1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsWebAssembly.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetOptions.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "wasm-lower" 44 45 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 46 const TargetMachine &TM, const WebAssemblySubtarget &STI) 47 : TargetLowering(TM), Subtarget(&STI) { 48 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 49 50 // Booleans always contain 0 or 1. 51 setBooleanContents(ZeroOrOneBooleanContent); 52 // Except in SIMD vectors 53 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 54 // We don't know the microarchitecture here, so just reduce register pressure. 55 setSchedulingPreference(Sched::RegPressure); 56 // Tell ISel that we have a stack pointer. 57 setStackPointerRegisterToSaveRestore( 58 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 59 // Set up the register classes. 60 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 61 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 62 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 63 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 64 if (Subtarget->hasSIMD128()) { 65 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 70 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 71 } 72 if (Subtarget->hasReferenceTypes()) { 73 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 74 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 75 } 76 // Compute derived properties from the register classes. 77 computeRegisterProperties(Subtarget->getRegisterInfo()); 78 79 // Transform loads and stores to pointers in address space 1 to loads and 80 // stores to WebAssembly global variables, outside linear memory. 81 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 82 setOperationAction(ISD::LOAD, T, Custom); 83 setOperationAction(ISD::STORE, T, Custom); 84 } 85 if (Subtarget->hasSIMD128()) { 86 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 87 MVT::v2f64}) { 88 setOperationAction(ISD::LOAD, T, Custom); 89 setOperationAction(ISD::STORE, T, Custom); 90 } 91 } 92 if (Subtarget->hasReferenceTypes()) { 93 // We need custom load and store lowering for both externref, funcref and 94 // Other. The MVT::Other here represents tables of reference types. 95 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 96 setOperationAction(ISD::LOAD, T, Custom); 97 setOperationAction(ISD::STORE, T, Custom); 98 } 99 } 100 101 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 102 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 103 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 104 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 105 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 106 setOperationAction(ISD::BRIND, MVT::Other, Custom); 107 108 // Take the default expansion for va_arg, va_copy, and va_end. There is no 109 // default action for va_start, so we do that custom. 110 setOperationAction(ISD::VASTART, MVT::Other, Custom); 111 setOperationAction(ISD::VAARG, MVT::Other, Expand); 112 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 113 setOperationAction(ISD::VAEND, MVT::Other, Expand); 114 115 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 116 // Don't expand the floating-point types to constant pools. 117 setOperationAction(ISD::ConstantFP, T, Legal); 118 // Expand floating-point comparisons. 119 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 120 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 121 setCondCodeAction(CC, T, Expand); 122 // Expand floating-point library function operators. 123 for (auto Op : 124 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 125 setOperationAction(Op, T, Expand); 126 // Note supported floating-point library function operators that otherwise 127 // default to expand. 128 for (auto Op : 129 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 130 setOperationAction(Op, T, Legal); 131 // Support minimum and maximum, which otherwise default to expand. 132 setOperationAction(ISD::FMINIMUM, T, Legal); 133 setOperationAction(ISD::FMAXIMUM, T, Legal); 134 // WebAssembly currently has no builtin f16 support. 135 setOperationAction(ISD::FP16_TO_FP, T, Expand); 136 setOperationAction(ISD::FP_TO_FP16, T, Expand); 137 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 138 setTruncStoreAction(T, MVT::f16, Expand); 139 } 140 141 // Expand unavailable integer operations. 142 for (auto Op : 143 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 144 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 145 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 146 for (auto T : {MVT::i32, MVT::i64}) 147 setOperationAction(Op, T, Expand); 148 if (Subtarget->hasSIMD128()) 149 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 150 setOperationAction(Op, T, Expand); 151 } 152 153 if (Subtarget->hasNontrappingFPToInt()) 154 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 155 for (auto T : {MVT::i32, MVT::i64}) 156 setOperationAction(Op, T, Custom); 157 158 // SIMD-specific configuration 159 if (Subtarget->hasSIMD128()) { 160 // Hoist bitcasts out of shuffles 161 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 162 163 // Combine extends of extract_subvectors into widening ops 164 setTargetDAGCombine(ISD::SIGN_EXTEND); 165 setTargetDAGCombine(ISD::ZERO_EXTEND); 166 167 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 168 // conversions ops 169 setTargetDAGCombine(ISD::SINT_TO_FP); 170 setTargetDAGCombine(ISD::UINT_TO_FP); 171 setTargetDAGCombine(ISD::FP_EXTEND); 172 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 173 174 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 175 // into conversion ops 176 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 177 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 178 setTargetDAGCombine(ISD::FP_ROUND); 179 setTargetDAGCombine(ISD::CONCAT_VECTORS); 180 181 setTargetDAGCombine(ISD::TRUNCATE); 182 183 // Support saturating add for i8x16 and i16x8 184 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 185 for (auto T : {MVT::v16i8, MVT::v8i16}) 186 setOperationAction(Op, T, Legal); 187 188 // Support integer abs 189 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 190 setOperationAction(ISD::ABS, T, Legal); 191 192 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 193 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 194 MVT::v2f64}) 195 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 196 197 // We have custom shuffle lowering to expose the shuffle mask 198 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 199 MVT::v2f64}) 200 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 201 202 // Custom lowering since wasm shifts must have a scalar shift amount 203 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 204 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 205 setOperationAction(Op, T, Custom); 206 207 // Custom lower lane accesses to expand out variable indices 208 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 209 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 210 MVT::v2f64}) 211 setOperationAction(Op, T, Custom); 212 213 // There is no i8x16.mul instruction 214 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 215 216 // There is no vector conditional select instruction 217 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 218 MVT::v2f64}) 219 setOperationAction(ISD::SELECT_CC, T, Expand); 220 221 // Expand integer operations supported for scalars but not SIMD 222 for (auto Op : 223 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 224 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 225 setOperationAction(Op, T, Expand); 226 227 // But we do have integer min and max operations 228 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 229 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 230 setOperationAction(Op, T, Legal); 231 232 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 233 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 234 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 235 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 236 237 // Custom lower bit counting operations for other types to scalarize them. 238 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 239 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 240 setOperationAction(Op, T, Custom); 241 242 // Expand float operations supported for scalars but not SIMD 243 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 244 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 245 for (auto T : {MVT::v4f32, MVT::v2f64}) 246 setOperationAction(Op, T, Expand); 247 248 // Unsigned comparison operations are unavailable for i64x2 vectors. 249 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 250 setCondCodeAction(CC, MVT::v2i64, Custom); 251 252 // 64x2 conversions are not in the spec 253 for (auto Op : 254 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 255 for (auto T : {MVT::v2i64, MVT::v2f64}) 256 setOperationAction(Op, T, Expand); 257 258 // But saturating fp_to_int converstions are 259 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 260 setOperationAction(Op, MVT::v4i32, Custom); 261 } 262 263 // As a special case, these operators use the type to mean the type to 264 // sign-extend from. 265 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 266 if (!Subtarget->hasSignExt()) { 267 // Sign extends are legal only when extending a vector extract 268 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 269 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 270 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 271 } 272 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 273 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 274 275 // Dynamic stack allocation: use the default expansion. 276 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 277 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 278 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 279 280 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 281 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 282 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 283 284 // Expand these forms; we pattern-match the forms that we can handle in isel. 285 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 286 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 287 setOperationAction(Op, T, Expand); 288 289 // We have custom switch handling. 290 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 291 292 // WebAssembly doesn't have: 293 // - Floating-point extending loads. 294 // - Floating-point truncating stores. 295 // - i1 extending loads. 296 // - truncating SIMD stores and most extending loads 297 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 298 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 299 for (auto T : MVT::integer_valuetypes()) 300 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 301 setLoadExtAction(Ext, T, MVT::i1, Promote); 302 if (Subtarget->hasSIMD128()) { 303 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 304 MVT::v2f64}) { 305 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 306 if (MVT(T) != MemT) { 307 setTruncStoreAction(T, MemT, Expand); 308 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 309 setLoadExtAction(Ext, T, MemT, Expand); 310 } 311 } 312 } 313 // But some vector extending loads are legal 314 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 315 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 316 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 317 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 318 } 319 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 320 } 321 322 // Don't do anything clever with build_pairs 323 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 324 325 // Trap lowers to wasm unreachable 326 setOperationAction(ISD::TRAP, MVT::Other, Legal); 327 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 328 329 // Exception handling intrinsics 330 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 331 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 332 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 333 334 setMaxAtomicSizeInBitsSupported(64); 335 336 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 337 // consistent with the f64 and f128 names. 338 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 339 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 340 341 // Define the emscripten name for return address helper. 342 // TODO: when implementing other Wasm backends, make this generic or only do 343 // this on emscripten depending on what they end up doing. 344 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 345 346 // Always convert switches to br_tables unless there is only one case, which 347 // is equivalent to a simple branch. This reduces code size for wasm, and we 348 // defer possible jump table optimizations to the VM. 349 setMinimumJumpTableEntries(2); 350 } 351 352 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 353 uint32_t AS) const { 354 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 355 return MVT::externref; 356 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 357 return MVT::funcref; 358 return TargetLowering::getPointerTy(DL, AS); 359 } 360 361 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 362 uint32_t AS) const { 363 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 364 return MVT::externref; 365 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 366 return MVT::funcref; 367 return TargetLowering::getPointerMemTy(DL, AS); 368 } 369 370 TargetLowering::AtomicExpansionKind 371 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 372 // We have wasm instructions for these 373 switch (AI->getOperation()) { 374 case AtomicRMWInst::Add: 375 case AtomicRMWInst::Sub: 376 case AtomicRMWInst::And: 377 case AtomicRMWInst::Or: 378 case AtomicRMWInst::Xor: 379 case AtomicRMWInst::Xchg: 380 return AtomicExpansionKind::None; 381 default: 382 break; 383 } 384 return AtomicExpansionKind::CmpXChg; 385 } 386 387 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 388 // Implementation copied from X86TargetLowering. 389 unsigned Opc = VecOp.getOpcode(); 390 391 // Assume target opcodes can't be scalarized. 392 // TODO - do we have any exceptions? 393 if (Opc >= ISD::BUILTIN_OP_END) 394 return false; 395 396 // If the vector op is not supported, try to convert to scalar. 397 EVT VecVT = VecOp.getValueType(); 398 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 399 return true; 400 401 // If the vector op is supported, but the scalar op is not, the transform may 402 // not be worthwhile. 403 EVT ScalarVT = VecVT.getScalarType(); 404 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 405 } 406 407 FastISel *WebAssemblyTargetLowering::createFastISel( 408 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 409 return WebAssembly::createFastISel(FuncInfo, LibInfo); 410 } 411 412 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 413 EVT VT) const { 414 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 415 if (BitWidth > 1 && BitWidth < 8) 416 BitWidth = 8; 417 418 if (BitWidth > 64) { 419 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 420 // the count to be an i32. 421 BitWidth = 32; 422 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 423 "32-bit shift counts ought to be enough for anyone"); 424 } 425 426 MVT Result = MVT::getIntegerVT(BitWidth); 427 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 428 "Unable to represent scalar shift amount type"); 429 return Result; 430 } 431 432 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 433 // undefined result on invalid/overflow, to the WebAssembly opcode, which 434 // traps on invalid/overflow. 435 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 436 MachineBasicBlock *BB, 437 const TargetInstrInfo &TII, 438 bool IsUnsigned, bool Int64, 439 bool Float64, unsigned LoweredOpcode) { 440 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 441 442 Register OutReg = MI.getOperand(0).getReg(); 443 Register InReg = MI.getOperand(1).getReg(); 444 445 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 446 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 447 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 448 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 449 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 450 unsigned Eqz = WebAssembly::EQZ_I32; 451 unsigned And = WebAssembly::AND_I32; 452 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 453 int64_t Substitute = IsUnsigned ? 0 : Limit; 454 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 455 auto &Context = BB->getParent()->getFunction().getContext(); 456 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 457 458 const BasicBlock *LLVMBB = BB->getBasicBlock(); 459 MachineFunction *F = BB->getParent(); 460 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 461 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 462 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 463 464 MachineFunction::iterator It = ++BB->getIterator(); 465 F->insert(It, FalseMBB); 466 F->insert(It, TrueMBB); 467 F->insert(It, DoneMBB); 468 469 // Transfer the remainder of BB and its successor edges to DoneMBB. 470 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 471 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 472 473 BB->addSuccessor(TrueMBB); 474 BB->addSuccessor(FalseMBB); 475 TrueMBB->addSuccessor(DoneMBB); 476 FalseMBB->addSuccessor(DoneMBB); 477 478 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 479 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 480 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 481 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 482 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 483 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 484 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 485 486 MI.eraseFromParent(); 487 // For signed numbers, we can do a single comparison to determine whether 488 // fabs(x) is within range. 489 if (IsUnsigned) { 490 Tmp0 = InReg; 491 } else { 492 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 493 } 494 BuildMI(BB, DL, TII.get(FConst), Tmp1) 495 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 496 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 497 498 // For unsigned numbers, we have to do a separate comparison with zero. 499 if (IsUnsigned) { 500 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 501 Register SecondCmpReg = 502 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 503 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 504 BuildMI(BB, DL, TII.get(FConst), Tmp1) 505 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 506 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 507 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 508 CmpReg = AndReg; 509 } 510 511 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 512 513 // Create the CFG diamond to select between doing the conversion or using 514 // the substitute value. 515 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 516 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 517 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 518 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 519 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 520 .addReg(FalseReg) 521 .addMBB(FalseMBB) 522 .addReg(TrueReg) 523 .addMBB(TrueMBB); 524 525 return DoneMBB; 526 } 527 528 static MachineBasicBlock * 529 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 530 const WebAssemblySubtarget *Subtarget, 531 const TargetInstrInfo &TII) { 532 MachineInstr &CallParams = *CallResults.getPrevNode(); 533 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 534 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 535 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 536 537 bool IsIndirect = CallParams.getOperand(0).isReg(); 538 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 539 540 bool IsFuncrefCall = false; 541 if (IsIndirect) { 542 Register Reg = CallParams.getOperand(0).getReg(); 543 const MachineFunction *MF = BB->getParent(); 544 const MachineRegisterInfo &MRI = MF->getRegInfo(); 545 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 546 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 547 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 548 } 549 550 unsigned CallOp; 551 if (IsIndirect && IsRetCall) { 552 CallOp = WebAssembly::RET_CALL_INDIRECT; 553 } else if (IsIndirect) { 554 CallOp = WebAssembly::CALL_INDIRECT; 555 } else if (IsRetCall) { 556 CallOp = WebAssembly::RET_CALL; 557 } else { 558 CallOp = WebAssembly::CALL; 559 } 560 561 MachineFunction &MF = *BB->getParent(); 562 const MCInstrDesc &MCID = TII.get(CallOp); 563 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 564 565 // See if we must truncate the function pointer. 566 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 567 // as 64-bit for uniformity with other pointer types. 568 // See also: WebAssemblyFastISel::selectCall 569 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 570 Register Reg32 = 571 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 572 auto &FnPtr = CallParams.getOperand(0); 573 BuildMI(*BB, CallResults.getIterator(), DL, 574 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 575 .addReg(FnPtr.getReg()); 576 FnPtr.setReg(Reg32); 577 } 578 579 // Move the function pointer to the end of the arguments for indirect calls 580 if (IsIndirect) { 581 auto FnPtr = CallParams.getOperand(0); 582 CallParams.removeOperand(0); 583 584 // For funcrefs, call_indirect is done through __funcref_call_table and the 585 // funcref is always installed in slot 0 of the table, therefore instead of having 586 // the function pointer added at the end of the params list, a zero (the index in 587 // __funcref_call_table is added). 588 if (IsFuncrefCall) { 589 Register RegZero = 590 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 591 MachineInstrBuilder MIBC0 = 592 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 593 594 BB->insert(CallResults.getIterator(), MIBC0); 595 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 596 } else 597 CallParams.addOperand(FnPtr); 598 } 599 600 for (auto Def : CallResults.defs()) 601 MIB.add(Def); 602 603 if (IsIndirect) { 604 // Placeholder for the type index. 605 MIB.addImm(0); 606 // The table into which this call_indirect indexes. 607 MCSymbolWasm *Table = IsFuncrefCall 608 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 609 MF.getContext(), Subtarget) 610 : WebAssembly::getOrCreateFunctionTableSymbol( 611 MF.getContext(), Subtarget); 612 if (Subtarget->hasReferenceTypes()) { 613 MIB.addSym(Table); 614 } else { 615 // For the MVP there is at most one table whose number is 0, but we can't 616 // write a table symbol or issue relocations. Instead we just ensure the 617 // table is live and write a zero. 618 Table->setNoStrip(); 619 MIB.addImm(0); 620 } 621 } 622 623 for (auto Use : CallParams.uses()) 624 MIB.add(Use); 625 626 BB->insert(CallResults.getIterator(), MIB); 627 CallParams.eraseFromParent(); 628 CallResults.eraseFromParent(); 629 630 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 631 // table slot with ref.null upon call_indirect return. 632 // 633 // This generates the following code, which comes right after a call_indirect 634 // of a funcref: 635 // 636 // i32.const 0 637 // ref.null func 638 // table.set __funcref_call_table 639 if (IsIndirect && IsFuncrefCall) { 640 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 641 MF.getContext(), Subtarget); 642 Register RegZero = 643 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 644 MachineInstr *Const0 = 645 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 646 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 647 648 Register RegFuncref = 649 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 650 MachineInstr *RefNull = 651 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 652 BB->insertAfter(Const0->getIterator(), RefNull); 653 654 MachineInstr *TableSet = 655 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 656 .addSym(Table) 657 .addReg(RegZero) 658 .addReg(RegFuncref); 659 BB->insertAfter(RefNull->getIterator(), TableSet); 660 } 661 662 return BB; 663 } 664 665 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 666 MachineInstr &MI, MachineBasicBlock *BB) const { 667 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 668 DebugLoc DL = MI.getDebugLoc(); 669 670 switch (MI.getOpcode()) { 671 default: 672 llvm_unreachable("Unexpected instr type to insert"); 673 case WebAssembly::FP_TO_SINT_I32_F32: 674 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 675 WebAssembly::I32_TRUNC_S_F32); 676 case WebAssembly::FP_TO_UINT_I32_F32: 677 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 678 WebAssembly::I32_TRUNC_U_F32); 679 case WebAssembly::FP_TO_SINT_I64_F32: 680 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 681 WebAssembly::I64_TRUNC_S_F32); 682 case WebAssembly::FP_TO_UINT_I64_F32: 683 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 684 WebAssembly::I64_TRUNC_U_F32); 685 case WebAssembly::FP_TO_SINT_I32_F64: 686 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 687 WebAssembly::I32_TRUNC_S_F64); 688 case WebAssembly::FP_TO_UINT_I32_F64: 689 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 690 WebAssembly::I32_TRUNC_U_F64); 691 case WebAssembly::FP_TO_SINT_I64_F64: 692 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 693 WebAssembly::I64_TRUNC_S_F64); 694 case WebAssembly::FP_TO_UINT_I64_F64: 695 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 696 WebAssembly::I64_TRUNC_U_F64); 697 case WebAssembly::CALL_RESULTS: 698 case WebAssembly::RET_CALL_RESULTS: 699 return LowerCallResults(MI, DL, BB, Subtarget, TII); 700 } 701 } 702 703 const char * 704 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 705 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 706 case WebAssemblyISD::FIRST_NUMBER: 707 case WebAssemblyISD::FIRST_MEM_OPCODE: 708 break; 709 #define HANDLE_NODETYPE(NODE) \ 710 case WebAssemblyISD::NODE: \ 711 return "WebAssemblyISD::" #NODE; 712 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 713 #include "WebAssemblyISD.def" 714 #undef HANDLE_MEM_NODETYPE 715 #undef HANDLE_NODETYPE 716 } 717 return nullptr; 718 } 719 720 std::pair<unsigned, const TargetRegisterClass *> 721 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 722 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 723 // First, see if this is a constraint that directly corresponds to a 724 // WebAssembly register class. 725 if (Constraint.size() == 1) { 726 switch (Constraint[0]) { 727 case 'r': 728 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 729 if (Subtarget->hasSIMD128() && VT.isVector()) { 730 if (VT.getSizeInBits() == 128) 731 return std::make_pair(0U, &WebAssembly::V128RegClass); 732 } 733 if (VT.isInteger() && !VT.isVector()) { 734 if (VT.getSizeInBits() <= 32) 735 return std::make_pair(0U, &WebAssembly::I32RegClass); 736 if (VT.getSizeInBits() <= 64) 737 return std::make_pair(0U, &WebAssembly::I64RegClass); 738 } 739 if (VT.isFloatingPoint() && !VT.isVector()) { 740 switch (VT.getSizeInBits()) { 741 case 32: 742 return std::make_pair(0U, &WebAssembly::F32RegClass); 743 case 64: 744 return std::make_pair(0U, &WebAssembly::F64RegClass); 745 default: 746 break; 747 } 748 } 749 break; 750 default: 751 break; 752 } 753 } 754 755 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 756 } 757 758 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 759 // Assume ctz is a relatively cheap operation. 760 return true; 761 } 762 763 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 764 // Assume clz is a relatively cheap operation. 765 return true; 766 } 767 768 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 769 const AddrMode &AM, 770 Type *Ty, unsigned AS, 771 Instruction *I) const { 772 // WebAssembly offsets are added as unsigned without wrapping. The 773 // isLegalAddressingMode gives us no way to determine if wrapping could be 774 // happening, so we approximate this by accepting only non-negative offsets. 775 if (AM.BaseOffs < 0) 776 return false; 777 778 // WebAssembly has no scale register operands. 779 if (AM.Scale != 0) 780 return false; 781 782 // Everything else is legal. 783 return true; 784 } 785 786 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 787 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 788 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 789 // WebAssembly supports unaligned accesses, though it should be declared 790 // with the p2align attribute on loads and stores which do so, and there 791 // may be a performance impact. We tell LLVM they're "fast" because 792 // for the kinds of things that LLVM uses this for (merging adjacent stores 793 // of constants, etc.), WebAssembly implementations will either want the 794 // unaligned access or they'll split anyway. 795 if (Fast) 796 *Fast = true; 797 return true; 798 } 799 800 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 801 AttributeList Attr) const { 802 // The current thinking is that wasm engines will perform this optimization, 803 // so we can save on code size. 804 return true; 805 } 806 807 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 808 EVT ExtT = ExtVal.getValueType(); 809 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 810 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 811 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 812 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 813 } 814 815 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 816 const GlobalAddressSDNode *GA) const { 817 // Wasm doesn't support function addresses with offsets 818 const GlobalValue *GV = GA->getGlobal(); 819 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 820 } 821 822 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 823 LLVMContext &C, 824 EVT VT) const { 825 if (VT.isVector()) 826 return VT.changeVectorElementTypeToInteger(); 827 828 // So far, all branch instructions in Wasm take an I32 condition. 829 // The default TargetLowering::getSetCCResultType returns the pointer size, 830 // which would be useful to reduce instruction counts when testing 831 // against 64-bit pointers/values if at some point Wasm supports that. 832 return EVT::getIntegerVT(C, 32); 833 } 834 835 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 836 const CallInst &I, 837 MachineFunction &MF, 838 unsigned Intrinsic) const { 839 switch (Intrinsic) { 840 case Intrinsic::wasm_memory_atomic_notify: 841 Info.opc = ISD::INTRINSIC_W_CHAIN; 842 Info.memVT = MVT::i32; 843 Info.ptrVal = I.getArgOperand(0); 844 Info.offset = 0; 845 Info.align = Align(4); 846 // atomic.notify instruction does not really load the memory specified with 847 // this argument, but MachineMemOperand should either be load or store, so 848 // we set this to a load. 849 // FIXME Volatile isn't really correct, but currently all LLVM atomic 850 // instructions are treated as volatiles in the backend, so we should be 851 // consistent. The same applies for wasm_atomic_wait intrinsics too. 852 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 853 return true; 854 case Intrinsic::wasm_memory_atomic_wait32: 855 Info.opc = ISD::INTRINSIC_W_CHAIN; 856 Info.memVT = MVT::i32; 857 Info.ptrVal = I.getArgOperand(0); 858 Info.offset = 0; 859 Info.align = Align(4); 860 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 861 return true; 862 case Intrinsic::wasm_memory_atomic_wait64: 863 Info.opc = ISD::INTRINSIC_W_CHAIN; 864 Info.memVT = MVT::i64; 865 Info.ptrVal = I.getArgOperand(0); 866 Info.offset = 0; 867 Info.align = Align(8); 868 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 869 return true; 870 default: 871 return false; 872 } 873 } 874 875 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 876 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 877 const SelectionDAG &DAG, unsigned Depth) const { 878 switch (Op.getOpcode()) { 879 default: 880 break; 881 case ISD::INTRINSIC_WO_CHAIN: { 882 unsigned IntNo = Op.getConstantOperandVal(0); 883 switch (IntNo) { 884 default: 885 break; 886 case Intrinsic::wasm_bitmask: { 887 unsigned BitWidth = Known.getBitWidth(); 888 EVT VT = Op.getOperand(1).getSimpleValueType(); 889 unsigned PossibleBits = VT.getVectorNumElements(); 890 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 891 Known.Zero |= ZeroMask; 892 break; 893 } 894 } 895 } 896 } 897 } 898 899 TargetLoweringBase::LegalizeTypeAction 900 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 901 if (VT.isFixedLengthVector()) { 902 MVT EltVT = VT.getVectorElementType(); 903 // We have legal vector types with these lane types, so widening the 904 // vector would let us use some of the lanes directly without having to 905 // extend or truncate values. 906 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 907 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 908 return TypeWidenVector; 909 } 910 911 return TargetLoweringBase::getPreferredVectorAction(VT); 912 } 913 914 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts( 915 SDValue Op, const TargetLoweringOpt &TLO) const { 916 // ISel process runs DAGCombiner after legalization; this step is called 917 // SelectionDAG optimization phase. This post-legalization combining process 918 // runs DAGCombiner on each node, and if there was a change to be made, 919 // re-runs legalization again on it and its user nodes to make sure 920 // everythiing is in a legalized state. 921 // 922 // The legalization calls lowering routines, and we do our custom lowering for 923 // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements 924 // into zeros. But there is a set of routines in DAGCombiner that turns unused 925 // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts 926 // turns unused vector elements into undefs. But this routine does not work 927 // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This 928 // combination can result in a infinite loop, in which undefs are converted to 929 // zeros in legalization and back to undefs in combining. 930 // 931 // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from 932 // running for build_vectors. 933 if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys) 934 return false; 935 return true; 936 } 937 938 //===----------------------------------------------------------------------===// 939 // WebAssembly Lowering private implementation. 940 //===----------------------------------------------------------------------===// 941 942 //===----------------------------------------------------------------------===// 943 // Lowering Code 944 //===----------------------------------------------------------------------===// 945 946 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 947 MachineFunction &MF = DAG.getMachineFunction(); 948 DAG.getContext()->diagnose( 949 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 950 } 951 952 // Test whether the given calling convention is supported. 953 static bool callingConvSupported(CallingConv::ID CallConv) { 954 // We currently support the language-independent target-independent 955 // conventions. We don't yet have a way to annotate calls with properties like 956 // "cold", and we don't have any call-clobbered registers, so these are mostly 957 // all handled the same. 958 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 959 CallConv == CallingConv::Cold || 960 CallConv == CallingConv::PreserveMost || 961 CallConv == CallingConv::PreserveAll || 962 CallConv == CallingConv::CXX_FAST_TLS || 963 CallConv == CallingConv::WASM_EmscriptenInvoke || 964 CallConv == CallingConv::Swift; 965 } 966 967 SDValue 968 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 969 SmallVectorImpl<SDValue> &InVals) const { 970 SelectionDAG &DAG = CLI.DAG; 971 SDLoc DL = CLI.DL; 972 SDValue Chain = CLI.Chain; 973 SDValue Callee = CLI.Callee; 974 MachineFunction &MF = DAG.getMachineFunction(); 975 auto Layout = MF.getDataLayout(); 976 977 CallingConv::ID CallConv = CLI.CallConv; 978 if (!callingConvSupported(CallConv)) 979 fail(DL, DAG, 980 "WebAssembly doesn't support language-specific or target-specific " 981 "calling conventions yet"); 982 if (CLI.IsPatchPoint) 983 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 984 985 if (CLI.IsTailCall) { 986 auto NoTail = [&](const char *Msg) { 987 if (CLI.CB && CLI.CB->isMustTailCall()) 988 fail(DL, DAG, Msg); 989 CLI.IsTailCall = false; 990 }; 991 992 if (!Subtarget->hasTailCall()) 993 NoTail("WebAssembly 'tail-call' feature not enabled"); 994 995 // Varargs calls cannot be tail calls because the buffer is on the stack 996 if (CLI.IsVarArg) 997 NoTail("WebAssembly does not support varargs tail calls"); 998 999 // Do not tail call unless caller and callee return types match 1000 const Function &F = MF.getFunction(); 1001 const TargetMachine &TM = getTargetMachine(); 1002 Type *RetTy = F.getReturnType(); 1003 SmallVector<MVT, 4> CallerRetTys; 1004 SmallVector<MVT, 4> CalleeRetTys; 1005 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 1006 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 1007 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 1008 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 1009 CalleeRetTys.begin()); 1010 if (!TypesMatch) 1011 NoTail("WebAssembly tail call requires caller and callee return types to " 1012 "match"); 1013 1014 // If pointers to local stack values are passed, we cannot tail call 1015 if (CLI.CB) { 1016 for (auto &Arg : CLI.CB->args()) { 1017 Value *Val = Arg.get(); 1018 // Trace the value back through pointer operations 1019 while (true) { 1020 Value *Src = Val->stripPointerCastsAndAliases(); 1021 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 1022 Src = GEP->getPointerOperand(); 1023 if (Val == Src) 1024 break; 1025 Val = Src; 1026 } 1027 if (isa<AllocaInst>(Val)) { 1028 NoTail( 1029 "WebAssembly does not support tail calling with stack arguments"); 1030 break; 1031 } 1032 } 1033 } 1034 } 1035 1036 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1037 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1038 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1039 1040 // The generic code may have added an sret argument. If we're lowering an 1041 // invoke function, the ABI requires that the function pointer be the first 1042 // argument, so we may have to swap the arguments. 1043 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1044 Outs[0].Flags.isSRet()) { 1045 std::swap(Outs[0], Outs[1]); 1046 std::swap(OutVals[0], OutVals[1]); 1047 } 1048 1049 bool HasSwiftSelfArg = false; 1050 bool HasSwiftErrorArg = false; 1051 unsigned NumFixedArgs = 0; 1052 for (unsigned I = 0; I < Outs.size(); ++I) { 1053 const ISD::OutputArg &Out = Outs[I]; 1054 SDValue &OutVal = OutVals[I]; 1055 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1056 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1057 if (Out.Flags.isNest()) 1058 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1059 if (Out.Flags.isInAlloca()) 1060 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1061 if (Out.Flags.isInConsecutiveRegs()) 1062 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1063 if (Out.Flags.isInConsecutiveRegsLast()) 1064 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1065 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1066 auto &MFI = MF.getFrameInfo(); 1067 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1068 Out.Flags.getNonZeroByValAlign(), 1069 /*isSS=*/false); 1070 SDValue SizeNode = 1071 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1072 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1073 Chain = DAG.getMemcpy( 1074 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1075 /*isVolatile*/ false, /*AlwaysInline=*/false, 1076 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1077 OutVal = FINode; 1078 } 1079 // Count the number of fixed args *after* legalization. 1080 NumFixedArgs += Out.IsFixed; 1081 } 1082 1083 bool IsVarArg = CLI.IsVarArg; 1084 auto PtrVT = getPointerTy(Layout); 1085 1086 // For swiftcc, emit additional swiftself and swifterror arguments 1087 // if there aren't. These additional arguments are also added for callee 1088 // signature They are necessary to match callee and caller signature for 1089 // indirect call. 1090 if (CallConv == CallingConv::Swift) { 1091 if (!HasSwiftSelfArg) { 1092 NumFixedArgs++; 1093 ISD::OutputArg Arg; 1094 Arg.Flags.setSwiftSelf(); 1095 CLI.Outs.push_back(Arg); 1096 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1097 CLI.OutVals.push_back(ArgVal); 1098 } 1099 if (!HasSwiftErrorArg) { 1100 NumFixedArgs++; 1101 ISD::OutputArg Arg; 1102 Arg.Flags.setSwiftError(); 1103 CLI.Outs.push_back(Arg); 1104 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1105 CLI.OutVals.push_back(ArgVal); 1106 } 1107 } 1108 1109 // Analyze operands of the call, assigning locations to each operand. 1110 SmallVector<CCValAssign, 16> ArgLocs; 1111 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1112 1113 if (IsVarArg) { 1114 // Outgoing non-fixed arguments are placed in a buffer. First 1115 // compute their offsets and the total amount of buffer space needed. 1116 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1117 const ISD::OutputArg &Out = Outs[I]; 1118 SDValue &Arg = OutVals[I]; 1119 EVT VT = Arg.getValueType(); 1120 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1121 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1122 Align Alignment = 1123 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1124 unsigned Offset = 1125 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1126 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1127 Offset, VT.getSimpleVT(), 1128 CCValAssign::Full)); 1129 } 1130 } 1131 1132 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1133 1134 SDValue FINode; 1135 if (IsVarArg && NumBytes) { 1136 // For non-fixed arguments, next emit stores to store the argument values 1137 // to the stack buffer at the offsets computed above. 1138 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1139 Layout.getStackAlignment(), 1140 /*isSS=*/false); 1141 unsigned ValNo = 0; 1142 SmallVector<SDValue, 8> Chains; 1143 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1144 assert(ArgLocs[ValNo].getValNo() == ValNo && 1145 "ArgLocs should remain in order and only hold varargs args"); 1146 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1147 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1148 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1149 DAG.getConstant(Offset, DL, PtrVT)); 1150 Chains.push_back( 1151 DAG.getStore(Chain, DL, Arg, Add, 1152 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1153 } 1154 if (!Chains.empty()) 1155 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1156 } else if (IsVarArg) { 1157 FINode = DAG.getIntPtrConstant(0, DL); 1158 } 1159 1160 if (Callee->getOpcode() == ISD::GlobalAddress) { 1161 // If the callee is a GlobalAddress node (quite common, every direct call 1162 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1163 // doesn't at MO_GOT which is not needed for direct calls. 1164 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1165 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1166 getPointerTy(DAG.getDataLayout()), 1167 GA->getOffset()); 1168 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1169 getPointerTy(DAG.getDataLayout()), Callee); 1170 } 1171 1172 // Compute the operands for the CALLn node. 1173 SmallVector<SDValue, 16> Ops; 1174 Ops.push_back(Chain); 1175 Ops.push_back(Callee); 1176 1177 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1178 // isn't reliable. 1179 Ops.append(OutVals.begin(), 1180 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1181 // Add a pointer to the vararg buffer. 1182 if (IsVarArg) 1183 Ops.push_back(FINode); 1184 1185 SmallVector<EVT, 8> InTys; 1186 for (const auto &In : Ins) { 1187 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1188 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1189 if (In.Flags.isInAlloca()) 1190 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1191 if (In.Flags.isInConsecutiveRegs()) 1192 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1193 if (In.Flags.isInConsecutiveRegsLast()) 1194 fail(DL, DAG, 1195 "WebAssembly hasn't implemented cons regs last return values"); 1196 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1197 // registers. 1198 InTys.push_back(In.VT); 1199 } 1200 1201 // Lastly, if this is a call to a funcref we need to add an instruction 1202 // table.set to the chain and transform the call. 1203 if (CLI.CB && 1204 WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) { 1205 // In the absence of function references proposal where a funcref call is 1206 // lowered to call_ref, using reference types we generate a table.set to set 1207 // the funcref to a special table used solely for this purpose, followed by 1208 // a call_indirect. Here we just generate the table set, and return the 1209 // SDValue of the table.set so that LowerCall can finalize the lowering by 1210 // generating the call_indirect. 1211 SDValue Chain = Ops[0]; 1212 1213 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1214 MF.getContext(), Subtarget); 1215 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1216 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1217 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1218 SDValue TableSet = DAG.getMemIntrinsicNode( 1219 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1220 MVT::funcref, 1221 // Machine Mem Operand args 1222 MachinePointerInfo( 1223 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1224 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1225 MachineMemOperand::MOStore); 1226 1227 Ops[0] = TableSet; // The new chain is the TableSet itself 1228 } 1229 1230 if (CLI.IsTailCall) { 1231 // ret_calls do not return values to the current frame 1232 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1233 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1234 } 1235 1236 InTys.push_back(MVT::Other); 1237 SDVTList InTyList = DAG.getVTList(InTys); 1238 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1239 1240 for (size_t I = 0; I < Ins.size(); ++I) 1241 InVals.push_back(Res.getValue(I)); 1242 1243 // Return the chain 1244 return Res.getValue(Ins.size()); 1245 } 1246 1247 bool WebAssemblyTargetLowering::CanLowerReturn( 1248 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1249 const SmallVectorImpl<ISD::OutputArg> &Outs, 1250 LLVMContext & /*Context*/) const { 1251 // WebAssembly can only handle returning tuples with multivalue enabled 1252 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1253 } 1254 1255 SDValue WebAssemblyTargetLowering::LowerReturn( 1256 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1257 const SmallVectorImpl<ISD::OutputArg> &Outs, 1258 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1259 SelectionDAG &DAG) const { 1260 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1261 "MVP WebAssembly can only return up to one value"); 1262 if (!callingConvSupported(CallConv)) 1263 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1264 1265 SmallVector<SDValue, 4> RetOps(1, Chain); 1266 RetOps.append(OutVals.begin(), OutVals.end()); 1267 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1268 1269 // Record the number and types of the return values. 1270 for (const ISD::OutputArg &Out : Outs) { 1271 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1272 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1273 assert(Out.IsFixed && "non-fixed return value is not valid"); 1274 if (Out.Flags.isInAlloca()) 1275 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1276 if (Out.Flags.isInConsecutiveRegs()) 1277 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1278 if (Out.Flags.isInConsecutiveRegsLast()) 1279 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1280 } 1281 1282 return Chain; 1283 } 1284 1285 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1286 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1287 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1288 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1289 if (!callingConvSupported(CallConv)) 1290 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1291 1292 MachineFunction &MF = DAG.getMachineFunction(); 1293 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1294 1295 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1296 // of the incoming values before they're represented by virtual registers. 1297 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1298 1299 bool HasSwiftErrorArg = false; 1300 bool HasSwiftSelfArg = false; 1301 for (const ISD::InputArg &In : Ins) { 1302 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1303 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1304 if (In.Flags.isInAlloca()) 1305 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1306 if (In.Flags.isNest()) 1307 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1308 if (In.Flags.isInConsecutiveRegs()) 1309 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1310 if (In.Flags.isInConsecutiveRegsLast()) 1311 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1312 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1313 // registers. 1314 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1315 DAG.getTargetConstant(InVals.size(), 1316 DL, MVT::i32)) 1317 : DAG.getUNDEF(In.VT)); 1318 1319 // Record the number and types of arguments. 1320 MFI->addParam(In.VT); 1321 } 1322 1323 // For swiftcc, emit additional swiftself and swifterror arguments 1324 // if there aren't. These additional arguments are also added for callee 1325 // signature They are necessary to match callee and caller signature for 1326 // indirect call. 1327 auto PtrVT = getPointerTy(MF.getDataLayout()); 1328 if (CallConv == CallingConv::Swift) { 1329 if (!HasSwiftSelfArg) { 1330 MFI->addParam(PtrVT); 1331 } 1332 if (!HasSwiftErrorArg) { 1333 MFI->addParam(PtrVT); 1334 } 1335 } 1336 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1337 // the buffer is passed as an argument. 1338 if (IsVarArg) { 1339 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1340 Register VarargVreg = 1341 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1342 MFI->setVarargBufferVreg(VarargVreg); 1343 Chain = DAG.getCopyToReg( 1344 Chain, DL, VarargVreg, 1345 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1346 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1347 MFI->addParam(PtrVT); 1348 } 1349 1350 // Record the number and types of arguments and results. 1351 SmallVector<MVT, 4> Params; 1352 SmallVector<MVT, 4> Results; 1353 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1354 MF.getFunction(), DAG.getTarget(), Params, Results); 1355 for (MVT VT : Results) 1356 MFI->addResult(VT); 1357 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1358 // the param logic here with ComputeSignatureVTs 1359 assert(MFI->getParams().size() == Params.size() && 1360 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1361 Params.begin())); 1362 1363 return Chain; 1364 } 1365 1366 void WebAssemblyTargetLowering::ReplaceNodeResults( 1367 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1368 switch (N->getOpcode()) { 1369 case ISD::SIGN_EXTEND_INREG: 1370 // Do not add any results, signifying that N should not be custom lowered 1371 // after all. This happens because simd128 turns on custom lowering for 1372 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1373 // illegal type. 1374 break; 1375 default: 1376 llvm_unreachable( 1377 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1378 } 1379 } 1380 1381 //===----------------------------------------------------------------------===// 1382 // Custom lowering hooks. 1383 //===----------------------------------------------------------------------===// 1384 1385 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1386 SelectionDAG &DAG) const { 1387 SDLoc DL(Op); 1388 switch (Op.getOpcode()) { 1389 default: 1390 llvm_unreachable("unimplemented operation lowering"); 1391 return SDValue(); 1392 case ISD::FrameIndex: 1393 return LowerFrameIndex(Op, DAG); 1394 case ISD::GlobalAddress: 1395 return LowerGlobalAddress(Op, DAG); 1396 case ISD::GlobalTLSAddress: 1397 return LowerGlobalTLSAddress(Op, DAG); 1398 case ISD::ExternalSymbol: 1399 return LowerExternalSymbol(Op, DAG); 1400 case ISD::JumpTable: 1401 return LowerJumpTable(Op, DAG); 1402 case ISD::BR_JT: 1403 return LowerBR_JT(Op, DAG); 1404 case ISD::VASTART: 1405 return LowerVASTART(Op, DAG); 1406 case ISD::BlockAddress: 1407 case ISD::BRIND: 1408 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1409 return SDValue(); 1410 case ISD::RETURNADDR: 1411 return LowerRETURNADDR(Op, DAG); 1412 case ISD::FRAMEADDR: 1413 return LowerFRAMEADDR(Op, DAG); 1414 case ISD::CopyToReg: 1415 return LowerCopyToReg(Op, DAG); 1416 case ISD::EXTRACT_VECTOR_ELT: 1417 case ISD::INSERT_VECTOR_ELT: 1418 return LowerAccessVectorElement(Op, DAG); 1419 case ISD::INTRINSIC_VOID: 1420 case ISD::INTRINSIC_WO_CHAIN: 1421 case ISD::INTRINSIC_W_CHAIN: 1422 return LowerIntrinsic(Op, DAG); 1423 case ISD::SIGN_EXTEND_INREG: 1424 return LowerSIGN_EXTEND_INREG(Op, DAG); 1425 case ISD::BUILD_VECTOR: 1426 return LowerBUILD_VECTOR(Op, DAG); 1427 case ISD::VECTOR_SHUFFLE: 1428 return LowerVECTOR_SHUFFLE(Op, DAG); 1429 case ISD::SETCC: 1430 return LowerSETCC(Op, DAG); 1431 case ISD::SHL: 1432 case ISD::SRA: 1433 case ISD::SRL: 1434 return LowerShift(Op, DAG); 1435 case ISD::FP_TO_SINT_SAT: 1436 case ISD::FP_TO_UINT_SAT: 1437 return LowerFP_TO_INT_SAT(Op, DAG); 1438 case ISD::LOAD: 1439 return LowerLoad(Op, DAG); 1440 case ISD::STORE: 1441 return LowerStore(Op, DAG); 1442 case ISD::CTPOP: 1443 case ISD::CTLZ: 1444 case ISD::CTTZ: 1445 return DAG.UnrollVectorOp(Op.getNode()); 1446 } 1447 } 1448 1449 static bool IsWebAssemblyGlobal(SDValue Op) { 1450 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1451 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1452 1453 return false; 1454 } 1455 1456 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1457 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1458 if (!FI) 1459 return None; 1460 1461 auto &MF = DAG.getMachineFunction(); 1462 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1463 } 1464 1465 static bool IsWebAssemblyTable(SDValue Op) { 1466 const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 1467 if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) { 1468 const GlobalValue *Value = GA->getGlobal(); 1469 const Type *Ty = Value->getValueType(); 1470 1471 if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType())) 1472 return true; 1473 } 1474 return false; 1475 } 1476 1477 // This function will accept as Op any access to a table, so Op can 1478 // be the actual table or an offset into the table. 1479 static bool IsWebAssemblyTableWithOffset(SDValue Op) { 1480 if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2) 1481 return (Op->getOperand(1).getSimpleValueType() == MVT::i32 && 1482 IsWebAssemblyTableWithOffset(Op->getOperand(0))) || 1483 (Op->getOperand(0).getSimpleValueType() == MVT::i32 && 1484 IsWebAssemblyTableWithOffset(Op->getOperand(1))); 1485 1486 return IsWebAssemblyTable(Op); 1487 } 1488 1489 // Helper for table pattern matching used in LowerStore and LowerLoad 1490 bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG, 1491 const SDLoc &DL, 1492 const SDValue &Base, 1493 GlobalAddressSDNode *&GA, 1494 SDValue &Idx) const { 1495 // We expect the following graph for a load of the form: 1496 // table[<var> + <constant offset>] 1497 // 1498 // Case 1: 1499 // externref = load t1 1500 // t1: i32 = add t2, i32:<constant offset> 1501 // t2: i32 = add tX, table 1502 // 1503 // This is in some cases simplified to just: 1504 // Case 2: 1505 // externref = load t1 1506 // t1: i32 = add t2, i32:tX 1507 // 1508 // So, unfortunately we need to check for both cases and if we are in the 1509 // first case extract the table GlobalAddressNode and build a new node tY 1510 // that's tY: i32 = add i32:<constant offset>, i32:tX 1511 // 1512 if (IsWebAssemblyTable(Base)) { 1513 GA = cast<GlobalAddressSDNode>(Base); 1514 Idx = DAG.getConstant(0, DL, MVT::i32); 1515 } else { 1516 GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0)); 1517 if (GA) { 1518 // We are in Case 2 above. 1519 Idx = Base->getOperand(1); 1520 assert(GA->getNumValues() == 1); 1521 } else { 1522 // This might be Case 1 above (or an error) 1523 SDValue V = Base->getOperand(0); 1524 GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1)); 1525 1526 if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA) 1527 return false; 1528 1529 SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1), 1530 V->getOperand(0)); 1531 Idx = IdxV; 1532 } 1533 } 1534 1535 return true; 1536 } 1537 1538 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1539 SelectionDAG &DAG) const { 1540 SDLoc DL(Op); 1541 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1542 const SDValue &Value = SN->getValue(); 1543 const SDValue &Base = SN->getBasePtr(); 1544 const SDValue &Offset = SN->getOffset(); 1545 1546 if (IsWebAssemblyTableWithOffset(Base)) { 1547 if (!Offset->isUndef()) 1548 report_fatal_error( 1549 "unexpected offset when loading from webassembly table", false); 1550 1551 SDValue Idx; 1552 GlobalAddressSDNode *GA; 1553 1554 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1555 report_fatal_error("failed pattern matching for lowering table store", 1556 false); 1557 1558 SDVTList Tys = DAG.getVTList(MVT::Other); 1559 SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value}; 1560 SDValue TableSet = 1561 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps, 1562 SN->getMemoryVT(), SN->getMemOperand()); 1563 return TableSet; 1564 } 1565 1566 if (IsWebAssemblyGlobal(Base)) { 1567 if (!Offset->isUndef()) 1568 report_fatal_error("unexpected offset when storing to webassembly global", 1569 false); 1570 1571 SDVTList Tys = DAG.getVTList(MVT::Other); 1572 SDValue Ops[] = {SN->getChain(), Value, Base}; 1573 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1574 SN->getMemoryVT(), SN->getMemOperand()); 1575 } 1576 1577 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1578 if (!Offset->isUndef()) 1579 report_fatal_error("unexpected offset when storing to webassembly local", 1580 false); 1581 1582 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1583 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1584 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1585 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1586 } 1587 1588 return Op; 1589 } 1590 1591 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1592 SelectionDAG &DAG) const { 1593 SDLoc DL(Op); 1594 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1595 const SDValue &Base = LN->getBasePtr(); 1596 const SDValue &Offset = LN->getOffset(); 1597 1598 if (IsWebAssemblyTableWithOffset(Base)) { 1599 if (!Offset->isUndef()) 1600 report_fatal_error( 1601 "unexpected offset when loading from webassembly table", false); 1602 1603 GlobalAddressSDNode *GA; 1604 SDValue Idx; 1605 1606 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1607 report_fatal_error("failed pattern matching for lowering table load", 1608 false); 1609 1610 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1611 SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx}; 1612 SDValue TableGet = 1613 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps, 1614 LN->getMemoryVT(), LN->getMemOperand()); 1615 return TableGet; 1616 } 1617 1618 if (IsWebAssemblyGlobal(Base)) { 1619 if (!Offset->isUndef()) 1620 report_fatal_error( 1621 "unexpected offset when loading from webassembly global", false); 1622 1623 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1624 SDValue Ops[] = {LN->getChain(), Base}; 1625 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1626 LN->getMemoryVT(), LN->getMemOperand()); 1627 } 1628 1629 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1630 if (!Offset->isUndef()) 1631 report_fatal_error( 1632 "unexpected offset when loading from webassembly local", false); 1633 1634 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1635 EVT LocalVT = LN->getValueType(0); 1636 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1637 {LN->getChain(), Idx}); 1638 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1639 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1640 return Result; 1641 } 1642 1643 return Op; 1644 } 1645 1646 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1647 SelectionDAG &DAG) const { 1648 SDValue Src = Op.getOperand(2); 1649 if (isa<FrameIndexSDNode>(Src.getNode())) { 1650 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1651 // the FI to some LEA-like instruction, but since we don't have that, we 1652 // need to insert some kind of instruction that can take an FI operand and 1653 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1654 // local.copy between Op and its FI operand. 1655 SDValue Chain = Op.getOperand(0); 1656 SDLoc DL(Op); 1657 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1658 EVT VT = Src.getValueType(); 1659 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1660 : WebAssembly::COPY_I64, 1661 DL, VT, Src), 1662 0); 1663 return Op.getNode()->getNumValues() == 1 1664 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1665 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1666 Op.getNumOperands() == 4 ? Op.getOperand(3) 1667 : SDValue()); 1668 } 1669 return SDValue(); 1670 } 1671 1672 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1673 SelectionDAG &DAG) const { 1674 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1675 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1676 } 1677 1678 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1679 SelectionDAG &DAG) const { 1680 SDLoc DL(Op); 1681 1682 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1683 fail(DL, DAG, 1684 "Non-Emscripten WebAssembly hasn't implemented " 1685 "__builtin_return_address"); 1686 return SDValue(); 1687 } 1688 1689 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1690 return SDValue(); 1691 1692 unsigned Depth = Op.getConstantOperandVal(0); 1693 MakeLibCallOptions CallOptions; 1694 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1695 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1696 .first; 1697 } 1698 1699 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1700 SelectionDAG &DAG) const { 1701 // Non-zero depths are not supported by WebAssembly currently. Use the 1702 // legalizer's default expansion, which is to return 0 (what this function is 1703 // documented to do). 1704 if (Op.getConstantOperandVal(0) > 0) 1705 return SDValue(); 1706 1707 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1708 EVT VT = Op.getValueType(); 1709 Register FP = 1710 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1711 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1712 } 1713 1714 SDValue 1715 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1716 SelectionDAG &DAG) const { 1717 SDLoc DL(Op); 1718 const auto *GA = cast<GlobalAddressSDNode>(Op); 1719 1720 MachineFunction &MF = DAG.getMachineFunction(); 1721 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1722 report_fatal_error("cannot use thread-local storage without bulk memory", 1723 false); 1724 1725 const GlobalValue *GV = GA->getGlobal(); 1726 1727 // Currently Emscripten does not support dynamic linking with threads. 1728 // Therefore, if we have thread-local storage, only the local-exec model 1729 // is possible. 1730 // TODO: remove this and implement proper TLS models once Emscripten 1731 // supports dynamic linking with threads. 1732 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1733 !Subtarget->getTargetTriple().isOSEmscripten()) { 1734 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1735 "non-Emscripten OSes: variable " + 1736 GV->getName(), 1737 false); 1738 } 1739 1740 auto model = GV->getThreadLocalMode(); 1741 1742 // Unsupported TLS modes 1743 assert(model != GlobalValue::NotThreadLocal); 1744 assert(model != GlobalValue::InitialExecTLSModel); 1745 1746 if (model == GlobalValue::LocalExecTLSModel || 1747 model == GlobalValue::LocalDynamicTLSModel || 1748 (model == GlobalValue::GeneralDynamicTLSModel && 1749 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { 1750 // For DSO-local TLS variables we use offset from __tls_base 1751 1752 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1753 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1754 : WebAssembly::GLOBAL_GET_I32; 1755 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1756 1757 SDValue BaseAddr( 1758 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1759 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1760 0); 1761 1762 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1763 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1764 SDValue SymOffset = 1765 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1766 1767 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1768 } 1769 1770 assert(model == GlobalValue::GeneralDynamicTLSModel); 1771 1772 EVT VT = Op.getValueType(); 1773 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1774 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1775 GA->getOffset(), 1776 WebAssemblyII::MO_GOT_TLS)); 1777 } 1778 1779 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1780 SelectionDAG &DAG) const { 1781 SDLoc DL(Op); 1782 const auto *GA = cast<GlobalAddressSDNode>(Op); 1783 EVT VT = Op.getValueType(); 1784 assert(GA->getTargetFlags() == 0 && 1785 "Unexpected target flags on generic GlobalAddressSDNode"); 1786 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1787 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1788 1789 unsigned OperandFlags = 0; 1790 if (isPositionIndependent()) { 1791 const GlobalValue *GV = GA->getGlobal(); 1792 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1793 MachineFunction &MF = DAG.getMachineFunction(); 1794 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1795 const char *BaseName; 1796 if (GV->getValueType()->isFunctionTy()) { 1797 BaseName = MF.createExternalSymbolName("__table_base"); 1798 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1799 } 1800 else { 1801 BaseName = MF.createExternalSymbolName("__memory_base"); 1802 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1803 } 1804 SDValue BaseAddr = 1805 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1806 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1807 1808 SDValue SymAddr = DAG.getNode( 1809 WebAssemblyISD::WrapperREL, DL, VT, 1810 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1811 OperandFlags)); 1812 1813 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1814 } 1815 OperandFlags = WebAssemblyII::MO_GOT; 1816 } 1817 1818 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1819 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1820 GA->getOffset(), OperandFlags)); 1821 } 1822 1823 SDValue 1824 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1825 SelectionDAG &DAG) const { 1826 SDLoc DL(Op); 1827 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1828 EVT VT = Op.getValueType(); 1829 assert(ES->getTargetFlags() == 0 && 1830 "Unexpected target flags on generic ExternalSymbolSDNode"); 1831 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1832 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1833 } 1834 1835 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1836 SelectionDAG &DAG) const { 1837 // There's no need for a Wrapper node because we always incorporate a jump 1838 // table operand into a BR_TABLE instruction, rather than ever 1839 // materializing it in a register. 1840 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1841 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1842 JT->getTargetFlags()); 1843 } 1844 1845 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1846 SelectionDAG &DAG) const { 1847 SDLoc DL(Op); 1848 SDValue Chain = Op.getOperand(0); 1849 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1850 SDValue Index = Op.getOperand(2); 1851 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1852 1853 SmallVector<SDValue, 8> Ops; 1854 Ops.push_back(Chain); 1855 Ops.push_back(Index); 1856 1857 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1858 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1859 1860 // Add an operand for each case. 1861 for (auto MBB : MBBs) 1862 Ops.push_back(DAG.getBasicBlock(MBB)); 1863 1864 // Add the first MBB as a dummy default target for now. This will be replaced 1865 // with the proper default target (and the preceding range check eliminated) 1866 // if possible by WebAssemblyFixBrTableDefaults. 1867 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1868 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1869 } 1870 1871 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1872 SelectionDAG &DAG) const { 1873 SDLoc DL(Op); 1874 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1875 1876 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1877 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1878 1879 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1880 MFI->getVarargBufferVreg(), PtrVT); 1881 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1882 MachinePointerInfo(SV)); 1883 } 1884 1885 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1886 SelectionDAG &DAG) const { 1887 MachineFunction &MF = DAG.getMachineFunction(); 1888 unsigned IntNo; 1889 switch (Op.getOpcode()) { 1890 case ISD::INTRINSIC_VOID: 1891 case ISD::INTRINSIC_W_CHAIN: 1892 IntNo = Op.getConstantOperandVal(1); 1893 break; 1894 case ISD::INTRINSIC_WO_CHAIN: 1895 IntNo = Op.getConstantOperandVal(0); 1896 break; 1897 default: 1898 llvm_unreachable("Invalid intrinsic"); 1899 } 1900 SDLoc DL(Op); 1901 1902 switch (IntNo) { 1903 default: 1904 return SDValue(); // Don't custom lower most intrinsics. 1905 1906 case Intrinsic::wasm_lsda: { 1907 auto PtrVT = getPointerTy(MF.getDataLayout()); 1908 const char *SymName = MF.createExternalSymbolName( 1909 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 1910 if (isPositionIndependent()) { 1911 SDValue Node = DAG.getTargetExternalSymbol( 1912 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 1913 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 1914 SDValue BaseAddr = 1915 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1916 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1917 SDValue SymAddr = 1918 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 1919 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1920 } 1921 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 1922 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 1923 } 1924 1925 case Intrinsic::wasm_shuffle: { 1926 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1927 SDValue Ops[18]; 1928 size_t OpIdx = 0; 1929 Ops[OpIdx++] = Op.getOperand(1); 1930 Ops[OpIdx++] = Op.getOperand(2); 1931 while (OpIdx < 18) { 1932 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1933 if (MaskIdx.isUndef() || 1934 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1935 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1936 } else { 1937 Ops[OpIdx++] = MaskIdx; 1938 } 1939 } 1940 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1941 } 1942 } 1943 } 1944 1945 SDValue 1946 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1947 SelectionDAG &DAG) const { 1948 SDLoc DL(Op); 1949 // If sign extension operations are disabled, allow sext_inreg only if operand 1950 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1951 // extension operations, but allowing sext_inreg in this context lets us have 1952 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1953 // everywhere would be simpler in this file, but would necessitate large and 1954 // brittle patterns to undo the expansion and select extract_lane_s 1955 // instructions. 1956 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1957 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1958 return SDValue(); 1959 1960 const SDValue &Extract = Op.getOperand(0); 1961 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1962 if (VecT.getVectorElementType().getSizeInBits() > 32) 1963 return SDValue(); 1964 MVT ExtractedLaneT = 1965 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1966 MVT ExtractedVecT = 1967 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1968 if (ExtractedVecT == VecT) 1969 return Op; 1970 1971 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1972 const SDNode *Index = Extract.getOperand(1).getNode(); 1973 if (!isa<ConstantSDNode>(Index)) 1974 return SDValue(); 1975 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1976 unsigned Scale = 1977 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1978 assert(Scale > 1); 1979 SDValue NewIndex = 1980 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1981 SDValue NewExtract = DAG.getNode( 1982 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1983 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1984 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1985 Op.getOperand(1)); 1986 } 1987 1988 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1989 SDLoc DL(Op); 1990 if (Op.getValueType() != MVT::v2f64) 1991 return SDValue(); 1992 1993 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1994 unsigned &Index) -> bool { 1995 switch (Op.getOpcode()) { 1996 case ISD::SINT_TO_FP: 1997 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1998 break; 1999 case ISD::UINT_TO_FP: 2000 Opcode = WebAssemblyISD::CONVERT_LOW_U; 2001 break; 2002 case ISD::FP_EXTEND: 2003 Opcode = WebAssemblyISD::PROMOTE_LOW; 2004 break; 2005 default: 2006 return false; 2007 } 2008 2009 auto ExtractVector = Op.getOperand(0); 2010 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2011 return false; 2012 2013 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 2014 return false; 2015 2016 SrcVec = ExtractVector.getOperand(0); 2017 Index = ExtractVector.getConstantOperandVal(1); 2018 return true; 2019 }; 2020 2021 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 2022 SDValue LHSSrcVec, RHSSrcVec; 2023 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 2024 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 2025 return SDValue(); 2026 2027 if (LHSOpcode != RHSOpcode) 2028 return SDValue(); 2029 2030 MVT ExpectedSrcVT; 2031 switch (LHSOpcode) { 2032 case WebAssemblyISD::CONVERT_LOW_S: 2033 case WebAssemblyISD::CONVERT_LOW_U: 2034 ExpectedSrcVT = MVT::v4i32; 2035 break; 2036 case WebAssemblyISD::PROMOTE_LOW: 2037 ExpectedSrcVT = MVT::v4f32; 2038 break; 2039 } 2040 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 2041 return SDValue(); 2042 2043 auto Src = LHSSrcVec; 2044 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 2045 // Shuffle the source vector so that the converted lanes are the low lanes. 2046 Src = DAG.getVectorShuffle( 2047 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2048 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2049 } 2050 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2051 } 2052 2053 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2054 SelectionDAG &DAG) const { 2055 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2056 return ConvertLow; 2057 2058 SDLoc DL(Op); 2059 const EVT VecT = Op.getValueType(); 2060 const EVT LaneT = Op.getOperand(0).getValueType(); 2061 const size_t Lanes = Op.getNumOperands(); 2062 bool CanSwizzle = VecT == MVT::v16i8; 2063 2064 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2065 // possible number of lanes at once followed by a sequence of replace_lane 2066 // instructions to individually initialize any remaining lanes. 2067 2068 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2069 // swizzled lanes should be given greater weight. 2070 2071 // TODO: Investigate looping rather than always extracting/replacing specific 2072 // lanes to fill gaps. 2073 2074 auto IsConstant = [](const SDValue &V) { 2075 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2076 }; 2077 2078 // Returns the source vector and index vector pair if they exist. Checks for: 2079 // (extract_vector_elt 2080 // $src, 2081 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2082 // ) 2083 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2084 auto Bail = std::make_pair(SDValue(), SDValue()); 2085 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2086 return Bail; 2087 const SDValue &SwizzleSrc = Lane->getOperand(0); 2088 const SDValue &IndexExt = Lane->getOperand(1); 2089 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2090 return Bail; 2091 const SDValue &Index = IndexExt->getOperand(0); 2092 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2093 return Bail; 2094 const SDValue &SwizzleIndices = Index->getOperand(0); 2095 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2096 SwizzleIndices.getValueType() != MVT::v16i8 || 2097 Index->getOperand(1)->getOpcode() != ISD::Constant || 2098 Index->getConstantOperandVal(1) != I) 2099 return Bail; 2100 return std::make_pair(SwizzleSrc, SwizzleIndices); 2101 }; 2102 2103 // If the lane is extracted from another vector at a constant index, return 2104 // that vector. The source vector must not have more lanes than the dest 2105 // because the shufflevector indices are in terms of the destination lanes and 2106 // would not be able to address the smaller individual source lanes. 2107 auto GetShuffleSrc = [&](const SDValue &Lane) { 2108 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2109 return SDValue(); 2110 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2111 return SDValue(); 2112 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2113 VecT.getVectorNumElements()) 2114 return SDValue(); 2115 return Lane->getOperand(0); 2116 }; 2117 2118 using ValueEntry = std::pair<SDValue, size_t>; 2119 SmallVector<ValueEntry, 16> SplatValueCounts; 2120 2121 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2122 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2123 2124 using ShuffleEntry = std::pair<SDValue, size_t>; 2125 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2126 2127 auto AddCount = [](auto &Counts, const auto &Val) { 2128 auto CountIt = 2129 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2130 if (CountIt == Counts.end()) { 2131 Counts.emplace_back(Val, 1); 2132 } else { 2133 CountIt->second++; 2134 } 2135 }; 2136 2137 auto GetMostCommon = [](auto &Counts) { 2138 auto CommonIt = 2139 std::max_element(Counts.begin(), Counts.end(), 2140 [](auto A, auto B) { return A.second < B.second; }); 2141 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2142 return *CommonIt; 2143 }; 2144 2145 size_t NumConstantLanes = 0; 2146 2147 // Count eligible lanes for each type of vector creation op 2148 for (size_t I = 0; I < Lanes; ++I) { 2149 const SDValue &Lane = Op->getOperand(I); 2150 if (Lane.isUndef()) 2151 continue; 2152 2153 AddCount(SplatValueCounts, Lane); 2154 2155 if (IsConstant(Lane)) 2156 NumConstantLanes++; 2157 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2158 AddCount(ShuffleCounts, ShuffleSrc); 2159 if (CanSwizzle) { 2160 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2161 if (SwizzleSrcs.first) 2162 AddCount(SwizzleCounts, SwizzleSrcs); 2163 } 2164 } 2165 2166 SDValue SplatValue; 2167 size_t NumSplatLanes; 2168 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2169 2170 SDValue SwizzleSrc; 2171 SDValue SwizzleIndices; 2172 size_t NumSwizzleLanes = 0; 2173 if (SwizzleCounts.size()) 2174 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2175 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2176 2177 // Shuffles can draw from up to two vectors, so find the two most common 2178 // sources. 2179 SDValue ShuffleSrc1, ShuffleSrc2; 2180 size_t NumShuffleLanes = 0; 2181 if (ShuffleCounts.size()) { 2182 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2183 llvm::erase_if(ShuffleCounts, 2184 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2185 } 2186 if (ShuffleCounts.size()) { 2187 size_t AdditionalShuffleLanes; 2188 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2189 GetMostCommon(ShuffleCounts); 2190 NumShuffleLanes += AdditionalShuffleLanes; 2191 } 2192 2193 // Predicate returning true if the lane is properly initialized by the 2194 // original instruction 2195 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2196 SDValue Result; 2197 // Prefer swizzles over shuffles over vector consts over splats 2198 if (NumSwizzleLanes >= NumShuffleLanes && 2199 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2200 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2201 SwizzleIndices); 2202 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2203 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2204 return Swizzled == GetSwizzleSrcs(I, Lane); 2205 }; 2206 } else if (NumShuffleLanes >= NumConstantLanes && 2207 NumShuffleLanes >= NumSplatLanes) { 2208 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2209 size_t DestLaneCount = VecT.getVectorNumElements(); 2210 size_t Scale1 = 1; 2211 size_t Scale2 = 1; 2212 SDValue Src1 = ShuffleSrc1; 2213 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2214 if (Src1.getValueType() != VecT) { 2215 size_t LaneSize = 2216 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2217 assert(LaneSize > DestLaneSize); 2218 Scale1 = LaneSize / DestLaneSize; 2219 Src1 = DAG.getBitcast(VecT, Src1); 2220 } 2221 if (Src2.getValueType() != VecT) { 2222 size_t LaneSize = 2223 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2224 assert(LaneSize > DestLaneSize); 2225 Scale2 = LaneSize / DestLaneSize; 2226 Src2 = DAG.getBitcast(VecT, Src2); 2227 } 2228 2229 int Mask[16]; 2230 assert(DestLaneCount <= 16); 2231 for (size_t I = 0; I < DestLaneCount; ++I) { 2232 const SDValue &Lane = Op->getOperand(I); 2233 SDValue Src = GetShuffleSrc(Lane); 2234 if (Src == ShuffleSrc1) { 2235 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2236 } else if (Src && Src == ShuffleSrc2) { 2237 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2238 } else { 2239 Mask[I] = -1; 2240 } 2241 } 2242 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2243 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2244 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2245 auto Src = GetShuffleSrc(Lane); 2246 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2247 }; 2248 } else if (NumConstantLanes >= NumSplatLanes) { 2249 SmallVector<SDValue, 16> ConstLanes; 2250 for (const SDValue &Lane : Op->op_values()) { 2251 if (IsConstant(Lane)) { 2252 // Values may need to be fixed so that they will sign extend to be 2253 // within the expected range during ISel. Check whether the value is in 2254 // bounds based on the lane bit width and if it is out of bounds, lop 2255 // off the extra bits and subtract 2^n to reflect giving the high bit 2256 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2257 // cannot possibly be out of range. 2258 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2259 int64_t Val = Const ? Const->getSExtValue() : 0; 2260 uint64_t LaneBits = 128 / Lanes; 2261 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2262 "Unexpected out of bounds negative value"); 2263 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2264 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); 2265 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2266 } else { 2267 ConstLanes.push_back(Lane); 2268 } 2269 } else if (LaneT.isFloatingPoint()) { 2270 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2271 } else { 2272 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2273 } 2274 } 2275 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2276 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2277 return IsConstant(Lane); 2278 }; 2279 } else { 2280 // Use a splat, but possibly a load_splat 2281 LoadSDNode *SplattedLoad; 2282 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 2283 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 2284 Result = DAG.getMemIntrinsicNode( 2285 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 2286 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 2287 SplattedLoad->getOffset()}, 2288 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 2289 } else { 2290 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2291 } 2292 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2293 return Lane == SplatValue; 2294 }; 2295 } 2296 2297 assert(Result); 2298 assert(IsLaneConstructed); 2299 2300 // Add replace_lane instructions for any unhandled values 2301 for (size_t I = 0; I < Lanes; ++I) { 2302 const SDValue &Lane = Op->getOperand(I); 2303 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2304 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2305 DAG.getConstant(I, DL, MVT::i32)); 2306 } 2307 2308 return Result; 2309 } 2310 2311 SDValue 2312 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2313 SelectionDAG &DAG) const { 2314 SDLoc DL(Op); 2315 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2316 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2317 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2318 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2319 2320 // Space for two vector args and sixteen mask indices 2321 SDValue Ops[18]; 2322 size_t OpIdx = 0; 2323 Ops[OpIdx++] = Op.getOperand(0); 2324 Ops[OpIdx++] = Op.getOperand(1); 2325 2326 // Expand mask indices to byte indices and materialize them as operands 2327 for (int M : Mask) { 2328 for (size_t J = 0; J < LaneBytes; ++J) { 2329 // Lower undefs (represented by -1 in mask) to zero 2330 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 2331 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2332 } 2333 } 2334 2335 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2336 } 2337 2338 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2339 SelectionDAG &DAG) const { 2340 SDLoc DL(Op); 2341 // The legalizer does not know how to expand the unsupported comparison modes 2342 // of i64x2 vectors, so we manually unroll them here. 2343 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2344 SmallVector<SDValue, 2> LHS, RHS; 2345 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2346 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2347 const SDValue &CC = Op->getOperand(2); 2348 auto MakeLane = [&](unsigned I) { 2349 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2350 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2351 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2352 }; 2353 return DAG.getBuildVector(Op->getValueType(0), DL, 2354 {MakeLane(0), MakeLane(1)}); 2355 } 2356 2357 SDValue 2358 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2359 SelectionDAG &DAG) const { 2360 // Allow constant lane indices, expand variable lane indices 2361 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2362 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2363 return Op; 2364 else 2365 // Perform default expansion 2366 return SDValue(); 2367 } 2368 2369 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2370 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2371 // 32-bit and 64-bit unrolled shifts will have proper semantics 2372 if (LaneT.bitsGE(MVT::i32)) 2373 return DAG.UnrollVectorOp(Op.getNode()); 2374 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2375 SDLoc DL(Op); 2376 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2377 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2378 unsigned ShiftOpcode = Op.getOpcode(); 2379 SmallVector<SDValue, 16> ShiftedElements; 2380 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2381 SmallVector<SDValue, 16> ShiftElements; 2382 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2383 SmallVector<SDValue, 16> UnrolledOps; 2384 for (size_t i = 0; i < NumLanes; ++i) { 2385 SDValue MaskedShiftValue = 2386 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2387 SDValue ShiftedValue = ShiftedElements[i]; 2388 if (ShiftOpcode == ISD::SRA) 2389 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2390 ShiftedValue, DAG.getValueType(LaneT)); 2391 UnrolledOps.push_back( 2392 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2393 } 2394 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2395 } 2396 2397 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2398 SelectionDAG &DAG) const { 2399 SDLoc DL(Op); 2400 2401 // Only manually lower vector shifts 2402 assert(Op.getSimpleValueType().isVector()); 2403 2404 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2405 if (!ShiftVal) 2406 return unrollVectorShift(Op, DAG); 2407 2408 // Use anyext because none of the high bits can affect the shift 2409 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2410 2411 unsigned Opcode; 2412 switch (Op.getOpcode()) { 2413 case ISD::SHL: 2414 Opcode = WebAssemblyISD::VEC_SHL; 2415 break; 2416 case ISD::SRA: 2417 Opcode = WebAssemblyISD::VEC_SHR_S; 2418 break; 2419 case ISD::SRL: 2420 Opcode = WebAssemblyISD::VEC_SHR_U; 2421 break; 2422 default: 2423 llvm_unreachable("unexpected opcode"); 2424 } 2425 2426 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2427 } 2428 2429 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2430 SelectionDAG &DAG) const { 2431 SDLoc DL(Op); 2432 EVT ResT = Op.getValueType(); 2433 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2434 2435 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2436 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2437 return Op; 2438 2439 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2440 return Op; 2441 2442 return SDValue(); 2443 } 2444 2445 //===----------------------------------------------------------------------===// 2446 // Custom DAG combine hooks 2447 //===----------------------------------------------------------------------===// 2448 static SDValue 2449 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2450 auto &DAG = DCI.DAG; 2451 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2452 2453 // Hoist vector bitcasts that don't change the number of lanes out of unary 2454 // shuffles, where they are less likely to get in the way of other combines. 2455 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2456 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2457 SDValue Bitcast = N->getOperand(0); 2458 if (Bitcast.getOpcode() != ISD::BITCAST) 2459 return SDValue(); 2460 if (!N->getOperand(1).isUndef()) 2461 return SDValue(); 2462 SDValue CastOp = Bitcast.getOperand(0); 2463 MVT SrcType = CastOp.getSimpleValueType(); 2464 MVT DstType = Bitcast.getSimpleValueType(); 2465 if (!SrcType.is128BitVector() || 2466 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2467 return SDValue(); 2468 SDValue NewShuffle = DAG.getVectorShuffle( 2469 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2470 return DAG.getBitcast(DstType, NewShuffle); 2471 } 2472 2473 static SDValue 2474 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2475 auto &DAG = DCI.DAG; 2476 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2477 N->getOpcode() == ISD::ZERO_EXTEND); 2478 2479 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2480 // possible before the extract_subvector can be expanded. 2481 auto Extract = N->getOperand(0); 2482 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2483 return SDValue(); 2484 auto Source = Extract.getOperand(0); 2485 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2486 if (IndexNode == nullptr) 2487 return SDValue(); 2488 auto Index = IndexNode->getZExtValue(); 2489 2490 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2491 // extracted subvector is the low or high half of its source. 2492 EVT ResVT = N->getValueType(0); 2493 if (ResVT == MVT::v8i16) { 2494 if (Extract.getValueType() != MVT::v8i8 || 2495 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2496 return SDValue(); 2497 } else if (ResVT == MVT::v4i32) { 2498 if (Extract.getValueType() != MVT::v4i16 || 2499 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2500 return SDValue(); 2501 } else if (ResVT == MVT::v2i64) { 2502 if (Extract.getValueType() != MVT::v2i32 || 2503 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2504 return SDValue(); 2505 } else { 2506 return SDValue(); 2507 } 2508 2509 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2510 bool IsLow = Index == 0; 2511 2512 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2513 : WebAssemblyISD::EXTEND_HIGH_S) 2514 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2515 : WebAssemblyISD::EXTEND_HIGH_U); 2516 2517 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2518 } 2519 2520 static SDValue 2521 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2522 auto &DAG = DCI.DAG; 2523 2524 auto GetWasmConversionOp = [](unsigned Op) { 2525 switch (Op) { 2526 case ISD::FP_TO_SINT_SAT: 2527 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2528 case ISD::FP_TO_UINT_SAT: 2529 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2530 case ISD::FP_ROUND: 2531 return WebAssemblyISD::DEMOTE_ZERO; 2532 } 2533 llvm_unreachable("unexpected op"); 2534 }; 2535 2536 auto IsZeroSplat = [](SDValue SplatVal) { 2537 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2538 APInt SplatValue, SplatUndef; 2539 unsigned SplatBitSize; 2540 bool HasAnyUndefs; 2541 return Splat && 2542 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2543 HasAnyUndefs) && 2544 SplatValue == 0; 2545 }; 2546 2547 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2548 // Combine this: 2549 // 2550 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2551 // 2552 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2553 // 2554 // Or this: 2555 // 2556 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2557 // 2558 // into (f32x4.demote_zero_f64x2 $x). 2559 EVT ResVT; 2560 EVT ExpectedConversionType; 2561 auto Conversion = N->getOperand(0); 2562 auto ConversionOp = Conversion.getOpcode(); 2563 switch (ConversionOp) { 2564 case ISD::FP_TO_SINT_SAT: 2565 case ISD::FP_TO_UINT_SAT: 2566 ResVT = MVT::v4i32; 2567 ExpectedConversionType = MVT::v2i32; 2568 break; 2569 case ISD::FP_ROUND: 2570 ResVT = MVT::v4f32; 2571 ExpectedConversionType = MVT::v2f32; 2572 break; 2573 default: 2574 return SDValue(); 2575 } 2576 2577 if (N->getValueType(0) != ResVT) 2578 return SDValue(); 2579 2580 if (Conversion.getValueType() != ExpectedConversionType) 2581 return SDValue(); 2582 2583 auto Source = Conversion.getOperand(0); 2584 if (Source.getValueType() != MVT::v2f64) 2585 return SDValue(); 2586 2587 if (!IsZeroSplat(N->getOperand(1)) || 2588 N->getOperand(1).getValueType() != ExpectedConversionType) 2589 return SDValue(); 2590 2591 unsigned Op = GetWasmConversionOp(ConversionOp); 2592 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2593 } 2594 2595 // Combine this: 2596 // 2597 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2598 // 2599 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2600 // 2601 // Or this: 2602 // 2603 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2604 // 2605 // into (f32x4.demote_zero_f64x2 $x). 2606 EVT ResVT; 2607 auto ConversionOp = N->getOpcode(); 2608 switch (ConversionOp) { 2609 case ISD::FP_TO_SINT_SAT: 2610 case ISD::FP_TO_UINT_SAT: 2611 ResVT = MVT::v4i32; 2612 break; 2613 case ISD::FP_ROUND: 2614 ResVT = MVT::v4f32; 2615 break; 2616 default: 2617 llvm_unreachable("unexpected op"); 2618 } 2619 2620 if (N->getValueType(0) != ResVT) 2621 return SDValue(); 2622 2623 auto Concat = N->getOperand(0); 2624 if (Concat.getValueType() != MVT::v4f64) 2625 return SDValue(); 2626 2627 auto Source = Concat.getOperand(0); 2628 if (Source.getValueType() != MVT::v2f64) 2629 return SDValue(); 2630 2631 if (!IsZeroSplat(Concat.getOperand(1)) || 2632 Concat.getOperand(1).getValueType() != MVT::v2f64) 2633 return SDValue(); 2634 2635 unsigned Op = GetWasmConversionOp(ConversionOp); 2636 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2637 } 2638 2639 // Helper to extract VectorWidth bits from Vec, starting from IdxVal. 2640 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, 2641 const SDLoc &DL, unsigned VectorWidth) { 2642 EVT VT = Vec.getValueType(); 2643 EVT ElVT = VT.getVectorElementType(); 2644 unsigned Factor = VT.getSizeInBits() / VectorWidth; 2645 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, 2646 VT.getVectorNumElements() / Factor); 2647 2648 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR 2649 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); 2650 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); 2651 2652 // This is the index of the first element of the VectorWidth-bit chunk 2653 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. 2654 IdxVal &= ~(ElemsPerChunk - 1); 2655 2656 // If the input is a buildvector just emit a smaller one. 2657 if (Vec.getOpcode() == ISD::BUILD_VECTOR) 2658 return DAG.getBuildVector(ResultVT, DL, 2659 Vec->ops().slice(IdxVal, ElemsPerChunk)); 2660 2661 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); 2662 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); 2663 } 2664 2665 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT 2666 // is the expected destination value type after recursion. In is the initial 2667 // input. Note that the input should have enough leading zero bits to prevent 2668 // NARROW_U from saturating results. 2669 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, 2670 SelectionDAG &DAG) { 2671 EVT SrcVT = In.getValueType(); 2672 2673 // No truncation required, we might get here due to recursive calls. 2674 if (SrcVT == DstVT) 2675 return In; 2676 2677 unsigned SrcSizeInBits = SrcVT.getSizeInBits(); 2678 unsigned NumElems = SrcVT.getVectorNumElements(); 2679 if (!isPowerOf2_32(NumElems)) 2680 return SDValue(); 2681 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); 2682 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); 2683 2684 LLVMContext &Ctx = *DAG.getContext(); 2685 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); 2686 2687 // Narrow to the largest type possible: 2688 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. 2689 EVT InVT = MVT::i16, OutVT = MVT::i8; 2690 if (SrcVT.getScalarSizeInBits() > 16) { 2691 InVT = MVT::i32; 2692 OutVT = MVT::i16; 2693 } 2694 unsigned SubSizeInBits = SrcSizeInBits / 2; 2695 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); 2696 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); 2697 2698 // Split lower/upper subvectors. 2699 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); 2700 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); 2701 2702 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. 2703 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { 2704 Lo = DAG.getBitcast(InVT, Lo); 2705 Hi = DAG.getBitcast(InVT, Hi); 2706 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); 2707 return DAG.getBitcast(DstVT, Res); 2708 } 2709 2710 // Recursively narrow lower/upper subvectors, concat result and narrow again. 2711 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); 2712 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); 2713 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); 2714 2715 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); 2716 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); 2717 return truncateVectorWithNARROW(DstVT, Res, DL, DAG); 2718 } 2719 2720 static SDValue performTruncateCombine(SDNode *N, 2721 TargetLowering::DAGCombinerInfo &DCI) { 2722 auto &DAG = DCI.DAG; 2723 2724 SDValue In = N->getOperand(0); 2725 EVT InVT = In.getValueType(); 2726 if (!InVT.isSimple()) 2727 return SDValue(); 2728 2729 EVT OutVT = N->getValueType(0); 2730 if (!OutVT.isVector()) 2731 return SDValue(); 2732 2733 EVT OutSVT = OutVT.getVectorElementType(); 2734 EVT InSVT = InVT.getVectorElementType(); 2735 // Currently only cover truncate to v16i8 or v8i16. 2736 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && 2737 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) 2738 return SDValue(); 2739 2740 SDLoc DL(N); 2741 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), 2742 OutVT.getScalarSizeInBits()); 2743 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); 2744 return truncateVectorWithNARROW(OutVT, In, DL, DAG); 2745 } 2746 2747 SDValue 2748 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2749 DAGCombinerInfo &DCI) const { 2750 switch (N->getOpcode()) { 2751 default: 2752 return SDValue(); 2753 case ISD::VECTOR_SHUFFLE: 2754 return performVECTOR_SHUFFLECombine(N, DCI); 2755 case ISD::SIGN_EXTEND: 2756 case ISD::ZERO_EXTEND: 2757 return performVectorExtendCombine(N, DCI); 2758 case ISD::FP_TO_SINT_SAT: 2759 case ISD::FP_TO_UINT_SAT: 2760 case ISD::FP_ROUND: 2761 case ISD::CONCAT_VECTORS: 2762 return performVectorTruncZeroCombine(N, DCI); 2763 case ISD::TRUNCATE: 2764 return performTruncateCombine(N, DCI); 2765 } 2766 } 2767