT::f16, Expand);
109   }
110 
111   // Expand unavailable integer operations.
112   for (auto Op :
113        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
114         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
115         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
116     for (auto T : {MVT::i32, MVT::i64})
117       setOperationAction(Op, T, Expand);
118     if (Subtarget->hasSIMD128())
119       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
120         setOperationAction(Op, T, Expand);
121   }
122 
123   // SIMD-specific configuration
124   if (Subtarget->hasSIMD128()) {
125     // Hoist bitcasts out of shuffles
126     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
127 
128     // Combine extends of extract_subvectors into widening ops
129     setTargetDAGCombine(ISD::SIGN_EXTEND);
130     setTargetDAGCombine(ISD::ZERO_EXTEND);
131 
132     // Support saturating add for i8x16 and i16x8
133     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
134       for (auto T : {MVT::v16i8, MVT::v8i16})
135         setOperationAction(Op, T, Legal);
136 
137     // Support integer abs
138     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
139       setOperationAction(ISD::ABS, T, Legal);
140 
141     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
142     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
143                    MVT::v2f64})
144       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
145 
146     // We have custom shuffle lowering to expose the shuffle mask
147     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
148                    MVT::v2f64})
149       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
150 
151     // Custom lowering since wasm shifts must have a scalar shift amount
152     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
153       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
154         setOperationAction(Op, T, Custom);
155 
156     // Custom lower lane accesses to expand out variable indices
157     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
158       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
159                      MVT::v2f64})
160         setOperationAction(Op, T, Custom);
161 
162     // There is no i8x16.mul instruction
163     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
164 
165     // There is no vector conditional select instruction
166     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
167                    MVT::v2f64})
168       setOperationAction(ISD::SELECT_CC, T, Expand);
169 
170     // Expand integer operations supported for scalars but not SIMD
171     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
172                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
173       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
174         setOperationAction(Op, T, Expand);
175 
176     // But we do have integer min and max operations
177     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
178       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
179         setOperationAction(Op, T, Legal);
180 
181     // Expand float operations supported for scalars but not SIMD
182     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
183                     ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
184                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
185       for (auto T : {MVT::v4f32, MVT::v2f64})
186         setOperationAction(Op, T, Expand);
187 
188     // Expand operations not supported for i64x2 vectors
189     for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC)
190       setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom);
191 
192     // 64x2 conversions are not in the spec
193     for (auto Op :
194          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
195       for (auto T : {MVT::v2i64, MVT::v2f64})
196         setOperationAction(Op, T, Expand);
197   }
198 
199   // As a special case, these operators use the type to mean the type to
200   // sign-extend from.
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
202   if (!Subtarget->hasSignExt()) {
203     // Sign extends are legal only when extending a vector extract
204     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
205     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
206       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
207   }
208   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
209     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
210 
211   // Dynamic stack allocation: use the default expansion.
212   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
213   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
214   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
215 
216   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
217   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
218   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
219 
220   // Expand these forms; we pattern-match the forms that we can handle in isel.
221   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
222     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
223       setOperationAction(Op, T, Expand);
224 
225   // We have custom switch handling.
226   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
227 
228   // WebAssembly doesn't have:
229   //  - Floating-point extending loads.
230   //  - Floating-point truncating stores.
231   //  - i1 extending loads.
232   //  - truncating SIMD stores and most extending loads
233   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
234   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
235   for (auto T : MVT::integer_valuetypes())
236     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
237       setLoadExtAction(Ext, T, MVT::i1, Promote);
238   if (Subtarget->hasSIMD128()) {
239     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
240                    MVT::v2f64}) {
241       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
242         if (MVT(T) != MemT) {
243           setTruncStoreAction(T, MemT, Expand);
244           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
245             setLoadExtAction(Ext, T, MemT, Expand);
246         }
247       }
248     }
249     // But some vector extending loads are legal
250     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
251       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
252       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
253       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
254     }
255     // And some truncating stores are legal as well
256     setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
257     setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
258   }
259 
260   // Don't do anything clever with build_pairs
261   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
262 
263   // Trap lowers to wasm unreachable
264   setOperationAction(ISD::TRAP, MVT::Other, Legal);
265   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
266 
267   // Exception handling intrinsics
268   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
269   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
270 
271   setMaxAtomicSizeInBitsSupported(64);
272 
273   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
274   // consistent with the f64 and f128 names.
275   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
276   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
277 
278   // Define the emscripten name for return address helper.
279   // TODO: when implementing other Wasm backends, make this generic or only do
280   // this on emscripten depending on what they end up doing.
281   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
282 
283   // Always convert switches to br_tables unless there is only one case, which
284   // is equivalent to a simple branch. This reduces code size for wasm, and we
285   // defer possible jump table optimizations to the VM.
286   setMinimumJumpTableEntries(2);
287 }
288 
289 TargetLowering::AtomicExpansionKind
290 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
291   // We have wasm instructions for these
292   switch (AI->getOperation()) {
293   case AtomicRMWInst::Add:
294   case AtomicRMWInst::Sub:
295   case AtomicRMWInst::And:
296   case AtomicRMWInst::Or:
297   case AtomicRMWInst::Xor:
298   case AtomicRMWInst::Xchg:
299     return AtomicExpansionKind::None;
300   default:
301     break;
302   }
303   return AtomicExpansionKind::CmpXChg;
304 }
305 
306 FastISel *WebAssemblyTargetLowering::createFastISel(
307     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
308   return WebAssembly::createFastISel(FuncInfo, LibInfo);
309 }
310 
311 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
312                                                       EVT VT) const {
313   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
314   if (BitWidth > 1 && BitWidth < 8)
315     BitWidth = 8;
316 
317   if (BitWidth > 64) {
318     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
319     // the count to be an i32.
320     BitWidth = 32;
321     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
322            "32-bit shift counts ought to be enough for anyone");
323   }
324 
325   MVT Result = MVT::getIntegerVT(BitWidth);
326   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
327          "Unable to represent scalar shift amount type");
328   return Result;
329 }
330 
331 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
332 // undefined result on invalid/overflow, to the WebAssembly opcode, which
333 // traps on invalid/overflow.
334 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
335                                        MachineBasicBlock *BB,
336                                        const TargetInstrInfo &TII,
337                                        bool IsUnsigned, bool Int64,
338                                        bool Float64, unsigned LoweredOpcode) {
339   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
340 
341   Register OutReg = MI.getOperand(0).getReg();
342   Register InReg = MI.getOperand(1).getReg();
343 
344   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
345   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
346   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
347   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
348   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
349   unsigned Eqz = WebAssembly::EQZ_I32;
350   unsigned And = WebAssembly::AND_I32;
351   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
352   int64_t Substitute = IsUnsigned ? 0 : Limit;
353   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
354   auto &Context = BB->getParent()->getFunction().getContext();
355   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
356 
357   const BasicBlock *LLVMBB = BB->getBasicBlock();
358   MachineFunction *F = BB->getParent();
359   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
360   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
361   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
362 
363   MachineFunction::iterator It = ++BB->getIterator();
364   F->insert(It, FalseMBB);
365   F->insert(It, TrueMBB);
366   F->insert(It, DoneMBB);
367 
368   // Transfer the remainder of BB and its successor edges to DoneMBB.
369   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
370   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
371 
372   BB->addSuccessor(TrueMBB);
373   BB->addSuccessor(FalseMBB);
374   TrueMBB->addSuccessor(DoneMBB);
375   FalseMBB->addSuccessor(DoneMBB);
376 
377   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
378   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
379   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
380   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
381   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
382   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
383   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
384 
385   MI.eraseFromParent();
386   // For signed numbers, we can do a single comparison to determine whether
387   // fabs(x) is within range.
388   if (IsUnsigned) {
389     Tmp0 = InReg;
390   } else {
391     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
392   }
393   BuildMI(BB, DL, TII.get(FConst), Tmp1)
394       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
395   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
396 
397   // For unsigned numbers, we have to do a separate comparison with zero.
398   if (IsUnsigned) {
399     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
400     Register SecondCmpReg =
401         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
402     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
403     BuildMI(BB, DL, TII.get(FConst), Tmp1)
404         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
405     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
406     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
407     CmpReg = AndReg;
408   }
409 
410   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
411 
412   // Create the CFG diamond to select between doing the conversion or using
413   // the substitute value.
414   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
415   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
416   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
417   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
418   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
419       .addReg(FalseReg)
420       .addMBB(FalseMBB)
421       .addReg(TrueReg)
422       .addMBB(TrueMBB);
423 
424   return DoneMBB;
425 }
426 
427 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults,
428                                            DebugLoc DL, MachineBasicBlock *BB,
429                                            const TargetInstrInfo &TII) {
430   MachineInstr &CallParams = *CallResults.getPrevNode();
431   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
432   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
433          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
434 
435   bool IsIndirect = CallParams.getOperand(0).isReg();
436   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
437 
438   unsigned CallOp;
439   if (IsIndirect && IsRetCall) {
440     CallOp = WebAssembly::RET_CALL_INDIRECT;
441   } else if (IsIndirect) {
442     CallOp = WebAssembly::CALL_INDIRECT;
443   } else if (IsRetCall) {
444     CallOp = WebAssembly::RET_CALL;
445   } else {
446     CallOp = WebAssembly::CALL;
447   }
448 
449   MachineFunction &MF = *BB->getParent();
450   const MCInstrDesc &MCID = TII.get(CallOp);
451   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
452 
453   // See if we must truncate the function pointer.
454   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
455   // as 64-bit for uniformity with other pointer types.
456   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
457     Register Reg32 =
458         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
459     auto &FnPtr = CallParams.getOperand(0);
460     BuildMI(*BB, CallResults.getIterator(), DL,
461             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
462         .addReg(FnPtr.getReg());
463     FnPtr.setReg(Reg32);
464   }
465 
466   // Move the function pointer to the end of the arguments for indirect calls
467   if (IsIndirect) {
468     auto FnPtr = CallParams.getOperand(0);
469     CallParams.RemoveOperand(0);
470     CallParams.addOperand(FnPtr);
471   }
472 
473   for (auto Def : CallResults.defs())
474     MIB.add(Def);
475 
476   // Add placeholders for the type index and immediate flags
477   if (IsIndirect) {
478     MIB.addImm(0);
479     MIB.addImm(0);
480   }
481 
482   for (auto Use : CallParams.uses())
483     MIB.add(Use);
484 
485   BB->insert(CallResults.getIterator(), MIB);
486   CallParams.eraseFromParent();
487   CallResults.eraseFromParent();
488 
489   return BB;
490 }
491 
492 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
493     MachineInstr &MI, MachineBasicBlock *BB) const {
494   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
495   DebugLoc DL = MI.getDebugLoc();
496 
497   switch (MI.getOpcode()) {
498   default:
499     llvm_unreachable("Unexpected instr type to insert");
500   case WebAssembly::FP_TO_SINT_I32_F32:
501     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
502                         WebAssembly::I32_TRUNC_S_F32);
503   case WebAssembly::FP_TO_UINT_I32_F32:
504     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
505                         WebAssembly::I32_TRUNC_U_F32);
506   case WebAssembly::FP_TO_SINT_I64_F32:
507     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
508                         WebAssembly::I64_TRUNC_S_F32);
509   case WebAssembly::FP_TO_UINT_I64_F32:
510     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
511                         WebAssembly::I64_TRUNC_U_F32);
512   case WebAssembly::FP_TO_SINT_I32_F64:
513     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
514                         WebAssembly::I32_TRUNC_S_F64);
515   case WebAssembly::FP_TO_UINT_I32_F64:
516     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
517                         WebAssembly::I32_TRUNC_U_F64);
518   case WebAssembly::FP_TO_SINT_I64_F64:
519     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
520                         WebAssembly::I64_TRUNC_S_F64);
521   case WebAssembly::FP_TO_UINT_I64_F64:
522     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
523                         WebAssembly::I64_TRUNC_U_F64);
524   case WebAssembly::CALL_RESULTS:
525   case WebAssembly::RET_CALL_RESULTS:
526     return LowerCallResults(MI, DL, BB, TII);
527   }
528 }
529 
530 const char *
531 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
532   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
533   case WebAssemblyISD::FIRST_NUMBER:
534   case WebAssemblyISD::FIRST_MEM_OPCODE:
535     break;
536 #define HANDLE_NODETYPE(NODE)                                                  \
537   case WebAssemblyISD::NODE:                                                   \
538     return "WebAssemblyISD::" #NODE;
539 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
540 #include "WebAssemblyISD.def"
541 #undef HANDLE_MEM_NODETYPE
542 #undef HANDLE_NODETYPE
543   }
544   return nullptr;
545 }
546 
547 std::pair<unsigned, const TargetRegisterClass *>
548 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
549     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
550   // First, see if this is a constraint that directly corresponds to a
551   // WebAssembly register class.
552   if (Constraint.size() == 1) {
553     switch (Constraint[0]) {
554     case 'r':
555       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
556       if (Subtarget->hasSIMD128() && VT.isVector()) {
557         if (VT.getSizeInBits() == 128)
558           return std::make_pair(0U, &WebAssembly::V128RegClass);
559       }
560       if (VT.isInteger() && !VT.isVector()) {
561         if (VT.getSizeInBits() <= 32)
562           return std::make_pair(0U, &WebAssembly::I32RegClass);
563         if (VT.getSizeInBits() <= 64)
564           return std::make_pair(0U, &WebAssembly::I64RegClass);
565       }
566       break;
567     default:
568       break;
569     }
570   }
571 
572   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
573 }
574 
575 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
576   // Assume ctz is a relatively cheap operation.
577   return true;
578 }
579 
580 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
581   // Assume clz is a relatively cheap operation.
582   return true;
583 }
584 
585 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
586                                                       const AddrMode &AM,
587                                                       Type *Ty, unsigned AS,
588                                                       Instruction *I) const {
589   // WebAssembly offsets are added as unsigned without wrapping. The
590   // isLegalAddressingMode gives us no way to determine if wrapping could be
591   // happening, so we approximate this by accepting only non-negative offsets.
592   if (AM.BaseOffs < 0)
593     return false;
594 
595   // WebAssembly has no scale register operands.
596   if (AM.Scale != 0)
597     return false;
598 
599   // Everything else is legal.
600   return true;
601 }
602 
603 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
604     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
605     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
606   // WebAssembly supports unaligned accesses, though it should be declared
607   // with the p2align attribute on loads and stores which do so, and there
608   // may be a performance impact. We tell LLVM they're "fast" because
609   // for the kinds of things that LLVM uses this for (merging adjacent stores
610   // of constants, etc.), WebAssembly implementations will either want the
611   // unaligned access or they'll split anyway.
612   if (Fast)
613     *Fast = true;
614   return true;
615 }
616 
617 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
618                                               AttributeList Attr) const {
619   // The current thinking is that wasm engines will perform this optimization,
620   // so we can save on code size.
621   return true;
622 }
623 
624 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
625   EVT ExtT = ExtVal.getValueType();
626   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
627   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
628          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
629          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
630 }
631 
632 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
633                                                   LLVMContext &C,
634                                                   EVT VT) const {
635   if (VT.isVector())
636     return VT.changeVectorElementTypeToInteger();
637 
638   // So far, all branch instructions in Wasm take an I32 condition.
639   // The default TargetLowering::getSetCCResultType returns the pointer size,
640   // which would be useful to reduce instruction counts when testing
641   // against 64-bit pointers/values if at some point Wasm supports that.
642   return EVT::getIntegerVT(C, 32);
643 }
644 
645 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
646                                                    const CallInst &I,
647                                                    MachineFunction &MF,
648                                                    unsigned Intrinsic) const {
649   switch (Intrinsic) {
650   case Intrinsic::wasm_memory_atomic_notify:
651     Info.opc = ISD::INTRINSIC_W_CHAIN;
652     Info.memVT = MVT::i32;
653     Info.ptrVal = I.getArgOperand(0);
654     Info.offset = 0;
655     Info.align = Align(4);
656     // atomic.notify instruction does not really load the memory specified with
657     // this argument, but MachineMemOperand should either be load or store, so
658     // we set this to a load.
659     // FIXME Volatile isn't really correct, but currently all LLVM atomic
660     // instructions are treated as volatiles in the backend, so we should be
661     // consistent. The same applies for wasm_atomic_wait intrinsics too.
662     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
663     return true;
664   case Intrinsic::wasm_memory_atomic_wait32:
665     Info.opc = ISD::INTRINSIC_W_CHAIN;
666     Info.memVT = MVT::i32;
667     Info.ptrVal = I.getArgOperand(0);
668     Info.offset = 0;
669     Info.align = Align(4);
670     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
671     return true;
672   case Intrinsic::wasm_memory_atomic_wait64:
673     Info.opc = ISD::INTRINSIC_W_CHAIN;
674     Info.memVT = MVT::i64;
675     Info.ptrVal = I.getArgOperand(0);
676     Info.offset = 0;
677     Info.align = Align(8);
678     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
679     return true;
680   case Intrinsic::wasm_load32_zero:
681   case Intrinsic::wasm_load64_zero:
682     Info.opc = ISD::INTRINSIC_W_CHAIN;
683     Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64;
684     Info.ptrVal = I.getArgOperand(0);
685     Info.offset = 0;
686     Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8);
687     Info.flags = MachineMemOperand::MOLoad;
688     return true;
689   case Intrinsic::wasm_load8_lane:
690   case Intrinsic::wasm_load16_lane:
691   case Intrinsic::wasm_load32_lane:
692   case Intrinsic::wasm_load64_lane:
693   case Intrinsic::wasm_store8_lane:
694   case Intrinsic::wasm_store16_lane:
695   case Intrinsic::wasm_store32_lane:
696   case Intrinsic::wasm_store64_lane: {
697     MVT MemVT;
698     Align MemAlign;
699     switch (Intrinsic) {
700     case Intrinsic::wasm_load8_lane:
701     case Intrinsic::wasm_store8_lane:
702       MemVT = MVT::i8;
703       MemAlign = Align(1);
704       break;
705     case Intrinsic::wasm_load16_lane:
706     case Intrinsic::wasm_store16_lane:
707       MemVT = MVT::i16;
708       MemAlign = Align(2);
709       break;
710     case Intrinsic::wasm_load32_lane:
711     case Intrinsic::wasm_store32_lane:
712       MemVT = MVT::i32;
713       MemAlign = Align(4);
714       break;
715     case Intrinsic::wasm_load64_lane:
716     case Intrinsic::wasm_store64_lane:
717       MemVT = MVT::i64;
718       MemAlign = Align(8);
719       break;
720     default:
721       llvm_unreachable("unexpected intrinsic");
722     }
723     if (Intrinsic == Intrinsic::wasm_load8_lane ||
724         Intrinsic == Intrinsic::wasm_load16_lane ||
725         Intrinsic == Intrinsic::wasm_load32_lane ||
726         Intrinsic == Intrinsic::wasm_load64_lane) {
727       Info.opc = ISD::INTRINSIC_W_CHAIN;
728       Info.flags = MachineMemOperand::MOLoad;
729     } else {
730       Info.opc = ISD::INTRINSIC_VOID;
731       Info.flags = MachineMemOperand::MOStore;
732     }
733     Info.ptrVal = I.getArgOperand(0);
734     Info.memVT = MemVT;
735     Info.offset = 0;
736     Info.align = MemAlign;
737     return true;
738   }
739   default:
740     return false;
741   }
742 }
743 
744 //===----------------------------------------------------------------------===//
745 // WebAssembly Lowering private implementation.
746 //===----------------------------------------------------------------------===//
747 
748 //===----------------------------------------------------------------------===//
749 // Lowering Code
750 //===----------------------------------------------------------------------===//
751 
752 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
753   MachineFunction &MF = DAG.getMachineFunction();
754   DAG.getContext()->diagnose(
755       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
756 }
757 
758 // Test whether the given calling convention is supported.
759 static bool callingConvSupported(CallingConv::ID CallConv) {
760   // We currently support the language-independent target-independent
761   // conventions. We don't yet have a way to annotate calls with properties like
762   // "cold", and we don't have any call-clobbered registers, so these are mostly
763   // all handled the same.
764   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
765          CallConv == CallingConv::Cold ||
766          CallConv == CallingConv::PreserveMost ||
767          CallConv == CallingConv::PreserveAll ||
768          CallConv == CallingConv::CXX_FAST_TLS ||
769          CallConv == CallingConv::WASM_EmscriptenInvoke ||
770          CallConv == CallingConv::Swift;
771 }
772 
773 SDValue
774 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
775                                      SmallVectorImpl<SDValue> &InVals) const {
776   SelectionDAG &DAG = CLI.DAG;
777   SDLoc DL = CLI.DL;
778   SDValue Chain = CLI.Chain;
779   SDValue Callee = CLI.Callee;
780   MachineFunction &MF = DAG.getMachineFunction();
781   auto Layout = MF.getDataLayout();
782 
783   CallingConv::ID CallConv = CLI.CallConv;
784   if (!callingConvSupported(CallConv))
785     fail(DL, DAG,
786          "WebAssembly doesn't support language-specific or target-specific "
787          "calling conventions yet");
788   if (CLI.IsPatchPoint)
789     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
790 
791   if (CLI.IsTailCall) {
792     auto NoTail = [&](const char *Msg) {
793       if (CLI.CB && CLI.CB->isMustTailCall())
794         fail(DL, DAG, Msg);
795       CLI.IsTailCall = false;
796     };
797 
798     if (!Subtarget->hasTailCall())
799       NoTail("WebAssembly 'tail-call' feature not enabled");
800 
801     // Varargs calls cannot be tail calls because the buffer is on the stack
802     if (CLI.IsVarArg)
803       NoTail("WebAssembly does not support varargs tail calls");
804 
805     // Do not tail call unless caller and callee return types match
806     const Function &F = MF.getFunction();
807     const TargetMachine &TM = getTargetMachine();
808     Type *RetTy = F.getReturnType();
809     SmallVector<MVT, 4> CallerRetTys;
810     SmallVector<MVT, 4> CalleeRetTys;
811     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
812     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
813     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
814                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
815                                  CalleeRetTys.begin());
816     if (!TypesMatch)
817       NoTail("WebAssembly tail call requires caller and callee return types to "
818              "match");
819 
820     // If pointers to local stack values are passed, we cannot tail call
821     if (CLI.CB) {
822       for (auto &Arg : CLI.CB->args()) {
823         Value *Val = Arg.get();
824         // Trace the value back through pointer operations
825         while (true) {
826           Value *Src = Val->stripPointerCastsAndAliases();
827           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
828             Src = GEP->getPointerOperand();
829           if (Val == Src)
830             break;
831           Val = Src;
832         }
833         if (isa<AllocaInst>(Val)) {
834           NoTail(
835               "WebAssembly does not support tail calling with stack arguments");
836           break;
837         }
838       }
839     }
840   }
841 
842   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
843   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
844   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
845 
846   // The generic code may have added an sret argument. If we're lowering an
847   // invoke function, the ABI requires that the function pointer be the first
848   // argument, so we may have to swap the arguments.
849   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
850       Outs[0].Flags.isSRet()) {
851     std::swap(Outs[0], Outs[1]);
852     std::swap(OutVals[0], OutVals[1]);
853   }
854 
855   bool HasSwiftSelfArg = false;
856   bool HasSwiftErrorArg = false;
857   unsigned NumFixedArgs = 0;
858   for (unsigned I = 0; I < Outs.size(); ++I) {
859     const ISD::OutputArg &Out = Outs[I];
860     SDValue &OutVal = OutVals[I];
861     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
862     HasSwiftErrorArg |= Out.Flags.isSwiftError();
863     if (Out.Flags.isNest())
864       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
865     if (Out.Flags.isInAlloca())
866       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
867     if (Out.Flags.isInConsecutiveRegs())
868       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
869     if (Out.Flags.isInConsecutiveRegsLast())
870       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
871     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
872       auto &MFI = MF.getFrameInfo();
873       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
874                                      Out.Flags.getNonZeroByValAlign(),
875                                      /*isSS=*/false);
876       SDValue SizeNode =
877           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
878       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
879       Chain = DAG.getMemcpy(
880           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
881           /*isVolatile*/ false, /*AlwaysInline=*/false,
882           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
883       OutVal = FINode;
884     }
885     // Count the number of fixed args *after* legalization.
886     NumFixedArgs += Out.IsFixed;
887   }
888 
889   bool IsVarArg = CLI.IsVarArg;
890   auto PtrVT = getPointerTy(Layout);
891 
892   // For swiftcc, emit additional swiftself and swifterror arguments
893   // if there aren't. These additional arguments are also added for callee
894   // signature They are necessary to match callee and caller signature for
895   // indirect call.
896   if (CallConv == CallingConv::Swift) {
897     if (!HasSwiftSelfArg) {
898       NumFixedArgs++;
899       ISD::OutputArg Arg;
900       Arg.Flags.setSwiftSelf();
901       CLI.Outs.push_back(Arg);
902       SDValue ArgVal = DAG.getUNDEF(PtrVT);
903       CLI.OutVals.push_back(ArgVal);
904     }
905     if (!HasSwiftErrorArg) {
906       NumFixedArgs++;
907       ISD::OutputArg Arg;
908       Arg.Flags.setSwiftError();
909       CLI.Outs.push_back(Arg);
910       SDValue ArgVal = DAG.getUNDEF(PtrVT);
911       CLI.OutVals.push_back(ArgVal);
912     }
913   }
914 
915   // Analyze operands of the call, assigning locations to each operand.
916   SmallVector<CCValAssign, 16> ArgLocs;
917   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
918 
919   if (IsVarArg) {
920     // Outgoing non-fixed arguments are placed in a buffer. First
921     // compute their offsets and the total amount of buffer space needed.
922     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
923       const ISD::OutputArg &Out = Outs[I];
924       SDValue &Arg = OutVals[I];
925       EVT VT = Arg.getValueType();
926       assert(VT != MVT::iPTR && "Legalized args should be concrete");
927       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
928       Align Alignment =
929           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
930       unsigned Offset =
931           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
932       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
933                                         Offset, VT.getSimpleVT(),
934                                         CCValAssign::Full));
935     }
936   }
937 
938   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
939 
940   SDValue FINode;
941   if (IsVarArg && NumBytes) {
942     // For non-fixed arguments, next emit stores to store the argument values
943     // to the stack buffer at the offsets computed above.
944     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
945                                                  Layout.getStackAlignment(),
946                                                  /*isSS=*/false);
947     unsigned ValNo = 0;
948     SmallVector<SDValue, 8> Chains;
949     for (SDValue Arg :
950          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
951       assert(ArgLocs[ValNo].getValNo() == ValNo &&
952              "ArgLocs should remain in order and only hold varargs args");
953       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
954       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
955       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
956                                 DAG.getConstant(Offset, DL, PtrVT));
957       Chains.push_back(
958           DAG.getStore(Chain, DL, Arg, Add,
959                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
960     }
961     if (!Chains.empty())
962       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
963   } else if (IsVarArg) {
964     FINode = DAG.getIntPtrConstant(0, DL);
965   }
966 
967   if (Callee->getOpcode() == ISD::GlobalAddress) {
968     // If the callee is a GlobalAddress node (quite common, every direct call
969     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
970     // doesn't at MO_GOT which is not needed for direct calls.
971     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
972     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
973                                         getPointerTy(DAG.getDataLayout()),
974                                         GA->getOffset());
975     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
976                          getPointerTy(DAG.getDataLayout()), Callee);
977   }
978 
979   // Compute the operands for the CALLn node.
980   SmallVector<SDValue, 16> Ops;
981   Ops.push_back(Chain);
982   Ops.push_back(Callee);
983 
984   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
985   // isn't reliable.
986   Ops.append(OutVals.begin(),
987              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
988   // Add a pointer to the vararg buffer.
989   if (IsVarArg)
990     Ops.push_back(FINode);
991 
992   SmallVector<EVT, 8> InTys;
993   for (const auto &In : Ins) {
994     assert(!In.Flags.isByVal() && "byval is not valid for return values");
995     assert(!In.Flags.isNest() && "nest is not valid for return values");
996     if (In.Flags.isInAlloca())
997       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
998     if (In.Flags.isInConsecutiveRegs())
999       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1000     if (In.Flags.isInConsecutiveRegsLast())
1001       fail(DL, DAG,
1002            "WebAssembly hasn't implemented cons regs last return values");
1003     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1004     // registers.
1005     InTys.push_back(In.VT);
1006   }
1007 
1008   if (CLI.IsTailCall) {
1009     // ret_calls do not return values to the current frame
1010     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1011     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1012   }
1013 
1014   InTys.push_back(MVT::Other);
1015   SDVTList InTyList = DAG.getVTList(InTys);
1016   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1017 
1018   for (size_t I = 0; I < Ins.size(); ++I)
1019     InVals.push_back(Res.getValue(I));
1020 
1021   // Return the chain
1022   return Res.getValue(Ins.size());
1023 }
1024 
1025 bool WebAssemblyTargetLowering::CanLowerReturn(
1026     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1027     const SmallVectorImpl<ISD::OutputArg> &Outs,
1028     LLVMContext & /*Context*/) const {
1029   // WebAssembly can only handle returning tuples with multivalue enabled
1030   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1031 }
1032 
1033 SDValue WebAssemblyTargetLowering::LowerReturn(
1034     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1035     const SmallVectorImpl<ISD::OutputArg> &Outs,
1036     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1037     SelectionDAG &DAG) const {
1038   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1039          "MVP WebAssembly can only return up to one value");
1040   if (!callingConvSupported(CallConv))
1041     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1042 
1043   SmallVector<SDValue, 4> RetOps(1, Chain);
1044   RetOps.append(OutVals.begin(), OutVals.end());
1045   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1046 
1047   // Record the number and types of the return values.
1048   for (const ISD::OutputArg &Out : Outs) {
1049     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1050     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1051     assert(Out.IsFixed && "non-fixed return value is not valid");
1052     if (Out.Flags.isInAlloca())
1053       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1054     if (Out.Flags.isInConsecutiveRegs())
1055       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1056     if (Out.Flags.isInConsecutiveRegsLast())
1057       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1058   }
1059 
1060   return Chain;
1061 }
1062 
1063 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1064     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1065     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1066     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1067   if (!callingConvSupported(CallConv))
1068     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1069 
1070   MachineFunction &MF = DAG.getMachineFunction();
1071   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1072 
1073   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1074   // of the incoming values before they're represented by virtual registers.
1075   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1076 
1077   bool HasSwiftErrorArg = false;
1078   bool HasSwiftSelfArg = false;
1079   for (const ISD::InputArg &In : Ins) {
1080     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1081     HasSwiftErrorArg |= In.Flags.isSwiftError();
1082     if (In.Flags.isInAlloca())
1083       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1084     if (In.Flags.isNest())
1085       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1086     if (In.Flags.isInConsecutiveRegs())
1087       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1088     if (In.Flags.isInConsecutiveRegsLast())
1089       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1090     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1091     // registers.
1092     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1093                                            DAG.getTargetConstant(InVals.size(),
1094                                                                  DL, MVT::i32))
1095                              : DAG.getUNDEF(In.VT));
1096 
1097     // Record the number and types of arguments.
1098     MFI->addParam(In.VT);
1099   }
1100 
1101   // For swiftcc, emit additional swiftself and swifterror arguments
1102   // if there aren't. These additional arguments are also added for callee
1103   // signature They are necessary to match callee and caller signature for
1104   // indirect call.
1105   auto PtrVT = getPointerTy(MF.getDataLayout());
1106   if (CallConv == CallingConv::Swift) {
1107     if (!HasSwiftSelfArg) {
1108       MFI->addParam(PtrVT);
1109     }
1110     if (!HasSwiftErrorArg) {
1111       MFI->addParam(PtrVT);
1112     }
1113   }
1114   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1115   // the buffer is passed as an argument.
1116   if (IsVarArg) {
1117     MVT PtrVT = getPointerTy(MF.getDataLayout());
1118     Register VarargVreg =
1119         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1120     MFI->setVarargBufferVreg(VarargVreg);
1121     Chain = DAG.getCopyToReg(
1122         Chain, DL, VarargVreg,
1123         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1124                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1125     MFI->addParam(PtrVT);
1126   }
1127 
1128   // Record the number and types of arguments and results.
1129   SmallVector<MVT, 4> Params;
1130   SmallVector<MVT, 4> Results;
1131   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1132                       MF.getFunction(), DAG.getTarget(), Params, Results);
1133   for (MVT VT : Results)
1134     MFI->addResult(VT);
1135   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1136   // the param logic here with ComputeSignatureVTs
1137   assert(MFI->getParams().size() == Params.size() &&
1138          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1139                     Params.begin()));
1140 
1141   return Chain;
1142 }
1143 
1144 void WebAssemblyTargetLowering::ReplaceNodeResults(
1145     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1146   switch (N->getOpcode()) {
1147   case ISD::SIGN_EXTEND_INREG:
1148     // Do not add any results, signifying that N should not be custom lowered
1149     // after all. This happens because simd128 turns on custom lowering for
1150     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1151     // illegal type.
1152     break;
1153   default:
1154     llvm_unreachable(
1155         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1156   }
1157 }
1158 
1159 //===----------------------------------------------------------------------===//
1160 //  Custom lowering hooks.
1161 //===----------------------------------------------------------------------===//
1162 
1163 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1164                                                   SelectionDAG &DAG) const {
1165   SDLoc DL(Op);
1166   switch (Op.getOpcode()) {
1167   default:
1168     llvm_unreachable("unimplemented operation lowering");
1169     return SDValue();
1170   case ISD::FrameIndex:
1171     return LowerFrameIndex(Op, DAG);
1172   case ISD::GlobalAddress:
1173     return LowerGlobalAddress(Op, DAG);
1174   case ISD::GlobalTLSAddress:
1175     return LowerGlobalTLSAddress(Op, DAG);
1176   case ISD::ExternalSymbol:
1177     return LowerExternalSymbol(Op, DAG);
1178   case ISD::JumpTable:
1179     return LowerJumpTable(Op, DAG);
1180   case ISD::BR_JT:
1181     return LowerBR_JT(Op, DAG);
1182   case ISD::VASTART:
1183     return LowerVASTART(Op, DAG);
1184   case ISD::BlockAddress:
1185   case ISD::BRIND:
1186     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1187     return SDValue();
1188   case ISD::RETURNADDR:
1189     return LowerRETURNADDR(Op, DAG);
1190   case ISD::FRAMEADDR:
1191     return LowerFRAMEADDR(Op, DAG);
1192   case ISD::CopyToReg:
1193     return LowerCopyToReg(Op, DAG);
1194   case ISD::EXTRACT_VECTOR_ELT:
1195   case ISD::INSERT_VECTOR_ELT:
1196     return LowerAccessVectorElement(Op, DAG);
1197   case ISD::INTRINSIC_VOID:
1198   case ISD::INTRINSIC_WO_CHAIN:
1199   case ISD::INTRINSIC_W_CHAIN:
1200     return LowerIntrinsic(Op, DAG);
1201   case ISD::SIGN_EXTEND_INREG:
1202     return LowerSIGN_EXTEND_INREG(Op, DAG);
1203   case ISD::BUILD_VECTOR:
1204     return LowerBUILD_VECTOR(Op, DAG);
1205   case ISD::VECTOR_SHUFFLE:
1206     return LowerVECTOR_SHUFFLE(Op, DAG);
1207   case ISD::SETCC:
1208     return LowerSETCC(Op, DAG);
1209   case ISD::SHL:
1210   case ISD::SRA:
1211   case ISD::SRL:
1212     return LowerShift(Op, DAG);
1213   }
1214 }
1215 
1216 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1217                                                   SelectionDAG &DAG) const {
1218   SDValue Src = Op.getOperand(2);
1219   if (isa<FrameIndexSDNode>(Src.getNode())) {
1220     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1221     // the FI to some LEA-like instruction, but since we don't have that, we
1222     // need to insert some kind of instruction that can take an FI operand and
1223     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1224     // local.copy between Op and its FI operand.
1225     SDValue Chain = Op.getOperand(0);
1226     SDLoc DL(Op);
1227     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1228     EVT VT = Src.getValueType();
1229     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1230                                                    : WebAssembly::COPY_I64,
1231                                     DL, VT, Src),
1232                  0);
1233     return Op.getNode()->getNumValues() == 1
1234                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1235                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1236                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1237                                                            : SDValue());
1238   }
1239   return SDValue();
1240 }
1241 
1242 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1243                                                    SelectionDAG &DAG) const {
1244   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1245   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1246 }
1247 
1248 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1249                                                    SelectionDAG &DAG) const {
1250   SDLoc DL(Op);
1251 
1252   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1253     fail(DL, DAG,
1254          "Non-Emscripten WebAssembly hasn't implemented "
1255          "__builtin_return_address");
1256     return SDValue();
1257   }
1258 
1259   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1260     return SDValue();
1261 
1262   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1263   MakeLibCallOptions CallOptions;
1264   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1265                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1266       .first;
1267 }
1268 
1269 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1270                                                   SelectionDAG &DAG) const {
1271   // Non-zero depths are not supported by WebAssembly currently. Use the
1272   // legalizer's default expansion, which is to return 0 (what this function is
1273   // documented to do).
1274   if (Op.getConstantOperandVal(0) > 0)
1275     return SDValue();
1276 
1277   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1278   EVT VT = Op.getValueType();
1279   Register FP =
1280       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1281   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1282 }
1283 
1284 SDValue
1285 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1286                                                  SelectionDAG &DAG) const {
1287   SDLoc DL(Op);
1288   const auto *GA = cast<GlobalAddressSDNode>(Op);
1289   MVT PtrVT = getPointerTy(DAG.getDataLayout());
1290 
1291   MachineFunction &MF = DAG.getMachineFunction();
1292   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1293     report_fatal_error("cannot use thread-local storage without bulk memory",
1294                        false);
1295 
1296   const GlobalValue *GV = GA->getGlobal();
1297 
1298   // Currently Emscripten does not support dynamic linking with threads.
1299   // Therefore, if we have thread-local storage, only the local-exec model
1300   // is possible.
1301   // TODO: remove this and implement proper TLS models once Emscripten
1302   // supports dynamic linking with threads.
1303   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1304       !Subtarget->getTargetTriple().isOSEmscripten()) {
1305     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1306                        "non-Emscripten OSes: variable " +
1307                            GV->getName(),
1308                        false);
1309   }
1310 
1311   auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1312                                      : WebAssembly::GLOBAL_GET_I32;
1313   const char *BaseName = MF.createExternalSymbolName("__tls_base");
1314 
1315   SDValue BaseAddr(
1316       DAG.getMachineNode(GlobalGet, DL, PtrVT,
1317                          DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1318       0);
1319 
1320   SDValue TLSOffset = DAG.getTargetGlobalAddress(
1321       GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1322   SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset);
1323 
1324   return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1325 }
1326 
1327 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1328                                                       SelectionDAG &DAG) const {
1329   SDLoc DL(Op);
1330   const auto *GA = cast<GlobalAddressSDNode>(Op);
1331   EVT VT = Op.getValueType();
1332   assert(GA->getTargetFlags() == 0 &&
1333          "Unexpected target flags on generic GlobalAddressSDNode");
1334   if (GA->getAddressSpace() != 0)
1335     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1336 
1337   unsigned OperandFlags = 0;
1338   if (isPositionIndependent()) {
1339     const GlobalValue *GV = GA->getGlobal();
1340     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1341       MachineFunction &MF = DAG.getMachineFunction();
1342       MVT PtrVT = getPointerTy(MF.getDataLayout());
1343       const char *BaseName;
1344       if (GV->getValueType()->isFunctionTy()) {
1345         BaseName = MF.createExternalSymbolName("__table_base");
1346         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1347       }
1348       else {
1349         BaseName = MF.createExternalSymbolName("__memory_base");
1350         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1351       }
1352       SDValue BaseAddr =
1353           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1354                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1355 
1356       SDValue SymAddr = DAG.getNode(
1357           WebAssemblyISD::WrapperPIC, DL, VT,
1358           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1359                                      OperandFlags));
1360 
1361       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1362     } else {
1363       OperandFlags = WebAssemblyII::MO_GOT;
1364     }
1365   }
1366 
1367   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1368                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1369                                                 GA->getOffset(), OperandFlags));
1370 }
1371 
1372 SDValue
1373 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1374                                                SelectionDAG &DAG) const {
1375   SDLoc DL(Op);
1376   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1377   EVT VT = Op.getValueType();
1378   assert(ES->getTargetFlags() == 0 &&
1379          "Unexpected target flags on generic ExternalSymbolSDNode");
1380   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1381                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1382 }
1383 
1384 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1385                                                   SelectionDAG &DAG) const {
1386   // There's no need for a Wrapper node because we always incorporate a jump
1387   // table operand into a BR_TABLE instruction, rather than ever
1388   // materializing it in a register.
1389   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1390   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1391                                 JT->getTargetFlags());
1392 }
1393 
1394 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1395                                               SelectionDAG &DAG) const {
1396   SDLoc DL(Op);
1397   SDValue Chain = Op.getOperand(0);
1398   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1399   SDValue Index = Op.getOperand(2);
1400   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1401 
1402   SmallVector<SDValue, 8> Ops;
1403   Ops.push_back(Chain);
1404   Ops.push_back(Index);
1405 
1406   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1407   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1408 
1409   // Add an operand for each case.
1410   for (auto MBB : MBBs)
1411     Ops.push_back(DAG.getBasicBlock(MBB));
1412 
1413   // Add the first MBB as a dummy default target for now. This will be replaced
1414   // with the proper default target (and the preceding range check eliminated)
1415   // if possible by WebAssemblyFixBrTableDefaults.
1416   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1417   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1418 }
1419 
1420 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1421                                                 SelectionDAG &DAG) const {
1422   SDLoc DL(Op);
1423   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1424 
1425   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1426   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1427 
1428   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1429                                     MFI->getVarargBufferVreg(), PtrVT);
1430   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1431                       MachinePointerInfo(SV));
1432 }
1433 
1434 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1435                                                   SelectionDAG &DAG) const {
1436   MachineFunction &MF = DAG.getMachineFunction();
1437   unsigned IntNo;
1438   switch (Op.getOpcode()) {
1439   case ISD::INTRINSIC_VOID:
1440   case ISD::INTRINSIC_W_CHAIN:
1441     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1442     break;
1443   case ISD::INTRINSIC_WO_CHAIN:
1444     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1445     break;
1446   default:
1447     llvm_unreachable("Invalid intrinsic");
1448   }
1449   SDLoc DL(Op);
1450 
1451   switch (IntNo) {
1452   default:
1453     return SDValue(); // Don't custom lower most intrinsics.
1454 
1455   case Intrinsic::wasm_lsda: {
1456     EVT VT = Op.getValueType();
1457     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1458     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1459     auto &Context = MF.getMMI().getContext();
1460     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1461                                             Twine(MF.getFunctionNumber()));
1462     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1463                        DAG.getMCSymbol(S, PtrVT));
1464   }
1465 
1466   case Intrinsic::wasm_throw: {
1467     // We only support C++ exceptions for now
1468     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1469     if (Tag != CPP_EXCEPTION)
1470       llvm_unreachable("Invalid tag!");
1471     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1472     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1473     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1474     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1475                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
1476     return DAG.getNode(WebAssemblyISD::THROW, DL,
1477                        MVT::Other, // outchain type
1478                        {
1479                            Op.getOperand(0), // inchain
1480                            SymNode,          // exception symbol
1481                            Op.getOperand(3)  // thrown value
1482                        });
1483   }
1484 
1485   case Intrinsic::wasm_shuffle: {
1486     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1487     SDValue Ops[18];
1488     size_t OpIdx = 0;
1489     Ops[OpIdx++] = Op.getOperand(1);
1490     Ops[OpIdx++] = Op.getOperand(2);
1491     while (OpIdx < 18) {
1492       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1493       if (MaskIdx.isUndef() ||
1494           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1495         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1496       } else {
1497         Ops[OpIdx++] = MaskIdx;
1498       }
1499     }
1500     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1501   }
1502   }
1503 }
1504 
1505 SDValue
1506 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1507                                                   SelectionDAG &DAG) const {
1508   SDLoc DL(Op);
1509   // If sign extension operations are disabled, allow sext_inreg only if operand
1510   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1511   // extension operations, but allowing sext_inreg in this context lets us have
1512   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1513   // everywhere would be simpler in this file, but would necessitate large and
1514   // brittle patterns to undo the expansion and select extract_lane_s
1515   // instructions.
1516   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1517   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1518     return SDValue();
1519 
1520   const SDValue &Extract = Op.getOperand(0);
1521   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1522   if (VecT.getVectorElementType().getSizeInBits() > 32)
1523     return SDValue();
1524   MVT ExtractedLaneT =
1525       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1526   MVT ExtractedVecT =
1527       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1528   if (ExtractedVecT == VecT)
1529     return Op;
1530 
1531   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1532   const SDNode *Index = Extract.getOperand(1).getNode();
1533   if (!isa<ConstantSDNode>(Index))
1534     return SDValue();
1535   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1536   unsigned Scale =
1537       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1538   assert(Scale > 1);
1539   SDValue NewIndex =
1540       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1541   SDValue NewExtract = DAG.getNode(
1542       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1543       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1544   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1545                      Op.getOperand(1));
1546 }
1547 
1548 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1549                                                      SelectionDAG &DAG) const {
1550   SDLoc DL(Op);
1551   const EVT VecT = Op.getValueType();
1552   const EVT LaneT = Op.getOperand(0).getValueType();
1553   const size_t Lanes = Op.getNumOperands();
1554   bool CanSwizzle = VecT == MVT::v16i8;
1555 
1556   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1557   // possible number of lanes at once followed by a sequence of replace_lane
1558   // instructions to individually initialize any remaining lanes.
1559 
1560   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1561   // swizzled lanes should be given greater weight.
1562 
1563   // TODO: Investigate building vectors by shuffling together vectors built by
1564   // separately specialized means.
1565 
1566   auto IsConstant = [](const SDValue &V) {
1567     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1568   };
1569 
1570   // Returns the source vector and index vector pair if they exist. Checks for:
1571   //   (extract_vector_elt
1572   //     $src,
1573   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1574   //   )
1575   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1576     auto Bail = std::make_pair(SDValue(), SDValue());
1577     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1578       return Bail;
1579     const SDValue &SwizzleSrc = Lane->getOperand(0);
1580     const SDValue &IndexExt = Lane->getOperand(1);
1581     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1582       return Bail;
1583     const SDValue &Index = IndexExt->getOperand(0);
1584     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1585       return Bail;
1586     const SDValue &SwizzleIndices = Index->getOperand(0);
1587     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1588         SwizzleIndices.getValueType() != MVT::v16i8 ||
1589         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1590         Index->getConstantOperandVal(1) != I)
1591       return Bail;
1592     return std::make_pair(SwizzleSrc, SwizzleIndices);
1593   };
1594 
1595   using ValueEntry = std::pair<SDValue, size_t>;
1596   SmallVector<ValueEntry, 16> SplatValueCounts;
1597 
1598   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1599   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1600 
1601   auto AddCount = [](auto &Counts, const auto &Val) {
1602     auto CountIt = std::find_if(Counts.begin(), Counts.end(),
1603                                 [&Val](auto E) { return E.first == Val; });
1604     if (CountIt == Counts.end()) {
1605       Counts.emplace_back(Val, 1);
1606     } else {
1607       CountIt->second++;
1608     }
1609   };
1610 
1611   auto GetMostCommon = [](auto &Counts) {
1612     auto CommonIt =
1613         std::max_element(Counts.begin(), Counts.end(),
1614                          [](auto A, auto B) { return A.second < B.second; });
1615     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1616     return *CommonIt;
1617   };
1618 
1619   size_t NumConstantLanes = 0;
1620 
1621   // Count eligible lanes for each type of vector creation op
1622   for (size_t I = 0; I < Lanes; ++I) {
1623     const SDValue &Lane = Op->getOperand(I);
1624     if (Lane.isUndef())
1625       continue;
1626 
1627     AddCount(SplatValueCounts, Lane);
1628 
1629     if (IsConstant(Lane)) {
1630       NumConstantLanes++;
1631     } else if (CanSwizzle) {
1632       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1633       if (SwizzleSrcs.first)
1634         AddCount(SwizzleCounts, SwizzleSrcs);
1635     }
1636   }
1637 
1638   SDValue SplatValue;
1639   size_t NumSplatLanes;
1640   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1641 
1642   SDValue SwizzleSrc;
1643   SDValue SwizzleIndices;
1644   size_t NumSwizzleLanes = 0;
1645   if (SwizzleCounts.size())
1646     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1647                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1648 
1649   // Predicate returning true if the lane is properly initialized by the
1650   // original instruction
1651   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1652   SDValue Result;
1653   // Prefer swizzles over vector consts over splats
1654   if (NumSwizzleLanes >= NumSplatLanes &&
1655       (!Subtarget->hasUnimplementedSIMD128() ||
1656        NumSwizzleLanes >= NumConstantLanes)) {
1657     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1658                          SwizzleIndices);
1659     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1660     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1661       return Swizzled == GetSwizzleSrcs(I, Lane);
1662     };
1663   } else if (NumConstantLanes >= NumSplatLanes &&
1664              Subtarget->hasUnimplementedSIMD128()) {
1665     // If we support v128.const, emit it directly
1666     SmallVector<SDValue, 16> ConstLanes;
1667     for (const SDValue &Lane : Op->op_values()) {
1668       if (IsConstant(Lane)) {
1669         ConstLanes.push_back(Lane);
1670       } else if (LaneT.isFloatingPoint()) {
1671         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1672       } else {
1673         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1674       }
1675     }
1676     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1677     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1678       return IsConstant(Lane);
1679     };
1680   } else if (NumConstantLanes >= NumSplatLanes && VecT.isInteger()) {
1681     // Otherwise, if this is an integer vector, pack the lane values together so
1682     // we can construct the 128-bit constant from a pair of i64s using a splat
1683     // followed by at most one i64x2.replace_lane. Also keep track of the lanes
1684     // that actually matter so we can avoid the replace_lane in more cases.
1685     std::array<uint64_t, 2> I64s{{0, 0}};
1686     std::array<uint64_t, 2> ConstLaneMasks{{0, 0}};
1687     size_t LaneBits = 128 / Lanes;
1688     size_t HalfLanes = Lanes / 2;
1689     for (size_t I = 0; I < Lanes; ++I) {
1690       const SDValue &Lane = Op.getOperand(I);
1691       if (IsConstant(Lane)) {
1692         // How much we need to shift Val to position it in an i64
1693         auto Shift = LaneBits * (I % HalfLanes);
1694         auto Mask = maskTrailingOnes<uint64_t>(LaneBits);
1695         auto Val = cast<ConstantSDNode>(Lane.getNode())->getZExtValue() & Mask;
1696         I64s[I / HalfLanes] |= Val << Shift;
1697         ConstLaneMasks[I / HalfLanes] |= Mask << Shift;
1698       }
1699     }
1700     // Check whether all constant lanes in the second half of the vector are
1701     // equivalent in the first half or vice versa to determine whether splatting
1702     // either side will be sufficient to materialize the constant. As a special
1703     // case, if the first and second halves have no constant lanes in common, we
1704     // can just combine them.
1705     bool FirstHalfSufficient = (I64s[0] & ConstLaneMasks[1]) == I64s[1];
1706     bool SecondHalfSufficient = (I64s[1] & ConstLaneMasks[0]) == I64s[0];
1707     bool CombinedSufficient = (ConstLaneMasks[0] & ConstLaneMasks[1]) == 0;
1708 
1709     uint64_t Splatted;
1710     if (SecondHalfSufficient) {
1711       Splatted = I64s[1];
1712     } else if (CombinedSufficient) {
1713       Splatted = I64s[0] | I64s[1];
1714     } else {
1715       Splatted = I64s[0];
1716     }
1717 
1718     Result = DAG.getSplatBuildVector(MVT::v2i64, DL,
1719                                      DAG.getConstant(Splatted, DL, MVT::i64));
1720     if (!FirstHalfSufficient && !SecondHalfSufficient && !CombinedSufficient) {
1721       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i64, Result,
1722                            DAG.getConstant(I64s[1], DL, MVT::i64),
1723                            DAG.getConstant(1, DL, MVT::i32));
1724     }
1725     Result = DAG.getBitcast(VecT, Result);
1726     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1727       return IsConstant(Lane);
1728     };
1729   } else {
1730     // Use a splat, but possibly a load_splat
1731     LoadSDNode *SplattedLoad;
1732     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1733         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1734       Result = DAG.getMemIntrinsicNode(
1735           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1736           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1737            SplattedLoad->getOffset()},
1738           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1739     } else {
1740       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1741     }
1742     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
1743       return Lane == SplatValue;
1744     };
1745   }
1746 
1747   assert(Result);
1748   assert(IsLaneConstructed);
1749 
1750   // Add replace_lane instructions for any unhandled values
1751   for (size_t I = 0; I < Lanes; ++I) {
1752     const SDValue &Lane = Op->getOperand(I);
1753     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1754       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1755                            DAG.getConstant(I, DL, MVT::i32));
1756   }
1757 
1758   return Result;
1759 }
1760 
1761 SDValue
1762 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1763                                                SelectionDAG &DAG) const {
1764   SDLoc DL(Op);
1765   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1766   MVT VecType = Op.getOperand(0).getSimpleValueType();
1767   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1768   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1769 
1770   // Space for two vector args and sixteen mask indices
1771   SDValue Ops[18];
1772   size_t OpIdx = 0;
1773   Ops[OpIdx++] = Op.getOperand(0);
1774   Ops[OpIdx++] = Op.getOperand(1);
1775 
1776   // Expand mask indices to byte indices and materialize them as operands
1777   for (int M : Mask) {
1778     for (size_t J = 0; J < LaneBytes; ++J) {
1779       // Lower undefs (represented by -1 in mask) to zero
1780       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1781       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1782     }
1783   }
1784 
1785   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1786 }
1787 
1788 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
1789                                               SelectionDAG &DAG) const {
1790   SDLoc DL(Op);
1791   // The legalizer does not know how to expand the comparison modes of i64x2
1792   // vectors because no comparison modes are supported. We could solve this by
1793   // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes
1794   // (which return i64x2 results) as well. So instead we manually unroll i64x2
1795   // comparisons here.
1796   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
1797   SmallVector<SDValue, 2> LHS, RHS;
1798   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
1799   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
1800   const SDValue &CC = Op->getOperand(2);
1801   auto MakeLane = [&](unsigned I) {
1802     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
1803                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
1804                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
1805   };
1806   return DAG.getBuildVector(Op->getValueType(0), DL,
1807                             {MakeLane(0), MakeLane(1)});
1808 }
1809 
1810 SDValue
1811 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1812                                                     SelectionDAG &DAG) const {
1813   // Allow constant lane indices, expand variable lane indices
1814   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1815   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1816     return Op;
1817   else
1818     // Perform default expansion
1819     return SDValue();
1820 }
1821 
1822 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1823   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1824   // 32-bit and 64-bit unrolled shifts will have proper semantics
1825   if (LaneT.bitsGE(MVT::i32))
1826     return DAG.UnrollVectorOp(Op.getNode());
1827   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1828   SDLoc DL(Op);
1829   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
1830   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
1831   unsigned ShiftOpcode = Op.getOpcode();
1832   SmallVector<SDValue, 16> ShiftedElements;
1833   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
1834   SmallVector<SDValue, 16> ShiftElements;
1835   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
1836   SmallVector<SDValue, 16> UnrolledOps;
1837   for (size_t i = 0; i < NumLanes; ++i) {
1838     SDValue MaskedShiftValue =
1839         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
1840     SDValue ShiftedValue = ShiftedElements[i];
1841     if (ShiftOpcode == ISD::SRA)
1842       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
1843                                  ShiftedValue, DAG.getValueType(LaneT));
1844     UnrolledOps.push_back(
1845         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
1846   }
1847   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
1848 }
1849 
1850 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1851                                               SelectionDAG &DAG) const {
1852   SDLoc DL(Op);
1853 
1854   // Only manually lower vector shifts
1855   assert(Op.getSimpleValueType().isVector());
1856 
1857   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
1858   if (!ShiftVal)
1859     return unrollVectorShift(Op, DAG);
1860 
1861   // Use anyext because none of the high bits can affect the shift
1862   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
1863 
1864   unsigned Opcode;
1865   switch (Op.getOpcode()) {
1866   case ISD::SHL:
1867     Opcode = WebAssemblyISD::VEC_SHL;
1868     break;
1869   case ISD::SRA:
1870     Opcode = WebAssemblyISD::VEC_SHR_S;
1871     break;
1872   case ISD::SRL:
1873     Opcode = WebAssemblyISD::VEC_SHR_U;
1874     break;
1875   default:
1876     llvm_unreachable("unexpected opcode");
1877   }
1878 
1879   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
1880 }
1881 
1882 //===----------------------------------------------------------------------===//
1883 //   Custom DAG combine hooks
1884 //===----------------------------------------------------------------------===//
1885 static SDValue
1886 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
1887   auto &DAG = DCI.DAG;
1888   auto Shuffle = cast<ShuffleVectorSDNode>(N);
1889 
1890   // Hoist vector bitcasts that don't change the number of lanes out of unary
1891   // shuffles, where they are less likely to get in the way of other combines.
1892   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
1893   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
1894   SDValue Bitcast = N->getOperand(0);
1895   if (Bitcast.getOpcode() != ISD::BITCAST)
1896     return SDValue();
1897   if (!N->getOperand(1).isUndef())
1898     return SDValue();
1899   SDValue CastOp = Bitcast.getOperand(0);
1900   MVT SrcType = CastOp.getSimpleValueType();
1901   MVT DstType = Bitcast.getSimpleValueType();
1902   if (!SrcType.is128BitVector() ||
1903       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
1904     return SDValue();
1905   SDValue NewShuffle = DAG.getVectorShuffle(
1906       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
1907   return DAG.getBitcast(DstType, NewShuffle);
1908 }
1909 
1910 static SDValue performVectorWidenCombine(SDNode *N,
1911                                          TargetLowering::DAGCombinerInfo &DCI) {
1912   auto &DAG = DCI.DAG;
1913   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
1914          N->getOpcode() == ISD::ZERO_EXTEND);
1915 
1916   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
1917   // possible before the extract_subvector can be expanded.
1918   auto Extract = N->getOperand(0);
1919   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
1920     return SDValue();
1921   auto Source = Extract.getOperand(0);
1922   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
1923   if (IndexNode == nullptr)
1924     return SDValue();
1925   auto Index = IndexNode->getZExtValue();
1926 
1927   // Only v8i8 and v4i16 extracts can be widened, and only if the extracted
1928   // subvector is the low or high half of its source.
1929   EVT ResVT = N->getValueType(0);
1930   if (ResVT == MVT::v8i16) {
1931     if (Extract.getValueType() != MVT::v8i8 ||
1932         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
1933       return SDValue();
1934   } else if (ResVT == MVT::v4i32) {
1935     if (Extract.getValueType() != MVT::v4i16 ||
1936         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
1937       return SDValue();
1938   } else {
1939     return SDValue();
1940   }
1941 
1942   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
1943   bool IsLow = Index == 0;
1944 
1945   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S
1946                                 : WebAssemblyISD::WIDEN_HIGH_S)
1947                        : (IsLow ? WebAssemblyISD::WIDEN_LOW_U
1948                                 : WebAssemblyISD::WIDEN_HIGH_U);
1949 
1950   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
1951 }
1952 
1953 SDValue
1954 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
1955                                              DAGCombinerInfo &DCI) const {
1956   switch (N->getOpcode()) {
1957   default:
1958     return SDValue();
1959   case ISD::VECTOR_SHUFFLE:
1960     return performVECTOR_SHUFFLECombine(N, DCI);
1961   case ISD::SIGN_EXTEND:
1962   case ISD::ZERO_EXTEND:
1963     return performVectorWidenCombine(N, DCI);
1964   }
1965 }
1966