1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetOptions.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-lower" 42 43 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 44 const TargetMachine &TM, const WebAssemblySubtarget &STI) 45 : TargetLowering(TM), Subtarget(&STI) { 46 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 47 48 // Booleans always contain 0 or 1. 49 setBooleanContents(ZeroOrOneBooleanContent); 50 // Except in SIMD vectors 51 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 52 // We don't know the microarchitecture here, so just reduce register pressure. 53 setSchedulingPreference(Sched::RegPressure); 54 // Tell ISel that we have a stack pointer. 55 setStackPointerRegisterToSaveRestore( 56 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 57 // Set up the register classes. 58 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 59 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 60 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 61 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 62 if (Subtarget->hasSIMD128()) { 63 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 69 } 70 if (Subtarget->hasReferenceTypes()) { 71 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 72 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 73 } 74 // Compute derived properties from the register classes. 75 computeRegisterProperties(Subtarget->getRegisterInfo()); 76 77 // Transform loads and stores to pointers in address space 1 to loads and 78 // stores to WebAssembly global variables, outside linear memory. 79 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 80 setOperationAction(ISD::LOAD, T, Custom); 81 setOperationAction(ISD::STORE, T, Custom); 82 } 83 if (Subtarget->hasSIMD128()) { 84 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 85 MVT::v2f64}) { 86 setOperationAction(ISD::LOAD, T, Custom); 87 setOperationAction(ISD::STORE, T, Custom); 88 } 89 } 90 if (Subtarget->hasReferenceTypes()) { 91 for (auto T : {MVT::externref, MVT::funcref}) { 92 setOperationAction(ISD::LOAD, T, Custom); 93 setOperationAction(ISD::STORE, T, Custom); 94 } 95 } 96 97 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 98 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 99 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 100 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 101 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 102 setOperationAction(ISD::BRIND, MVT::Other, Custom); 103 104 // Take the default expansion for va_arg, va_copy, and va_end. There is no 105 // default action for va_start, so we do that custom. 106 setOperationAction(ISD::VASTART, MVT::Other, Custom); 107 setOperationAction(ISD::VAARG, MVT::Other, Expand); 108 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 109 setOperationAction(ISD::VAEND, MVT::Other, Expand); 110 111 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 112 // Don't expand the floating-point types to constant pools. 113 setOperationAction(ISD::ConstantFP, T, Legal); 114 // Expand floating-point comparisons. 115 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 116 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 117 setCondCodeAction(CC, T, Expand); 118 // Expand floating-point library function operators. 119 for (auto Op : 120 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 121 setOperationAction(Op, T, Expand); 122 // Note supported floating-point library function operators that otherwise 123 // default to expand. 124 for (auto Op : 125 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 126 setOperationAction(Op, T, Legal); 127 // Support minimum and maximum, which otherwise default to expand. 128 setOperationAction(ISD::FMINIMUM, T, Legal); 129 setOperationAction(ISD::FMAXIMUM, T, Legal); 130 // WebAssembly currently has no builtin f16 support. 131 setOperationAction(ISD::FP16_TO_FP, T, Expand); 132 setOperationAction(ISD::FP_TO_FP16, T, Expand); 133 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 134 setTruncStoreAction(T, MVT::f16, Expand); 135 } 136 137 // Expand unavailable integer operations. 138 for (auto Op : 139 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 140 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 141 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 142 for (auto T : {MVT::i32, MVT::i64}) 143 setOperationAction(Op, T, Expand); 144 if (Subtarget->hasSIMD128()) 145 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 146 setOperationAction(Op, T, Expand); 147 } 148 149 if (Subtarget->hasNontrappingFPToInt()) 150 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 151 for (auto T : {MVT::i32, MVT::i64}) 152 setOperationAction(Op, T, Custom); 153 154 // SIMD-specific configuration 155 if (Subtarget->hasSIMD128()) { 156 // Hoist bitcasts out of shuffles 157 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 158 159 // Combine extends of extract_subvectors into widening ops 160 setTargetDAGCombine(ISD::SIGN_EXTEND); 161 setTargetDAGCombine(ISD::ZERO_EXTEND); 162 163 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 164 // conversions ops 165 setTargetDAGCombine(ISD::SINT_TO_FP); 166 setTargetDAGCombine(ISD::UINT_TO_FP); 167 setTargetDAGCombine(ISD::FP_EXTEND); 168 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 169 170 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 171 // into conversion ops 172 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 173 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 174 setTargetDAGCombine(ISD::FP_ROUND); 175 setTargetDAGCombine(ISD::CONCAT_VECTORS); 176 177 // Support saturating add for i8x16 and i16x8 178 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 179 for (auto T : {MVT::v16i8, MVT::v8i16}) 180 setOperationAction(Op, T, Legal); 181 182 // Support integer abs 183 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 184 setOperationAction(ISD::ABS, T, Legal); 185 186 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 188 MVT::v2f64}) 189 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 190 191 // We have custom shuffle lowering to expose the shuffle mask 192 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 193 MVT::v2f64}) 194 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 195 196 // Custom lowering since wasm shifts must have a scalar shift amount 197 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 198 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 199 setOperationAction(Op, T, Custom); 200 201 // Custom lower lane accesses to expand out variable indices 202 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 203 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 204 MVT::v2f64}) 205 setOperationAction(Op, T, Custom); 206 207 // There is no i8x16.mul instruction 208 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 209 210 // There is no vector conditional select instruction 211 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 212 MVT::v2f64}) 213 setOperationAction(ISD::SELECT_CC, T, Expand); 214 215 // Expand integer operations supported for scalars but not SIMD 216 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 217 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 218 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 219 setOperationAction(Op, T, Expand); 220 221 // But we do have integer min and max operations 222 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 223 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 224 setOperationAction(Op, T, Legal); 225 226 // And we have popcnt for i8x16 227 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 228 229 // Expand float operations supported for scalars but not SIMD 230 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 231 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 232 for (auto T : {MVT::v4f32, MVT::v2f64}) 233 setOperationAction(Op, T, Expand); 234 235 // Unsigned comparison operations are unavailable for i64x2 vectors. 236 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 237 setCondCodeAction(CC, MVT::v2i64, Custom); 238 239 // 64x2 conversions are not in the spec 240 for (auto Op : 241 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 242 for (auto T : {MVT::v2i64, MVT::v2f64}) 243 setOperationAction(Op, T, Expand); 244 245 // But saturating fp_to_int converstions are 246 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 247 setOperationAction(Op, MVT::v4i32, Custom); 248 } 249 250 // As a special case, these operators use the type to mean the type to 251 // sign-extend from. 252 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 253 if (!Subtarget->hasSignExt()) { 254 // Sign extends are legal only when extending a vector extract 255 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 256 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 257 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 258 } 259 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 260 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 261 262 // Dynamic stack allocation: use the default expansion. 263 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 264 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 265 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 266 267 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 268 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 269 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 270 271 // Expand these forms; we pattern-match the forms that we can handle in isel. 272 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 273 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 274 setOperationAction(Op, T, Expand); 275 276 // We have custom switch handling. 277 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 278 279 // WebAssembly doesn't have: 280 // - Floating-point extending loads. 281 // - Floating-point truncating stores. 282 // - i1 extending loads. 283 // - truncating SIMD stores and most extending loads 284 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 285 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 286 for (auto T : MVT::integer_valuetypes()) 287 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 288 setLoadExtAction(Ext, T, MVT::i1, Promote); 289 if (Subtarget->hasSIMD128()) { 290 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 291 MVT::v2f64}) { 292 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 293 if (MVT(T) != MemT) { 294 setTruncStoreAction(T, MemT, Expand); 295 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 296 setLoadExtAction(Ext, T, MemT, Expand); 297 } 298 } 299 } 300 // But some vector extending loads are legal 301 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 302 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 303 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 304 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 305 } 306 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 307 } 308 309 // Don't do anything clever with build_pairs 310 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 311 312 // Trap lowers to wasm unreachable 313 setOperationAction(ISD::TRAP, MVT::Other, Legal); 314 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 315 316 // Exception handling intrinsics 317 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 318 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 319 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 320 321 setMaxAtomicSizeInBitsSupported(64); 322 323 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 324 // consistent with the f64 and f128 names. 325 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 326 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 327 328 // Define the emscripten name for return address helper. 329 // TODO: when implementing other Wasm backends, make this generic or only do 330 // this on emscripten depending on what they end up doing. 331 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 332 333 // Always convert switches to br_tables unless there is only one case, which 334 // is equivalent to a simple branch. This reduces code size for wasm, and we 335 // defer possible jump table optimizations to the VM. 336 setMinimumJumpTableEntries(2); 337 } 338 339 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 340 uint32_t AS) const { 341 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 342 return MVT::externref; 343 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 344 return MVT::funcref; 345 return TargetLowering::getPointerTy(DL, AS); 346 } 347 348 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 349 uint32_t AS) const { 350 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 351 return MVT::externref; 352 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 353 return MVT::funcref; 354 return TargetLowering::getPointerMemTy(DL, AS); 355 } 356 357 TargetLowering::AtomicExpansionKind 358 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 359 // We have wasm instructions for these 360 switch (AI->getOperation()) { 361 case AtomicRMWInst::Add: 362 case AtomicRMWInst::Sub: 363 case AtomicRMWInst::And: 364 case AtomicRMWInst::Or: 365 case AtomicRMWInst::Xor: 366 case AtomicRMWInst::Xchg: 367 return AtomicExpansionKind::None; 368 default: 369 break; 370 } 371 return AtomicExpansionKind::CmpXChg; 372 } 373 374 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 375 // Implementation copied from X86TargetLowering. 376 unsigned Opc = VecOp.getOpcode(); 377 378 // Assume target opcodes can't be scalarized. 379 // TODO - do we have any exceptions? 380 if (Opc >= ISD::BUILTIN_OP_END) 381 return false; 382 383 // If the vector op is not supported, try to convert to scalar. 384 EVT VecVT = VecOp.getValueType(); 385 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 386 return true; 387 388 // If the vector op is supported, but the scalar op is not, the transform may 389 // not be worthwhile. 390 EVT ScalarVT = VecVT.getScalarType(); 391 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 392 } 393 394 FastISel *WebAssemblyTargetLowering::createFastISel( 395 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 396 return WebAssembly::createFastISel(FuncInfo, LibInfo); 397 } 398 399 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 400 EVT VT) const { 401 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 402 if (BitWidth > 1 && BitWidth < 8) 403 BitWidth = 8; 404 405 if (BitWidth > 64) { 406 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 407 // the count to be an i32. 408 BitWidth = 32; 409 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 410 "32-bit shift counts ought to be enough for anyone"); 411 } 412 413 MVT Result = MVT::getIntegerVT(BitWidth); 414 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 415 "Unable to represent scalar shift amount type"); 416 return Result; 417 } 418 419 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 420 // undefined result on invalid/overflow, to the WebAssembly opcode, which 421 // traps on invalid/overflow. 422 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 423 MachineBasicBlock *BB, 424 const TargetInstrInfo &TII, 425 bool IsUnsigned, bool Int64, 426 bool Float64, unsigned LoweredOpcode) { 427 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 428 429 Register OutReg = MI.getOperand(0).getReg(); 430 Register InReg = MI.getOperand(1).getReg(); 431 432 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 433 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 434 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 435 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 436 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 437 unsigned Eqz = WebAssembly::EQZ_I32; 438 unsigned And = WebAssembly::AND_I32; 439 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 440 int64_t Substitute = IsUnsigned ? 0 : Limit; 441 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 442 auto &Context = BB->getParent()->getFunction().getContext(); 443 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 444 445 const BasicBlock *LLVMBB = BB->getBasicBlock(); 446 MachineFunction *F = BB->getParent(); 447 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 448 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 449 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 450 451 MachineFunction::iterator It = ++BB->getIterator(); 452 F->insert(It, FalseMBB); 453 F->insert(It, TrueMBB); 454 F->insert(It, DoneMBB); 455 456 // Transfer the remainder of BB and its successor edges to DoneMBB. 457 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 458 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 459 460 BB->addSuccessor(TrueMBB); 461 BB->addSuccessor(FalseMBB); 462 TrueMBB->addSuccessor(DoneMBB); 463 FalseMBB->addSuccessor(DoneMBB); 464 465 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 466 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 467 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 468 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 469 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 470 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 471 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 472 473 MI.eraseFromParent(); 474 // For signed numbers, we can do a single comparison to determine whether 475 // fabs(x) is within range. 476 if (IsUnsigned) { 477 Tmp0 = InReg; 478 } else { 479 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 480 } 481 BuildMI(BB, DL, TII.get(FConst), Tmp1) 482 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 483 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 484 485 // For unsigned numbers, we have to do a separate comparison with zero. 486 if (IsUnsigned) { 487 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 488 Register SecondCmpReg = 489 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 490 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 491 BuildMI(BB, DL, TII.get(FConst), Tmp1) 492 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 493 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 494 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 495 CmpReg = AndReg; 496 } 497 498 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 499 500 // Create the CFG diamond to select between doing the conversion or using 501 // the substitute value. 502 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 503 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 504 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 505 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 506 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 507 .addReg(FalseReg) 508 .addMBB(FalseMBB) 509 .addReg(TrueReg) 510 .addMBB(TrueMBB); 511 512 return DoneMBB; 513 } 514 515 static MachineBasicBlock * 516 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 517 const WebAssemblySubtarget *Subtarget, 518 const TargetInstrInfo &TII) { 519 MachineInstr &CallParams = *CallResults.getPrevNode(); 520 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 521 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 522 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 523 524 bool IsIndirect = CallParams.getOperand(0).isReg(); 525 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 526 527 bool IsFuncrefCall = false; 528 if (IsIndirect) { 529 Register Reg = CallParams.getOperand(0).getReg(); 530 const MachineFunction *MF = BB->getParent(); 531 const MachineRegisterInfo &MRI = MF->getRegInfo(); 532 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 533 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 534 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 535 } 536 537 unsigned CallOp; 538 if (IsIndirect && IsRetCall) { 539 CallOp = WebAssembly::RET_CALL_INDIRECT; 540 } else if (IsIndirect) { 541 CallOp = WebAssembly::CALL_INDIRECT; 542 } else if (IsRetCall) { 543 CallOp = WebAssembly::RET_CALL; 544 } else { 545 CallOp = WebAssembly::CALL; 546 } 547 548 MachineFunction &MF = *BB->getParent(); 549 const MCInstrDesc &MCID = TII.get(CallOp); 550 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 551 552 // See if we must truncate the function pointer. 553 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 554 // as 64-bit for uniformity with other pointer types. 555 // See also: WebAssemblyFastISel::selectCall 556 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 557 Register Reg32 = 558 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 559 auto &FnPtr = CallParams.getOperand(0); 560 BuildMI(*BB, CallResults.getIterator(), DL, 561 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 562 .addReg(FnPtr.getReg()); 563 FnPtr.setReg(Reg32); 564 } 565 566 // Move the function pointer to the end of the arguments for indirect calls 567 if (IsIndirect) { 568 auto FnPtr = CallParams.getOperand(0); 569 CallParams.RemoveOperand(0); 570 CallParams.addOperand(FnPtr); 571 } 572 573 for (auto Def : CallResults.defs()) 574 MIB.add(Def); 575 576 if (IsIndirect) { 577 // Placeholder for the type index. 578 MIB.addImm(0); 579 // The table into which this call_indirect indexes. 580 MCSymbolWasm *Table = IsFuncrefCall 581 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 582 MF.getContext(), Subtarget) 583 : WebAssembly::getOrCreateFunctionTableSymbol( 584 MF.getContext(), Subtarget); 585 if (Subtarget->hasReferenceTypes()) { 586 MIB.addSym(Table); 587 } else { 588 // For the MVP there is at most one table whose number is 0, but we can't 589 // write a table symbol or issue relocations. Instead we just ensure the 590 // table is live and write a zero. 591 Table->setNoStrip(); 592 MIB.addImm(0); 593 } 594 } 595 596 for (auto Use : CallParams.uses()) 597 MIB.add(Use); 598 599 BB->insert(CallResults.getIterator(), MIB); 600 CallParams.eraseFromParent(); 601 CallResults.eraseFromParent(); 602 603 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 604 // table slot with ref.null upon call_indirect return. 605 // 606 // This generates the following code, which comes right after a call_indirect 607 // of a funcref: 608 // 609 // i32.const 0 610 // ref.null func 611 // table.set __funcref_call_table 612 if (IsIndirect && IsFuncrefCall) { 613 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 614 MF.getContext(), Subtarget); 615 Register RegZero = 616 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 617 MachineInstr *Const0 = 618 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 619 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 620 621 Register RegFuncref = 622 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 623 MachineInstr *RefNull = 624 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref) 625 .addImm(static_cast<int32_t>(WebAssembly::HeapType::Funcref)); 626 BB->insertAfter(Const0->getIterator(), RefNull); 627 628 MachineInstr *TableSet = 629 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 630 .addSym(Table) 631 .addReg(RegZero) 632 .addReg(RegFuncref); 633 BB->insertAfter(RefNull->getIterator(), TableSet); 634 } 635 636 return BB; 637 } 638 639 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 640 MachineInstr &MI, MachineBasicBlock *BB) const { 641 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 642 DebugLoc DL = MI.getDebugLoc(); 643 644 switch (MI.getOpcode()) { 645 default: 646 llvm_unreachable("Unexpected instr type to insert"); 647 case WebAssembly::FP_TO_SINT_I32_F32: 648 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 649 WebAssembly::I32_TRUNC_S_F32); 650 case WebAssembly::FP_TO_UINT_I32_F32: 651 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 652 WebAssembly::I32_TRUNC_U_F32); 653 case WebAssembly::FP_TO_SINT_I64_F32: 654 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 655 WebAssembly::I64_TRUNC_S_F32); 656 case WebAssembly::FP_TO_UINT_I64_F32: 657 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 658 WebAssembly::I64_TRUNC_U_F32); 659 case WebAssembly::FP_TO_SINT_I32_F64: 660 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 661 WebAssembly::I32_TRUNC_S_F64); 662 case WebAssembly::FP_TO_UINT_I32_F64: 663 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 664 WebAssembly::I32_TRUNC_U_F64); 665 case WebAssembly::FP_TO_SINT_I64_F64: 666 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 667 WebAssembly::I64_TRUNC_S_F64); 668 case WebAssembly::FP_TO_UINT_I64_F64: 669 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 670 WebAssembly::I64_TRUNC_U_F64); 671 case WebAssembly::CALL_RESULTS: 672 case WebAssembly::RET_CALL_RESULTS: 673 return LowerCallResults(MI, DL, BB, Subtarget, TII); 674 } 675 } 676 677 const char * 678 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 679 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 680 case WebAssemblyISD::FIRST_NUMBER: 681 case WebAssemblyISD::FIRST_MEM_OPCODE: 682 break; 683 #define HANDLE_NODETYPE(NODE) \ 684 case WebAssemblyISD::NODE: \ 685 return "WebAssemblyISD::" #NODE; 686 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 687 #include "WebAssemblyISD.def" 688 #undef HANDLE_MEM_NODETYPE 689 #undef HANDLE_NODETYPE 690 } 691 return nullptr; 692 } 693 694 std::pair<unsigned, const TargetRegisterClass *> 695 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 696 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 697 // First, see if this is a constraint that directly corresponds to a 698 // WebAssembly register class. 699 if (Constraint.size() == 1) { 700 switch (Constraint[0]) { 701 case 'r': 702 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 703 if (Subtarget->hasSIMD128() && VT.isVector()) { 704 if (VT.getSizeInBits() == 128) 705 return std::make_pair(0U, &WebAssembly::V128RegClass); 706 } 707 if (VT.isInteger() && !VT.isVector()) { 708 if (VT.getSizeInBits() <= 32) 709 return std::make_pair(0U, &WebAssembly::I32RegClass); 710 if (VT.getSizeInBits() <= 64) 711 return std::make_pair(0U, &WebAssembly::I64RegClass); 712 } 713 if (VT.isFloatingPoint() && !VT.isVector()) { 714 switch (VT.getSizeInBits()) { 715 case 32: 716 return std::make_pair(0U, &WebAssembly::F32RegClass); 717 case 64: 718 return std::make_pair(0U, &WebAssembly::F64RegClass); 719 default: 720 break; 721 } 722 } 723 break; 724 default: 725 break; 726 } 727 } 728 729 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 730 } 731 732 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 733 // Assume ctz is a relatively cheap operation. 734 return true; 735 } 736 737 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 738 // Assume clz is a relatively cheap operation. 739 return true; 740 } 741 742 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 743 const AddrMode &AM, 744 Type *Ty, unsigned AS, 745 Instruction *I) const { 746 // WebAssembly offsets are added as unsigned without wrapping. The 747 // isLegalAddressingMode gives us no way to determine if wrapping could be 748 // happening, so we approximate this by accepting only non-negative offsets. 749 if (AM.BaseOffs < 0) 750 return false; 751 752 // WebAssembly has no scale register operands. 753 if (AM.Scale != 0) 754 return false; 755 756 // Everything else is legal. 757 return true; 758 } 759 760 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 761 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 762 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 763 // WebAssembly supports unaligned accesses, though it should be declared 764 // with the p2align attribute on loads and stores which do so, and there 765 // may be a performance impact. We tell LLVM they're "fast" because 766 // for the kinds of things that LLVM uses this for (merging adjacent stores 767 // of constants, etc.), WebAssembly implementations will either want the 768 // unaligned access or they'll split anyway. 769 if (Fast) 770 *Fast = true; 771 return true; 772 } 773 774 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 775 AttributeList Attr) const { 776 // The current thinking is that wasm engines will perform this optimization, 777 // so we can save on code size. 778 return true; 779 } 780 781 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 782 EVT ExtT = ExtVal.getValueType(); 783 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 784 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 785 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 786 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 787 } 788 789 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 790 const GlobalAddressSDNode *GA) const { 791 // Wasm doesn't support function addresses with offsets 792 const GlobalValue *GV = GA->getGlobal(); 793 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 794 } 795 796 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 797 LLVMContext &C, 798 EVT VT) const { 799 if (VT.isVector()) 800 return VT.changeVectorElementTypeToInteger(); 801 802 // So far, all branch instructions in Wasm take an I32 condition. 803 // The default TargetLowering::getSetCCResultType returns the pointer size, 804 // which would be useful to reduce instruction counts when testing 805 // against 64-bit pointers/values if at some point Wasm supports that. 806 return EVT::getIntegerVT(C, 32); 807 } 808 809 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 810 const CallInst &I, 811 MachineFunction &MF, 812 unsigned Intrinsic) const { 813 switch (Intrinsic) { 814 case Intrinsic::wasm_memory_atomic_notify: 815 Info.opc = ISD::INTRINSIC_W_CHAIN; 816 Info.memVT = MVT::i32; 817 Info.ptrVal = I.getArgOperand(0); 818 Info.offset = 0; 819 Info.align = Align(4); 820 // atomic.notify instruction does not really load the memory specified with 821 // this argument, but MachineMemOperand should either be load or store, so 822 // we set this to a load. 823 // FIXME Volatile isn't really correct, but currently all LLVM atomic 824 // instructions are treated as volatiles in the backend, so we should be 825 // consistent. The same applies for wasm_atomic_wait intrinsics too. 826 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 827 return true; 828 case Intrinsic::wasm_memory_atomic_wait32: 829 Info.opc = ISD::INTRINSIC_W_CHAIN; 830 Info.memVT = MVT::i32; 831 Info.ptrVal = I.getArgOperand(0); 832 Info.offset = 0; 833 Info.align = Align(4); 834 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 835 return true; 836 case Intrinsic::wasm_memory_atomic_wait64: 837 Info.opc = ISD::INTRINSIC_W_CHAIN; 838 Info.memVT = MVT::i64; 839 Info.ptrVal = I.getArgOperand(0); 840 Info.offset = 0; 841 Info.align = Align(8); 842 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 843 return true; 844 default: 845 return false; 846 } 847 } 848 849 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 850 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 851 const SelectionDAG &DAG, unsigned Depth) const { 852 switch (Op.getOpcode()) { 853 default: 854 break; 855 case ISD::INTRINSIC_WO_CHAIN: { 856 unsigned IntNo = Op.getConstantOperandVal(0); 857 switch (IntNo) { 858 default: 859 break; 860 case Intrinsic::wasm_bitmask: { 861 unsigned BitWidth = Known.getBitWidth(); 862 EVT VT = Op.getOperand(1).getSimpleValueType(); 863 unsigned PossibleBits = VT.getVectorNumElements(); 864 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 865 Known.Zero |= ZeroMask; 866 break; 867 } 868 } 869 } 870 } 871 } 872 873 TargetLoweringBase::LegalizeTypeAction 874 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 875 if (VT.isFixedLengthVector()) { 876 MVT EltVT = VT.getVectorElementType(); 877 // We have legal vector types with these lane types, so widening the 878 // vector would let us use some of the lanes directly without having to 879 // extend or truncate values. 880 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 881 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 882 return TypeWidenVector; 883 } 884 885 return TargetLoweringBase::getPreferredVectorAction(VT); 886 } 887 888 //===----------------------------------------------------------------------===// 889 // WebAssembly Lowering private implementation. 890 //===----------------------------------------------------------------------===// 891 892 //===----------------------------------------------------------------------===// 893 // Lowering Code 894 //===----------------------------------------------------------------------===// 895 896 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 897 MachineFunction &MF = DAG.getMachineFunction(); 898 DAG.getContext()->diagnose( 899 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 900 } 901 902 // Test whether the given calling convention is supported. 903 static bool callingConvSupported(CallingConv::ID CallConv) { 904 // We currently support the language-independent target-independent 905 // conventions. We don't yet have a way to annotate calls with properties like 906 // "cold", and we don't have any call-clobbered registers, so these are mostly 907 // all handled the same. 908 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 909 CallConv == CallingConv::Cold || 910 CallConv == CallingConv::PreserveMost || 911 CallConv == CallingConv::PreserveAll || 912 CallConv == CallingConv::CXX_FAST_TLS || 913 CallConv == CallingConv::WASM_EmscriptenInvoke || 914 CallConv == CallingConv::Swift; 915 } 916 917 SDValue 918 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 919 SmallVectorImpl<SDValue> &InVals) const { 920 SelectionDAG &DAG = CLI.DAG; 921 SDLoc DL = CLI.DL; 922 SDValue Chain = CLI.Chain; 923 SDValue Callee = CLI.Callee; 924 MachineFunction &MF = DAG.getMachineFunction(); 925 auto Layout = MF.getDataLayout(); 926 927 CallingConv::ID CallConv = CLI.CallConv; 928 if (!callingConvSupported(CallConv)) 929 fail(DL, DAG, 930 "WebAssembly doesn't support language-specific or target-specific " 931 "calling conventions yet"); 932 if (CLI.IsPatchPoint) 933 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 934 935 if (CLI.IsTailCall) { 936 auto NoTail = [&](const char *Msg) { 937 if (CLI.CB && CLI.CB->isMustTailCall()) 938 fail(DL, DAG, Msg); 939 CLI.IsTailCall = false; 940 }; 941 942 if (!Subtarget->hasTailCall()) 943 NoTail("WebAssembly 'tail-call' feature not enabled"); 944 945 // Varargs calls cannot be tail calls because the buffer is on the stack 946 if (CLI.IsVarArg) 947 NoTail("WebAssembly does not support varargs tail calls"); 948 949 // Do not tail call unless caller and callee return types match 950 const Function &F = MF.getFunction(); 951 const TargetMachine &TM = getTargetMachine(); 952 Type *RetTy = F.getReturnType(); 953 SmallVector<MVT, 4> CallerRetTys; 954 SmallVector<MVT, 4> CalleeRetTys; 955 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 956 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 957 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 958 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 959 CalleeRetTys.begin()); 960 if (!TypesMatch) 961 NoTail("WebAssembly tail call requires caller and callee return types to " 962 "match"); 963 964 // If pointers to local stack values are passed, we cannot tail call 965 if (CLI.CB) { 966 for (auto &Arg : CLI.CB->args()) { 967 Value *Val = Arg.get(); 968 // Trace the value back through pointer operations 969 while (true) { 970 Value *Src = Val->stripPointerCastsAndAliases(); 971 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 972 Src = GEP->getPointerOperand(); 973 if (Val == Src) 974 break; 975 Val = Src; 976 } 977 if (isa<AllocaInst>(Val)) { 978 NoTail( 979 "WebAssembly does not support tail calling with stack arguments"); 980 break; 981 } 982 } 983 } 984 } 985 986 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 987 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 988 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 989 990 // The generic code may have added an sret argument. If we're lowering an 991 // invoke function, the ABI requires that the function pointer be the first 992 // argument, so we may have to swap the arguments. 993 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 994 Outs[0].Flags.isSRet()) { 995 std::swap(Outs[0], Outs[1]); 996 std::swap(OutVals[0], OutVals[1]); 997 } 998 999 bool HasSwiftSelfArg = false; 1000 bool HasSwiftErrorArg = false; 1001 unsigned NumFixedArgs = 0; 1002 for (unsigned I = 0; I < Outs.size(); ++I) { 1003 const ISD::OutputArg &Out = Outs[I]; 1004 SDValue &OutVal = OutVals[I]; 1005 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1006 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1007 if (Out.Flags.isNest()) 1008 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1009 if (Out.Flags.isInAlloca()) 1010 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1011 if (Out.Flags.isInConsecutiveRegs()) 1012 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1013 if (Out.Flags.isInConsecutiveRegsLast()) 1014 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1015 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1016 auto &MFI = MF.getFrameInfo(); 1017 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1018 Out.Flags.getNonZeroByValAlign(), 1019 /*isSS=*/false); 1020 SDValue SizeNode = 1021 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1022 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1023 Chain = DAG.getMemcpy( 1024 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1025 /*isVolatile*/ false, /*AlwaysInline=*/false, 1026 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1027 OutVal = FINode; 1028 } 1029 // Count the number of fixed args *after* legalization. 1030 NumFixedArgs += Out.IsFixed; 1031 } 1032 1033 bool IsVarArg = CLI.IsVarArg; 1034 auto PtrVT = getPointerTy(Layout); 1035 1036 // For swiftcc, emit additional swiftself and swifterror arguments 1037 // if there aren't. These additional arguments are also added for callee 1038 // signature They are necessary to match callee and caller signature for 1039 // indirect call. 1040 if (CallConv == CallingConv::Swift) { 1041 if (!HasSwiftSelfArg) { 1042 NumFixedArgs++; 1043 ISD::OutputArg Arg; 1044 Arg.Flags.setSwiftSelf(); 1045 CLI.Outs.push_back(Arg); 1046 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1047 CLI.OutVals.push_back(ArgVal); 1048 } 1049 if (!HasSwiftErrorArg) { 1050 NumFixedArgs++; 1051 ISD::OutputArg Arg; 1052 Arg.Flags.setSwiftError(); 1053 CLI.Outs.push_back(Arg); 1054 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1055 CLI.OutVals.push_back(ArgVal); 1056 } 1057 } 1058 1059 // Analyze operands of the call, assigning locations to each operand. 1060 SmallVector<CCValAssign, 16> ArgLocs; 1061 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1062 1063 if (IsVarArg) { 1064 // Outgoing non-fixed arguments are placed in a buffer. First 1065 // compute their offsets and the total amount of buffer space needed. 1066 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1067 const ISD::OutputArg &Out = Outs[I]; 1068 SDValue &Arg = OutVals[I]; 1069 EVT VT = Arg.getValueType(); 1070 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1071 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1072 Align Alignment = 1073 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1074 unsigned Offset = 1075 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1076 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1077 Offset, VT.getSimpleVT(), 1078 CCValAssign::Full)); 1079 } 1080 } 1081 1082 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1083 1084 SDValue FINode; 1085 if (IsVarArg && NumBytes) { 1086 // For non-fixed arguments, next emit stores to store the argument values 1087 // to the stack buffer at the offsets computed above. 1088 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1089 Layout.getStackAlignment(), 1090 /*isSS=*/false); 1091 unsigned ValNo = 0; 1092 SmallVector<SDValue, 8> Chains; 1093 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1094 assert(ArgLocs[ValNo].getValNo() == ValNo && 1095 "ArgLocs should remain in order and only hold varargs args"); 1096 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1097 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1098 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1099 DAG.getConstant(Offset, DL, PtrVT)); 1100 Chains.push_back( 1101 DAG.getStore(Chain, DL, Arg, Add, 1102 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1103 } 1104 if (!Chains.empty()) 1105 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1106 } else if (IsVarArg) { 1107 FINode = DAG.getIntPtrConstant(0, DL); 1108 } 1109 1110 if (Callee->getOpcode() == ISD::GlobalAddress) { 1111 // If the callee is a GlobalAddress node (quite common, every direct call 1112 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1113 // doesn't at MO_GOT which is not needed for direct calls. 1114 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1115 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1116 getPointerTy(DAG.getDataLayout()), 1117 GA->getOffset()); 1118 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1119 getPointerTy(DAG.getDataLayout()), Callee); 1120 } 1121 1122 // Compute the operands for the CALLn node. 1123 SmallVector<SDValue, 16> Ops; 1124 Ops.push_back(Chain); 1125 Ops.push_back(Callee); 1126 1127 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1128 // isn't reliable. 1129 Ops.append(OutVals.begin(), 1130 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1131 // Add a pointer to the vararg buffer. 1132 if (IsVarArg) 1133 Ops.push_back(FINode); 1134 1135 SmallVector<EVT, 8> InTys; 1136 for (const auto &In : Ins) { 1137 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1138 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1139 if (In.Flags.isInAlloca()) 1140 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1141 if (In.Flags.isInConsecutiveRegs()) 1142 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1143 if (In.Flags.isInConsecutiveRegsLast()) 1144 fail(DL, DAG, 1145 "WebAssembly hasn't implemented cons regs last return values"); 1146 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1147 // registers. 1148 InTys.push_back(In.VT); 1149 } 1150 1151 // Lastly, if this is a call to a funcref we need to add an instruction 1152 // table.set to the chain and transform the call. 1153 if (CLI.CB && 1154 WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) { 1155 // In the absence of function references proposal where a funcref call is 1156 // lowered to call_ref, using reference types we generate a table.set to set 1157 // the funcref to a special table used solely for this purpose, followed by 1158 // a call_indirect. Here we just generate the table set, and return the 1159 // SDValue of the table.set so that LowerCall can finalize the lowering by 1160 // generating the call_indirect. 1161 SDValue Chain = Ops[0]; 1162 1163 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1164 MF.getContext(), Subtarget); 1165 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1166 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1167 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1168 SDValue TableSet = DAG.getMemIntrinsicNode( 1169 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1170 MVT::funcref, 1171 // Machine Mem Operand args 1172 MachinePointerInfo( 1173 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1174 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1175 MachineMemOperand::MOStore); 1176 1177 Ops[0] = TableSet; // The new chain is the TableSet itself 1178 } 1179 1180 if (CLI.IsTailCall) { 1181 // ret_calls do not return values to the current frame 1182 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1183 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1184 } 1185 1186 InTys.push_back(MVT::Other); 1187 SDVTList InTyList = DAG.getVTList(InTys); 1188 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1189 1190 for (size_t I = 0; I < Ins.size(); ++I) 1191 InVals.push_back(Res.getValue(I)); 1192 1193 // Return the chain 1194 return Res.getValue(Ins.size()); 1195 } 1196 1197 bool WebAssemblyTargetLowering::CanLowerReturn( 1198 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1199 const SmallVectorImpl<ISD::OutputArg> &Outs, 1200 LLVMContext & /*Context*/) const { 1201 // WebAssembly can only handle returning tuples with multivalue enabled 1202 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1203 } 1204 1205 SDValue WebAssemblyTargetLowering::LowerReturn( 1206 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1207 const SmallVectorImpl<ISD::OutputArg> &Outs, 1208 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1209 SelectionDAG &DAG) const { 1210 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1211 "MVP WebAssembly can only return up to one value"); 1212 if (!callingConvSupported(CallConv)) 1213 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1214 1215 SmallVector<SDValue, 4> RetOps(1, Chain); 1216 RetOps.append(OutVals.begin(), OutVals.end()); 1217 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1218 1219 // Record the number and types of the return values. 1220 for (const ISD::OutputArg &Out : Outs) { 1221 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1222 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1223 assert(Out.IsFixed && "non-fixed return value is not valid"); 1224 if (Out.Flags.isInAlloca()) 1225 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1226 if (Out.Flags.isInConsecutiveRegs()) 1227 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1228 if (Out.Flags.isInConsecutiveRegsLast()) 1229 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1230 } 1231 1232 return Chain; 1233 } 1234 1235 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1236 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1237 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1238 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1239 if (!callingConvSupported(CallConv)) 1240 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1241 1242 MachineFunction &MF = DAG.getMachineFunction(); 1243 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1244 1245 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1246 // of the incoming values before they're represented by virtual registers. 1247 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1248 1249 bool HasSwiftErrorArg = false; 1250 bool HasSwiftSelfArg = false; 1251 for (const ISD::InputArg &In : Ins) { 1252 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1253 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1254 if (In.Flags.isInAlloca()) 1255 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1256 if (In.Flags.isNest()) 1257 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1258 if (In.Flags.isInConsecutiveRegs()) 1259 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1260 if (In.Flags.isInConsecutiveRegsLast()) 1261 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1262 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1263 // registers. 1264 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1265 DAG.getTargetConstant(InVals.size(), 1266 DL, MVT::i32)) 1267 : DAG.getUNDEF(In.VT)); 1268 1269 // Record the number and types of arguments. 1270 MFI->addParam(In.VT); 1271 } 1272 1273 // For swiftcc, emit additional swiftself and swifterror arguments 1274 // if there aren't. These additional arguments are also added for callee 1275 // signature They are necessary to match callee and caller signature for 1276 // indirect call. 1277 auto PtrVT = getPointerTy(MF.getDataLayout()); 1278 if (CallConv == CallingConv::Swift) { 1279 if (!HasSwiftSelfArg) { 1280 MFI->addParam(PtrVT); 1281 } 1282 if (!HasSwiftErrorArg) { 1283 MFI->addParam(PtrVT); 1284 } 1285 } 1286 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1287 // the buffer is passed as an argument. 1288 if (IsVarArg) { 1289 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1290 Register VarargVreg = 1291 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1292 MFI->setVarargBufferVreg(VarargVreg); 1293 Chain = DAG.getCopyToReg( 1294 Chain, DL, VarargVreg, 1295 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1296 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1297 MFI->addParam(PtrVT); 1298 } 1299 1300 // Record the number and types of arguments and results. 1301 SmallVector<MVT, 4> Params; 1302 SmallVector<MVT, 4> Results; 1303 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1304 MF.getFunction(), DAG.getTarget(), Params, Results); 1305 for (MVT VT : Results) 1306 MFI->addResult(VT); 1307 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1308 // the param logic here with ComputeSignatureVTs 1309 assert(MFI->getParams().size() == Params.size() && 1310 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1311 Params.begin())); 1312 1313 return Chain; 1314 } 1315 1316 void WebAssemblyTargetLowering::ReplaceNodeResults( 1317 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1318 switch (N->getOpcode()) { 1319 case ISD::SIGN_EXTEND_INREG: 1320 // Do not add any results, signifying that N should not be custom lowered 1321 // after all. This happens because simd128 turns on custom lowering for 1322 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1323 // illegal type. 1324 break; 1325 default: 1326 llvm_unreachable( 1327 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1328 } 1329 } 1330 1331 //===----------------------------------------------------------------------===// 1332 // Custom lowering hooks. 1333 //===----------------------------------------------------------------------===// 1334 1335 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1336 SelectionDAG &DAG) const { 1337 SDLoc DL(Op); 1338 switch (Op.getOpcode()) { 1339 default: 1340 llvm_unreachable("unimplemented operation lowering"); 1341 return SDValue(); 1342 case ISD::FrameIndex: 1343 return LowerFrameIndex(Op, DAG); 1344 case ISD::GlobalAddress: 1345 return LowerGlobalAddress(Op, DAG); 1346 case ISD::GlobalTLSAddress: 1347 return LowerGlobalTLSAddress(Op, DAG); 1348 case ISD::ExternalSymbol: 1349 return LowerExternalSymbol(Op, DAG); 1350 case ISD::JumpTable: 1351 return LowerJumpTable(Op, DAG); 1352 case ISD::BR_JT: 1353 return LowerBR_JT(Op, DAG); 1354 case ISD::VASTART: 1355 return LowerVASTART(Op, DAG); 1356 case ISD::BlockAddress: 1357 case ISD::BRIND: 1358 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1359 return SDValue(); 1360 case ISD::RETURNADDR: 1361 return LowerRETURNADDR(Op, DAG); 1362 case ISD::FRAMEADDR: 1363 return LowerFRAMEADDR(Op, DAG); 1364 case ISD::CopyToReg: 1365 return LowerCopyToReg(Op, DAG); 1366 case ISD::EXTRACT_VECTOR_ELT: 1367 case ISD::INSERT_VECTOR_ELT: 1368 return LowerAccessVectorElement(Op, DAG); 1369 case ISD::INTRINSIC_VOID: 1370 case ISD::INTRINSIC_WO_CHAIN: 1371 case ISD::INTRINSIC_W_CHAIN: 1372 return LowerIntrinsic(Op, DAG); 1373 case ISD::SIGN_EXTEND_INREG: 1374 return LowerSIGN_EXTEND_INREG(Op, DAG); 1375 case ISD::BUILD_VECTOR: 1376 return LowerBUILD_VECTOR(Op, DAG); 1377 case ISD::VECTOR_SHUFFLE: 1378 return LowerVECTOR_SHUFFLE(Op, DAG); 1379 case ISD::SETCC: 1380 return LowerSETCC(Op, DAG); 1381 case ISD::SHL: 1382 case ISD::SRA: 1383 case ISD::SRL: 1384 return LowerShift(Op, DAG); 1385 case ISD::FP_TO_SINT_SAT: 1386 case ISD::FP_TO_UINT_SAT: 1387 return LowerFP_TO_INT_SAT(Op, DAG); 1388 case ISD::LOAD: 1389 return LowerLoad(Op, DAG); 1390 case ISD::STORE: 1391 return LowerStore(Op, DAG); 1392 } 1393 } 1394 1395 static bool IsWebAssemblyGlobal(SDValue Op) { 1396 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1397 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1398 1399 return false; 1400 } 1401 1402 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1403 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1404 if (!FI) 1405 return None; 1406 1407 auto &MF = DAG.getMachineFunction(); 1408 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1409 } 1410 1411 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1412 SelectionDAG &DAG) const { 1413 SDLoc DL(Op); 1414 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1415 const SDValue &Value = SN->getValue(); 1416 const SDValue &Base = SN->getBasePtr(); 1417 const SDValue &Offset = SN->getOffset(); 1418 1419 if (IsWebAssemblyGlobal(Base)) { 1420 if (!Offset->isUndef()) 1421 report_fatal_error("unexpected offset when storing to webassembly global", 1422 false); 1423 1424 SDVTList Tys = DAG.getVTList(MVT::Other); 1425 SDValue Ops[] = {SN->getChain(), Value, Base}; 1426 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1427 SN->getMemoryVT(), SN->getMemOperand()); 1428 } 1429 1430 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1431 if (!Offset->isUndef()) 1432 report_fatal_error("unexpected offset when storing to webassembly local", 1433 false); 1434 1435 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1436 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1437 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1438 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1439 } 1440 1441 return Op; 1442 } 1443 1444 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1445 SelectionDAG &DAG) const { 1446 SDLoc DL(Op); 1447 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1448 const SDValue &Base = LN->getBasePtr(); 1449 const SDValue &Offset = LN->getOffset(); 1450 1451 if (IsWebAssemblyGlobal(Base)) { 1452 if (!Offset->isUndef()) 1453 report_fatal_error( 1454 "unexpected offset when loading from webassembly global", false); 1455 1456 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1457 SDValue Ops[] = {LN->getChain(), Base}; 1458 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1459 LN->getMemoryVT(), LN->getMemOperand()); 1460 } 1461 1462 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1463 if (!Offset->isUndef()) 1464 report_fatal_error( 1465 "unexpected offset when loading from webassembly local", false); 1466 1467 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1468 EVT LocalVT = LN->getValueType(0); 1469 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1470 {LN->getChain(), Idx}); 1471 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1472 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1473 return Result; 1474 } 1475 1476 return Op; 1477 } 1478 1479 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1480 SelectionDAG &DAG) const { 1481 SDValue Src = Op.getOperand(2); 1482 if (isa<FrameIndexSDNode>(Src.getNode())) { 1483 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1484 // the FI to some LEA-like instruction, but since we don't have that, we 1485 // need to insert some kind of instruction that can take an FI operand and 1486 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1487 // local.copy between Op and its FI operand. 1488 SDValue Chain = Op.getOperand(0); 1489 SDLoc DL(Op); 1490 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1491 EVT VT = Src.getValueType(); 1492 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1493 : WebAssembly::COPY_I64, 1494 DL, VT, Src), 1495 0); 1496 return Op.getNode()->getNumValues() == 1 1497 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1498 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1499 Op.getNumOperands() == 4 ? Op.getOperand(3) 1500 : SDValue()); 1501 } 1502 return SDValue(); 1503 } 1504 1505 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1506 SelectionDAG &DAG) const { 1507 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1508 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1509 } 1510 1511 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1512 SelectionDAG &DAG) const { 1513 SDLoc DL(Op); 1514 1515 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1516 fail(DL, DAG, 1517 "Non-Emscripten WebAssembly hasn't implemented " 1518 "__builtin_return_address"); 1519 return SDValue(); 1520 } 1521 1522 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1523 return SDValue(); 1524 1525 unsigned Depth = Op.getConstantOperandVal(0); 1526 MakeLibCallOptions CallOptions; 1527 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1528 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1529 .first; 1530 } 1531 1532 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1533 SelectionDAG &DAG) const { 1534 // Non-zero depths are not supported by WebAssembly currently. Use the 1535 // legalizer's default expansion, which is to return 0 (what this function is 1536 // documented to do). 1537 if (Op.getConstantOperandVal(0) > 0) 1538 return SDValue(); 1539 1540 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1541 EVT VT = Op.getValueType(); 1542 Register FP = 1543 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1544 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1545 } 1546 1547 SDValue 1548 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1549 SelectionDAG &DAG) const { 1550 SDLoc DL(Op); 1551 const auto *GA = cast<GlobalAddressSDNode>(Op); 1552 1553 MachineFunction &MF = DAG.getMachineFunction(); 1554 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1555 report_fatal_error("cannot use thread-local storage without bulk memory", 1556 false); 1557 1558 const GlobalValue *GV = GA->getGlobal(); 1559 1560 // Currently Emscripten does not support dynamic linking with threads. 1561 // Therefore, if we have thread-local storage, only the local-exec model 1562 // is possible. 1563 // TODO: remove this and implement proper TLS models once Emscripten 1564 // supports dynamic linking with threads. 1565 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1566 !Subtarget->getTargetTriple().isOSEmscripten()) { 1567 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1568 "non-Emscripten OSes: variable " + 1569 GV->getName(), 1570 false); 1571 } 1572 1573 auto model = GV->getThreadLocalMode(); 1574 1575 // Unsupported TLS modes 1576 assert(model != GlobalValue::NotThreadLocal); 1577 assert(model != GlobalValue::InitialExecTLSModel); 1578 1579 if (model == GlobalValue::LocalExecTLSModel || 1580 model == GlobalValue::LocalDynamicTLSModel || 1581 (model == GlobalValue::GeneralDynamicTLSModel && 1582 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { 1583 // For DSO-local TLS variables we use offset from __tls_base 1584 1585 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1586 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1587 : WebAssembly::GLOBAL_GET_I32; 1588 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1589 1590 SDValue BaseAddr( 1591 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1592 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1593 0); 1594 1595 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1596 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1597 SDValue SymOffset = 1598 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1599 1600 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1601 } 1602 1603 assert(model == GlobalValue::GeneralDynamicTLSModel); 1604 1605 EVT VT = Op.getValueType(); 1606 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1607 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1608 GA->getOffset(), 1609 WebAssemblyII::MO_GOT_TLS)); 1610 } 1611 1612 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1613 SelectionDAG &DAG) const { 1614 SDLoc DL(Op); 1615 const auto *GA = cast<GlobalAddressSDNode>(Op); 1616 EVT VT = Op.getValueType(); 1617 assert(GA->getTargetFlags() == 0 && 1618 "Unexpected target flags on generic GlobalAddressSDNode"); 1619 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1620 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1621 1622 unsigned OperandFlags = 0; 1623 if (isPositionIndependent()) { 1624 const GlobalValue *GV = GA->getGlobal(); 1625 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1626 MachineFunction &MF = DAG.getMachineFunction(); 1627 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1628 const char *BaseName; 1629 if (GV->getValueType()->isFunctionTy()) { 1630 BaseName = MF.createExternalSymbolName("__table_base"); 1631 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1632 } 1633 else { 1634 BaseName = MF.createExternalSymbolName("__memory_base"); 1635 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1636 } 1637 SDValue BaseAddr = 1638 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1639 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1640 1641 SDValue SymAddr = DAG.getNode( 1642 WebAssemblyISD::WrapperREL, DL, VT, 1643 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1644 OperandFlags)); 1645 1646 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1647 } 1648 OperandFlags = WebAssemblyII::MO_GOT; 1649 } 1650 1651 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1652 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1653 GA->getOffset(), OperandFlags)); 1654 } 1655 1656 SDValue 1657 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1658 SelectionDAG &DAG) const { 1659 SDLoc DL(Op); 1660 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1661 EVT VT = Op.getValueType(); 1662 assert(ES->getTargetFlags() == 0 && 1663 "Unexpected target flags on generic ExternalSymbolSDNode"); 1664 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1665 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1666 } 1667 1668 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1669 SelectionDAG &DAG) const { 1670 // There's no need for a Wrapper node because we always incorporate a jump 1671 // table operand into a BR_TABLE instruction, rather than ever 1672 // materializing it in a register. 1673 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1674 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1675 JT->getTargetFlags()); 1676 } 1677 1678 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1679 SelectionDAG &DAG) const { 1680 SDLoc DL(Op); 1681 SDValue Chain = Op.getOperand(0); 1682 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1683 SDValue Index = Op.getOperand(2); 1684 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1685 1686 SmallVector<SDValue, 8> Ops; 1687 Ops.push_back(Chain); 1688 Ops.push_back(Index); 1689 1690 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1691 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1692 1693 // Add an operand for each case. 1694 for (auto MBB : MBBs) 1695 Ops.push_back(DAG.getBasicBlock(MBB)); 1696 1697 // Add the first MBB as a dummy default target for now. This will be replaced 1698 // with the proper default target (and the preceding range check eliminated) 1699 // if possible by WebAssemblyFixBrTableDefaults. 1700 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1701 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1702 } 1703 1704 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1705 SelectionDAG &DAG) const { 1706 SDLoc DL(Op); 1707 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1708 1709 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1710 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1711 1712 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1713 MFI->getVarargBufferVreg(), PtrVT); 1714 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1715 MachinePointerInfo(SV)); 1716 } 1717 1718 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1719 SelectionDAG &DAG) const { 1720 MachineFunction &MF = DAG.getMachineFunction(); 1721 unsigned IntNo; 1722 switch (Op.getOpcode()) { 1723 case ISD::INTRINSIC_VOID: 1724 case ISD::INTRINSIC_W_CHAIN: 1725 IntNo = Op.getConstantOperandVal(1); 1726 break; 1727 case ISD::INTRINSIC_WO_CHAIN: 1728 IntNo = Op.getConstantOperandVal(0); 1729 break; 1730 default: 1731 llvm_unreachable("Invalid intrinsic"); 1732 } 1733 SDLoc DL(Op); 1734 1735 switch (IntNo) { 1736 default: 1737 return SDValue(); // Don't custom lower most intrinsics. 1738 1739 case Intrinsic::wasm_lsda: { 1740 EVT VT = Op.getValueType(); 1741 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1742 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1743 auto &Context = MF.getMMI().getContext(); 1744 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1745 Twine(MF.getFunctionNumber())); 1746 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1747 DAG.getMCSymbol(S, PtrVT)); 1748 } 1749 1750 case Intrinsic::wasm_shuffle: { 1751 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1752 SDValue Ops[18]; 1753 size_t OpIdx = 0; 1754 Ops[OpIdx++] = Op.getOperand(1); 1755 Ops[OpIdx++] = Op.getOperand(2); 1756 while (OpIdx < 18) { 1757 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1758 if (MaskIdx.isUndef() || 1759 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1760 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1761 } else { 1762 Ops[OpIdx++] = MaskIdx; 1763 } 1764 } 1765 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1766 } 1767 } 1768 } 1769 1770 SDValue 1771 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1772 SelectionDAG &DAG) const { 1773 SDLoc DL(Op); 1774 // If sign extension operations are disabled, allow sext_inreg only if operand 1775 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1776 // extension operations, but allowing sext_inreg in this context lets us have 1777 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1778 // everywhere would be simpler in this file, but would necessitate large and 1779 // brittle patterns to undo the expansion and select extract_lane_s 1780 // instructions. 1781 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1782 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1783 return SDValue(); 1784 1785 const SDValue &Extract = Op.getOperand(0); 1786 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1787 if (VecT.getVectorElementType().getSizeInBits() > 32) 1788 return SDValue(); 1789 MVT ExtractedLaneT = 1790 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1791 MVT ExtractedVecT = 1792 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1793 if (ExtractedVecT == VecT) 1794 return Op; 1795 1796 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1797 const SDNode *Index = Extract.getOperand(1).getNode(); 1798 if (!isa<ConstantSDNode>(Index)) 1799 return SDValue(); 1800 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1801 unsigned Scale = 1802 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1803 assert(Scale > 1); 1804 SDValue NewIndex = 1805 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1806 SDValue NewExtract = DAG.getNode( 1807 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1808 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1809 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1810 Op.getOperand(1)); 1811 } 1812 1813 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1814 SDLoc DL(Op); 1815 if (Op.getValueType() != MVT::v2f64) 1816 return SDValue(); 1817 1818 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1819 unsigned &Index) -> bool { 1820 switch (Op.getOpcode()) { 1821 case ISD::SINT_TO_FP: 1822 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1823 break; 1824 case ISD::UINT_TO_FP: 1825 Opcode = WebAssemblyISD::CONVERT_LOW_U; 1826 break; 1827 case ISD::FP_EXTEND: 1828 Opcode = WebAssemblyISD::PROMOTE_LOW; 1829 break; 1830 default: 1831 return false; 1832 } 1833 1834 auto ExtractVector = Op.getOperand(0); 1835 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1836 return false; 1837 1838 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 1839 return false; 1840 1841 SrcVec = ExtractVector.getOperand(0); 1842 Index = ExtractVector.getConstantOperandVal(1); 1843 return true; 1844 }; 1845 1846 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 1847 SDValue LHSSrcVec, RHSSrcVec; 1848 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 1849 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 1850 return SDValue(); 1851 1852 if (LHSOpcode != RHSOpcode) 1853 return SDValue(); 1854 1855 MVT ExpectedSrcVT; 1856 switch (LHSOpcode) { 1857 case WebAssemblyISD::CONVERT_LOW_S: 1858 case WebAssemblyISD::CONVERT_LOW_U: 1859 ExpectedSrcVT = MVT::v4i32; 1860 break; 1861 case WebAssemblyISD::PROMOTE_LOW: 1862 ExpectedSrcVT = MVT::v4f32; 1863 break; 1864 } 1865 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 1866 return SDValue(); 1867 1868 auto Src = LHSSrcVec; 1869 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 1870 // Shuffle the source vector so that the converted lanes are the low lanes. 1871 Src = DAG.getVectorShuffle( 1872 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 1873 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 1874 } 1875 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 1876 } 1877 1878 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1879 SelectionDAG &DAG) const { 1880 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 1881 return ConvertLow; 1882 1883 SDLoc DL(Op); 1884 const EVT VecT = Op.getValueType(); 1885 const EVT LaneT = Op.getOperand(0).getValueType(); 1886 const size_t Lanes = Op.getNumOperands(); 1887 bool CanSwizzle = VecT == MVT::v16i8; 1888 1889 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1890 // possible number of lanes at once followed by a sequence of replace_lane 1891 // instructions to individually initialize any remaining lanes. 1892 1893 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1894 // swizzled lanes should be given greater weight. 1895 1896 // TODO: Investigate looping rather than always extracting/replacing specific 1897 // lanes to fill gaps. 1898 1899 auto IsConstant = [](const SDValue &V) { 1900 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1901 }; 1902 1903 // Returns the source vector and index vector pair if they exist. Checks for: 1904 // (extract_vector_elt 1905 // $src, 1906 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1907 // ) 1908 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1909 auto Bail = std::make_pair(SDValue(), SDValue()); 1910 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1911 return Bail; 1912 const SDValue &SwizzleSrc = Lane->getOperand(0); 1913 const SDValue &IndexExt = Lane->getOperand(1); 1914 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1915 return Bail; 1916 const SDValue &Index = IndexExt->getOperand(0); 1917 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1918 return Bail; 1919 const SDValue &SwizzleIndices = Index->getOperand(0); 1920 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1921 SwizzleIndices.getValueType() != MVT::v16i8 || 1922 Index->getOperand(1)->getOpcode() != ISD::Constant || 1923 Index->getConstantOperandVal(1) != I) 1924 return Bail; 1925 return std::make_pair(SwizzleSrc, SwizzleIndices); 1926 }; 1927 1928 // If the lane is extracted from another vector at a constant index, return 1929 // that vector. The source vector must not have more lanes than the dest 1930 // because the shufflevector indices are in terms of the destination lanes and 1931 // would not be able to address the smaller individual source lanes. 1932 auto GetShuffleSrc = [&](const SDValue &Lane) { 1933 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1934 return SDValue(); 1935 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1936 return SDValue(); 1937 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1938 VecT.getVectorNumElements()) 1939 return SDValue(); 1940 return Lane->getOperand(0); 1941 }; 1942 1943 using ValueEntry = std::pair<SDValue, size_t>; 1944 SmallVector<ValueEntry, 16> SplatValueCounts; 1945 1946 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1947 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1948 1949 using ShuffleEntry = std::pair<SDValue, size_t>; 1950 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1951 1952 auto AddCount = [](auto &Counts, const auto &Val) { 1953 auto CountIt = 1954 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1955 if (CountIt == Counts.end()) { 1956 Counts.emplace_back(Val, 1); 1957 } else { 1958 CountIt->second++; 1959 } 1960 }; 1961 1962 auto GetMostCommon = [](auto &Counts) { 1963 auto CommonIt = 1964 std::max_element(Counts.begin(), Counts.end(), 1965 [](auto A, auto B) { return A.second < B.second; }); 1966 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1967 return *CommonIt; 1968 }; 1969 1970 size_t NumConstantLanes = 0; 1971 1972 // Count eligible lanes for each type of vector creation op 1973 for (size_t I = 0; I < Lanes; ++I) { 1974 const SDValue &Lane = Op->getOperand(I); 1975 if (Lane.isUndef()) 1976 continue; 1977 1978 AddCount(SplatValueCounts, Lane); 1979 1980 if (IsConstant(Lane)) 1981 NumConstantLanes++; 1982 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1983 AddCount(ShuffleCounts, ShuffleSrc); 1984 if (CanSwizzle) { 1985 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1986 if (SwizzleSrcs.first) 1987 AddCount(SwizzleCounts, SwizzleSrcs); 1988 } 1989 } 1990 1991 SDValue SplatValue; 1992 size_t NumSplatLanes; 1993 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1994 1995 SDValue SwizzleSrc; 1996 SDValue SwizzleIndices; 1997 size_t NumSwizzleLanes = 0; 1998 if (SwizzleCounts.size()) 1999 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2000 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2001 2002 // Shuffles can draw from up to two vectors, so find the two most common 2003 // sources. 2004 SDValue ShuffleSrc1, ShuffleSrc2; 2005 size_t NumShuffleLanes = 0; 2006 if (ShuffleCounts.size()) { 2007 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2008 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 2009 ShuffleCounts.end(), 2010 [&](const auto &Pair) { 2011 return Pair.first == ShuffleSrc1; 2012 }), 2013 ShuffleCounts.end()); 2014 } 2015 if (ShuffleCounts.size()) { 2016 size_t AdditionalShuffleLanes; 2017 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2018 GetMostCommon(ShuffleCounts); 2019 NumShuffleLanes += AdditionalShuffleLanes; 2020 } 2021 2022 // Predicate returning true if the lane is properly initialized by the 2023 // original instruction 2024 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2025 SDValue Result; 2026 // Prefer swizzles over shuffles over vector consts over splats 2027 if (NumSwizzleLanes >= NumShuffleLanes && 2028 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2029 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2030 SwizzleIndices); 2031 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2032 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2033 return Swizzled == GetSwizzleSrcs(I, Lane); 2034 }; 2035 } else if (NumShuffleLanes >= NumConstantLanes && 2036 NumShuffleLanes >= NumSplatLanes) { 2037 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2038 size_t DestLaneCount = VecT.getVectorNumElements(); 2039 size_t Scale1 = 1; 2040 size_t Scale2 = 1; 2041 SDValue Src1 = ShuffleSrc1; 2042 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2043 if (Src1.getValueType() != VecT) { 2044 size_t LaneSize = 2045 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2046 assert(LaneSize > DestLaneSize); 2047 Scale1 = LaneSize / DestLaneSize; 2048 Src1 = DAG.getBitcast(VecT, Src1); 2049 } 2050 if (Src2.getValueType() != VecT) { 2051 size_t LaneSize = 2052 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2053 assert(LaneSize > DestLaneSize); 2054 Scale2 = LaneSize / DestLaneSize; 2055 Src2 = DAG.getBitcast(VecT, Src2); 2056 } 2057 2058 int Mask[16]; 2059 assert(DestLaneCount <= 16); 2060 for (size_t I = 0; I < DestLaneCount; ++I) { 2061 const SDValue &Lane = Op->getOperand(I); 2062 SDValue Src = GetShuffleSrc(Lane); 2063 if (Src == ShuffleSrc1) { 2064 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2065 } else if (Src && Src == ShuffleSrc2) { 2066 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2067 } else { 2068 Mask[I] = -1; 2069 } 2070 } 2071 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2072 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2073 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2074 auto Src = GetShuffleSrc(Lane); 2075 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2076 }; 2077 } else if (NumConstantLanes >= NumSplatLanes) { 2078 SmallVector<SDValue, 16> ConstLanes; 2079 for (const SDValue &Lane : Op->op_values()) { 2080 if (IsConstant(Lane)) { 2081 // Values may need to be fixed so that they will sign extend to be 2082 // within the expected range during ISel. Check whether the value is in 2083 // bounds based on the lane bit width and if it is out of bounds, lop 2084 // off the extra bits and subtract 2^n to reflect giving the high bit 2085 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2086 // cannot possibly be out of range. 2087 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2088 int64_t Val = Const ? Const->getSExtValue() : 0; 2089 uint64_t LaneBits = 128 / Lanes; 2090 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2091 "Unexpected out of bounds negative value"); 2092 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2093 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); 2094 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2095 } else { 2096 ConstLanes.push_back(Lane); 2097 } 2098 } else if (LaneT.isFloatingPoint()) { 2099 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2100 } else { 2101 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2102 } 2103 } 2104 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2105 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2106 return IsConstant(Lane); 2107 }; 2108 } else { 2109 // Use a splat, but possibly a load_splat 2110 LoadSDNode *SplattedLoad; 2111 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 2112 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 2113 Result = DAG.getMemIntrinsicNode( 2114 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 2115 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 2116 SplattedLoad->getOffset()}, 2117 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 2118 } else { 2119 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2120 } 2121 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2122 return Lane == SplatValue; 2123 }; 2124 } 2125 2126 assert(Result); 2127 assert(IsLaneConstructed); 2128 2129 // Add replace_lane instructions for any unhandled values 2130 for (size_t I = 0; I < Lanes; ++I) { 2131 const SDValue &Lane = Op->getOperand(I); 2132 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2133 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2134 DAG.getConstant(I, DL, MVT::i32)); 2135 } 2136 2137 return Result; 2138 } 2139 2140 SDValue 2141 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2142 SelectionDAG &DAG) const { 2143 SDLoc DL(Op); 2144 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2145 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2146 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2147 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2148 2149 // Space for two vector args and sixteen mask indices 2150 SDValue Ops[18]; 2151 size_t OpIdx = 0; 2152 Ops[OpIdx++] = Op.getOperand(0); 2153 Ops[OpIdx++] = Op.getOperand(1); 2154 2155 // Expand mask indices to byte indices and materialize them as operands 2156 for (int M : Mask) { 2157 for (size_t J = 0; J < LaneBytes; ++J) { 2158 // Lower undefs (represented by -1 in mask) to zero 2159 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 2160 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2161 } 2162 } 2163 2164 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2165 } 2166 2167 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2168 SelectionDAG &DAG) const { 2169 SDLoc DL(Op); 2170 // The legalizer does not know how to expand the unsupported comparison modes 2171 // of i64x2 vectors, so we manually unroll them here. 2172 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2173 SmallVector<SDValue, 2> LHS, RHS; 2174 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2175 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2176 const SDValue &CC = Op->getOperand(2); 2177 auto MakeLane = [&](unsigned I) { 2178 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2179 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2180 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2181 }; 2182 return DAG.getBuildVector(Op->getValueType(0), DL, 2183 {MakeLane(0), MakeLane(1)}); 2184 } 2185 2186 SDValue 2187 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2188 SelectionDAG &DAG) const { 2189 // Allow constant lane indices, expand variable lane indices 2190 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2191 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2192 return Op; 2193 else 2194 // Perform default expansion 2195 return SDValue(); 2196 } 2197 2198 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2199 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2200 // 32-bit and 64-bit unrolled shifts will have proper semantics 2201 if (LaneT.bitsGE(MVT::i32)) 2202 return DAG.UnrollVectorOp(Op.getNode()); 2203 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2204 SDLoc DL(Op); 2205 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2206 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2207 unsigned ShiftOpcode = Op.getOpcode(); 2208 SmallVector<SDValue, 16> ShiftedElements; 2209 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2210 SmallVector<SDValue, 16> ShiftElements; 2211 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2212 SmallVector<SDValue, 16> UnrolledOps; 2213 for (size_t i = 0; i < NumLanes; ++i) { 2214 SDValue MaskedShiftValue = 2215 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2216 SDValue ShiftedValue = ShiftedElements[i]; 2217 if (ShiftOpcode == ISD::SRA) 2218 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2219 ShiftedValue, DAG.getValueType(LaneT)); 2220 UnrolledOps.push_back( 2221 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2222 } 2223 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2224 } 2225 2226 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2227 SelectionDAG &DAG) const { 2228 SDLoc DL(Op); 2229 2230 // Only manually lower vector shifts 2231 assert(Op.getSimpleValueType().isVector()); 2232 2233 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2234 if (!ShiftVal) 2235 return unrollVectorShift(Op, DAG); 2236 2237 // Use anyext because none of the high bits can affect the shift 2238 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2239 2240 unsigned Opcode; 2241 switch (Op.getOpcode()) { 2242 case ISD::SHL: 2243 Opcode = WebAssemblyISD::VEC_SHL; 2244 break; 2245 case ISD::SRA: 2246 Opcode = WebAssemblyISD::VEC_SHR_S; 2247 break; 2248 case ISD::SRL: 2249 Opcode = WebAssemblyISD::VEC_SHR_U; 2250 break; 2251 default: 2252 llvm_unreachable("unexpected opcode"); 2253 } 2254 2255 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2256 } 2257 2258 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2259 SelectionDAG &DAG) const { 2260 SDLoc DL(Op); 2261 EVT ResT = Op.getValueType(); 2262 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2263 2264 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2265 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2266 return Op; 2267 2268 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2269 return Op; 2270 2271 return SDValue(); 2272 } 2273 2274 //===----------------------------------------------------------------------===// 2275 // Custom DAG combine hooks 2276 //===----------------------------------------------------------------------===// 2277 static SDValue 2278 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2279 auto &DAG = DCI.DAG; 2280 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2281 2282 // Hoist vector bitcasts that don't change the number of lanes out of unary 2283 // shuffles, where they are less likely to get in the way of other combines. 2284 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2285 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2286 SDValue Bitcast = N->getOperand(0); 2287 if (Bitcast.getOpcode() != ISD::BITCAST) 2288 return SDValue(); 2289 if (!N->getOperand(1).isUndef()) 2290 return SDValue(); 2291 SDValue CastOp = Bitcast.getOperand(0); 2292 MVT SrcType = CastOp.getSimpleValueType(); 2293 MVT DstType = Bitcast.getSimpleValueType(); 2294 if (!SrcType.is128BitVector() || 2295 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2296 return SDValue(); 2297 SDValue NewShuffle = DAG.getVectorShuffle( 2298 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2299 return DAG.getBitcast(DstType, NewShuffle); 2300 } 2301 2302 static SDValue 2303 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2304 auto &DAG = DCI.DAG; 2305 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2306 N->getOpcode() == ISD::ZERO_EXTEND); 2307 2308 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2309 // possible before the extract_subvector can be expanded. 2310 auto Extract = N->getOperand(0); 2311 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2312 return SDValue(); 2313 auto Source = Extract.getOperand(0); 2314 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2315 if (IndexNode == nullptr) 2316 return SDValue(); 2317 auto Index = IndexNode->getZExtValue(); 2318 2319 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2320 // extracted subvector is the low or high half of its source. 2321 EVT ResVT = N->getValueType(0); 2322 if (ResVT == MVT::v8i16) { 2323 if (Extract.getValueType() != MVT::v8i8 || 2324 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2325 return SDValue(); 2326 } else if (ResVT == MVT::v4i32) { 2327 if (Extract.getValueType() != MVT::v4i16 || 2328 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2329 return SDValue(); 2330 } else if (ResVT == MVT::v2i64) { 2331 if (Extract.getValueType() != MVT::v2i32 || 2332 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2333 return SDValue(); 2334 } else { 2335 return SDValue(); 2336 } 2337 2338 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2339 bool IsLow = Index == 0; 2340 2341 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2342 : WebAssemblyISD::EXTEND_HIGH_S) 2343 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2344 : WebAssemblyISD::EXTEND_HIGH_U); 2345 2346 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2347 } 2348 2349 static SDValue 2350 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2351 auto &DAG = DCI.DAG; 2352 2353 auto GetWasmConversionOp = [](unsigned Op) { 2354 switch (Op) { 2355 case ISD::FP_TO_SINT_SAT: 2356 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2357 case ISD::FP_TO_UINT_SAT: 2358 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2359 case ISD::FP_ROUND: 2360 return WebAssemblyISD::DEMOTE_ZERO; 2361 } 2362 llvm_unreachable("unexpected op"); 2363 }; 2364 2365 auto IsZeroSplat = [](SDValue SplatVal) { 2366 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2367 APInt SplatValue, SplatUndef; 2368 unsigned SplatBitSize; 2369 bool HasAnyUndefs; 2370 return Splat && 2371 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2372 HasAnyUndefs) && 2373 SplatValue == 0; 2374 }; 2375 2376 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2377 // Combine this: 2378 // 2379 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2380 // 2381 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2382 // 2383 // Or this: 2384 // 2385 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2386 // 2387 // into (f32x4.demote_zero_f64x2 $x). 2388 EVT ResVT; 2389 EVT ExpectedConversionType; 2390 auto Conversion = N->getOperand(0); 2391 auto ConversionOp = Conversion.getOpcode(); 2392 switch (ConversionOp) { 2393 case ISD::FP_TO_SINT_SAT: 2394 case ISD::FP_TO_UINT_SAT: 2395 ResVT = MVT::v4i32; 2396 ExpectedConversionType = MVT::v2i32; 2397 break; 2398 case ISD::FP_ROUND: 2399 ResVT = MVT::v4f32; 2400 ExpectedConversionType = MVT::v2f32; 2401 break; 2402 default: 2403 return SDValue(); 2404 } 2405 2406 if (N->getValueType(0) != ResVT) 2407 return SDValue(); 2408 2409 if (Conversion.getValueType() != ExpectedConversionType) 2410 return SDValue(); 2411 2412 auto Source = Conversion.getOperand(0); 2413 if (Source.getValueType() != MVT::v2f64) 2414 return SDValue(); 2415 2416 if (!IsZeroSplat(N->getOperand(1)) || 2417 N->getOperand(1).getValueType() != ExpectedConversionType) 2418 return SDValue(); 2419 2420 unsigned Op = GetWasmConversionOp(ConversionOp); 2421 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2422 } 2423 2424 // Combine this: 2425 // 2426 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2427 // 2428 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2429 // 2430 // Or this: 2431 // 2432 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2433 // 2434 // into (f32x4.demote_zero_f64x2 $x). 2435 EVT ResVT; 2436 auto ConversionOp = N->getOpcode(); 2437 switch (ConversionOp) { 2438 case ISD::FP_TO_SINT_SAT: 2439 case ISD::FP_TO_UINT_SAT: 2440 ResVT = MVT::v4i32; 2441 break; 2442 case ISD::FP_ROUND: 2443 ResVT = MVT::v4f32; 2444 break; 2445 default: 2446 llvm_unreachable("unexpected op"); 2447 } 2448 2449 if (N->getValueType(0) != ResVT) 2450 return SDValue(); 2451 2452 auto Concat = N->getOperand(0); 2453 if (Concat.getValueType() != MVT::v4f64) 2454 return SDValue(); 2455 2456 auto Source = Concat.getOperand(0); 2457 if (Source.getValueType() != MVT::v2f64) 2458 return SDValue(); 2459 2460 if (!IsZeroSplat(Concat.getOperand(1)) || 2461 Concat.getOperand(1).getValueType() != MVT::v2f64) 2462 return SDValue(); 2463 2464 unsigned Op = GetWasmConversionOp(ConversionOp); 2465 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2466 } 2467 2468 SDValue 2469 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2470 DAGCombinerInfo &DCI) const { 2471 switch (N->getOpcode()) { 2472 default: 2473 return SDValue(); 2474 case ISD::VECTOR_SHUFFLE: 2475 return performVECTOR_SHUFFLECombine(N, DCI); 2476 case ISD::SIGN_EXTEND: 2477 case ISD::ZERO_EXTEND: 2478 return performVectorExtendCombine(N, DCI); 2479 case ISD::FP_TO_SINT_SAT: 2480 case ISD::FP_TO_UINT_SAT: 2481 case ISD::FP_ROUND: 2482 case ISD::CONCAT_VECTORS: 2483 return performVectorTruncZeroCombine(N, DCI); 2484 } 2485 } 2486