1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // WebAssembly does not produce floating-point exceptions on normal floating 49 // point operations. 50 setHasFloatingPointExceptions(false); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 } 67 if (Subtarget->hasUnimplementedSIMD128()) { 68 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 70 } 71 // Compute derived properties from the register classes. 72 computeRegisterProperties(Subtarget->getRegisterInfo()); 73 74 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 75 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 76 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 77 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 78 setOperationAction(ISD::BRIND, MVT::Other, Custom); 79 80 // Take the default expansion for va_arg, va_copy, and va_end. There is no 81 // default action for va_start, so we do that custom. 82 setOperationAction(ISD::VASTART, MVT::Other, Custom); 83 setOperationAction(ISD::VAARG, MVT::Other, Expand); 84 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 85 setOperationAction(ISD::VAEND, MVT::Other, Expand); 86 87 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 88 // Don't expand the floating-point types to constant pools. 89 setOperationAction(ISD::ConstantFP, T, Legal); 90 // Expand floating-point comparisons. 91 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 92 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 93 setCondCodeAction(CC, T, Expand); 94 // Expand floating-point library function operators. 95 for (auto Op : 96 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 97 setOperationAction(Op, T, Expand); 98 // Note supported floating-point library function operators that otherwise 99 // default to expand. 100 for (auto Op : 101 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 102 setOperationAction(Op, T, Legal); 103 // Support minimum and maximum, which otherwise default to expand. 104 setOperationAction(ISD::FMINIMUM, T, Legal); 105 setOperationAction(ISD::FMAXIMUM, T, Legal); 106 // WebAssembly currently has no builtin f16 support. 107 setOperationAction(ISD::FP16_TO_FP, T, Expand); 108 setOperationAction(ISD::FP_TO_FP16, T, Expand); 109 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 110 setTruncStoreAction(T, MVT::f16, Expand); 111 } 112 113 // Expand unavailable integer operations. 114 for (auto Op : 115 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 116 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 117 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 118 for (auto T : {MVT::i32, MVT::i64}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasSIMD128()) 121 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 122 setOperationAction(Op, T, Expand); 123 if (Subtarget->hasUnimplementedSIMD128()) 124 setOperationAction(Op, MVT::v2i64, Expand); 125 } 126 127 // SIMD-specific configuration 128 if (Subtarget->hasSIMD128()) { 129 // Support saturating add for i8x16 and i16x8 130 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 131 for (auto T : {MVT::v16i8, MVT::v8i16}) 132 setOperationAction(Op, T, Legal); 133 134 // We have custom shuffle lowering to expose the shuffle mask 135 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 136 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 137 if (Subtarget->hasUnimplementedSIMD128()) 138 for (auto T: {MVT::v2i64, MVT::v2f64}) 139 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 140 141 // Custom lowering since wasm shifts must have a scalar shift amount 142 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 143 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 144 setOperationAction(Op, T, Custom); 145 if (Subtarget->hasUnimplementedSIMD128()) 146 setOperationAction(Op, MVT::v2i64, Custom); 147 } 148 149 // Custom lower lane accesses to expand out variable indices 150 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 151 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 152 setOperationAction(Op, T, Custom); 153 if (Subtarget->hasUnimplementedSIMD128()) 154 for (auto T : {MVT::v2i64, MVT::v2f64}) 155 setOperationAction(Op, T, Custom); 156 } 157 158 // There is no i64x2.mul instruction 159 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 160 161 // There are no vector select instructions 162 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 163 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 164 setOperationAction(Op, T, Expand); 165 if (Subtarget->hasUnimplementedSIMD128()) 166 for (auto T : {MVT::v2i64, MVT::v2f64}) 167 setOperationAction(Op, T, Expand); 168 } 169 170 // Expand additional SIMD ops that V8 hasn't implemented yet 171 if (!Subtarget->hasUnimplementedSIMD128()) { 172 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 173 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 174 } 175 } 176 177 // As a special case, these operators use the type to mean the type to 178 // sign-extend from. 179 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 180 if (!Subtarget->hasSignExt()) { 181 // Sign extends are legal only when extending a vector extract 182 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 183 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 184 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 185 } 186 for (auto T : MVT::integer_vector_valuetypes()) 187 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 188 189 // Dynamic stack allocation: use the default expansion. 190 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 191 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 192 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 193 194 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 195 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 196 197 // Expand these forms; we pattern-match the forms that we can handle in isel. 198 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 199 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 200 setOperationAction(Op, T, Expand); 201 202 // We have custom switch handling. 203 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 204 205 // WebAssembly doesn't have: 206 // - Floating-point extending loads. 207 // - Floating-point truncating stores. 208 // - i1 extending loads. 209 // - extending/truncating SIMD loads/stores 210 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 211 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 212 for (auto T : MVT::integer_valuetypes()) 213 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 214 setLoadExtAction(Ext, T, MVT::i1, Promote); 215 if (Subtarget->hasSIMD128()) { 216 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 217 MVT::v2f64}) { 218 for (auto MemT : MVT::vector_valuetypes()) { 219 if (MVT(T) != MemT) { 220 setTruncStoreAction(T, MemT, Expand); 221 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 222 setLoadExtAction(Ext, T, MemT, Expand); 223 } 224 } 225 } 226 } 227 228 // Trap lowers to wasm unreachable 229 setOperationAction(ISD::TRAP, MVT::Other, Legal); 230 231 // Exception handling intrinsics 232 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 233 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 234 235 setMaxAtomicSizeInBitsSupported(64); 236 } 237 238 TargetLowering::AtomicExpansionKind 239 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 240 // We have wasm instructions for these 241 switch (AI->getOperation()) { 242 case AtomicRMWInst::Add: 243 case AtomicRMWInst::Sub: 244 case AtomicRMWInst::And: 245 case AtomicRMWInst::Or: 246 case AtomicRMWInst::Xor: 247 case AtomicRMWInst::Xchg: 248 return AtomicExpansionKind::None; 249 default: 250 break; 251 } 252 return AtomicExpansionKind::CmpXChg; 253 } 254 255 FastISel *WebAssemblyTargetLowering::createFastISel( 256 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 257 return WebAssembly::createFastISel(FuncInfo, LibInfo); 258 } 259 260 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 261 const GlobalAddressSDNode * /*GA*/) const { 262 // All offsets can be folded. 263 return true; 264 } 265 266 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 267 EVT VT) const { 268 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 269 if (BitWidth > 1 && BitWidth < 8) 270 BitWidth = 8; 271 272 if (BitWidth > 64) { 273 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 274 // the count to be an i32. 275 BitWidth = 32; 276 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 277 "32-bit shift counts ought to be enough for anyone"); 278 } 279 280 MVT Result = MVT::getIntegerVT(BitWidth); 281 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 282 "Unable to represent scalar shift amount type"); 283 return Result; 284 } 285 286 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 287 // undefined result on invalid/overflow, to the WebAssembly opcode, which 288 // traps on invalid/overflow. 289 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 290 MachineBasicBlock *BB, 291 const TargetInstrInfo &TII, 292 bool IsUnsigned, bool Int64, 293 bool Float64, unsigned LoweredOpcode) { 294 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 295 296 unsigned OutReg = MI.getOperand(0).getReg(); 297 unsigned InReg = MI.getOperand(1).getReg(); 298 299 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 300 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 301 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 302 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 303 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 304 unsigned Eqz = WebAssembly::EQZ_I32; 305 unsigned And = WebAssembly::AND_I32; 306 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 307 int64_t Substitute = IsUnsigned ? 0 : Limit; 308 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 309 auto &Context = BB->getParent()->getFunction().getContext(); 310 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 311 312 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 313 MachineFunction *F = BB->getParent(); 314 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVM_BB); 315 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 316 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVM_BB); 317 318 MachineFunction::iterator It = ++BB->getIterator(); 319 F->insert(It, FalseMBB); 320 F->insert(It, TrueMBB); 321 F->insert(It, DoneMBB); 322 323 // Transfer the remainder of BB and its successor edges to DoneMBB. 324 DoneMBB->splice(DoneMBB->begin(), BB, 325 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 326 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 327 328 BB->addSuccessor(TrueMBB); 329 BB->addSuccessor(FalseMBB); 330 TrueMBB->addSuccessor(DoneMBB); 331 FalseMBB->addSuccessor(DoneMBB); 332 333 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 334 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 335 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 336 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 337 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 338 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 339 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 340 341 MI.eraseFromParent(); 342 // For signed numbers, we can do a single comparison to determine whether 343 // fabs(x) is within range. 344 if (IsUnsigned) { 345 Tmp0 = InReg; 346 } else { 347 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 348 } 349 BuildMI(BB, DL, TII.get(FConst), Tmp1) 350 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 351 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 352 353 // For unsigned numbers, we have to do a separate comparison with zero. 354 if (IsUnsigned) { 355 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 356 unsigned SecondCmpReg = 357 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 358 unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 359 BuildMI(BB, DL, TII.get(FConst), Tmp1) 360 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 361 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 362 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 363 CmpReg = AndReg; 364 } 365 366 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 367 368 // Create the CFG diamond to select between doing the conversion or using 369 // the substitute value. 370 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 371 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 372 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 373 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 374 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 375 .addReg(FalseReg) 376 .addMBB(FalseMBB) 377 .addReg(TrueReg) 378 .addMBB(TrueMBB); 379 380 return DoneMBB; 381 } 382 383 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 384 MachineInstr &MI, MachineBasicBlock *BB) const { 385 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 386 DebugLoc DL = MI.getDebugLoc(); 387 388 switch (MI.getOpcode()) { 389 default: 390 llvm_unreachable("Unexpected instr type to insert"); 391 case WebAssembly::FP_TO_SINT_I32_F32: 392 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 393 WebAssembly::I32_TRUNC_S_F32); 394 case WebAssembly::FP_TO_UINT_I32_F32: 395 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 396 WebAssembly::I32_TRUNC_U_F32); 397 case WebAssembly::FP_TO_SINT_I64_F32: 398 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 399 WebAssembly::I64_TRUNC_S_F32); 400 case WebAssembly::FP_TO_UINT_I64_F32: 401 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 402 WebAssembly::I64_TRUNC_U_F32); 403 case WebAssembly::FP_TO_SINT_I32_F64: 404 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 405 WebAssembly::I32_TRUNC_S_F64); 406 case WebAssembly::FP_TO_UINT_I32_F64: 407 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 408 WebAssembly::I32_TRUNC_U_F64); 409 case WebAssembly::FP_TO_SINT_I64_F64: 410 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 411 WebAssembly::I64_TRUNC_S_F64); 412 case WebAssembly::FP_TO_UINT_I64_F64: 413 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 414 WebAssembly::I64_TRUNC_U_F64); 415 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 416 } 417 } 418 419 const char * 420 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 421 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 422 case WebAssemblyISD::FIRST_NUMBER: 423 break; 424 #define HANDLE_NODETYPE(NODE) \ 425 case WebAssemblyISD::NODE: \ 426 return "WebAssemblyISD::" #NODE; 427 #include "WebAssemblyISD.def" 428 #undef HANDLE_NODETYPE 429 } 430 return nullptr; 431 } 432 433 std::pair<unsigned, const TargetRegisterClass *> 434 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 435 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 436 // First, see if this is a constraint that directly corresponds to a 437 // WebAssembly register class. 438 if (Constraint.size() == 1) { 439 switch (Constraint[0]) { 440 case 'r': 441 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 442 if (Subtarget->hasSIMD128() && VT.isVector()) { 443 if (VT.getSizeInBits() == 128) 444 return std::make_pair(0U, &WebAssembly::V128RegClass); 445 } 446 if (VT.isInteger() && !VT.isVector()) { 447 if (VT.getSizeInBits() <= 32) 448 return std::make_pair(0U, &WebAssembly::I32RegClass); 449 if (VT.getSizeInBits() <= 64) 450 return std::make_pair(0U, &WebAssembly::I64RegClass); 451 } 452 break; 453 default: 454 break; 455 } 456 } 457 458 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 459 } 460 461 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 462 // Assume ctz is a relatively cheap operation. 463 return true; 464 } 465 466 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 467 // Assume clz is a relatively cheap operation. 468 return true; 469 } 470 471 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 472 const AddrMode &AM, 473 Type *Ty, unsigned AS, 474 Instruction *I) const { 475 // WebAssembly offsets are added as unsigned without wrapping. The 476 // isLegalAddressingMode gives us no way to determine if wrapping could be 477 // happening, so we approximate this by accepting only non-negative offsets. 478 if (AM.BaseOffs < 0) 479 return false; 480 481 // WebAssembly has no scale register operands. 482 if (AM.Scale != 0) 483 return false; 484 485 // Everything else is legal. 486 return true; 487 } 488 489 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 490 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const { 491 // WebAssembly supports unaligned accesses, though it should be declared 492 // with the p2align attribute on loads and stores which do so, and there 493 // may be a performance impact. We tell LLVM they're "fast" because 494 // for the kinds of things that LLVM uses this for (merging adjacent stores 495 // of constants, etc.), WebAssembly implementations will either want the 496 // unaligned access or they'll split anyway. 497 if (Fast) 498 *Fast = true; 499 return true; 500 } 501 502 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 503 AttributeList Attr) const { 504 // The current thinking is that wasm engines will perform this optimization, 505 // so we can save on code size. 506 return true; 507 } 508 509 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 510 LLVMContext &C, 511 EVT VT) const { 512 if (VT.isVector()) 513 return VT.changeVectorElementTypeToInteger(); 514 515 return TargetLowering::getSetCCResultType(DL, C, VT); 516 } 517 518 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 519 const CallInst &I, 520 MachineFunction &MF, 521 unsigned Intrinsic) const { 522 switch (Intrinsic) { 523 case Intrinsic::wasm_atomic_notify: 524 Info.opc = ISD::INTRINSIC_W_CHAIN; 525 Info.memVT = MVT::i32; 526 Info.ptrVal = I.getArgOperand(0); 527 Info.offset = 0; 528 Info.align = 4; 529 // atomic.notify instruction does not really load the memory specified with 530 // this argument, but MachineMemOperand should either be load or store, so 531 // we set this to a load. 532 // FIXME Volatile isn't really correct, but currently all LLVM atomic 533 // instructions are treated as volatiles in the backend, so we should be 534 // consistent. The same applies for wasm_atomic_wait intrinsics too. 535 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 536 return true; 537 case Intrinsic::wasm_atomic_wait_i32: 538 Info.opc = ISD::INTRINSIC_W_CHAIN; 539 Info.memVT = MVT::i32; 540 Info.ptrVal = I.getArgOperand(0); 541 Info.offset = 0; 542 Info.align = 4; 543 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 544 return true; 545 case Intrinsic::wasm_atomic_wait_i64: 546 Info.opc = ISD::INTRINSIC_W_CHAIN; 547 Info.memVT = MVT::i64; 548 Info.ptrVal = I.getArgOperand(0); 549 Info.offset = 0; 550 Info.align = 8; 551 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 552 return true; 553 default: 554 return false; 555 } 556 } 557 558 //===----------------------------------------------------------------------===// 559 // WebAssembly Lowering private implementation. 560 //===----------------------------------------------------------------------===// 561 562 //===----------------------------------------------------------------------===// 563 // Lowering Code 564 //===----------------------------------------------------------------------===// 565 566 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *msg) { 567 MachineFunction &MF = DAG.getMachineFunction(); 568 DAG.getContext()->diagnose( 569 DiagnosticInfoUnsupported(MF.getFunction(), msg, DL.getDebugLoc())); 570 } 571 572 // Test whether the given calling convention is supported. 573 static bool CallingConvSupported(CallingConv::ID CallConv) { 574 // We currently support the language-independent target-independent 575 // conventions. We don't yet have a way to annotate calls with properties like 576 // "cold", and we don't have any call-clobbered registers, so these are mostly 577 // all handled the same. 578 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 579 CallConv == CallingConv::Cold || 580 CallConv == CallingConv::PreserveMost || 581 CallConv == CallingConv::PreserveAll || 582 CallConv == CallingConv::CXX_FAST_TLS; 583 } 584 585 SDValue 586 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 587 SmallVectorImpl<SDValue> &InVals) const { 588 SelectionDAG &DAG = CLI.DAG; 589 SDLoc DL = CLI.DL; 590 SDValue Chain = CLI.Chain; 591 SDValue Callee = CLI.Callee; 592 MachineFunction &MF = DAG.getMachineFunction(); 593 auto Layout = MF.getDataLayout(); 594 595 CallingConv::ID CallConv = CLI.CallConv; 596 if (!CallingConvSupported(CallConv)) 597 fail(DL, DAG, 598 "WebAssembly doesn't support language-specific or target-specific " 599 "calling conventions yet"); 600 if (CLI.IsPatchPoint) 601 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 602 603 // WebAssembly doesn't currently support explicit tail calls. If they are 604 // required, fail. Otherwise, just disable them. 605 if ((CallConv == CallingConv::Fast && CLI.IsTailCall && 606 MF.getTarget().Options.GuaranteedTailCallOpt) || 607 (CLI.CS && CLI.CS.isMustTailCall())) 608 fail(DL, DAG, "WebAssembly doesn't support tail call yet"); 609 CLI.IsTailCall = false; 610 611 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 612 if (Ins.size() > 1) 613 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 614 615 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 616 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 617 unsigned NumFixedArgs = 0; 618 for (unsigned i = 0; i < Outs.size(); ++i) { 619 const ISD::OutputArg &Out = Outs[i]; 620 SDValue &OutVal = OutVals[i]; 621 if (Out.Flags.isNest()) 622 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 623 if (Out.Flags.isInAlloca()) 624 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 625 if (Out.Flags.isInConsecutiveRegs()) 626 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 627 if (Out.Flags.isInConsecutiveRegsLast()) 628 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 629 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 630 auto &MFI = MF.getFrameInfo(); 631 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 632 Out.Flags.getByValAlign(), 633 /*isSS=*/false); 634 SDValue SizeNode = 635 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 636 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 637 Chain = DAG.getMemcpy( 638 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 639 /*isVolatile*/ false, /*AlwaysInline=*/false, 640 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 641 OutVal = FINode; 642 } 643 // Count the number of fixed args *after* legalization. 644 NumFixedArgs += Out.IsFixed; 645 } 646 647 bool IsVarArg = CLI.IsVarArg; 648 auto PtrVT = getPointerTy(Layout); 649 650 // Analyze operands of the call, assigning locations to each operand. 651 SmallVector<CCValAssign, 16> ArgLocs; 652 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 653 654 if (IsVarArg) { 655 // Outgoing non-fixed arguments are placed in a buffer. First 656 // compute their offsets and the total amount of buffer space needed. 657 for (SDValue Arg : 658 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 659 EVT VT = Arg.getValueType(); 660 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 661 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 662 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 663 Layout.getABITypeAlignment(Ty)); 664 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 665 Offset, VT.getSimpleVT(), 666 CCValAssign::Full)); 667 } 668 } 669 670 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 671 672 SDValue FINode; 673 if (IsVarArg && NumBytes) { 674 // For non-fixed arguments, next emit stores to store the argument values 675 // to the stack buffer at the offsets computed above. 676 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 677 Layout.getStackAlignment(), 678 /*isSS=*/false); 679 unsigned ValNo = 0; 680 SmallVector<SDValue, 8> Chains; 681 for (SDValue Arg : 682 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 683 assert(ArgLocs[ValNo].getValNo() == ValNo && 684 "ArgLocs should remain in order and only hold varargs args"); 685 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 686 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 687 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 688 DAG.getConstant(Offset, DL, PtrVT)); 689 Chains.push_back( 690 DAG.getStore(Chain, DL, Arg, Add, 691 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 692 } 693 if (!Chains.empty()) 694 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 695 } else if (IsVarArg) { 696 FINode = DAG.getIntPtrConstant(0, DL); 697 } 698 699 // Compute the operands for the CALLn node. 700 SmallVector<SDValue, 16> Ops; 701 Ops.push_back(Chain); 702 Ops.push_back(Callee); 703 704 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 705 // isn't reliable. 706 Ops.append(OutVals.begin(), 707 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 708 // Add a pointer to the vararg buffer. 709 if (IsVarArg) 710 Ops.push_back(FINode); 711 712 SmallVector<EVT, 8> InTys; 713 for (const auto &In : Ins) { 714 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 715 assert(!In.Flags.isNest() && "nest is not valid for return values"); 716 if (In.Flags.isInAlloca()) 717 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 718 if (In.Flags.isInConsecutiveRegs()) 719 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 720 if (In.Flags.isInConsecutiveRegsLast()) 721 fail(DL, DAG, 722 "WebAssembly hasn't implemented cons regs last return values"); 723 // Ignore In.getOrigAlign() because all our arguments are passed in 724 // registers. 725 InTys.push_back(In.VT); 726 } 727 InTys.push_back(MVT::Other); 728 SDVTList InTyList = DAG.getVTList(InTys); 729 SDValue Res = 730 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 731 DL, InTyList, Ops); 732 if (Ins.empty()) { 733 Chain = Res; 734 } else { 735 InVals.push_back(Res); 736 Chain = Res.getValue(1); 737 } 738 739 return Chain; 740 } 741 742 bool WebAssemblyTargetLowering::CanLowerReturn( 743 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 744 const SmallVectorImpl<ISD::OutputArg> &Outs, 745 LLVMContext & /*Context*/) const { 746 // WebAssembly can't currently handle returning tuples. 747 return Outs.size() <= 1; 748 } 749 750 SDValue WebAssemblyTargetLowering::LowerReturn( 751 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 752 const SmallVectorImpl<ISD::OutputArg> &Outs, 753 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 754 SelectionDAG &DAG) const { 755 assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); 756 if (!CallingConvSupported(CallConv)) 757 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 758 759 SmallVector<SDValue, 4> RetOps(1, Chain); 760 RetOps.append(OutVals.begin(), OutVals.end()); 761 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 762 763 // Record the number and types of the return values. 764 for (const ISD::OutputArg &Out : Outs) { 765 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 766 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 767 assert(Out.IsFixed && "non-fixed return value is not valid"); 768 if (Out.Flags.isInAlloca()) 769 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 770 if (Out.Flags.isInConsecutiveRegs()) 771 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 772 if (Out.Flags.isInConsecutiveRegsLast()) 773 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 774 } 775 776 return Chain; 777 } 778 779 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 780 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 781 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 782 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 783 if (!CallingConvSupported(CallConv)) 784 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 785 786 MachineFunction &MF = DAG.getMachineFunction(); 787 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 788 789 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 790 // of the incoming values before they're represented by virtual registers. 791 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 792 793 for (const ISD::InputArg &In : Ins) { 794 if (In.Flags.isInAlloca()) 795 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 796 if (In.Flags.isNest()) 797 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 798 if (In.Flags.isInConsecutiveRegs()) 799 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 800 if (In.Flags.isInConsecutiveRegsLast()) 801 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 802 // Ignore In.getOrigAlign() because all our arguments are passed in 803 // registers. 804 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 805 DAG.getTargetConstant(InVals.size(), 806 DL, MVT::i32)) 807 : DAG.getUNDEF(In.VT)); 808 809 // Record the number and types of arguments. 810 MFI->addParam(In.VT); 811 } 812 813 // Varargs are copied into a buffer allocated by the caller, and a pointer to 814 // the buffer is passed as an argument. 815 if (IsVarArg) { 816 MVT PtrVT = getPointerTy(MF.getDataLayout()); 817 unsigned VarargVreg = 818 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 819 MFI->setVarargBufferVreg(VarargVreg); 820 Chain = DAG.getCopyToReg( 821 Chain, DL, VarargVreg, 822 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 823 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 824 MFI->addParam(PtrVT); 825 } 826 827 // Record the number and types of arguments and results. 828 SmallVector<MVT, 4> Params; 829 SmallVector<MVT, 4> Results; 830 ComputeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 831 DAG.getTarget(), Params, Results); 832 for (MVT VT : Results) 833 MFI->addResult(VT); 834 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 835 // the param logic here with ComputeSignatureVTs 836 assert(MFI->getParams().size() == Params.size() && 837 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 838 Params.begin())); 839 840 return Chain; 841 } 842 843 //===----------------------------------------------------------------------===// 844 // Custom lowering hooks. 845 //===----------------------------------------------------------------------===// 846 847 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 848 SelectionDAG &DAG) const { 849 SDLoc DL(Op); 850 switch (Op.getOpcode()) { 851 default: 852 llvm_unreachable("unimplemented operation lowering"); 853 return SDValue(); 854 case ISD::FrameIndex: 855 return LowerFrameIndex(Op, DAG); 856 case ISD::GlobalAddress: 857 return LowerGlobalAddress(Op, DAG); 858 case ISD::ExternalSymbol: 859 return LowerExternalSymbol(Op, DAG); 860 case ISD::JumpTable: 861 return LowerJumpTable(Op, DAG); 862 case ISD::BR_JT: 863 return LowerBR_JT(Op, DAG); 864 case ISD::VASTART: 865 return LowerVASTART(Op, DAG); 866 case ISD::BlockAddress: 867 case ISD::BRIND: 868 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 869 return SDValue(); 870 case ISD::RETURNADDR: // Probably nothing meaningful can be returned here. 871 fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address"); 872 return SDValue(); 873 case ISD::FRAMEADDR: 874 return LowerFRAMEADDR(Op, DAG); 875 case ISD::CopyToReg: 876 return LowerCopyToReg(Op, DAG); 877 case ISD::INTRINSIC_WO_CHAIN: 878 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 879 case ISD::EXTRACT_VECTOR_ELT: 880 case ISD::INSERT_VECTOR_ELT: 881 return LowerAccessVectorElement(Op, DAG); 882 case ISD::INTRINSIC_VOID: 883 return LowerINTRINSIC_VOID(Op, DAG); 884 case ISD::SIGN_EXTEND_INREG: 885 return LowerSIGN_EXTEND_INREG(Op, DAG); 886 case ISD::VECTOR_SHUFFLE: 887 return LowerVECTOR_SHUFFLE(Op, DAG); 888 case ISD::SHL: 889 case ISD::SRA: 890 case ISD::SRL: 891 return LowerShift(Op, DAG); 892 } 893 } 894 895 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 896 SelectionDAG &DAG) const { 897 SDValue Src = Op.getOperand(2); 898 if (isa<FrameIndexSDNode>(Src.getNode())) { 899 // CopyToReg nodes don't support FrameIndex operands. Other targets select 900 // the FI to some LEA-like instruction, but since we don't have that, we 901 // need to insert some kind of instruction that can take an FI operand and 902 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 903 // local.copy between Op and its FI operand. 904 SDValue Chain = Op.getOperand(0); 905 SDLoc DL(Op); 906 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 907 EVT VT = Src.getValueType(); 908 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 909 : WebAssembly::COPY_I64, 910 DL, VT, Src), 911 0); 912 return Op.getNode()->getNumValues() == 1 913 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 914 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 915 Op.getNumOperands() == 4 ? Op.getOperand(3) 916 : SDValue()); 917 } 918 return SDValue(); 919 } 920 921 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 922 SelectionDAG &DAG) const { 923 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 924 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 925 } 926 927 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 928 SelectionDAG &DAG) const { 929 // Non-zero depths are not supported by WebAssembly currently. Use the 930 // legalizer's default expansion, which is to return 0 (what this function is 931 // documented to do). 932 if (Op.getConstantOperandVal(0) > 0) 933 return SDValue(); 934 935 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 936 EVT VT = Op.getValueType(); 937 unsigned FP = 938 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 939 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 940 } 941 942 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 943 SelectionDAG &DAG) const { 944 SDLoc DL(Op); 945 const auto *GA = cast<GlobalAddressSDNode>(Op); 946 EVT VT = Op.getValueType(); 947 assert(GA->getTargetFlags() == 0 && 948 "Unexpected target flags on generic GlobalAddressSDNode"); 949 if (GA->getAddressSpace() != 0) 950 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 951 return DAG.getNode( 952 WebAssemblyISD::Wrapper, DL, VT, 953 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset())); 954 } 955 956 SDValue 957 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 958 SelectionDAG &DAG) const { 959 SDLoc DL(Op); 960 const auto *ES = cast<ExternalSymbolSDNode>(Op); 961 EVT VT = Op.getValueType(); 962 assert(ES->getTargetFlags() == 0 && 963 "Unexpected target flags on generic ExternalSymbolSDNode"); 964 // Set the TargetFlags to 0x1 which indicates that this is a "function" 965 // symbol rather than a data symbol. We do this unconditionally even though 966 // we don't know anything about the symbol other than its name, because all 967 // external symbols used in target-independent SelectionDAG code are for 968 // functions. 969 return DAG.getNode( 970 WebAssemblyISD::Wrapper, DL, VT, 971 DAG.getTargetExternalSymbol(ES->getSymbol(), VT, 972 WebAssemblyII::MO_SYMBOL_FUNCTION)); 973 } 974 975 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 976 SelectionDAG &DAG) const { 977 // There's no need for a Wrapper node because we always incorporate a jump 978 // table operand into a BR_TABLE instruction, rather than ever 979 // materializing it in a register. 980 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 981 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 982 JT->getTargetFlags()); 983 } 984 985 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 986 SelectionDAG &DAG) const { 987 SDLoc DL(Op); 988 SDValue Chain = Op.getOperand(0); 989 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 990 SDValue Index = Op.getOperand(2); 991 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 992 993 SmallVector<SDValue, 8> Ops; 994 Ops.push_back(Chain); 995 Ops.push_back(Index); 996 997 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 998 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 999 1000 // Add an operand for each case. 1001 for (auto MBB : MBBs) 1002 Ops.push_back(DAG.getBasicBlock(MBB)); 1003 1004 // TODO: For now, we just pick something arbitrary for a default case for now. 1005 // We really want to sniff out the guard and put in the real default case (and 1006 // delete the guard). 1007 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1008 1009 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1010 } 1011 1012 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1013 SelectionDAG &DAG) const { 1014 SDLoc DL(Op); 1015 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1016 1017 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1018 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1019 1020 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1021 MFI->getVarargBufferVreg(), PtrVT); 1022 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1023 MachinePointerInfo(SV), 0); 1024 } 1025 1026 SDValue 1027 WebAssemblyTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1028 SelectionDAG &DAG) const { 1029 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1030 SDLoc DL(Op); 1031 switch (IntNo) { 1032 default: 1033 return {}; // Don't custom lower most intrinsics. 1034 1035 case Intrinsic::wasm_lsda: { 1036 MachineFunction &MF = DAG.getMachineFunction(); 1037 EVT VT = Op.getValueType(); 1038 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1039 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1040 auto &Context = MF.getMMI().getContext(); 1041 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1042 Twine(MF.getFunctionNumber())); 1043 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1044 DAG.getMCSymbol(S, PtrVT)); 1045 } 1046 } 1047 } 1048 1049 SDValue 1050 WebAssemblyTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 1051 SelectionDAG &DAG) const { 1052 MachineFunction &MF = DAG.getMachineFunction(); 1053 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1054 SDLoc DL(Op); 1055 1056 switch (IntNo) { 1057 default: 1058 return {}; // Don't custom lower most intrinsics. 1059 1060 case Intrinsic::wasm_throw: { 1061 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1062 switch (Tag) { 1063 case CPP_EXCEPTION: { 1064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1065 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1066 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1067 SDValue SymNode = 1068 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1069 DAG.getTargetExternalSymbol( 1070 SymName, PtrVT, WebAssemblyII::MO_SYMBOL_EVENT)); 1071 return DAG.getNode(WebAssemblyISD::THROW, DL, 1072 MVT::Other, // outchain type 1073 { 1074 Op.getOperand(0), // inchain 1075 SymNode, // exception symbol 1076 Op.getOperand(3) // thrown value 1077 }); 1078 } 1079 default: 1080 llvm_unreachable("Invalid tag!"); 1081 } 1082 break; 1083 } 1084 } 1085 } 1086 1087 SDValue 1088 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1089 SelectionDAG &DAG) const { 1090 // If sign extension operations are disabled, allow sext_inreg only if operand 1091 // is a vector extract. SIMD does not depend on sign extension operations, but 1092 // allowing sext_inreg in this context lets us have simple patterns to select 1093 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1094 // simpler in this file, but would necessitate large and brittle patterns to 1095 // undo the expansion and select extract_lane_s instructions. 1096 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1097 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) 1098 return Op; 1099 // Otherwise expand 1100 return SDValue(); 1101 } 1102 1103 SDValue 1104 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1105 SelectionDAG &DAG) const { 1106 SDLoc DL(Op); 1107 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1108 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1109 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1110 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1111 1112 // Space for two vector args and sixteen mask indices 1113 SDValue Ops[18]; 1114 size_t OpIdx = 0; 1115 Ops[OpIdx++] = Op.getOperand(0); 1116 Ops[OpIdx++] = Op.getOperand(1); 1117 1118 // Expand mask indices to byte indices and materialize them as operands 1119 for (size_t I = 0, Lanes = Mask.size(); I < Lanes; ++I) { 1120 for (size_t J = 0; J < LaneBytes; ++J) { 1121 // Lower undefs (represented by -1 in mask) to zero 1122 uint64_t ByteIndex = 1123 Mask[I] == -1 ? 0 : (uint64_t)Mask[I] * LaneBytes + J; 1124 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1125 } 1126 } 1127 1128 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1129 } 1130 1131 SDValue 1132 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1133 SelectionDAG &DAG) const { 1134 // Allow constant lane indices, expand variable lane indices 1135 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1136 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1137 return Op; 1138 else 1139 // Perform default expansion 1140 return SDValue(); 1141 } 1142 1143 static SDValue UnrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1144 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1145 // 32-bit and 64-bit unrolled shifts will have proper semantics 1146 if (LaneT.bitsGE(MVT::i32)) 1147 return DAG.UnrollVectorOp(Op.getNode()); 1148 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1149 SDLoc DL(Op); 1150 SDValue ShiftVal = Op.getOperand(1); 1151 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1152 SDValue MaskedShiftVal = DAG.getNode( 1153 ISD::AND, // mask opcode 1154 DL, ShiftVal.getValueType(), // masked value type 1155 ShiftVal, // original shift value operand 1156 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1157 ); 1158 1159 return DAG.UnrollVectorOp( 1160 DAG.getNode(Op.getOpcode(), // original shift opcode 1161 DL, Op.getValueType(), // original return type 1162 Op.getOperand(0), // original vector operand, 1163 MaskedShiftVal // new masked shift value operand 1164 ) 1165 .getNode()); 1166 } 1167 1168 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1169 SelectionDAG &DAG) const { 1170 SDLoc DL(Op); 1171 1172 // Only manually lower vector shifts 1173 assert(Op.getSimpleValueType().isVector()); 1174 1175 // Expand all vector shifts until V8 fixes its implementation 1176 // TODO: remove this once V8 is fixed 1177 if (!Subtarget->hasUnimplementedSIMD128()) 1178 return UnrollVectorShift(Op, DAG); 1179 1180 // Unroll non-splat vector shifts 1181 BuildVectorSDNode *ShiftVec; 1182 SDValue SplatVal; 1183 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1184 !(SplatVal = ShiftVec->getSplatValue())) 1185 return UnrollVectorShift(Op, DAG); 1186 1187 // All splats except i64x2 const splats are handled by patterns 1188 ConstantSDNode *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1189 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1190 return Op; 1191 1192 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1193 unsigned Opcode; 1194 switch (Op.getOpcode()) { 1195 case ISD::SHL: 1196 Opcode = WebAssemblyISD::VEC_SHL; 1197 break; 1198 case ISD::SRA: 1199 Opcode = WebAssemblyISD::VEC_SHR_S; 1200 break; 1201 case ISD::SRL: 1202 Opcode = WebAssemblyISD::VEC_SHR_U; 1203 break; 1204 default: 1205 llvm_unreachable("unexpected opcode"); 1206 } 1207 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1208 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1209 DAG.getConstant(Shift, DL, MVT::i32)); 1210 } 1211 1212 //===----------------------------------------------------------------------===// 1213 // WebAssembly Optimization Hooks 1214 //===----------------------------------------------------------------------===// 1215