1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetOptions.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-lower" 42 43 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 44 const TargetMachine &TM, const WebAssemblySubtarget &STI) 45 : TargetLowering(TM), Subtarget(&STI) { 46 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 47 48 // Booleans always contain 0 or 1. 49 setBooleanContents(ZeroOrOneBooleanContent); 50 // Except in SIMD vectors 51 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 52 // We don't know the microarchitecture here, so just reduce register pressure. 53 setSchedulingPreference(Sched::RegPressure); 54 // Tell ISel that we have a stack pointer. 55 setStackPointerRegisterToSaveRestore( 56 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 57 // Set up the register classes. 58 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 59 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 60 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 61 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 62 if (Subtarget->hasSIMD128()) { 63 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 69 } 70 if (Subtarget->hasReferenceTypes()) { 71 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 72 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 73 } 74 // Compute derived properties from the register classes. 75 computeRegisterProperties(Subtarget->getRegisterInfo()); 76 77 // Transform loads and stores to pointers in address space 1 to loads and 78 // stores to WebAssembly global variables, outside linear memory. 79 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 80 setOperationAction(ISD::LOAD, T, Custom); 81 setOperationAction(ISD::STORE, T, Custom); 82 } 83 if (Subtarget->hasSIMD128()) { 84 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 85 MVT::v2f64}) { 86 setOperationAction(ISD::LOAD, T, Custom); 87 setOperationAction(ISD::STORE, T, Custom); 88 } 89 } 90 if (Subtarget->hasReferenceTypes()) { 91 for (auto T : {MVT::externref, MVT::funcref}) { 92 setOperationAction(ISD::LOAD, T, Custom); 93 setOperationAction(ISD::STORE, T, Custom); 94 } 95 } 96 97 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 98 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 99 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 100 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 101 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 102 setOperationAction(ISD::BRIND, MVT::Other, Custom); 103 104 // Take the default expansion for va_arg, va_copy, and va_end. There is no 105 // default action for va_start, so we do that custom. 106 setOperationAction(ISD::VASTART, MVT::Other, Custom); 107 setOperationAction(ISD::VAARG, MVT::Other, Expand); 108 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 109 setOperationAction(ISD::VAEND, MVT::Other, Expand); 110 111 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 112 // Don't expand the floating-point types to constant pools. 113 setOperationAction(ISD::ConstantFP, T, Legal); 114 // Expand floating-point comparisons. 115 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 116 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 117 setCondCodeAction(CC, T, Expand); 118 // Expand floating-point library function operators. 119 for (auto Op : 120 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 121 setOperationAction(Op, T, Expand); 122 // Note supported floating-point library function operators that otherwise 123 // default to expand. 124 for (auto Op : 125 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 126 setOperationAction(Op, T, Legal); 127 // Support minimum and maximum, which otherwise default to expand. 128 setOperationAction(ISD::FMINIMUM, T, Legal); 129 setOperationAction(ISD::FMAXIMUM, T, Legal); 130 // WebAssembly currently has no builtin f16 support. 131 setOperationAction(ISD::FP16_TO_FP, T, Expand); 132 setOperationAction(ISD::FP_TO_FP16, T, Expand); 133 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 134 setTruncStoreAction(T, MVT::f16, Expand); 135 } 136 137 // Expand unavailable integer operations. 138 for (auto Op : 139 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 140 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 141 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 142 for (auto T : {MVT::i32, MVT::i64}) 143 setOperationAction(Op, T, Expand); 144 if (Subtarget->hasSIMD128()) 145 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 146 setOperationAction(Op, T, Expand); 147 } 148 149 if (Subtarget->hasNontrappingFPToInt()) 150 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 151 for (auto T : {MVT::i32, MVT::i64}) 152 setOperationAction(Op, T, Custom); 153 154 // SIMD-specific configuration 155 if (Subtarget->hasSIMD128()) { 156 // Hoist bitcasts out of shuffles 157 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 158 159 // Combine extends of extract_subvectors into widening ops 160 setTargetDAGCombine(ISD::SIGN_EXTEND); 161 setTargetDAGCombine(ISD::ZERO_EXTEND); 162 163 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 164 // conversions ops 165 setTargetDAGCombine(ISD::SINT_TO_FP); 166 setTargetDAGCombine(ISD::UINT_TO_FP); 167 setTargetDAGCombine(ISD::FP_EXTEND); 168 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 169 170 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 171 // into conversion ops 172 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 173 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 174 setTargetDAGCombine(ISD::FP_ROUND); 175 setTargetDAGCombine(ISD::CONCAT_VECTORS); 176 177 // Support saturating add for i8x16 and i16x8 178 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 179 for (auto T : {MVT::v16i8, MVT::v8i16}) 180 setOperationAction(Op, T, Legal); 181 182 // Support integer abs 183 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 184 setOperationAction(ISD::ABS, T, Legal); 185 186 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 188 MVT::v2f64}) 189 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 190 191 // We have custom shuffle lowering to expose the shuffle mask 192 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 193 MVT::v2f64}) 194 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 195 196 // Custom lowering since wasm shifts must have a scalar shift amount 197 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 198 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 199 setOperationAction(Op, T, Custom); 200 201 // Custom lower lane accesses to expand out variable indices 202 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 203 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 204 MVT::v2f64}) 205 setOperationAction(Op, T, Custom); 206 207 // There is no i8x16.mul instruction 208 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 209 210 // There is no vector conditional select instruction 211 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 212 MVT::v2f64}) 213 setOperationAction(ISD::SELECT_CC, T, Expand); 214 215 // Expand integer operations supported for scalars but not SIMD 216 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 217 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 218 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 219 setOperationAction(Op, T, Expand); 220 221 // But we do have integer min and max operations 222 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 223 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 224 setOperationAction(Op, T, Legal); 225 226 // And we have popcnt for i8x16 227 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 228 229 // Expand float operations supported for scalars but not SIMD 230 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 231 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 232 for (auto T : {MVT::v4f32, MVT::v2f64}) 233 setOperationAction(Op, T, Expand); 234 235 // Unsigned comparison operations are unavailable for i64x2 vectors. 236 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 237 setCondCodeAction(CC, MVT::v2i64, Custom); 238 239 // 64x2 conversions are not in the spec 240 for (auto Op : 241 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 242 for (auto T : {MVT::v2i64, MVT::v2f64}) 243 setOperationAction(Op, T, Expand); 244 245 // But saturating fp_to_int converstions are 246 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 247 setOperationAction(Op, MVT::v4i32, Custom); 248 } 249 250 // As a special case, these operators use the type to mean the type to 251 // sign-extend from. 252 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 253 if (!Subtarget->hasSignExt()) { 254 // Sign extends are legal only when extending a vector extract 255 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 256 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 257 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 258 } 259 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 260 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 261 262 // Dynamic stack allocation: use the default expansion. 263 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 264 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 265 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 266 267 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 268 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 269 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 270 271 // Expand these forms; we pattern-match the forms that we can handle in isel. 272 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 273 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 274 setOperationAction(Op, T, Expand); 275 276 // We have custom switch handling. 277 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 278 279 // WebAssembly doesn't have: 280 // - Floating-point extending loads. 281 // - Floating-point truncating stores. 282 // - i1 extending loads. 283 // - truncating SIMD stores and most extending loads 284 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 285 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 286 for (auto T : MVT::integer_valuetypes()) 287 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 288 setLoadExtAction(Ext, T, MVT::i1, Promote); 289 if (Subtarget->hasSIMD128()) { 290 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 291 MVT::v2f64}) { 292 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 293 if (MVT(T) != MemT) { 294 setTruncStoreAction(T, MemT, Expand); 295 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 296 setLoadExtAction(Ext, T, MemT, Expand); 297 } 298 } 299 } 300 // But some vector extending loads are legal 301 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 302 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 303 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 304 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 305 } 306 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 307 } 308 309 // Don't do anything clever with build_pairs 310 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 311 312 // Trap lowers to wasm unreachable 313 setOperationAction(ISD::TRAP, MVT::Other, Legal); 314 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 315 316 // Exception handling intrinsics 317 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 318 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 319 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 320 321 setMaxAtomicSizeInBitsSupported(64); 322 323 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 324 // consistent with the f64 and f128 names. 325 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 326 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 327 328 // Define the emscripten name for return address helper. 329 // TODO: when implementing other Wasm backends, make this generic or only do 330 // this on emscripten depending on what they end up doing. 331 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 332 333 // Always convert switches to br_tables unless there is only one case, which 334 // is equivalent to a simple branch. This reduces code size for wasm, and we 335 // defer possible jump table optimizations to the VM. 336 setMinimumJumpTableEntries(2); 337 } 338 339 TargetLowering::AtomicExpansionKind 340 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 341 // We have wasm instructions for these 342 switch (AI->getOperation()) { 343 case AtomicRMWInst::Add: 344 case AtomicRMWInst::Sub: 345 case AtomicRMWInst::And: 346 case AtomicRMWInst::Or: 347 case AtomicRMWInst::Xor: 348 case AtomicRMWInst::Xchg: 349 return AtomicExpansionKind::None; 350 default: 351 break; 352 } 353 return AtomicExpansionKind::CmpXChg; 354 } 355 356 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 357 // Implementation copied from X86TargetLowering. 358 unsigned Opc = VecOp.getOpcode(); 359 360 // Assume target opcodes can't be scalarized. 361 // TODO - do we have any exceptions? 362 if (Opc >= ISD::BUILTIN_OP_END) 363 return false; 364 365 // If the vector op is not supported, try to convert to scalar. 366 EVT VecVT = VecOp.getValueType(); 367 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 368 return true; 369 370 // If the vector op is supported, but the scalar op is not, the transform may 371 // not be worthwhile. 372 EVT ScalarVT = VecVT.getScalarType(); 373 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 374 } 375 376 FastISel *WebAssemblyTargetLowering::createFastISel( 377 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 378 return WebAssembly::createFastISel(FuncInfo, LibInfo); 379 } 380 381 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 382 EVT VT) const { 383 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 384 if (BitWidth > 1 && BitWidth < 8) 385 BitWidth = 8; 386 387 if (BitWidth > 64) { 388 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 389 // the count to be an i32. 390 BitWidth = 32; 391 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 392 "32-bit shift counts ought to be enough for anyone"); 393 } 394 395 MVT Result = MVT::getIntegerVT(BitWidth); 396 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 397 "Unable to represent scalar shift amount type"); 398 return Result; 399 } 400 401 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 402 // undefined result on invalid/overflow, to the WebAssembly opcode, which 403 // traps on invalid/overflow. 404 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 405 MachineBasicBlock *BB, 406 const TargetInstrInfo &TII, 407 bool IsUnsigned, bool Int64, 408 bool Float64, unsigned LoweredOpcode) { 409 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 410 411 Register OutReg = MI.getOperand(0).getReg(); 412 Register InReg = MI.getOperand(1).getReg(); 413 414 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 415 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 416 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 417 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 418 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 419 unsigned Eqz = WebAssembly::EQZ_I32; 420 unsigned And = WebAssembly::AND_I32; 421 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 422 int64_t Substitute = IsUnsigned ? 0 : Limit; 423 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 424 auto &Context = BB->getParent()->getFunction().getContext(); 425 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 426 427 const BasicBlock *LLVMBB = BB->getBasicBlock(); 428 MachineFunction *F = BB->getParent(); 429 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 430 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 431 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 432 433 MachineFunction::iterator It = ++BB->getIterator(); 434 F->insert(It, FalseMBB); 435 F->insert(It, TrueMBB); 436 F->insert(It, DoneMBB); 437 438 // Transfer the remainder of BB and its successor edges to DoneMBB. 439 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 440 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 441 442 BB->addSuccessor(TrueMBB); 443 BB->addSuccessor(FalseMBB); 444 TrueMBB->addSuccessor(DoneMBB); 445 FalseMBB->addSuccessor(DoneMBB); 446 447 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 448 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 449 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 450 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 451 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 452 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 453 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 454 455 MI.eraseFromParent(); 456 // For signed numbers, we can do a single comparison to determine whether 457 // fabs(x) is within range. 458 if (IsUnsigned) { 459 Tmp0 = InReg; 460 } else { 461 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 462 } 463 BuildMI(BB, DL, TII.get(FConst), Tmp1) 464 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 465 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 466 467 // For unsigned numbers, we have to do a separate comparison with zero. 468 if (IsUnsigned) { 469 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 470 Register SecondCmpReg = 471 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 472 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 473 BuildMI(BB, DL, TII.get(FConst), Tmp1) 474 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 475 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 476 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 477 CmpReg = AndReg; 478 } 479 480 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 481 482 // Create the CFG diamond to select between doing the conversion or using 483 // the substitute value. 484 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 485 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 486 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 487 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 488 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 489 .addReg(FalseReg) 490 .addMBB(FalseMBB) 491 .addReg(TrueReg) 492 .addMBB(TrueMBB); 493 494 return DoneMBB; 495 } 496 497 static MachineBasicBlock * 498 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 499 const WebAssemblySubtarget *Subtarget, 500 const TargetInstrInfo &TII) { 501 MachineInstr &CallParams = *CallResults.getPrevNode(); 502 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 503 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 504 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 505 506 bool IsIndirect = CallParams.getOperand(0).isReg(); 507 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 508 509 bool IsFuncrefCall = false; 510 if (IsIndirect) { 511 Register Reg = CallParams.getOperand(0).getReg(); 512 const MachineFunction *MF = BB->getParent(); 513 const MachineRegisterInfo &MRI = MF->getRegInfo(); 514 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 515 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 516 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 517 } 518 519 unsigned CallOp; 520 if (IsIndirect && IsRetCall) { 521 CallOp = WebAssembly::RET_CALL_INDIRECT; 522 } else if (IsIndirect) { 523 CallOp = WebAssembly::CALL_INDIRECT; 524 } else if (IsRetCall) { 525 CallOp = WebAssembly::RET_CALL; 526 } else { 527 CallOp = WebAssembly::CALL; 528 } 529 530 MachineFunction &MF = *BB->getParent(); 531 const MCInstrDesc &MCID = TII.get(CallOp); 532 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 533 534 // See if we must truncate the function pointer. 535 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 536 // as 64-bit for uniformity with other pointer types. 537 // See also: WebAssemblyFastISel::selectCall 538 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 539 Register Reg32 = 540 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 541 auto &FnPtr = CallParams.getOperand(0); 542 BuildMI(*BB, CallResults.getIterator(), DL, 543 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 544 .addReg(FnPtr.getReg()); 545 FnPtr.setReg(Reg32); 546 } 547 548 // Move the function pointer to the end of the arguments for indirect calls 549 if (IsIndirect) { 550 auto FnPtr = CallParams.getOperand(0); 551 CallParams.RemoveOperand(0); 552 CallParams.addOperand(FnPtr); 553 } 554 555 for (auto Def : CallResults.defs()) 556 MIB.add(Def); 557 558 if (IsIndirect) { 559 // Placeholder for the type index. 560 MIB.addImm(0); 561 // The table into which this call_indirect indexes. 562 MCSymbolWasm *Table = IsFuncrefCall 563 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 564 MF.getContext(), Subtarget) 565 : WebAssembly::getOrCreateFunctionTableSymbol( 566 MF.getContext(), Subtarget); 567 if (Subtarget->hasReferenceTypes()) { 568 MIB.addSym(Table); 569 } else { 570 // For the MVP there is at most one table whose number is 0, but we can't 571 // write a table symbol or issue relocations. Instead we just ensure the 572 // table is live and write a zero. 573 Table->setNoStrip(); 574 MIB.addImm(0); 575 } 576 } 577 578 for (auto Use : CallParams.uses()) 579 MIB.add(Use); 580 581 BB->insert(CallResults.getIterator(), MIB); 582 CallParams.eraseFromParent(); 583 CallResults.eraseFromParent(); 584 585 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 586 // table slot with ref.null upon call_indirect return. 587 // 588 // This generates the following code, which comes right after a call_indirect 589 // of a funcref: 590 // 591 // i32.const 0 592 // ref.null func 593 // table.set __funcref_call_table 594 if (IsIndirect && IsFuncrefCall) { 595 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 596 MF.getContext(), Subtarget); 597 Register RegZero = 598 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 599 MachineInstr *Const0 = 600 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 601 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 602 603 Register RegFuncref = 604 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 605 MachineInstr *RefNull = 606 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref) 607 .addImm(static_cast<int32_t>(WebAssembly::HeapType::Funcref)); 608 BB->insertAfter(Const0->getIterator(), RefNull); 609 610 MachineInstr *TableSet = 611 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 612 .addSym(Table) 613 .addReg(RegZero) 614 .addReg(RegFuncref); 615 BB->insertAfter(RefNull->getIterator(), TableSet); 616 } 617 618 return BB; 619 } 620 621 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 622 MachineInstr &MI, MachineBasicBlock *BB) const { 623 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 624 DebugLoc DL = MI.getDebugLoc(); 625 626 switch (MI.getOpcode()) { 627 default: 628 llvm_unreachable("Unexpected instr type to insert"); 629 case WebAssembly::FP_TO_SINT_I32_F32: 630 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 631 WebAssembly::I32_TRUNC_S_F32); 632 case WebAssembly::FP_TO_UINT_I32_F32: 633 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 634 WebAssembly::I32_TRUNC_U_F32); 635 case WebAssembly::FP_TO_SINT_I64_F32: 636 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 637 WebAssembly::I64_TRUNC_S_F32); 638 case WebAssembly::FP_TO_UINT_I64_F32: 639 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 640 WebAssembly::I64_TRUNC_U_F32); 641 case WebAssembly::FP_TO_SINT_I32_F64: 642 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 643 WebAssembly::I32_TRUNC_S_F64); 644 case WebAssembly::FP_TO_UINT_I32_F64: 645 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 646 WebAssembly::I32_TRUNC_U_F64); 647 case WebAssembly::FP_TO_SINT_I64_F64: 648 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 649 WebAssembly::I64_TRUNC_S_F64); 650 case WebAssembly::FP_TO_UINT_I64_F64: 651 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 652 WebAssembly::I64_TRUNC_U_F64); 653 case WebAssembly::CALL_RESULTS: 654 case WebAssembly::RET_CALL_RESULTS: 655 return LowerCallResults(MI, DL, BB, Subtarget, TII); 656 } 657 } 658 659 const char * 660 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 661 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 662 case WebAssemblyISD::FIRST_NUMBER: 663 case WebAssemblyISD::FIRST_MEM_OPCODE: 664 break; 665 #define HANDLE_NODETYPE(NODE) \ 666 case WebAssemblyISD::NODE: \ 667 return "WebAssemblyISD::" #NODE; 668 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 669 #include "WebAssemblyISD.def" 670 #undef HANDLE_MEM_NODETYPE 671 #undef HANDLE_NODETYPE 672 } 673 return nullptr; 674 } 675 676 std::pair<unsigned, const TargetRegisterClass *> 677 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 678 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 679 // First, see if this is a constraint that directly corresponds to a 680 // WebAssembly register class. 681 if (Constraint.size() == 1) { 682 switch (Constraint[0]) { 683 case 'r': 684 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 685 if (Subtarget->hasSIMD128() && VT.isVector()) { 686 if (VT.getSizeInBits() == 128) 687 return std::make_pair(0U, &WebAssembly::V128RegClass); 688 } 689 if (VT.isInteger() && !VT.isVector()) { 690 if (VT.getSizeInBits() <= 32) 691 return std::make_pair(0U, &WebAssembly::I32RegClass); 692 if (VT.getSizeInBits() <= 64) 693 return std::make_pair(0U, &WebAssembly::I64RegClass); 694 } 695 if (VT.isFloatingPoint() && !VT.isVector()) { 696 switch (VT.getSizeInBits()) { 697 case 32: 698 return std::make_pair(0U, &WebAssembly::F32RegClass); 699 case 64: 700 return std::make_pair(0U, &WebAssembly::F64RegClass); 701 default: 702 break; 703 } 704 } 705 break; 706 default: 707 break; 708 } 709 } 710 711 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 712 } 713 714 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 715 // Assume ctz is a relatively cheap operation. 716 return true; 717 } 718 719 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 720 // Assume clz is a relatively cheap operation. 721 return true; 722 } 723 724 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 725 const AddrMode &AM, 726 Type *Ty, unsigned AS, 727 Instruction *I) const { 728 // WebAssembly offsets are added as unsigned without wrapping. The 729 // isLegalAddressingMode gives us no way to determine if wrapping could be 730 // happening, so we approximate this by accepting only non-negative offsets. 731 if (AM.BaseOffs < 0) 732 return false; 733 734 // WebAssembly has no scale register operands. 735 if (AM.Scale != 0) 736 return false; 737 738 // Everything else is legal. 739 return true; 740 } 741 742 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 743 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 744 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 745 // WebAssembly supports unaligned accesses, though it should be declared 746 // with the p2align attribute on loads and stores which do so, and there 747 // may be a performance impact. We tell LLVM they're "fast" because 748 // for the kinds of things that LLVM uses this for (merging adjacent stores 749 // of constants, etc.), WebAssembly implementations will either want the 750 // unaligned access or they'll split anyway. 751 if (Fast) 752 *Fast = true; 753 return true; 754 } 755 756 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 757 AttributeList Attr) const { 758 // The current thinking is that wasm engines will perform this optimization, 759 // so we can save on code size. 760 return true; 761 } 762 763 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 764 EVT ExtT = ExtVal.getValueType(); 765 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 766 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 767 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 768 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 769 } 770 771 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 772 const GlobalAddressSDNode *GA) const { 773 // Wasm doesn't support function addresses with offsets 774 const GlobalValue *GV = GA->getGlobal(); 775 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 776 } 777 778 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 779 LLVMContext &C, 780 EVT VT) const { 781 if (VT.isVector()) 782 return VT.changeVectorElementTypeToInteger(); 783 784 // So far, all branch instructions in Wasm take an I32 condition. 785 // The default TargetLowering::getSetCCResultType returns the pointer size, 786 // which would be useful to reduce instruction counts when testing 787 // against 64-bit pointers/values if at some point Wasm supports that. 788 return EVT::getIntegerVT(C, 32); 789 } 790 791 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 792 const CallInst &I, 793 MachineFunction &MF, 794 unsigned Intrinsic) const { 795 switch (Intrinsic) { 796 case Intrinsic::wasm_memory_atomic_notify: 797 Info.opc = ISD::INTRINSIC_W_CHAIN; 798 Info.memVT = MVT::i32; 799 Info.ptrVal = I.getArgOperand(0); 800 Info.offset = 0; 801 Info.align = Align(4); 802 // atomic.notify instruction does not really load the memory specified with 803 // this argument, but MachineMemOperand should either be load or store, so 804 // we set this to a load. 805 // FIXME Volatile isn't really correct, but currently all LLVM atomic 806 // instructions are treated as volatiles in the backend, so we should be 807 // consistent. The same applies for wasm_atomic_wait intrinsics too. 808 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 809 return true; 810 case Intrinsic::wasm_memory_atomic_wait32: 811 Info.opc = ISD::INTRINSIC_W_CHAIN; 812 Info.memVT = MVT::i32; 813 Info.ptrVal = I.getArgOperand(0); 814 Info.offset = 0; 815 Info.align = Align(4); 816 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 817 return true; 818 case Intrinsic::wasm_memory_atomic_wait64: 819 Info.opc = ISD::INTRINSIC_W_CHAIN; 820 Info.memVT = MVT::i64; 821 Info.ptrVal = I.getArgOperand(0); 822 Info.offset = 0; 823 Info.align = Align(8); 824 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 825 return true; 826 default: 827 return false; 828 } 829 } 830 831 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 832 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 833 const SelectionDAG &DAG, unsigned Depth) const { 834 switch (Op.getOpcode()) { 835 default: 836 break; 837 case ISD::INTRINSIC_WO_CHAIN: { 838 unsigned IntNo = Op.getConstantOperandVal(0); 839 switch (IntNo) { 840 default: 841 break; 842 case Intrinsic::wasm_bitmask: { 843 unsigned BitWidth = Known.getBitWidth(); 844 EVT VT = Op.getOperand(1).getSimpleValueType(); 845 unsigned PossibleBits = VT.getVectorNumElements(); 846 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 847 Known.Zero |= ZeroMask; 848 break; 849 } 850 } 851 } 852 } 853 } 854 855 TargetLoweringBase::LegalizeTypeAction 856 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 857 if (VT.isFixedLengthVector()) { 858 MVT EltVT = VT.getVectorElementType(); 859 // We have legal vector types with these lane types, so widening the 860 // vector would let us use some of the lanes directly without having to 861 // extend or truncate values. 862 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 863 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 864 return TypeWidenVector; 865 } 866 867 return TargetLoweringBase::getPreferredVectorAction(VT); 868 } 869 870 //===----------------------------------------------------------------------===// 871 // WebAssembly Lowering private implementation. 872 //===----------------------------------------------------------------------===// 873 874 //===----------------------------------------------------------------------===// 875 // Lowering Code 876 //===----------------------------------------------------------------------===// 877 878 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 879 MachineFunction &MF = DAG.getMachineFunction(); 880 DAG.getContext()->diagnose( 881 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 882 } 883 884 // Test whether the given calling convention is supported. 885 static bool callingConvSupported(CallingConv::ID CallConv) { 886 // We currently support the language-independent target-independent 887 // conventions. We don't yet have a way to annotate calls with properties like 888 // "cold", and we don't have any call-clobbered registers, so these are mostly 889 // all handled the same. 890 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 891 CallConv == CallingConv::Cold || 892 CallConv == CallingConv::PreserveMost || 893 CallConv == CallingConv::PreserveAll || 894 CallConv == CallingConv::CXX_FAST_TLS || 895 CallConv == CallingConv::WASM_EmscriptenInvoke || 896 CallConv == CallingConv::Swift; 897 } 898 899 SDValue 900 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 901 SmallVectorImpl<SDValue> &InVals) const { 902 SelectionDAG &DAG = CLI.DAG; 903 SDLoc DL = CLI.DL; 904 SDValue Chain = CLI.Chain; 905 SDValue Callee = CLI.Callee; 906 MachineFunction &MF = DAG.getMachineFunction(); 907 auto Layout = MF.getDataLayout(); 908 909 CallingConv::ID CallConv = CLI.CallConv; 910 if (!callingConvSupported(CallConv)) 911 fail(DL, DAG, 912 "WebAssembly doesn't support language-specific or target-specific " 913 "calling conventions yet"); 914 if (CLI.IsPatchPoint) 915 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 916 917 if (CLI.IsTailCall) { 918 auto NoTail = [&](const char *Msg) { 919 if (CLI.CB && CLI.CB->isMustTailCall()) 920 fail(DL, DAG, Msg); 921 CLI.IsTailCall = false; 922 }; 923 924 if (!Subtarget->hasTailCall()) 925 NoTail("WebAssembly 'tail-call' feature not enabled"); 926 927 // Varargs calls cannot be tail calls because the buffer is on the stack 928 if (CLI.IsVarArg) 929 NoTail("WebAssembly does not support varargs tail calls"); 930 931 // Do not tail call unless caller and callee return types match 932 const Function &F = MF.getFunction(); 933 const TargetMachine &TM = getTargetMachine(); 934 Type *RetTy = F.getReturnType(); 935 SmallVector<MVT, 4> CallerRetTys; 936 SmallVector<MVT, 4> CalleeRetTys; 937 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 938 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 939 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 940 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 941 CalleeRetTys.begin()); 942 if (!TypesMatch) 943 NoTail("WebAssembly tail call requires caller and callee return types to " 944 "match"); 945 946 // If pointers to local stack values are passed, we cannot tail call 947 if (CLI.CB) { 948 for (auto &Arg : CLI.CB->args()) { 949 Value *Val = Arg.get(); 950 // Trace the value back through pointer operations 951 while (true) { 952 Value *Src = Val->stripPointerCastsAndAliases(); 953 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 954 Src = GEP->getPointerOperand(); 955 if (Val == Src) 956 break; 957 Val = Src; 958 } 959 if (isa<AllocaInst>(Val)) { 960 NoTail( 961 "WebAssembly does not support tail calling with stack arguments"); 962 break; 963 } 964 } 965 } 966 } 967 968 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 969 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 970 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 971 972 // The generic code may have added an sret argument. If we're lowering an 973 // invoke function, the ABI requires that the function pointer be the first 974 // argument, so we may have to swap the arguments. 975 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 976 Outs[0].Flags.isSRet()) { 977 std::swap(Outs[0], Outs[1]); 978 std::swap(OutVals[0], OutVals[1]); 979 } 980 981 bool HasSwiftSelfArg = false; 982 bool HasSwiftErrorArg = false; 983 unsigned NumFixedArgs = 0; 984 for (unsigned I = 0; I < Outs.size(); ++I) { 985 const ISD::OutputArg &Out = Outs[I]; 986 SDValue &OutVal = OutVals[I]; 987 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 988 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 989 if (Out.Flags.isNest()) 990 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 991 if (Out.Flags.isInAlloca()) 992 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 993 if (Out.Flags.isInConsecutiveRegs()) 994 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 995 if (Out.Flags.isInConsecutiveRegsLast()) 996 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 997 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 998 auto &MFI = MF.getFrameInfo(); 999 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1000 Out.Flags.getNonZeroByValAlign(), 1001 /*isSS=*/false); 1002 SDValue SizeNode = 1003 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1004 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1005 Chain = DAG.getMemcpy( 1006 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1007 /*isVolatile*/ false, /*AlwaysInline=*/false, 1008 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1009 OutVal = FINode; 1010 } 1011 // Count the number of fixed args *after* legalization. 1012 NumFixedArgs += Out.IsFixed; 1013 } 1014 1015 bool IsVarArg = CLI.IsVarArg; 1016 auto PtrVT = getPointerTy(Layout); 1017 1018 // For swiftcc, emit additional swiftself and swifterror arguments 1019 // if there aren't. These additional arguments are also added for callee 1020 // signature They are necessary to match callee and caller signature for 1021 // indirect call. 1022 if (CallConv == CallingConv::Swift) { 1023 if (!HasSwiftSelfArg) { 1024 NumFixedArgs++; 1025 ISD::OutputArg Arg; 1026 Arg.Flags.setSwiftSelf(); 1027 CLI.Outs.push_back(Arg); 1028 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1029 CLI.OutVals.push_back(ArgVal); 1030 } 1031 if (!HasSwiftErrorArg) { 1032 NumFixedArgs++; 1033 ISD::OutputArg Arg; 1034 Arg.Flags.setSwiftError(); 1035 CLI.Outs.push_back(Arg); 1036 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1037 CLI.OutVals.push_back(ArgVal); 1038 } 1039 } 1040 1041 // Analyze operands of the call, assigning locations to each operand. 1042 SmallVector<CCValAssign, 16> ArgLocs; 1043 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1044 1045 if (IsVarArg) { 1046 // Outgoing non-fixed arguments are placed in a buffer. First 1047 // compute their offsets and the total amount of buffer space needed. 1048 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1049 const ISD::OutputArg &Out = Outs[I]; 1050 SDValue &Arg = OutVals[I]; 1051 EVT VT = Arg.getValueType(); 1052 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1053 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1054 Align Alignment = 1055 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1056 unsigned Offset = 1057 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1058 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1059 Offset, VT.getSimpleVT(), 1060 CCValAssign::Full)); 1061 } 1062 } 1063 1064 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1065 1066 SDValue FINode; 1067 if (IsVarArg && NumBytes) { 1068 // For non-fixed arguments, next emit stores to store the argument values 1069 // to the stack buffer at the offsets computed above. 1070 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1071 Layout.getStackAlignment(), 1072 /*isSS=*/false); 1073 unsigned ValNo = 0; 1074 SmallVector<SDValue, 8> Chains; 1075 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1076 assert(ArgLocs[ValNo].getValNo() == ValNo && 1077 "ArgLocs should remain in order and only hold varargs args"); 1078 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1079 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1080 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1081 DAG.getConstant(Offset, DL, PtrVT)); 1082 Chains.push_back( 1083 DAG.getStore(Chain, DL, Arg, Add, 1084 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1085 } 1086 if (!Chains.empty()) 1087 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1088 } else if (IsVarArg) { 1089 FINode = DAG.getIntPtrConstant(0, DL); 1090 } 1091 1092 if (Callee->getOpcode() == ISD::GlobalAddress) { 1093 // If the callee is a GlobalAddress node (quite common, every direct call 1094 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1095 // doesn't at MO_GOT which is not needed for direct calls. 1096 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1097 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1098 getPointerTy(DAG.getDataLayout()), 1099 GA->getOffset()); 1100 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1101 getPointerTy(DAG.getDataLayout()), Callee); 1102 } 1103 1104 // Compute the operands for the CALLn node. 1105 SmallVector<SDValue, 16> Ops; 1106 Ops.push_back(Chain); 1107 Ops.push_back(Callee); 1108 1109 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1110 // isn't reliable. 1111 Ops.append(OutVals.begin(), 1112 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1113 // Add a pointer to the vararg buffer. 1114 if (IsVarArg) 1115 Ops.push_back(FINode); 1116 1117 SmallVector<EVT, 8> InTys; 1118 for (const auto &In : Ins) { 1119 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1120 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1121 if (In.Flags.isInAlloca()) 1122 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1123 if (In.Flags.isInConsecutiveRegs()) 1124 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1125 if (In.Flags.isInConsecutiveRegsLast()) 1126 fail(DL, DAG, 1127 "WebAssembly hasn't implemented cons regs last return values"); 1128 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1129 // registers. 1130 InTys.push_back(In.VT); 1131 } 1132 1133 // Lastly, if this is a call to a funcref we need to add an instruction 1134 // table.set to the chain and transform the call. 1135 if (CLI.CB && isFuncrefType(CLI.CB->getCalledOperand()->getType())) { 1136 // In the absence of function references proposal where a funcref call is 1137 // lowered to call_ref, using reference types we generate a table.set to set 1138 // the funcref to a special table used solely for this purpose, followed by 1139 // a call_indirect. Here we just generate the table set, and return the 1140 // SDValue of the table.set so that LowerCall can finalize the lowering by 1141 // generating the call_indirect. 1142 SDValue Chain = Ops[0]; 1143 1144 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1145 MF.getContext(), Subtarget); 1146 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1147 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1148 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1149 SDValue TableSet = DAG.getMemIntrinsicNode( 1150 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1151 MVT::funcref, 1152 // Machine Mem Operand args 1153 MachinePointerInfo(WasmAddressSpace::FUNCREF), 1154 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1155 MachineMemOperand::MOStore); 1156 1157 Ops[0] = TableSet; // The new chain is the TableSet itself 1158 } 1159 1160 if (CLI.IsTailCall) { 1161 // ret_calls do not return values to the current frame 1162 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1163 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1164 } 1165 1166 InTys.push_back(MVT::Other); 1167 SDVTList InTyList = DAG.getVTList(InTys); 1168 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1169 1170 for (size_t I = 0; I < Ins.size(); ++I) 1171 InVals.push_back(Res.getValue(I)); 1172 1173 // Return the chain 1174 return Res.getValue(Ins.size()); 1175 } 1176 1177 bool WebAssemblyTargetLowering::CanLowerReturn( 1178 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1179 const SmallVectorImpl<ISD::OutputArg> &Outs, 1180 LLVMContext & /*Context*/) const { 1181 // WebAssembly can only handle returning tuples with multivalue enabled 1182 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1183 } 1184 1185 SDValue WebAssemblyTargetLowering::LowerReturn( 1186 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1187 const SmallVectorImpl<ISD::OutputArg> &Outs, 1188 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1189 SelectionDAG &DAG) const { 1190 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1191 "MVP WebAssembly can only return up to one value"); 1192 if (!callingConvSupported(CallConv)) 1193 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1194 1195 SmallVector<SDValue, 4> RetOps(1, Chain); 1196 RetOps.append(OutVals.begin(), OutVals.end()); 1197 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1198 1199 // Record the number and types of the return values. 1200 for (const ISD::OutputArg &Out : Outs) { 1201 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1202 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1203 assert(Out.IsFixed && "non-fixed return value is not valid"); 1204 if (Out.Flags.isInAlloca()) 1205 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1206 if (Out.Flags.isInConsecutiveRegs()) 1207 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1208 if (Out.Flags.isInConsecutiveRegsLast()) 1209 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1210 } 1211 1212 return Chain; 1213 } 1214 1215 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1216 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1217 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1218 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1219 if (!callingConvSupported(CallConv)) 1220 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1221 1222 MachineFunction &MF = DAG.getMachineFunction(); 1223 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1224 1225 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1226 // of the incoming values before they're represented by virtual registers. 1227 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1228 1229 bool HasSwiftErrorArg = false; 1230 bool HasSwiftSelfArg = false; 1231 for (const ISD::InputArg &In : Ins) { 1232 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1233 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1234 if (In.Flags.isInAlloca()) 1235 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1236 if (In.Flags.isNest()) 1237 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1238 if (In.Flags.isInConsecutiveRegs()) 1239 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1240 if (In.Flags.isInConsecutiveRegsLast()) 1241 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1242 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1243 // registers. 1244 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1245 DAG.getTargetConstant(InVals.size(), 1246 DL, MVT::i32)) 1247 : DAG.getUNDEF(In.VT)); 1248 1249 // Record the number and types of arguments. 1250 MFI->addParam(In.VT); 1251 } 1252 1253 // For swiftcc, emit additional swiftself and swifterror arguments 1254 // if there aren't. These additional arguments are also added for callee 1255 // signature They are necessary to match callee and caller signature for 1256 // indirect call. 1257 auto PtrVT = getPointerTy(MF.getDataLayout()); 1258 if (CallConv == CallingConv::Swift) { 1259 if (!HasSwiftSelfArg) { 1260 MFI->addParam(PtrVT); 1261 } 1262 if (!HasSwiftErrorArg) { 1263 MFI->addParam(PtrVT); 1264 } 1265 } 1266 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1267 // the buffer is passed as an argument. 1268 if (IsVarArg) { 1269 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1270 Register VarargVreg = 1271 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1272 MFI->setVarargBufferVreg(VarargVreg); 1273 Chain = DAG.getCopyToReg( 1274 Chain, DL, VarargVreg, 1275 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1276 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1277 MFI->addParam(PtrVT); 1278 } 1279 1280 // Record the number and types of arguments and results. 1281 SmallVector<MVT, 4> Params; 1282 SmallVector<MVT, 4> Results; 1283 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1284 MF.getFunction(), DAG.getTarget(), Params, Results); 1285 for (MVT VT : Results) 1286 MFI->addResult(VT); 1287 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1288 // the param logic here with ComputeSignatureVTs 1289 assert(MFI->getParams().size() == Params.size() && 1290 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1291 Params.begin())); 1292 1293 return Chain; 1294 } 1295 1296 void WebAssemblyTargetLowering::ReplaceNodeResults( 1297 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1298 switch (N->getOpcode()) { 1299 case ISD::SIGN_EXTEND_INREG: 1300 // Do not add any results, signifying that N should not be custom lowered 1301 // after all. This happens because simd128 turns on custom lowering for 1302 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1303 // illegal type. 1304 break; 1305 default: 1306 llvm_unreachable( 1307 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1308 } 1309 } 1310 1311 //===----------------------------------------------------------------------===// 1312 // Custom lowering hooks. 1313 //===----------------------------------------------------------------------===// 1314 1315 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1316 SelectionDAG &DAG) const { 1317 SDLoc DL(Op); 1318 switch (Op.getOpcode()) { 1319 default: 1320 llvm_unreachable("unimplemented operation lowering"); 1321 return SDValue(); 1322 case ISD::FrameIndex: 1323 return LowerFrameIndex(Op, DAG); 1324 case ISD::GlobalAddress: 1325 return LowerGlobalAddress(Op, DAG); 1326 case ISD::GlobalTLSAddress: 1327 return LowerGlobalTLSAddress(Op, DAG); 1328 case ISD::ExternalSymbol: 1329 return LowerExternalSymbol(Op, DAG); 1330 case ISD::JumpTable: 1331 return LowerJumpTable(Op, DAG); 1332 case ISD::BR_JT: 1333 return LowerBR_JT(Op, DAG); 1334 case ISD::VASTART: 1335 return LowerVASTART(Op, DAG); 1336 case ISD::BlockAddress: 1337 case ISD::BRIND: 1338 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1339 return SDValue(); 1340 case ISD::RETURNADDR: 1341 return LowerRETURNADDR(Op, DAG); 1342 case ISD::FRAMEADDR: 1343 return LowerFRAMEADDR(Op, DAG); 1344 case ISD::CopyToReg: 1345 return LowerCopyToReg(Op, DAG); 1346 case ISD::EXTRACT_VECTOR_ELT: 1347 case ISD::INSERT_VECTOR_ELT: 1348 return LowerAccessVectorElement(Op, DAG); 1349 case ISD::INTRINSIC_VOID: 1350 case ISD::INTRINSIC_WO_CHAIN: 1351 case ISD::INTRINSIC_W_CHAIN: 1352 return LowerIntrinsic(Op, DAG); 1353 case ISD::SIGN_EXTEND_INREG: 1354 return LowerSIGN_EXTEND_INREG(Op, DAG); 1355 case ISD::BUILD_VECTOR: 1356 return LowerBUILD_VECTOR(Op, DAG); 1357 case ISD::VECTOR_SHUFFLE: 1358 return LowerVECTOR_SHUFFLE(Op, DAG); 1359 case ISD::SETCC: 1360 return LowerSETCC(Op, DAG); 1361 case ISD::SHL: 1362 case ISD::SRA: 1363 case ISD::SRL: 1364 return LowerShift(Op, DAG); 1365 case ISD::FP_TO_SINT_SAT: 1366 case ISD::FP_TO_UINT_SAT: 1367 return LowerFP_TO_INT_SAT(Op, DAG); 1368 case ISD::LOAD: 1369 return LowerLoad(Op, DAG); 1370 case ISD::STORE: 1371 return LowerStore(Op, DAG); 1372 } 1373 } 1374 1375 static bool IsWebAssemblyGlobal(SDValue Op) { 1376 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1377 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1378 1379 return false; 1380 } 1381 1382 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1383 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1384 if (!FI) 1385 return None; 1386 1387 auto &MF = DAG.getMachineFunction(); 1388 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1389 } 1390 1391 bool WebAssemblyTargetLowering::isFuncrefType(const Type *Ty) { 1392 return isa<PointerType>(Ty) && 1393 Ty->getPointerAddressSpace() == WasmAddressSpace::FUNCREF; 1394 } 1395 1396 bool WebAssemblyTargetLowering::isExternrefType(const Type *Ty) { 1397 return isa<PointerType>(Ty) && 1398 Ty->getPointerAddressSpace() == WasmAddressSpace::EXTERNREF; 1399 } 1400 1401 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1402 SelectionDAG &DAG) const { 1403 SDLoc DL(Op); 1404 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1405 const SDValue &Value = SN->getValue(); 1406 const SDValue &Base = SN->getBasePtr(); 1407 const SDValue &Offset = SN->getOffset(); 1408 1409 if (IsWebAssemblyGlobal(Base)) { 1410 if (!Offset->isUndef()) 1411 report_fatal_error("unexpected offset when storing to webassembly global", 1412 false); 1413 1414 SDVTList Tys = DAG.getVTList(MVT::Other); 1415 SDValue Ops[] = {SN->getChain(), Value, Base}; 1416 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1417 SN->getMemoryVT(), SN->getMemOperand()); 1418 } 1419 1420 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1421 if (!Offset->isUndef()) 1422 report_fatal_error("unexpected offset when storing to webassembly local", 1423 false); 1424 1425 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1426 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1427 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1428 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1429 } 1430 1431 return Op; 1432 } 1433 1434 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1435 SelectionDAG &DAG) const { 1436 SDLoc DL(Op); 1437 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1438 const SDValue &Base = LN->getBasePtr(); 1439 const SDValue &Offset = LN->getOffset(); 1440 1441 if (IsWebAssemblyGlobal(Base)) { 1442 if (!Offset->isUndef()) 1443 report_fatal_error( 1444 "unexpected offset when loading from webassembly global", false); 1445 1446 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1447 SDValue Ops[] = {LN->getChain(), Base}; 1448 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1449 LN->getMemoryVT(), LN->getMemOperand()); 1450 } 1451 1452 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1453 if (!Offset->isUndef()) 1454 report_fatal_error( 1455 "unexpected offset when loading from webassembly local", false); 1456 1457 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1458 EVT LocalVT = LN->getValueType(0); 1459 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1460 {LN->getChain(), Idx}); 1461 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1462 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1463 return Result; 1464 } 1465 1466 return Op; 1467 } 1468 1469 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1470 SelectionDAG &DAG) const { 1471 SDValue Src = Op.getOperand(2); 1472 if (isa<FrameIndexSDNode>(Src.getNode())) { 1473 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1474 // the FI to some LEA-like instruction, but since we don't have that, we 1475 // need to insert some kind of instruction that can take an FI operand and 1476 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1477 // local.copy between Op and its FI operand. 1478 SDValue Chain = Op.getOperand(0); 1479 SDLoc DL(Op); 1480 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1481 EVT VT = Src.getValueType(); 1482 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1483 : WebAssembly::COPY_I64, 1484 DL, VT, Src), 1485 0); 1486 return Op.getNode()->getNumValues() == 1 1487 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1488 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1489 Op.getNumOperands() == 4 ? Op.getOperand(3) 1490 : SDValue()); 1491 } 1492 return SDValue(); 1493 } 1494 1495 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1496 SelectionDAG &DAG) const { 1497 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1498 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1499 } 1500 1501 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1502 SelectionDAG &DAG) const { 1503 SDLoc DL(Op); 1504 1505 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1506 fail(DL, DAG, 1507 "Non-Emscripten WebAssembly hasn't implemented " 1508 "__builtin_return_address"); 1509 return SDValue(); 1510 } 1511 1512 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1513 return SDValue(); 1514 1515 unsigned Depth = Op.getConstantOperandVal(0); 1516 MakeLibCallOptions CallOptions; 1517 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1518 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1519 .first; 1520 } 1521 1522 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1523 SelectionDAG &DAG) const { 1524 // Non-zero depths are not supported by WebAssembly currently. Use the 1525 // legalizer's default expansion, which is to return 0 (what this function is 1526 // documented to do). 1527 if (Op.getConstantOperandVal(0) > 0) 1528 return SDValue(); 1529 1530 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1531 EVT VT = Op.getValueType(); 1532 Register FP = 1533 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1534 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1535 } 1536 1537 SDValue 1538 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1539 SelectionDAG &DAG) const { 1540 SDLoc DL(Op); 1541 const auto *GA = cast<GlobalAddressSDNode>(Op); 1542 1543 MachineFunction &MF = DAG.getMachineFunction(); 1544 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1545 report_fatal_error("cannot use thread-local storage without bulk memory", 1546 false); 1547 1548 const GlobalValue *GV = GA->getGlobal(); 1549 1550 // Currently Emscripten does not support dynamic linking with threads. 1551 // Therefore, if we have thread-local storage, only the local-exec model 1552 // is possible. 1553 // TODO: remove this and implement proper TLS models once Emscripten 1554 // supports dynamic linking with threads. 1555 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1556 !Subtarget->getTargetTriple().isOSEmscripten()) { 1557 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1558 "non-Emscripten OSes: variable " + 1559 GV->getName(), 1560 false); 1561 } 1562 1563 auto model = GV->getThreadLocalMode(); 1564 1565 // Unsupported TLS modes 1566 assert(model != GlobalValue::NotThreadLocal); 1567 assert(model != GlobalValue::InitialExecTLSModel); 1568 1569 if (model == GlobalValue::LocalExecTLSModel || 1570 model == GlobalValue::LocalDynamicTLSModel || 1571 (model == GlobalValue::GeneralDynamicTLSModel && 1572 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { 1573 // For DSO-local TLS variables we use offset from __tls_base 1574 1575 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1576 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1577 : WebAssembly::GLOBAL_GET_I32; 1578 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1579 1580 SDValue BaseAddr( 1581 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1582 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1583 0); 1584 1585 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1586 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1587 SDValue SymOffset = 1588 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1589 1590 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1591 } 1592 1593 assert(model == GlobalValue::GeneralDynamicTLSModel); 1594 1595 EVT VT = Op.getValueType(); 1596 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1597 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1598 GA->getOffset(), 1599 WebAssemblyII::MO_GOT_TLS)); 1600 } 1601 1602 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1603 SelectionDAG &DAG) const { 1604 SDLoc DL(Op); 1605 const auto *GA = cast<GlobalAddressSDNode>(Op); 1606 EVT VT = Op.getValueType(); 1607 assert(GA->getTargetFlags() == 0 && 1608 "Unexpected target flags on generic GlobalAddressSDNode"); 1609 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1610 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1611 1612 unsigned OperandFlags = 0; 1613 if (isPositionIndependent()) { 1614 const GlobalValue *GV = GA->getGlobal(); 1615 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1616 MachineFunction &MF = DAG.getMachineFunction(); 1617 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1618 const char *BaseName; 1619 if (GV->getValueType()->isFunctionTy()) { 1620 BaseName = MF.createExternalSymbolName("__table_base"); 1621 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1622 } 1623 else { 1624 BaseName = MF.createExternalSymbolName("__memory_base"); 1625 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1626 } 1627 SDValue BaseAddr = 1628 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1629 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1630 1631 SDValue SymAddr = DAG.getNode( 1632 WebAssemblyISD::WrapperREL, DL, VT, 1633 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1634 OperandFlags)); 1635 1636 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1637 } 1638 OperandFlags = WebAssemblyII::MO_GOT; 1639 } 1640 1641 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1642 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1643 GA->getOffset(), OperandFlags)); 1644 } 1645 1646 SDValue 1647 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1648 SelectionDAG &DAG) const { 1649 SDLoc DL(Op); 1650 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1651 EVT VT = Op.getValueType(); 1652 assert(ES->getTargetFlags() == 0 && 1653 "Unexpected target flags on generic ExternalSymbolSDNode"); 1654 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1655 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1656 } 1657 1658 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1659 SelectionDAG &DAG) const { 1660 // There's no need for a Wrapper node because we always incorporate a jump 1661 // table operand into a BR_TABLE instruction, rather than ever 1662 // materializing it in a register. 1663 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1664 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1665 JT->getTargetFlags()); 1666 } 1667 1668 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1669 SelectionDAG &DAG) const { 1670 SDLoc DL(Op); 1671 SDValue Chain = Op.getOperand(0); 1672 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1673 SDValue Index = Op.getOperand(2); 1674 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1675 1676 SmallVector<SDValue, 8> Ops; 1677 Ops.push_back(Chain); 1678 Ops.push_back(Index); 1679 1680 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1681 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1682 1683 // Add an operand for each case. 1684 for (auto MBB : MBBs) 1685 Ops.push_back(DAG.getBasicBlock(MBB)); 1686 1687 // Add the first MBB as a dummy default target for now. This will be replaced 1688 // with the proper default target (and the preceding range check eliminated) 1689 // if possible by WebAssemblyFixBrTableDefaults. 1690 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1691 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1692 } 1693 1694 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1695 SelectionDAG &DAG) const { 1696 SDLoc DL(Op); 1697 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1698 1699 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1700 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1701 1702 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1703 MFI->getVarargBufferVreg(), PtrVT); 1704 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1705 MachinePointerInfo(SV)); 1706 } 1707 1708 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1709 SelectionDAG &DAG) const { 1710 MachineFunction &MF = DAG.getMachineFunction(); 1711 unsigned IntNo; 1712 switch (Op.getOpcode()) { 1713 case ISD::INTRINSIC_VOID: 1714 case ISD::INTRINSIC_W_CHAIN: 1715 IntNo = Op.getConstantOperandVal(1); 1716 break; 1717 case ISD::INTRINSIC_WO_CHAIN: 1718 IntNo = Op.getConstantOperandVal(0); 1719 break; 1720 default: 1721 llvm_unreachable("Invalid intrinsic"); 1722 } 1723 SDLoc DL(Op); 1724 1725 switch (IntNo) { 1726 default: 1727 return SDValue(); // Don't custom lower most intrinsics. 1728 1729 case Intrinsic::wasm_lsda: { 1730 EVT VT = Op.getValueType(); 1731 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1732 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1733 auto &Context = MF.getMMI().getContext(); 1734 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1735 Twine(MF.getFunctionNumber())); 1736 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1737 DAG.getMCSymbol(S, PtrVT)); 1738 } 1739 1740 case Intrinsic::wasm_shuffle: { 1741 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1742 SDValue Ops[18]; 1743 size_t OpIdx = 0; 1744 Ops[OpIdx++] = Op.getOperand(1); 1745 Ops[OpIdx++] = Op.getOperand(2); 1746 while (OpIdx < 18) { 1747 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1748 if (MaskIdx.isUndef() || 1749 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1750 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1751 } else { 1752 Ops[OpIdx++] = MaskIdx; 1753 } 1754 } 1755 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1756 } 1757 } 1758 } 1759 1760 SDValue 1761 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1762 SelectionDAG &DAG) const { 1763 SDLoc DL(Op); 1764 // If sign extension operations are disabled, allow sext_inreg only if operand 1765 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1766 // extension operations, but allowing sext_inreg in this context lets us have 1767 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1768 // everywhere would be simpler in this file, but would necessitate large and 1769 // brittle patterns to undo the expansion and select extract_lane_s 1770 // instructions. 1771 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1772 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1773 return SDValue(); 1774 1775 const SDValue &Extract = Op.getOperand(0); 1776 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1777 if (VecT.getVectorElementType().getSizeInBits() > 32) 1778 return SDValue(); 1779 MVT ExtractedLaneT = 1780 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1781 MVT ExtractedVecT = 1782 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1783 if (ExtractedVecT == VecT) 1784 return Op; 1785 1786 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1787 const SDNode *Index = Extract.getOperand(1).getNode(); 1788 if (!isa<ConstantSDNode>(Index)) 1789 return SDValue(); 1790 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1791 unsigned Scale = 1792 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1793 assert(Scale > 1); 1794 SDValue NewIndex = 1795 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1796 SDValue NewExtract = DAG.getNode( 1797 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1798 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1799 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1800 Op.getOperand(1)); 1801 } 1802 1803 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1804 SDLoc DL(Op); 1805 if (Op.getValueType() != MVT::v2f64) 1806 return SDValue(); 1807 1808 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1809 unsigned &Index) -> bool { 1810 switch (Op.getOpcode()) { 1811 case ISD::SINT_TO_FP: 1812 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1813 break; 1814 case ISD::UINT_TO_FP: 1815 Opcode = WebAssemblyISD::CONVERT_LOW_U; 1816 break; 1817 case ISD::FP_EXTEND: 1818 Opcode = WebAssemblyISD::PROMOTE_LOW; 1819 break; 1820 default: 1821 return false; 1822 } 1823 1824 auto ExtractVector = Op.getOperand(0); 1825 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1826 return false; 1827 1828 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 1829 return false; 1830 1831 SrcVec = ExtractVector.getOperand(0); 1832 Index = ExtractVector.getConstantOperandVal(1); 1833 return true; 1834 }; 1835 1836 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 1837 SDValue LHSSrcVec, RHSSrcVec; 1838 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 1839 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 1840 return SDValue(); 1841 1842 if (LHSOpcode != RHSOpcode) 1843 return SDValue(); 1844 1845 MVT ExpectedSrcVT; 1846 switch (LHSOpcode) { 1847 case WebAssemblyISD::CONVERT_LOW_S: 1848 case WebAssemblyISD::CONVERT_LOW_U: 1849 ExpectedSrcVT = MVT::v4i32; 1850 break; 1851 case WebAssemblyISD::PROMOTE_LOW: 1852 ExpectedSrcVT = MVT::v4f32; 1853 break; 1854 } 1855 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 1856 return SDValue(); 1857 1858 auto Src = LHSSrcVec; 1859 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 1860 // Shuffle the source vector so that the converted lanes are the low lanes. 1861 Src = DAG.getVectorShuffle( 1862 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 1863 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 1864 } 1865 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 1866 } 1867 1868 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1869 SelectionDAG &DAG) const { 1870 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 1871 return ConvertLow; 1872 1873 SDLoc DL(Op); 1874 const EVT VecT = Op.getValueType(); 1875 const EVT LaneT = Op.getOperand(0).getValueType(); 1876 const size_t Lanes = Op.getNumOperands(); 1877 bool CanSwizzle = VecT == MVT::v16i8; 1878 1879 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1880 // possible number of lanes at once followed by a sequence of replace_lane 1881 // instructions to individually initialize any remaining lanes. 1882 1883 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1884 // swizzled lanes should be given greater weight. 1885 1886 // TODO: Investigate looping rather than always extracting/replacing specific 1887 // lanes to fill gaps. 1888 1889 auto IsConstant = [](const SDValue &V) { 1890 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1891 }; 1892 1893 // Returns the source vector and index vector pair if they exist. Checks for: 1894 // (extract_vector_elt 1895 // $src, 1896 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1897 // ) 1898 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1899 auto Bail = std::make_pair(SDValue(), SDValue()); 1900 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1901 return Bail; 1902 const SDValue &SwizzleSrc = Lane->getOperand(0); 1903 const SDValue &IndexExt = Lane->getOperand(1); 1904 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1905 return Bail; 1906 const SDValue &Index = IndexExt->getOperand(0); 1907 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1908 return Bail; 1909 const SDValue &SwizzleIndices = Index->getOperand(0); 1910 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1911 SwizzleIndices.getValueType() != MVT::v16i8 || 1912 Index->getOperand(1)->getOpcode() != ISD::Constant || 1913 Index->getConstantOperandVal(1) != I) 1914 return Bail; 1915 return std::make_pair(SwizzleSrc, SwizzleIndices); 1916 }; 1917 1918 // If the lane is extracted from another vector at a constant index, return 1919 // that vector. The source vector must not have more lanes than the dest 1920 // because the shufflevector indices are in terms of the destination lanes and 1921 // would not be able to address the smaller individual source lanes. 1922 auto GetShuffleSrc = [&](const SDValue &Lane) { 1923 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1924 return SDValue(); 1925 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1926 return SDValue(); 1927 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1928 VecT.getVectorNumElements()) 1929 return SDValue(); 1930 return Lane->getOperand(0); 1931 }; 1932 1933 using ValueEntry = std::pair<SDValue, size_t>; 1934 SmallVector<ValueEntry, 16> SplatValueCounts; 1935 1936 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1937 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1938 1939 using ShuffleEntry = std::pair<SDValue, size_t>; 1940 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1941 1942 auto AddCount = [](auto &Counts, const auto &Val) { 1943 auto CountIt = 1944 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1945 if (CountIt == Counts.end()) { 1946 Counts.emplace_back(Val, 1); 1947 } else { 1948 CountIt->second++; 1949 } 1950 }; 1951 1952 auto GetMostCommon = [](auto &Counts) { 1953 auto CommonIt = 1954 std::max_element(Counts.begin(), Counts.end(), 1955 [](auto A, auto B) { return A.second < B.second; }); 1956 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1957 return *CommonIt; 1958 }; 1959 1960 size_t NumConstantLanes = 0; 1961 1962 // Count eligible lanes for each type of vector creation op 1963 for (size_t I = 0; I < Lanes; ++I) { 1964 const SDValue &Lane = Op->getOperand(I); 1965 if (Lane.isUndef()) 1966 continue; 1967 1968 AddCount(SplatValueCounts, Lane); 1969 1970 if (IsConstant(Lane)) 1971 NumConstantLanes++; 1972 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1973 AddCount(ShuffleCounts, ShuffleSrc); 1974 if (CanSwizzle) { 1975 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1976 if (SwizzleSrcs.first) 1977 AddCount(SwizzleCounts, SwizzleSrcs); 1978 } 1979 } 1980 1981 SDValue SplatValue; 1982 size_t NumSplatLanes; 1983 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1984 1985 SDValue SwizzleSrc; 1986 SDValue SwizzleIndices; 1987 size_t NumSwizzleLanes = 0; 1988 if (SwizzleCounts.size()) 1989 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1990 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1991 1992 // Shuffles can draw from up to two vectors, so find the two most common 1993 // sources. 1994 SDValue ShuffleSrc1, ShuffleSrc2; 1995 size_t NumShuffleLanes = 0; 1996 if (ShuffleCounts.size()) { 1997 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1998 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1999 ShuffleCounts.end(), 2000 [&](const auto &Pair) { 2001 return Pair.first == ShuffleSrc1; 2002 }), 2003 ShuffleCounts.end()); 2004 } 2005 if (ShuffleCounts.size()) { 2006 size_t AdditionalShuffleLanes; 2007 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2008 GetMostCommon(ShuffleCounts); 2009 NumShuffleLanes += AdditionalShuffleLanes; 2010 } 2011 2012 // Predicate returning true if the lane is properly initialized by the 2013 // original instruction 2014 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2015 SDValue Result; 2016 // Prefer swizzles over shuffles over vector consts over splats 2017 if (NumSwizzleLanes >= NumShuffleLanes && 2018 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2019 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2020 SwizzleIndices); 2021 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2022 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2023 return Swizzled == GetSwizzleSrcs(I, Lane); 2024 }; 2025 } else if (NumShuffleLanes >= NumConstantLanes && 2026 NumShuffleLanes >= NumSplatLanes) { 2027 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2028 size_t DestLaneCount = VecT.getVectorNumElements(); 2029 size_t Scale1 = 1; 2030 size_t Scale2 = 1; 2031 SDValue Src1 = ShuffleSrc1; 2032 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2033 if (Src1.getValueType() != VecT) { 2034 size_t LaneSize = 2035 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2036 assert(LaneSize > DestLaneSize); 2037 Scale1 = LaneSize / DestLaneSize; 2038 Src1 = DAG.getBitcast(VecT, Src1); 2039 } 2040 if (Src2.getValueType() != VecT) { 2041 size_t LaneSize = 2042 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2043 assert(LaneSize > DestLaneSize); 2044 Scale2 = LaneSize / DestLaneSize; 2045 Src2 = DAG.getBitcast(VecT, Src2); 2046 } 2047 2048 int Mask[16]; 2049 assert(DestLaneCount <= 16); 2050 for (size_t I = 0; I < DestLaneCount; ++I) { 2051 const SDValue &Lane = Op->getOperand(I); 2052 SDValue Src = GetShuffleSrc(Lane); 2053 if (Src == ShuffleSrc1) { 2054 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2055 } else if (Src && Src == ShuffleSrc2) { 2056 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2057 } else { 2058 Mask[I] = -1; 2059 } 2060 } 2061 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2062 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2063 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2064 auto Src = GetShuffleSrc(Lane); 2065 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2066 }; 2067 } else if (NumConstantLanes >= NumSplatLanes) { 2068 SmallVector<SDValue, 16> ConstLanes; 2069 for (const SDValue &Lane : Op->op_values()) { 2070 if (IsConstant(Lane)) { 2071 // Values may need to be fixed so that they will sign extend to be 2072 // within the expected range during ISel. Check whether the value is in 2073 // bounds based on the lane bit width and if it is out of bounds, lop 2074 // off the extra bits and subtract 2^n to reflect giving the high bit 2075 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2076 // cannot possibly be out of range. 2077 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2078 int64_t Val = Const ? Const->getSExtValue() : 0; 2079 uint64_t LaneBits = 128 / Lanes; 2080 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2081 "Unexpected out of bounds negative value"); 2082 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2083 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); 2084 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2085 } else { 2086 ConstLanes.push_back(Lane); 2087 } 2088 } else if (LaneT.isFloatingPoint()) { 2089 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2090 } else { 2091 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2092 } 2093 } 2094 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2095 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2096 return IsConstant(Lane); 2097 }; 2098 } else { 2099 // Use a splat, but possibly a load_splat 2100 LoadSDNode *SplattedLoad; 2101 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 2102 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 2103 Result = DAG.getMemIntrinsicNode( 2104 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 2105 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 2106 SplattedLoad->getOffset()}, 2107 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 2108 } else { 2109 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2110 } 2111 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2112 return Lane == SplatValue; 2113 }; 2114 } 2115 2116 assert(Result); 2117 assert(IsLaneConstructed); 2118 2119 // Add replace_lane instructions for any unhandled values 2120 for (size_t I = 0; I < Lanes; ++I) { 2121 const SDValue &Lane = Op->getOperand(I); 2122 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2123 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2124 DAG.getConstant(I, DL, MVT::i32)); 2125 } 2126 2127 return Result; 2128 } 2129 2130 SDValue 2131 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2132 SelectionDAG &DAG) const { 2133 SDLoc DL(Op); 2134 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2135 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2136 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2137 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2138 2139 // Space for two vector args and sixteen mask indices 2140 SDValue Ops[18]; 2141 size_t OpIdx = 0; 2142 Ops[OpIdx++] = Op.getOperand(0); 2143 Ops[OpIdx++] = Op.getOperand(1); 2144 2145 // Expand mask indices to byte indices and materialize them as operands 2146 for (int M : Mask) { 2147 for (size_t J = 0; J < LaneBytes; ++J) { 2148 // Lower undefs (represented by -1 in mask) to zero 2149 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 2150 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2151 } 2152 } 2153 2154 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2155 } 2156 2157 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2158 SelectionDAG &DAG) const { 2159 SDLoc DL(Op); 2160 // The legalizer does not know how to expand the unsupported comparison modes 2161 // of i64x2 vectors, so we manually unroll them here. 2162 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2163 SmallVector<SDValue, 2> LHS, RHS; 2164 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2165 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2166 const SDValue &CC = Op->getOperand(2); 2167 auto MakeLane = [&](unsigned I) { 2168 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2169 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2170 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2171 }; 2172 return DAG.getBuildVector(Op->getValueType(0), DL, 2173 {MakeLane(0), MakeLane(1)}); 2174 } 2175 2176 SDValue 2177 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2178 SelectionDAG &DAG) const { 2179 // Allow constant lane indices, expand variable lane indices 2180 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2181 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2182 return Op; 2183 else 2184 // Perform default expansion 2185 return SDValue(); 2186 } 2187 2188 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2189 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2190 // 32-bit and 64-bit unrolled shifts will have proper semantics 2191 if (LaneT.bitsGE(MVT::i32)) 2192 return DAG.UnrollVectorOp(Op.getNode()); 2193 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2194 SDLoc DL(Op); 2195 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2196 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2197 unsigned ShiftOpcode = Op.getOpcode(); 2198 SmallVector<SDValue, 16> ShiftedElements; 2199 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2200 SmallVector<SDValue, 16> ShiftElements; 2201 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2202 SmallVector<SDValue, 16> UnrolledOps; 2203 for (size_t i = 0; i < NumLanes; ++i) { 2204 SDValue MaskedShiftValue = 2205 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2206 SDValue ShiftedValue = ShiftedElements[i]; 2207 if (ShiftOpcode == ISD::SRA) 2208 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2209 ShiftedValue, DAG.getValueType(LaneT)); 2210 UnrolledOps.push_back( 2211 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2212 } 2213 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2214 } 2215 2216 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2217 SelectionDAG &DAG) const { 2218 SDLoc DL(Op); 2219 2220 // Only manually lower vector shifts 2221 assert(Op.getSimpleValueType().isVector()); 2222 2223 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2224 if (!ShiftVal) 2225 return unrollVectorShift(Op, DAG); 2226 2227 // Use anyext because none of the high bits can affect the shift 2228 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2229 2230 unsigned Opcode; 2231 switch (Op.getOpcode()) { 2232 case ISD::SHL: 2233 Opcode = WebAssemblyISD::VEC_SHL; 2234 break; 2235 case ISD::SRA: 2236 Opcode = WebAssemblyISD::VEC_SHR_S; 2237 break; 2238 case ISD::SRL: 2239 Opcode = WebAssemblyISD::VEC_SHR_U; 2240 break; 2241 default: 2242 llvm_unreachable("unexpected opcode"); 2243 } 2244 2245 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2246 } 2247 2248 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2249 SelectionDAG &DAG) const { 2250 SDLoc DL(Op); 2251 EVT ResT = Op.getValueType(); 2252 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2253 2254 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2255 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2256 return Op; 2257 2258 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2259 return Op; 2260 2261 return SDValue(); 2262 } 2263 2264 //===----------------------------------------------------------------------===// 2265 // Custom DAG combine hooks 2266 //===----------------------------------------------------------------------===// 2267 static SDValue 2268 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2269 auto &DAG = DCI.DAG; 2270 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2271 2272 // Hoist vector bitcasts that don't change the number of lanes out of unary 2273 // shuffles, where they are less likely to get in the way of other combines. 2274 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2275 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2276 SDValue Bitcast = N->getOperand(0); 2277 if (Bitcast.getOpcode() != ISD::BITCAST) 2278 return SDValue(); 2279 if (!N->getOperand(1).isUndef()) 2280 return SDValue(); 2281 SDValue CastOp = Bitcast.getOperand(0); 2282 MVT SrcType = CastOp.getSimpleValueType(); 2283 MVT DstType = Bitcast.getSimpleValueType(); 2284 if (!SrcType.is128BitVector() || 2285 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2286 return SDValue(); 2287 SDValue NewShuffle = DAG.getVectorShuffle( 2288 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2289 return DAG.getBitcast(DstType, NewShuffle); 2290 } 2291 2292 static SDValue 2293 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2294 auto &DAG = DCI.DAG; 2295 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2296 N->getOpcode() == ISD::ZERO_EXTEND); 2297 2298 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2299 // possible before the extract_subvector can be expanded. 2300 auto Extract = N->getOperand(0); 2301 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2302 return SDValue(); 2303 auto Source = Extract.getOperand(0); 2304 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2305 if (IndexNode == nullptr) 2306 return SDValue(); 2307 auto Index = IndexNode->getZExtValue(); 2308 2309 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2310 // extracted subvector is the low or high half of its source. 2311 EVT ResVT = N->getValueType(0); 2312 if (ResVT == MVT::v8i16) { 2313 if (Extract.getValueType() != MVT::v8i8 || 2314 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2315 return SDValue(); 2316 } else if (ResVT == MVT::v4i32) { 2317 if (Extract.getValueType() != MVT::v4i16 || 2318 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2319 return SDValue(); 2320 } else if (ResVT == MVT::v2i64) { 2321 if (Extract.getValueType() != MVT::v2i32 || 2322 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2323 return SDValue(); 2324 } else { 2325 return SDValue(); 2326 } 2327 2328 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2329 bool IsLow = Index == 0; 2330 2331 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2332 : WebAssemblyISD::EXTEND_HIGH_S) 2333 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2334 : WebAssemblyISD::EXTEND_HIGH_U); 2335 2336 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2337 } 2338 2339 static SDValue 2340 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2341 auto &DAG = DCI.DAG; 2342 2343 auto GetWasmConversionOp = [](unsigned Op) { 2344 switch (Op) { 2345 case ISD::FP_TO_SINT_SAT: 2346 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2347 case ISD::FP_TO_UINT_SAT: 2348 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2349 case ISD::FP_ROUND: 2350 return WebAssemblyISD::DEMOTE_ZERO; 2351 } 2352 llvm_unreachable("unexpected op"); 2353 }; 2354 2355 auto IsZeroSplat = [](SDValue SplatVal) { 2356 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2357 APInt SplatValue, SplatUndef; 2358 unsigned SplatBitSize; 2359 bool HasAnyUndefs; 2360 return Splat && 2361 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2362 HasAnyUndefs) && 2363 SplatValue == 0; 2364 }; 2365 2366 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2367 // Combine this: 2368 // 2369 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2370 // 2371 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2372 // 2373 // Or this: 2374 // 2375 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2376 // 2377 // into (f32x4.demote_zero_f64x2 $x). 2378 EVT ResVT; 2379 EVT ExpectedConversionType; 2380 auto Conversion = N->getOperand(0); 2381 auto ConversionOp = Conversion.getOpcode(); 2382 switch (ConversionOp) { 2383 case ISD::FP_TO_SINT_SAT: 2384 case ISD::FP_TO_UINT_SAT: 2385 ResVT = MVT::v4i32; 2386 ExpectedConversionType = MVT::v2i32; 2387 break; 2388 case ISD::FP_ROUND: 2389 ResVT = MVT::v4f32; 2390 ExpectedConversionType = MVT::v2f32; 2391 break; 2392 default: 2393 return SDValue(); 2394 } 2395 2396 if (N->getValueType(0) != ResVT) 2397 return SDValue(); 2398 2399 if (Conversion.getValueType() != ExpectedConversionType) 2400 return SDValue(); 2401 2402 auto Source = Conversion.getOperand(0); 2403 if (Source.getValueType() != MVT::v2f64) 2404 return SDValue(); 2405 2406 if (!IsZeroSplat(N->getOperand(1)) || 2407 N->getOperand(1).getValueType() != ExpectedConversionType) 2408 return SDValue(); 2409 2410 unsigned Op = GetWasmConversionOp(ConversionOp); 2411 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2412 } 2413 2414 // Combine this: 2415 // 2416 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2417 // 2418 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2419 // 2420 // Or this: 2421 // 2422 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2423 // 2424 // into (f32x4.demote_zero_f64x2 $x). 2425 EVT ResVT; 2426 auto ConversionOp = N->getOpcode(); 2427 switch (ConversionOp) { 2428 case ISD::FP_TO_SINT_SAT: 2429 case ISD::FP_TO_UINT_SAT: 2430 ResVT = MVT::v4i32; 2431 break; 2432 case ISD::FP_ROUND: 2433 ResVT = MVT::v4f32; 2434 break; 2435 default: 2436 llvm_unreachable("unexpected op"); 2437 } 2438 2439 if (N->getValueType(0) != ResVT) 2440 return SDValue(); 2441 2442 auto Concat = N->getOperand(0); 2443 if (Concat.getValueType() != MVT::v4f64) 2444 return SDValue(); 2445 2446 auto Source = Concat.getOperand(0); 2447 if (Source.getValueType() != MVT::v2f64) 2448 return SDValue(); 2449 2450 if (!IsZeroSplat(Concat.getOperand(1)) || 2451 Concat.getOperand(1).getValueType() != MVT::v2f64) 2452 return SDValue(); 2453 2454 unsigned Op = GetWasmConversionOp(ConversionOp); 2455 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2456 } 2457 2458 SDValue 2459 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2460 DAGCombinerInfo &DCI) const { 2461 switch (N->getOpcode()) { 2462 default: 2463 return SDValue(); 2464 case ISD::VECTOR_SHUFFLE: 2465 return performVECTOR_SHUFFLECombine(N, DCI); 2466 case ISD::SIGN_EXTEND: 2467 case ISD::ZERO_EXTEND: 2468 return performVectorExtendCombine(N, DCI); 2469 case ISD::FP_TO_SINT_SAT: 2470 case ISD::FP_TO_UINT_SAT: 2471 case ISD::FP_ROUND: 2472 case ISD::CONCAT_VECTORS: 2473 return performVectorTruncZeroCombine(N, DCI); 2474 } 2475 } 2476