1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyUtilities.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/SelectionDAGNodes.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 // Transform loads and stores to pointers in address space 1 to loads and 73 // stores to WebAssembly global variables, outside linear memory. 74 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 75 setOperationAction(ISD::LOAD, T, Custom); 76 setOperationAction(ISD::STORE, T, Custom); 77 } 78 if (Subtarget->hasSIMD128()) { 79 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 80 MVT::v2f64}) { 81 setOperationAction(ISD::LOAD, T, Custom); 82 setOperationAction(ISD::STORE, T, Custom); 83 } 84 } 85 86 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 87 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 88 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 89 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 90 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 91 setOperationAction(ISD::BRIND, MVT::Other, Custom); 92 93 // Take the default expansion for va_arg, va_copy, and va_end. There is no 94 // default action for va_start, so we do that custom. 95 setOperationAction(ISD::VASTART, MVT::Other, Custom); 96 setOperationAction(ISD::VAARG, MVT::Other, Expand); 97 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 98 setOperationAction(ISD::VAEND, MVT::Other, Expand); 99 100 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 101 // Don't expand the floating-point types to constant pools. 102 setOperationAction(ISD::ConstantFP, T, Legal); 103 // Expand floating-point comparisons. 104 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 105 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 106 setCondCodeAction(CC, T, Expand); 107 // Expand floating-point library function operators. 108 for (auto Op : 109 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 110 setOperationAction(Op, T, Expand); 111 // Note supported floating-point library function operators that otherwise 112 // default to expand. 113 for (auto Op : 114 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 115 setOperationAction(Op, T, Legal); 116 // Support minimum and maximum, which otherwise default to expand. 117 setOperationAction(ISD::FMINIMUM, T, Legal); 118 setOperationAction(ISD::FMAXIMUM, T, Legal); 119 // WebAssembly currently has no builtin f16 support. 120 setOperationAction(ISD::FP16_TO_FP, T, Expand); 121 setOperationAction(ISD::FP_TO_FP16, T, Expand); 122 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 123 setTruncStoreAction(T, MVT::f16, Expand); 124 } 125 126 // Expand unavailable integer operations. 127 for (auto Op : 128 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 129 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 130 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 131 for (auto T : {MVT::i32, MVT::i64}) 132 setOperationAction(Op, T, Expand); 133 if (Subtarget->hasSIMD128()) 134 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 135 setOperationAction(Op, T, Expand); 136 } 137 138 if (Subtarget->hasNontrappingFPToInt()) 139 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 140 for (auto T : {MVT::i32, MVT::i64}) 141 setOperationAction(Op, T, Custom); 142 143 // SIMD-specific configuration 144 if (Subtarget->hasSIMD128()) { 145 // Hoist bitcasts out of shuffles 146 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 147 148 // Combine extends of extract_subvectors into widening ops 149 setTargetDAGCombine(ISD::SIGN_EXTEND); 150 setTargetDAGCombine(ISD::ZERO_EXTEND); 151 152 // Combine int_to_fp of extract_vectors and vice versa into conversions ops 153 setTargetDAGCombine(ISD::SINT_TO_FP); 154 setTargetDAGCombine(ISD::UINT_TO_FP); 155 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 156 157 // Combine concat of {s,u}int_to_fp_sat to i32x4.trunc_sat_f64x2_zero_{s,u} 158 setTargetDAGCombine(ISD::CONCAT_VECTORS); 159 160 // Support saturating add for i8x16 and i16x8 161 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 162 for (auto T : {MVT::v16i8, MVT::v8i16}) 163 setOperationAction(Op, T, Legal); 164 165 // Support integer abs 166 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 167 setOperationAction(ISD::ABS, T, Legal); 168 169 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 170 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 171 MVT::v2f64}) 172 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 173 174 // We have custom shuffle lowering to expose the shuffle mask 175 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 176 MVT::v2f64}) 177 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 178 179 // Custom lowering since wasm shifts must have a scalar shift amount 180 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 181 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 182 setOperationAction(Op, T, Custom); 183 184 // Custom lower lane accesses to expand out variable indices 185 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 186 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 187 MVT::v2f64}) 188 setOperationAction(Op, T, Custom); 189 190 // There is no i8x16.mul instruction 191 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 192 193 // There is no vector conditional select instruction 194 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 195 MVT::v2f64}) 196 setOperationAction(ISD::SELECT_CC, T, Expand); 197 198 // Expand integer operations supported for scalars but not SIMD 199 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 200 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 201 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 202 setOperationAction(Op, T, Expand); 203 204 // But we do have integer min and max operations 205 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 206 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 207 setOperationAction(Op, T, Legal); 208 209 // Expand float operations supported for scalars but not SIMD 210 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 211 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 212 for (auto T : {MVT::v4f32, MVT::v2f64}) 213 setOperationAction(Op, T, Expand); 214 215 // Unsigned comparison operations are unavailable for i64x2 vectors. 216 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 217 setCondCodeAction(CC, MVT::v2i64, Custom); 218 219 // 64x2 conversions are not in the spec 220 for (auto Op : 221 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 222 for (auto T : {MVT::v2i64, MVT::v2f64}) 223 setOperationAction(Op, T, Expand); 224 225 // But saturating fp_to_int converstions are 226 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 227 setOperationAction(Op, MVT::v4i32, Custom); 228 } 229 230 // As a special case, these operators use the type to mean the type to 231 // sign-extend from. 232 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 233 if (!Subtarget->hasSignExt()) { 234 // Sign extends are legal only when extending a vector extract 235 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 236 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 237 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 238 } 239 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 240 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 241 242 // Dynamic stack allocation: use the default expansion. 243 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 244 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 245 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 246 247 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 248 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 249 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 250 251 // Expand these forms; we pattern-match the forms that we can handle in isel. 252 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 253 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 254 setOperationAction(Op, T, Expand); 255 256 // We have custom switch handling. 257 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 258 259 // WebAssembly doesn't have: 260 // - Floating-point extending loads. 261 // - Floating-point truncating stores. 262 // - i1 extending loads. 263 // - truncating SIMD stores and most extending loads 264 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 265 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 266 for (auto T : MVT::integer_valuetypes()) 267 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 268 setLoadExtAction(Ext, T, MVT::i1, Promote); 269 if (Subtarget->hasSIMD128()) { 270 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 271 MVT::v2f64}) { 272 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 273 if (MVT(T) != MemT) { 274 setTruncStoreAction(T, MemT, Expand); 275 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 276 setLoadExtAction(Ext, T, MemT, Expand); 277 } 278 } 279 } 280 // But some vector extending loads are legal 281 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 282 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 283 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 284 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 285 } 286 // And some truncating stores are legal as well 287 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 288 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 289 } 290 291 // Don't do anything clever with build_pairs 292 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 293 294 // Trap lowers to wasm unreachable 295 setOperationAction(ISD::TRAP, MVT::Other, Legal); 296 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 297 298 // Exception handling intrinsics 299 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 300 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 301 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 302 303 setMaxAtomicSizeInBitsSupported(64); 304 305 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 306 // consistent with the f64 and f128 names. 307 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 308 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 309 310 // Define the emscripten name for return address helper. 311 // TODO: when implementing other Wasm backends, make this generic or only do 312 // this on emscripten depending on what they end up doing. 313 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 314 315 // Always convert switches to br_tables unless there is only one case, which 316 // is equivalent to a simple branch. This reduces code size for wasm, and we 317 // defer possible jump table optimizations to the VM. 318 setMinimumJumpTableEntries(2); 319 } 320 321 TargetLowering::AtomicExpansionKind 322 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 323 // We have wasm instructions for these 324 switch (AI->getOperation()) { 325 case AtomicRMWInst::Add: 326 case AtomicRMWInst::Sub: 327 case AtomicRMWInst::And: 328 case AtomicRMWInst::Or: 329 case AtomicRMWInst::Xor: 330 case AtomicRMWInst::Xchg: 331 return AtomicExpansionKind::None; 332 default: 333 break; 334 } 335 return AtomicExpansionKind::CmpXChg; 336 } 337 338 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 339 // Implementation copied from X86TargetLowering. 340 unsigned Opc = VecOp.getOpcode(); 341 342 // Assume target opcodes can't be scalarized. 343 // TODO - do we have any exceptions? 344 if (Opc >= ISD::BUILTIN_OP_END) 345 return false; 346 347 // If the vector op is not supported, try to convert to scalar. 348 EVT VecVT = VecOp.getValueType(); 349 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 350 return true; 351 352 // If the vector op is supported, but the scalar op is not, the transform may 353 // not be worthwhile. 354 EVT ScalarVT = VecVT.getScalarType(); 355 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 356 } 357 358 FastISel *WebAssemblyTargetLowering::createFastISel( 359 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 360 return WebAssembly::createFastISel(FuncInfo, LibInfo); 361 } 362 363 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 364 EVT VT) const { 365 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 366 if (BitWidth > 1 && BitWidth < 8) 367 BitWidth = 8; 368 369 if (BitWidth > 64) { 370 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 371 // the count to be an i32. 372 BitWidth = 32; 373 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 374 "32-bit shift counts ought to be enough for anyone"); 375 } 376 377 MVT Result = MVT::getIntegerVT(BitWidth); 378 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 379 "Unable to represent scalar shift amount type"); 380 return Result; 381 } 382 383 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 384 // undefined result on invalid/overflow, to the WebAssembly opcode, which 385 // traps on invalid/overflow. 386 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 387 MachineBasicBlock *BB, 388 const TargetInstrInfo &TII, 389 bool IsUnsigned, bool Int64, 390 bool Float64, unsigned LoweredOpcode) { 391 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 392 393 Register OutReg = MI.getOperand(0).getReg(); 394 Register InReg = MI.getOperand(1).getReg(); 395 396 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 397 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 398 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 399 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 400 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 401 unsigned Eqz = WebAssembly::EQZ_I32; 402 unsigned And = WebAssembly::AND_I32; 403 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 404 int64_t Substitute = IsUnsigned ? 0 : Limit; 405 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 406 auto &Context = BB->getParent()->getFunction().getContext(); 407 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 408 409 const BasicBlock *LLVMBB = BB->getBasicBlock(); 410 MachineFunction *F = BB->getParent(); 411 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 412 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 413 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 414 415 MachineFunction::iterator It = ++BB->getIterator(); 416 F->insert(It, FalseMBB); 417 F->insert(It, TrueMBB); 418 F->insert(It, DoneMBB); 419 420 // Transfer the remainder of BB and its successor edges to DoneMBB. 421 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 422 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 423 424 BB->addSuccessor(TrueMBB); 425 BB->addSuccessor(FalseMBB); 426 TrueMBB->addSuccessor(DoneMBB); 427 FalseMBB->addSuccessor(DoneMBB); 428 429 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 430 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 431 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 432 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 433 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 434 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 435 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 436 437 MI.eraseFromParent(); 438 // For signed numbers, we can do a single comparison to determine whether 439 // fabs(x) is within range. 440 if (IsUnsigned) { 441 Tmp0 = InReg; 442 } else { 443 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 444 } 445 BuildMI(BB, DL, TII.get(FConst), Tmp1) 446 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 447 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 448 449 // For unsigned numbers, we have to do a separate comparison with zero. 450 if (IsUnsigned) { 451 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 452 Register SecondCmpReg = 453 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 454 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 455 BuildMI(BB, DL, TII.get(FConst), Tmp1) 456 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 457 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 458 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 459 CmpReg = AndReg; 460 } 461 462 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 463 464 // Create the CFG diamond to select between doing the conversion or using 465 // the substitute value. 466 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 467 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 468 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 469 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 470 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 471 .addReg(FalseReg) 472 .addMBB(FalseMBB) 473 .addReg(TrueReg) 474 .addMBB(TrueMBB); 475 476 return DoneMBB; 477 } 478 479 static MachineBasicBlock * 480 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 481 const WebAssemblySubtarget *Subtarget, 482 const TargetInstrInfo &TII) { 483 MachineInstr &CallParams = *CallResults.getPrevNode(); 484 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 485 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 486 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 487 488 bool IsIndirect = CallParams.getOperand(0).isReg(); 489 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 490 491 unsigned CallOp; 492 if (IsIndirect && IsRetCall) { 493 CallOp = WebAssembly::RET_CALL_INDIRECT; 494 } else if (IsIndirect) { 495 CallOp = WebAssembly::CALL_INDIRECT; 496 } else if (IsRetCall) { 497 CallOp = WebAssembly::RET_CALL; 498 } else { 499 CallOp = WebAssembly::CALL; 500 } 501 502 MachineFunction &MF = *BB->getParent(); 503 const MCInstrDesc &MCID = TII.get(CallOp); 504 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 505 506 // See if we must truncate the function pointer. 507 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 508 // as 64-bit for uniformity with other pointer types. 509 // See also: WebAssemblyFastISel::selectCall 510 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 511 Register Reg32 = 512 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 513 auto &FnPtr = CallParams.getOperand(0); 514 BuildMI(*BB, CallResults.getIterator(), DL, 515 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 516 .addReg(FnPtr.getReg()); 517 FnPtr.setReg(Reg32); 518 } 519 520 // Move the function pointer to the end of the arguments for indirect calls 521 if (IsIndirect) { 522 auto FnPtr = CallParams.getOperand(0); 523 CallParams.RemoveOperand(0); 524 CallParams.addOperand(FnPtr); 525 } 526 527 for (auto Def : CallResults.defs()) 528 MIB.add(Def); 529 530 if (IsIndirect) { 531 // Placeholder for the type index. 532 MIB.addImm(0); 533 // The table into which this call_indirect indexes. 534 MCSymbolWasm *Table = 535 WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget); 536 if (Subtarget->hasReferenceTypes()) { 537 MIB.addSym(Table); 538 } else { 539 // For the MVP there is at most one table whose number is 0, but we can't 540 // write a table symbol or issue relocations. Instead we just ensure the 541 // table is live and write a zero. 542 Table->setNoStrip(); 543 MIB.addImm(0); 544 } 545 } 546 547 for (auto Use : CallParams.uses()) 548 MIB.add(Use); 549 550 BB->insert(CallResults.getIterator(), MIB); 551 CallParams.eraseFromParent(); 552 CallResults.eraseFromParent(); 553 554 return BB; 555 } 556 557 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 558 MachineInstr &MI, MachineBasicBlock *BB) const { 559 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 560 DebugLoc DL = MI.getDebugLoc(); 561 562 switch (MI.getOpcode()) { 563 default: 564 llvm_unreachable("Unexpected instr type to insert"); 565 case WebAssembly::FP_TO_SINT_I32_F32: 566 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 567 WebAssembly::I32_TRUNC_S_F32); 568 case WebAssembly::FP_TO_UINT_I32_F32: 569 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 570 WebAssembly::I32_TRUNC_U_F32); 571 case WebAssembly::FP_TO_SINT_I64_F32: 572 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 573 WebAssembly::I64_TRUNC_S_F32); 574 case WebAssembly::FP_TO_UINT_I64_F32: 575 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 576 WebAssembly::I64_TRUNC_U_F32); 577 case WebAssembly::FP_TO_SINT_I32_F64: 578 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 579 WebAssembly::I32_TRUNC_S_F64); 580 case WebAssembly::FP_TO_UINT_I32_F64: 581 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 582 WebAssembly::I32_TRUNC_U_F64); 583 case WebAssembly::FP_TO_SINT_I64_F64: 584 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 585 WebAssembly::I64_TRUNC_S_F64); 586 case WebAssembly::FP_TO_UINT_I64_F64: 587 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 588 WebAssembly::I64_TRUNC_U_F64); 589 case WebAssembly::CALL_RESULTS: 590 case WebAssembly::RET_CALL_RESULTS: 591 return LowerCallResults(MI, DL, BB, Subtarget, TII); 592 } 593 } 594 595 const char * 596 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 597 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 598 case WebAssemblyISD::FIRST_NUMBER: 599 case WebAssemblyISD::FIRST_MEM_OPCODE: 600 break; 601 #define HANDLE_NODETYPE(NODE) \ 602 case WebAssemblyISD::NODE: \ 603 return "WebAssemblyISD::" #NODE; 604 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 605 #include "WebAssemblyISD.def" 606 #undef HANDLE_MEM_NODETYPE 607 #undef HANDLE_NODETYPE 608 } 609 return nullptr; 610 } 611 612 std::pair<unsigned, const TargetRegisterClass *> 613 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 614 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 615 // First, see if this is a constraint that directly corresponds to a 616 // WebAssembly register class. 617 if (Constraint.size() == 1) { 618 switch (Constraint[0]) { 619 case 'r': 620 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 621 if (Subtarget->hasSIMD128() && VT.isVector()) { 622 if (VT.getSizeInBits() == 128) 623 return std::make_pair(0U, &WebAssembly::V128RegClass); 624 } 625 if (VT.isInteger() && !VT.isVector()) { 626 if (VT.getSizeInBits() <= 32) 627 return std::make_pair(0U, &WebAssembly::I32RegClass); 628 if (VT.getSizeInBits() <= 64) 629 return std::make_pair(0U, &WebAssembly::I64RegClass); 630 } 631 if (VT.isFloatingPoint() && !VT.isVector()) { 632 switch (VT.getSizeInBits()) { 633 case 32: 634 return std::make_pair(0U, &WebAssembly::F32RegClass); 635 case 64: 636 return std::make_pair(0U, &WebAssembly::F64RegClass); 637 default: 638 break; 639 } 640 } 641 break; 642 default: 643 break; 644 } 645 } 646 647 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 648 } 649 650 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 651 // Assume ctz is a relatively cheap operation. 652 return true; 653 } 654 655 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 656 // Assume clz is a relatively cheap operation. 657 return true; 658 } 659 660 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 661 const AddrMode &AM, 662 Type *Ty, unsigned AS, 663 Instruction *I) const { 664 // WebAssembly offsets are added as unsigned without wrapping. The 665 // isLegalAddressingMode gives us no way to determine if wrapping could be 666 // happening, so we approximate this by accepting only non-negative offsets. 667 if (AM.BaseOffs < 0) 668 return false; 669 670 // WebAssembly has no scale register operands. 671 if (AM.Scale != 0) 672 return false; 673 674 // Everything else is legal. 675 return true; 676 } 677 678 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 679 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 680 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 681 // WebAssembly supports unaligned accesses, though it should be declared 682 // with the p2align attribute on loads and stores which do so, and there 683 // may be a performance impact. We tell LLVM they're "fast" because 684 // for the kinds of things that LLVM uses this for (merging adjacent stores 685 // of constants, etc.), WebAssembly implementations will either want the 686 // unaligned access or they'll split anyway. 687 if (Fast) 688 *Fast = true; 689 return true; 690 } 691 692 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 693 AttributeList Attr) const { 694 // The current thinking is that wasm engines will perform this optimization, 695 // so we can save on code size. 696 return true; 697 } 698 699 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 700 EVT ExtT = ExtVal.getValueType(); 701 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 702 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 703 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 704 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 705 } 706 707 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 708 LLVMContext &C, 709 EVT VT) const { 710 if (VT.isVector()) 711 return VT.changeVectorElementTypeToInteger(); 712 713 // So far, all branch instructions in Wasm take an I32 condition. 714 // The default TargetLowering::getSetCCResultType returns the pointer size, 715 // which would be useful to reduce instruction counts when testing 716 // against 64-bit pointers/values if at some point Wasm supports that. 717 return EVT::getIntegerVT(C, 32); 718 } 719 720 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 721 const CallInst &I, 722 MachineFunction &MF, 723 unsigned Intrinsic) const { 724 switch (Intrinsic) { 725 case Intrinsic::wasm_memory_atomic_notify: 726 Info.opc = ISD::INTRINSIC_W_CHAIN; 727 Info.memVT = MVT::i32; 728 Info.ptrVal = I.getArgOperand(0); 729 Info.offset = 0; 730 Info.align = Align(4); 731 // atomic.notify instruction does not really load the memory specified with 732 // this argument, but MachineMemOperand should either be load or store, so 733 // we set this to a load. 734 // FIXME Volatile isn't really correct, but currently all LLVM atomic 735 // instructions are treated as volatiles in the backend, so we should be 736 // consistent. The same applies for wasm_atomic_wait intrinsics too. 737 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 738 return true; 739 case Intrinsic::wasm_memory_atomic_wait32: 740 Info.opc = ISD::INTRINSIC_W_CHAIN; 741 Info.memVT = MVT::i32; 742 Info.ptrVal = I.getArgOperand(0); 743 Info.offset = 0; 744 Info.align = Align(4); 745 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 746 return true; 747 case Intrinsic::wasm_memory_atomic_wait64: 748 Info.opc = ISD::INTRINSIC_W_CHAIN; 749 Info.memVT = MVT::i64; 750 Info.ptrVal = I.getArgOperand(0); 751 Info.offset = 0; 752 Info.align = Align(8); 753 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 754 return true; 755 case Intrinsic::wasm_load32_zero: 756 case Intrinsic::wasm_load64_zero: 757 Info.opc = ISD::INTRINSIC_W_CHAIN; 758 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 759 Info.ptrVal = I.getArgOperand(0); 760 Info.offset = 0; 761 Info.align = Align(1); 762 Info.flags = MachineMemOperand::MOLoad; 763 return true; 764 case Intrinsic::wasm_load8_lane: 765 case Intrinsic::wasm_load16_lane: 766 case Intrinsic::wasm_load32_lane: 767 case Intrinsic::wasm_load64_lane: 768 case Intrinsic::wasm_store8_lane: 769 case Intrinsic::wasm_store16_lane: 770 case Intrinsic::wasm_store32_lane: 771 case Intrinsic::wasm_store64_lane: { 772 MVT MemVT; 773 switch (Intrinsic) { 774 case Intrinsic::wasm_load8_lane: 775 case Intrinsic::wasm_store8_lane: 776 MemVT = MVT::i8; 777 break; 778 case Intrinsic::wasm_load16_lane: 779 case Intrinsic::wasm_store16_lane: 780 MemVT = MVT::i16; 781 break; 782 case Intrinsic::wasm_load32_lane: 783 case Intrinsic::wasm_store32_lane: 784 MemVT = MVT::i32; 785 break; 786 case Intrinsic::wasm_load64_lane: 787 case Intrinsic::wasm_store64_lane: 788 MemVT = MVT::i64; 789 break; 790 default: 791 llvm_unreachable("unexpected intrinsic"); 792 } 793 if (Intrinsic == Intrinsic::wasm_load8_lane || 794 Intrinsic == Intrinsic::wasm_load16_lane || 795 Intrinsic == Intrinsic::wasm_load32_lane || 796 Intrinsic == Intrinsic::wasm_load64_lane) { 797 Info.opc = ISD::INTRINSIC_W_CHAIN; 798 Info.flags = MachineMemOperand::MOLoad; 799 } else { 800 Info.opc = ISD::INTRINSIC_VOID; 801 Info.flags = MachineMemOperand::MOStore; 802 } 803 Info.ptrVal = I.getArgOperand(0); 804 Info.memVT = MemVT; 805 Info.offset = 0; 806 Info.align = Align(1); 807 return true; 808 } 809 default: 810 return false; 811 } 812 } 813 814 //===----------------------------------------------------------------------===// 815 // WebAssembly Lowering private implementation. 816 //===----------------------------------------------------------------------===// 817 818 //===----------------------------------------------------------------------===// 819 // Lowering Code 820 //===----------------------------------------------------------------------===// 821 822 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 823 MachineFunction &MF = DAG.getMachineFunction(); 824 DAG.getContext()->diagnose( 825 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 826 } 827 828 // Test whether the given calling convention is supported. 829 static bool callingConvSupported(CallingConv::ID CallConv) { 830 // We currently support the language-independent target-independent 831 // conventions. We don't yet have a way to annotate calls with properties like 832 // "cold", and we don't have any call-clobbered registers, so these are mostly 833 // all handled the same. 834 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 835 CallConv == CallingConv::Cold || 836 CallConv == CallingConv::PreserveMost || 837 CallConv == CallingConv::PreserveAll || 838 CallConv == CallingConv::CXX_FAST_TLS || 839 CallConv == CallingConv::WASM_EmscriptenInvoke || 840 CallConv == CallingConv::Swift; 841 } 842 843 SDValue 844 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 845 SmallVectorImpl<SDValue> &InVals) const { 846 SelectionDAG &DAG = CLI.DAG; 847 SDLoc DL = CLI.DL; 848 SDValue Chain = CLI.Chain; 849 SDValue Callee = CLI.Callee; 850 MachineFunction &MF = DAG.getMachineFunction(); 851 auto Layout = MF.getDataLayout(); 852 853 CallingConv::ID CallConv = CLI.CallConv; 854 if (!callingConvSupported(CallConv)) 855 fail(DL, DAG, 856 "WebAssembly doesn't support language-specific or target-specific " 857 "calling conventions yet"); 858 if (CLI.IsPatchPoint) 859 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 860 861 if (CLI.IsTailCall) { 862 auto NoTail = [&](const char *Msg) { 863 if (CLI.CB && CLI.CB->isMustTailCall()) 864 fail(DL, DAG, Msg); 865 CLI.IsTailCall = false; 866 }; 867 868 if (!Subtarget->hasTailCall()) 869 NoTail("WebAssembly 'tail-call' feature not enabled"); 870 871 // Varargs calls cannot be tail calls because the buffer is on the stack 872 if (CLI.IsVarArg) 873 NoTail("WebAssembly does not support varargs tail calls"); 874 875 // Do not tail call unless caller and callee return types match 876 const Function &F = MF.getFunction(); 877 const TargetMachine &TM = getTargetMachine(); 878 Type *RetTy = F.getReturnType(); 879 SmallVector<MVT, 4> CallerRetTys; 880 SmallVector<MVT, 4> CalleeRetTys; 881 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 882 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 883 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 884 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 885 CalleeRetTys.begin()); 886 if (!TypesMatch) 887 NoTail("WebAssembly tail call requires caller and callee return types to " 888 "match"); 889 890 // If pointers to local stack values are passed, we cannot tail call 891 if (CLI.CB) { 892 for (auto &Arg : CLI.CB->args()) { 893 Value *Val = Arg.get(); 894 // Trace the value back through pointer operations 895 while (true) { 896 Value *Src = Val->stripPointerCastsAndAliases(); 897 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 898 Src = GEP->getPointerOperand(); 899 if (Val == Src) 900 break; 901 Val = Src; 902 } 903 if (isa<AllocaInst>(Val)) { 904 NoTail( 905 "WebAssembly does not support tail calling with stack arguments"); 906 break; 907 } 908 } 909 } 910 } 911 912 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 913 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 914 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 915 916 // The generic code may have added an sret argument. If we're lowering an 917 // invoke function, the ABI requires that the function pointer be the first 918 // argument, so we may have to swap the arguments. 919 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 920 Outs[0].Flags.isSRet()) { 921 std::swap(Outs[0], Outs[1]); 922 std::swap(OutVals[0], OutVals[1]); 923 } 924 925 bool HasSwiftSelfArg = false; 926 bool HasSwiftErrorArg = false; 927 unsigned NumFixedArgs = 0; 928 for (unsigned I = 0; I < Outs.size(); ++I) { 929 const ISD::OutputArg &Out = Outs[I]; 930 SDValue &OutVal = OutVals[I]; 931 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 932 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 933 if (Out.Flags.isNest()) 934 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 935 if (Out.Flags.isInAlloca()) 936 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 937 if (Out.Flags.isInConsecutiveRegs()) 938 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 939 if (Out.Flags.isInConsecutiveRegsLast()) 940 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 941 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 942 auto &MFI = MF.getFrameInfo(); 943 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 944 Out.Flags.getNonZeroByValAlign(), 945 /*isSS=*/false); 946 SDValue SizeNode = 947 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 948 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 949 Chain = DAG.getMemcpy( 950 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 951 /*isVolatile*/ false, /*AlwaysInline=*/false, 952 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 953 OutVal = FINode; 954 } 955 // Count the number of fixed args *after* legalization. 956 NumFixedArgs += Out.IsFixed; 957 } 958 959 bool IsVarArg = CLI.IsVarArg; 960 auto PtrVT = getPointerTy(Layout); 961 962 // For swiftcc, emit additional swiftself and swifterror arguments 963 // if there aren't. These additional arguments are also added for callee 964 // signature They are necessary to match callee and caller signature for 965 // indirect call. 966 if (CallConv == CallingConv::Swift) { 967 if (!HasSwiftSelfArg) { 968 NumFixedArgs++; 969 ISD::OutputArg Arg; 970 Arg.Flags.setSwiftSelf(); 971 CLI.Outs.push_back(Arg); 972 SDValue ArgVal = DAG.getUNDEF(PtrVT); 973 CLI.OutVals.push_back(ArgVal); 974 } 975 if (!HasSwiftErrorArg) { 976 NumFixedArgs++; 977 ISD::OutputArg Arg; 978 Arg.Flags.setSwiftError(); 979 CLI.Outs.push_back(Arg); 980 SDValue ArgVal = DAG.getUNDEF(PtrVT); 981 CLI.OutVals.push_back(ArgVal); 982 } 983 } 984 985 // Analyze operands of the call, assigning locations to each operand. 986 SmallVector<CCValAssign, 16> ArgLocs; 987 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 988 989 if (IsVarArg) { 990 // Outgoing non-fixed arguments are placed in a buffer. First 991 // compute their offsets and the total amount of buffer space needed. 992 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 993 const ISD::OutputArg &Out = Outs[I]; 994 SDValue &Arg = OutVals[I]; 995 EVT VT = Arg.getValueType(); 996 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 997 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 998 Align Alignment = 999 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1000 unsigned Offset = 1001 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1002 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1003 Offset, VT.getSimpleVT(), 1004 CCValAssign::Full)); 1005 } 1006 } 1007 1008 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1009 1010 SDValue FINode; 1011 if (IsVarArg && NumBytes) { 1012 // For non-fixed arguments, next emit stores to store the argument values 1013 // to the stack buffer at the offsets computed above. 1014 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1015 Layout.getStackAlignment(), 1016 /*isSS=*/false); 1017 unsigned ValNo = 0; 1018 SmallVector<SDValue, 8> Chains; 1019 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1020 assert(ArgLocs[ValNo].getValNo() == ValNo && 1021 "ArgLocs should remain in order and only hold varargs args"); 1022 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1023 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1024 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1025 DAG.getConstant(Offset, DL, PtrVT)); 1026 Chains.push_back( 1027 DAG.getStore(Chain, DL, Arg, Add, 1028 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1029 } 1030 if (!Chains.empty()) 1031 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1032 } else if (IsVarArg) { 1033 FINode = DAG.getIntPtrConstant(0, DL); 1034 } 1035 1036 if (Callee->getOpcode() == ISD::GlobalAddress) { 1037 // If the callee is a GlobalAddress node (quite common, every direct call 1038 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1039 // doesn't at MO_GOT which is not needed for direct calls. 1040 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1041 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1042 getPointerTy(DAG.getDataLayout()), 1043 GA->getOffset()); 1044 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1045 getPointerTy(DAG.getDataLayout()), Callee); 1046 } 1047 1048 // Compute the operands for the CALLn node. 1049 SmallVector<SDValue, 16> Ops; 1050 Ops.push_back(Chain); 1051 Ops.push_back(Callee); 1052 1053 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1054 // isn't reliable. 1055 Ops.append(OutVals.begin(), 1056 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1057 // Add a pointer to the vararg buffer. 1058 if (IsVarArg) 1059 Ops.push_back(FINode); 1060 1061 SmallVector<EVT, 8> InTys; 1062 for (const auto &In : Ins) { 1063 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1064 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1065 if (In.Flags.isInAlloca()) 1066 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1067 if (In.Flags.isInConsecutiveRegs()) 1068 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1069 if (In.Flags.isInConsecutiveRegsLast()) 1070 fail(DL, DAG, 1071 "WebAssembly hasn't implemented cons regs last return values"); 1072 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1073 // registers. 1074 InTys.push_back(In.VT); 1075 } 1076 1077 if (CLI.IsTailCall) { 1078 // ret_calls do not return values to the current frame 1079 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1080 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1081 } 1082 1083 InTys.push_back(MVT::Other); 1084 SDVTList InTyList = DAG.getVTList(InTys); 1085 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1086 1087 for (size_t I = 0; I < Ins.size(); ++I) 1088 InVals.push_back(Res.getValue(I)); 1089 1090 // Return the chain 1091 return Res.getValue(Ins.size()); 1092 } 1093 1094 bool WebAssemblyTargetLowering::CanLowerReturn( 1095 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1096 const SmallVectorImpl<ISD::OutputArg> &Outs, 1097 LLVMContext & /*Context*/) const { 1098 // WebAssembly can only handle returning tuples with multivalue enabled 1099 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1100 } 1101 1102 SDValue WebAssemblyTargetLowering::LowerReturn( 1103 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1104 const SmallVectorImpl<ISD::OutputArg> &Outs, 1105 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1106 SelectionDAG &DAG) const { 1107 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1108 "MVP WebAssembly can only return up to one value"); 1109 if (!callingConvSupported(CallConv)) 1110 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1111 1112 SmallVector<SDValue, 4> RetOps(1, Chain); 1113 RetOps.append(OutVals.begin(), OutVals.end()); 1114 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1115 1116 // Record the number and types of the return values. 1117 for (const ISD::OutputArg &Out : Outs) { 1118 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1119 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1120 assert(Out.IsFixed && "non-fixed return value is not valid"); 1121 if (Out.Flags.isInAlloca()) 1122 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1123 if (Out.Flags.isInConsecutiveRegs()) 1124 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1125 if (Out.Flags.isInConsecutiveRegsLast()) 1126 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1127 } 1128 1129 return Chain; 1130 } 1131 1132 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1133 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1134 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1135 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1136 if (!callingConvSupported(CallConv)) 1137 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1138 1139 MachineFunction &MF = DAG.getMachineFunction(); 1140 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1141 1142 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1143 // of the incoming values before they're represented by virtual registers. 1144 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1145 1146 bool HasSwiftErrorArg = false; 1147 bool HasSwiftSelfArg = false; 1148 for (const ISD::InputArg &In : Ins) { 1149 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1150 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1151 if (In.Flags.isInAlloca()) 1152 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1153 if (In.Flags.isNest()) 1154 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1155 if (In.Flags.isInConsecutiveRegs()) 1156 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1157 if (In.Flags.isInConsecutiveRegsLast()) 1158 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1159 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1160 // registers. 1161 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1162 DAG.getTargetConstant(InVals.size(), 1163 DL, MVT::i32)) 1164 : DAG.getUNDEF(In.VT)); 1165 1166 // Record the number and types of arguments. 1167 MFI->addParam(In.VT); 1168 } 1169 1170 // For swiftcc, emit additional swiftself and swifterror arguments 1171 // if there aren't. These additional arguments are also added for callee 1172 // signature They are necessary to match callee and caller signature for 1173 // indirect call. 1174 auto PtrVT = getPointerTy(MF.getDataLayout()); 1175 if (CallConv == CallingConv::Swift) { 1176 if (!HasSwiftSelfArg) { 1177 MFI->addParam(PtrVT); 1178 } 1179 if (!HasSwiftErrorArg) { 1180 MFI->addParam(PtrVT); 1181 } 1182 } 1183 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1184 // the buffer is passed as an argument. 1185 if (IsVarArg) { 1186 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1187 Register VarargVreg = 1188 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1189 MFI->setVarargBufferVreg(VarargVreg); 1190 Chain = DAG.getCopyToReg( 1191 Chain, DL, VarargVreg, 1192 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1193 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1194 MFI->addParam(PtrVT); 1195 } 1196 1197 // Record the number and types of arguments and results. 1198 SmallVector<MVT, 4> Params; 1199 SmallVector<MVT, 4> Results; 1200 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1201 MF.getFunction(), DAG.getTarget(), Params, Results); 1202 for (MVT VT : Results) 1203 MFI->addResult(VT); 1204 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1205 // the param logic here with ComputeSignatureVTs 1206 assert(MFI->getParams().size() == Params.size() && 1207 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1208 Params.begin())); 1209 1210 return Chain; 1211 } 1212 1213 void WebAssemblyTargetLowering::ReplaceNodeResults( 1214 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1215 switch (N->getOpcode()) { 1216 case ISD::SIGN_EXTEND_INREG: 1217 // Do not add any results, signifying that N should not be custom lowered 1218 // after all. This happens because simd128 turns on custom lowering for 1219 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1220 // illegal type. 1221 break; 1222 default: 1223 llvm_unreachable( 1224 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1225 } 1226 } 1227 1228 //===----------------------------------------------------------------------===// 1229 // Custom lowering hooks. 1230 //===----------------------------------------------------------------------===// 1231 1232 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1233 SelectionDAG &DAG) const { 1234 SDLoc DL(Op); 1235 switch (Op.getOpcode()) { 1236 default: 1237 llvm_unreachable("unimplemented operation lowering"); 1238 return SDValue(); 1239 case ISD::FrameIndex: 1240 return LowerFrameIndex(Op, DAG); 1241 case ISD::GlobalAddress: 1242 return LowerGlobalAddress(Op, DAG); 1243 case ISD::GlobalTLSAddress: 1244 return LowerGlobalTLSAddress(Op, DAG); 1245 case ISD::ExternalSymbol: 1246 return LowerExternalSymbol(Op, DAG); 1247 case ISD::JumpTable: 1248 return LowerJumpTable(Op, DAG); 1249 case ISD::BR_JT: 1250 return LowerBR_JT(Op, DAG); 1251 case ISD::VASTART: 1252 return LowerVASTART(Op, DAG); 1253 case ISD::BlockAddress: 1254 case ISD::BRIND: 1255 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1256 return SDValue(); 1257 case ISD::RETURNADDR: 1258 return LowerRETURNADDR(Op, DAG); 1259 case ISD::FRAMEADDR: 1260 return LowerFRAMEADDR(Op, DAG); 1261 case ISD::CopyToReg: 1262 return LowerCopyToReg(Op, DAG); 1263 case ISD::EXTRACT_VECTOR_ELT: 1264 case ISD::INSERT_VECTOR_ELT: 1265 return LowerAccessVectorElement(Op, DAG); 1266 case ISD::INTRINSIC_VOID: 1267 case ISD::INTRINSIC_WO_CHAIN: 1268 case ISD::INTRINSIC_W_CHAIN: 1269 return LowerIntrinsic(Op, DAG); 1270 case ISD::SIGN_EXTEND_INREG: 1271 return LowerSIGN_EXTEND_INREG(Op, DAG); 1272 case ISD::BUILD_VECTOR: 1273 return LowerBUILD_VECTOR(Op, DAG); 1274 case ISD::VECTOR_SHUFFLE: 1275 return LowerVECTOR_SHUFFLE(Op, DAG); 1276 case ISD::SETCC: 1277 return LowerSETCC(Op, DAG); 1278 case ISD::SHL: 1279 case ISD::SRA: 1280 case ISD::SRL: 1281 return LowerShift(Op, DAG); 1282 case ISD::FP_TO_SINT_SAT: 1283 case ISD::FP_TO_UINT_SAT: 1284 return LowerFP_TO_INT_SAT(Op, DAG); 1285 case ISD::LOAD: 1286 return LowerLoad(Op, DAG); 1287 case ISD::STORE: 1288 return LowerStore(Op, DAG); 1289 } 1290 } 1291 1292 static bool IsWebAssemblyGlobal(SDValue Op) { 1293 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1294 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1295 1296 return false; 1297 } 1298 1299 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1300 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1301 if (!FI) 1302 return None; 1303 1304 auto &MF = DAG.getMachineFunction(); 1305 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1306 } 1307 1308 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1309 SelectionDAG &DAG) const { 1310 SDLoc DL(Op); 1311 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1312 const SDValue &Value = SN->getValue(); 1313 const SDValue &Base = SN->getBasePtr(); 1314 const SDValue &Offset = SN->getOffset(); 1315 1316 if (IsWebAssemblyGlobal(Base)) { 1317 if (!Offset->isUndef()) 1318 report_fatal_error("unexpected offset when storing to webassembly global", 1319 false); 1320 1321 SDVTList Tys = DAG.getVTList(MVT::Other); 1322 SDValue Ops[] = {SN->getChain(), Value, Base}; 1323 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1324 SN->getMemoryVT(), SN->getMemOperand()); 1325 } 1326 1327 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1328 if (!Offset->isUndef()) 1329 report_fatal_error("unexpected offset when storing to webassembly local", 1330 false); 1331 1332 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1333 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1334 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1335 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1336 } 1337 1338 return Op; 1339 } 1340 1341 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1342 SelectionDAG &DAG) const { 1343 SDLoc DL(Op); 1344 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1345 const SDValue &Base = LN->getBasePtr(); 1346 const SDValue &Offset = LN->getOffset(); 1347 1348 if (IsWebAssemblyGlobal(Base)) { 1349 if (!Offset->isUndef()) 1350 report_fatal_error( 1351 "unexpected offset when loading from webassembly global", false); 1352 1353 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1354 SDValue Ops[] = {LN->getChain(), Base}; 1355 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1356 LN->getMemoryVT(), LN->getMemOperand()); 1357 } 1358 1359 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1360 if (!Offset->isUndef()) 1361 report_fatal_error( 1362 "unexpected offset when loading from webassembly local", false); 1363 1364 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1365 EVT LocalVT = LN->getValueType(0); 1366 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1367 {LN->getChain(), Idx}); 1368 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1369 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1370 return Result; 1371 } 1372 1373 return Op; 1374 } 1375 1376 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1377 SelectionDAG &DAG) const { 1378 SDValue Src = Op.getOperand(2); 1379 if (isa<FrameIndexSDNode>(Src.getNode())) { 1380 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1381 // the FI to some LEA-like instruction, but since we don't have that, we 1382 // need to insert some kind of instruction that can take an FI operand and 1383 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1384 // local.copy between Op and its FI operand. 1385 SDValue Chain = Op.getOperand(0); 1386 SDLoc DL(Op); 1387 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1388 EVT VT = Src.getValueType(); 1389 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1390 : WebAssembly::COPY_I64, 1391 DL, VT, Src), 1392 0); 1393 return Op.getNode()->getNumValues() == 1 1394 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1395 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1396 Op.getNumOperands() == 4 ? Op.getOperand(3) 1397 : SDValue()); 1398 } 1399 return SDValue(); 1400 } 1401 1402 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1403 SelectionDAG &DAG) const { 1404 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1405 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1406 } 1407 1408 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1409 SelectionDAG &DAG) const { 1410 SDLoc DL(Op); 1411 1412 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1413 fail(DL, DAG, 1414 "Non-Emscripten WebAssembly hasn't implemented " 1415 "__builtin_return_address"); 1416 return SDValue(); 1417 } 1418 1419 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1420 return SDValue(); 1421 1422 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1423 MakeLibCallOptions CallOptions; 1424 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1425 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1426 .first; 1427 } 1428 1429 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1430 SelectionDAG &DAG) const { 1431 // Non-zero depths are not supported by WebAssembly currently. Use the 1432 // legalizer's default expansion, which is to return 0 (what this function is 1433 // documented to do). 1434 if (Op.getConstantOperandVal(0) > 0) 1435 return SDValue(); 1436 1437 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1438 EVT VT = Op.getValueType(); 1439 Register FP = 1440 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1441 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1442 } 1443 1444 SDValue 1445 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1446 SelectionDAG &DAG) const { 1447 SDLoc DL(Op); 1448 const auto *GA = cast<GlobalAddressSDNode>(Op); 1449 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1450 1451 MachineFunction &MF = DAG.getMachineFunction(); 1452 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1453 report_fatal_error("cannot use thread-local storage without bulk memory", 1454 false); 1455 1456 const GlobalValue *GV = GA->getGlobal(); 1457 1458 // Currently Emscripten does not support dynamic linking with threads. 1459 // Therefore, if we have thread-local storage, only the local-exec model 1460 // is possible. 1461 // TODO: remove this and implement proper TLS models once Emscripten 1462 // supports dynamic linking with threads. 1463 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1464 !Subtarget->getTargetTriple().isOSEmscripten()) { 1465 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1466 "non-Emscripten OSes: variable " + 1467 GV->getName(), 1468 false); 1469 } 1470 1471 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1472 : WebAssembly::GLOBAL_GET_I32; 1473 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1474 1475 SDValue BaseAddr( 1476 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1477 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1478 0); 1479 1480 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1481 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1482 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1483 1484 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1485 } 1486 1487 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1488 SelectionDAG &DAG) const { 1489 SDLoc DL(Op); 1490 const auto *GA = cast<GlobalAddressSDNode>(Op); 1491 EVT VT = Op.getValueType(); 1492 assert(GA->getTargetFlags() == 0 && 1493 "Unexpected target flags on generic GlobalAddressSDNode"); 1494 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1495 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1496 1497 unsigned OperandFlags = 0; 1498 if (isPositionIndependent()) { 1499 const GlobalValue *GV = GA->getGlobal(); 1500 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1501 MachineFunction &MF = DAG.getMachineFunction(); 1502 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1503 const char *BaseName; 1504 if (GV->getValueType()->isFunctionTy()) { 1505 BaseName = MF.createExternalSymbolName("__table_base"); 1506 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1507 } 1508 else { 1509 BaseName = MF.createExternalSymbolName("__memory_base"); 1510 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1511 } 1512 SDValue BaseAddr = 1513 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1514 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1515 1516 SDValue SymAddr = DAG.getNode( 1517 WebAssemblyISD::WrapperPIC, DL, VT, 1518 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1519 OperandFlags)); 1520 1521 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1522 } else { 1523 OperandFlags = WebAssemblyII::MO_GOT; 1524 } 1525 } 1526 1527 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1528 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1529 GA->getOffset(), OperandFlags)); 1530 } 1531 1532 SDValue 1533 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1534 SelectionDAG &DAG) const { 1535 SDLoc DL(Op); 1536 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1537 EVT VT = Op.getValueType(); 1538 assert(ES->getTargetFlags() == 0 && 1539 "Unexpected target flags on generic ExternalSymbolSDNode"); 1540 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1541 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1542 } 1543 1544 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1545 SelectionDAG &DAG) const { 1546 // There's no need for a Wrapper node because we always incorporate a jump 1547 // table operand into a BR_TABLE instruction, rather than ever 1548 // materializing it in a register. 1549 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1550 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1551 JT->getTargetFlags()); 1552 } 1553 1554 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1555 SelectionDAG &DAG) const { 1556 SDLoc DL(Op); 1557 SDValue Chain = Op.getOperand(0); 1558 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1559 SDValue Index = Op.getOperand(2); 1560 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1561 1562 SmallVector<SDValue, 8> Ops; 1563 Ops.push_back(Chain); 1564 Ops.push_back(Index); 1565 1566 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1567 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1568 1569 // Add an operand for each case. 1570 for (auto MBB : MBBs) 1571 Ops.push_back(DAG.getBasicBlock(MBB)); 1572 1573 // Add the first MBB as a dummy default target for now. This will be replaced 1574 // with the proper default target (and the preceding range check eliminated) 1575 // if possible by WebAssemblyFixBrTableDefaults. 1576 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1577 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1578 } 1579 1580 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1581 SelectionDAG &DAG) const { 1582 SDLoc DL(Op); 1583 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1584 1585 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1586 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1587 1588 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1589 MFI->getVarargBufferVreg(), PtrVT); 1590 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1591 MachinePointerInfo(SV)); 1592 } 1593 1594 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1595 SelectionDAG &DAG) { 1596 // We only support C++ exceptions for now 1597 int Tag = 1598 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1599 if (Tag != WebAssembly::CPP_EXCEPTION) 1600 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1601 auto &MF = DAG.getMachineFunction(); 1602 const auto &TLI = DAG.getTargetLoweringInfo(); 1603 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1604 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1605 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1606 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1607 } 1608 1609 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1610 SelectionDAG &DAG) const { 1611 MachineFunction &MF = DAG.getMachineFunction(); 1612 unsigned IntNo; 1613 switch (Op.getOpcode()) { 1614 case ISD::INTRINSIC_VOID: 1615 case ISD::INTRINSIC_W_CHAIN: 1616 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1617 break; 1618 case ISD::INTRINSIC_WO_CHAIN: 1619 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1620 break; 1621 default: 1622 llvm_unreachable("Invalid intrinsic"); 1623 } 1624 SDLoc DL(Op); 1625 1626 switch (IntNo) { 1627 default: 1628 return SDValue(); // Don't custom lower most intrinsics. 1629 1630 case Intrinsic::wasm_lsda: { 1631 EVT VT = Op.getValueType(); 1632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1633 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1634 auto &Context = MF.getMMI().getContext(); 1635 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1636 Twine(MF.getFunctionNumber())); 1637 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1638 DAG.getMCSymbol(S, PtrVT)); 1639 } 1640 1641 case Intrinsic::wasm_throw: { 1642 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1643 return DAG.getNode(WebAssemblyISD::THROW, DL, 1644 MVT::Other, // outchain type 1645 { 1646 Op.getOperand(0), // inchain 1647 SymNode, // exception symbol 1648 Op.getOperand(3) // thrown value 1649 }); 1650 } 1651 1652 case Intrinsic::wasm_catch: { 1653 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1654 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1655 { 1656 MVT::i32, // outchain type 1657 MVT::Other // return value 1658 }, 1659 { 1660 Op.getOperand(0), // inchain 1661 SymNode // exception symbol 1662 }); 1663 } 1664 1665 case Intrinsic::wasm_shuffle: { 1666 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1667 SDValue Ops[18]; 1668 size_t OpIdx = 0; 1669 Ops[OpIdx++] = Op.getOperand(1); 1670 Ops[OpIdx++] = Op.getOperand(2); 1671 while (OpIdx < 18) { 1672 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1673 if (MaskIdx.isUndef() || 1674 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1675 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1676 } else { 1677 Ops[OpIdx++] = MaskIdx; 1678 } 1679 } 1680 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1681 } 1682 } 1683 } 1684 1685 SDValue 1686 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1687 SelectionDAG &DAG) const { 1688 SDLoc DL(Op); 1689 // If sign extension operations are disabled, allow sext_inreg only if operand 1690 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1691 // extension operations, but allowing sext_inreg in this context lets us have 1692 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1693 // everywhere would be simpler in this file, but would necessitate large and 1694 // brittle patterns to undo the expansion and select extract_lane_s 1695 // instructions. 1696 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1697 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1698 return SDValue(); 1699 1700 const SDValue &Extract = Op.getOperand(0); 1701 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1702 if (VecT.getVectorElementType().getSizeInBits() > 32) 1703 return SDValue(); 1704 MVT ExtractedLaneT = 1705 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1706 MVT ExtractedVecT = 1707 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1708 if (ExtractedVecT == VecT) 1709 return Op; 1710 1711 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1712 const SDNode *Index = Extract.getOperand(1).getNode(); 1713 if (!isa<ConstantSDNode>(Index)) 1714 return SDValue(); 1715 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1716 unsigned Scale = 1717 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1718 assert(Scale > 1); 1719 SDValue NewIndex = 1720 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1721 SDValue NewExtract = DAG.getNode( 1722 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1723 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1724 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1725 Op.getOperand(1)); 1726 } 1727 1728 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1729 SelectionDAG &DAG) const { 1730 SDLoc DL(Op); 1731 const EVT VecT = Op.getValueType(); 1732 const EVT LaneT = Op.getOperand(0).getValueType(); 1733 const size_t Lanes = Op.getNumOperands(); 1734 bool CanSwizzle = VecT == MVT::v16i8; 1735 1736 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1737 // possible number of lanes at once followed by a sequence of replace_lane 1738 // instructions to individually initialize any remaining lanes. 1739 1740 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1741 // swizzled lanes should be given greater weight. 1742 1743 // TODO: Investigate looping rather than always extracting/replacing specific 1744 // lanes to fill gaps. 1745 1746 auto IsConstant = [](const SDValue &V) { 1747 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1748 }; 1749 1750 // Returns the source vector and index vector pair if they exist. Checks for: 1751 // (extract_vector_elt 1752 // $src, 1753 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1754 // ) 1755 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1756 auto Bail = std::make_pair(SDValue(), SDValue()); 1757 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1758 return Bail; 1759 const SDValue &SwizzleSrc = Lane->getOperand(0); 1760 const SDValue &IndexExt = Lane->getOperand(1); 1761 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1762 return Bail; 1763 const SDValue &Index = IndexExt->getOperand(0); 1764 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1765 return Bail; 1766 const SDValue &SwizzleIndices = Index->getOperand(0); 1767 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1768 SwizzleIndices.getValueType() != MVT::v16i8 || 1769 Index->getOperand(1)->getOpcode() != ISD::Constant || 1770 Index->getConstantOperandVal(1) != I) 1771 return Bail; 1772 return std::make_pair(SwizzleSrc, SwizzleIndices); 1773 }; 1774 1775 // If the lane is extracted from another vector at a constant index, return 1776 // that vector. The source vector must not have more lanes than the dest 1777 // because the shufflevector indices are in terms of the destination lanes and 1778 // would not be able to address the smaller individual source lanes. 1779 auto GetShuffleSrc = [&](const SDValue &Lane) { 1780 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1781 return SDValue(); 1782 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1783 return SDValue(); 1784 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1785 VecT.getVectorNumElements()) 1786 return SDValue(); 1787 return Lane->getOperand(0); 1788 }; 1789 1790 using ValueEntry = std::pair<SDValue, size_t>; 1791 SmallVector<ValueEntry, 16> SplatValueCounts; 1792 1793 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1794 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1795 1796 using ShuffleEntry = std::pair<SDValue, size_t>; 1797 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1798 1799 auto AddCount = [](auto &Counts, const auto &Val) { 1800 auto CountIt = 1801 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1802 if (CountIt == Counts.end()) { 1803 Counts.emplace_back(Val, 1); 1804 } else { 1805 CountIt->second++; 1806 } 1807 }; 1808 1809 auto GetMostCommon = [](auto &Counts) { 1810 auto CommonIt = 1811 std::max_element(Counts.begin(), Counts.end(), 1812 [](auto A, auto B) { return A.second < B.second; }); 1813 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1814 return *CommonIt; 1815 }; 1816 1817 size_t NumConstantLanes = 0; 1818 1819 // Count eligible lanes for each type of vector creation op 1820 for (size_t I = 0; I < Lanes; ++I) { 1821 const SDValue &Lane = Op->getOperand(I); 1822 if (Lane.isUndef()) 1823 continue; 1824 1825 AddCount(SplatValueCounts, Lane); 1826 1827 if (IsConstant(Lane)) 1828 NumConstantLanes++; 1829 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1830 AddCount(ShuffleCounts, ShuffleSrc); 1831 if (CanSwizzle) { 1832 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1833 if (SwizzleSrcs.first) 1834 AddCount(SwizzleCounts, SwizzleSrcs); 1835 } 1836 } 1837 1838 SDValue SplatValue; 1839 size_t NumSplatLanes; 1840 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1841 1842 SDValue SwizzleSrc; 1843 SDValue SwizzleIndices; 1844 size_t NumSwizzleLanes = 0; 1845 if (SwizzleCounts.size()) 1846 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1847 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1848 1849 // Shuffles can draw from up to two vectors, so find the two most common 1850 // sources. 1851 SDValue ShuffleSrc1, ShuffleSrc2; 1852 size_t NumShuffleLanes = 0; 1853 if (ShuffleCounts.size()) { 1854 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1855 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1856 ShuffleCounts.end(), 1857 [&](const auto &Pair) { 1858 return Pair.first == ShuffleSrc1; 1859 }), 1860 ShuffleCounts.end()); 1861 } 1862 if (ShuffleCounts.size()) { 1863 size_t AdditionalShuffleLanes; 1864 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 1865 GetMostCommon(ShuffleCounts); 1866 NumShuffleLanes += AdditionalShuffleLanes; 1867 } 1868 1869 // Predicate returning true if the lane is properly initialized by the 1870 // original instruction 1871 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1872 SDValue Result; 1873 // Prefer swizzles over shuffles over vector consts over splats 1874 if (NumSwizzleLanes >= NumShuffleLanes && 1875 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 1876 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1877 SwizzleIndices); 1878 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1879 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1880 return Swizzled == GetSwizzleSrcs(I, Lane); 1881 }; 1882 } else if (NumShuffleLanes >= NumConstantLanes && 1883 NumShuffleLanes >= NumSplatLanes) { 1884 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 1885 size_t DestLaneCount = VecT.getVectorNumElements(); 1886 size_t Scale1 = 1; 1887 size_t Scale2 = 1; 1888 SDValue Src1 = ShuffleSrc1; 1889 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 1890 if (Src1.getValueType() != VecT) { 1891 size_t LaneSize = 1892 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1893 assert(LaneSize > DestLaneSize); 1894 Scale1 = LaneSize / DestLaneSize; 1895 Src1 = DAG.getBitcast(VecT, Src1); 1896 } 1897 if (Src2.getValueType() != VecT) { 1898 size_t LaneSize = 1899 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1900 assert(LaneSize > DestLaneSize); 1901 Scale2 = LaneSize / DestLaneSize; 1902 Src2 = DAG.getBitcast(VecT, Src2); 1903 } 1904 1905 int Mask[16]; 1906 assert(DestLaneCount <= 16); 1907 for (size_t I = 0; I < DestLaneCount; ++I) { 1908 const SDValue &Lane = Op->getOperand(I); 1909 SDValue Src = GetShuffleSrc(Lane); 1910 if (Src == ShuffleSrc1) { 1911 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 1912 } else if (Src && Src == ShuffleSrc2) { 1913 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 1914 } else { 1915 Mask[I] = -1; 1916 } 1917 } 1918 ArrayRef<int> MaskRef(Mask, DestLaneCount); 1919 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 1920 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 1921 auto Src = GetShuffleSrc(Lane); 1922 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 1923 }; 1924 } else if (NumConstantLanes >= NumSplatLanes) { 1925 SmallVector<SDValue, 16> ConstLanes; 1926 for (const SDValue &Lane : Op->op_values()) { 1927 if (IsConstant(Lane)) { 1928 ConstLanes.push_back(Lane); 1929 } else if (LaneT.isFloatingPoint()) { 1930 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1931 } else { 1932 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1933 } 1934 } 1935 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1936 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1937 return IsConstant(Lane); 1938 }; 1939 } else { 1940 // Use a splat, but possibly a load_splat 1941 LoadSDNode *SplattedLoad; 1942 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1943 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1944 Result = DAG.getMemIntrinsicNode( 1945 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1946 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1947 SplattedLoad->getOffset()}, 1948 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1949 } else { 1950 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1951 } 1952 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1953 return Lane == SplatValue; 1954 }; 1955 } 1956 1957 assert(Result); 1958 assert(IsLaneConstructed); 1959 1960 // Add replace_lane instructions for any unhandled values 1961 for (size_t I = 0; I < Lanes; ++I) { 1962 const SDValue &Lane = Op->getOperand(I); 1963 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1964 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1965 DAG.getConstant(I, DL, MVT::i32)); 1966 } 1967 1968 return Result; 1969 } 1970 1971 SDValue 1972 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1973 SelectionDAG &DAG) const { 1974 SDLoc DL(Op); 1975 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1976 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1977 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1978 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1979 1980 // Space for two vector args and sixteen mask indices 1981 SDValue Ops[18]; 1982 size_t OpIdx = 0; 1983 Ops[OpIdx++] = Op.getOperand(0); 1984 Ops[OpIdx++] = Op.getOperand(1); 1985 1986 // Expand mask indices to byte indices and materialize them as operands 1987 for (int M : Mask) { 1988 for (size_t J = 0; J < LaneBytes; ++J) { 1989 // Lower undefs (represented by -1 in mask) to zero 1990 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1991 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1992 } 1993 } 1994 1995 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1996 } 1997 1998 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1999 SelectionDAG &DAG) const { 2000 SDLoc DL(Op); 2001 // The legalizer does not know how to expand the unsupported comparison modes 2002 // of i64x2 vectors, so we manually unroll them here. 2003 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2004 SmallVector<SDValue, 2> LHS, RHS; 2005 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2006 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2007 const SDValue &CC = Op->getOperand(2); 2008 auto MakeLane = [&](unsigned I) { 2009 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2010 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2011 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2012 }; 2013 return DAG.getBuildVector(Op->getValueType(0), DL, 2014 {MakeLane(0), MakeLane(1)}); 2015 } 2016 2017 SDValue 2018 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2019 SelectionDAG &DAG) const { 2020 // Allow constant lane indices, expand variable lane indices 2021 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2022 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2023 return Op; 2024 else 2025 // Perform default expansion 2026 return SDValue(); 2027 } 2028 2029 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2030 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2031 // 32-bit and 64-bit unrolled shifts will have proper semantics 2032 if (LaneT.bitsGE(MVT::i32)) 2033 return DAG.UnrollVectorOp(Op.getNode()); 2034 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2035 SDLoc DL(Op); 2036 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2037 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2038 unsigned ShiftOpcode = Op.getOpcode(); 2039 SmallVector<SDValue, 16> ShiftedElements; 2040 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2041 SmallVector<SDValue, 16> ShiftElements; 2042 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2043 SmallVector<SDValue, 16> UnrolledOps; 2044 for (size_t i = 0; i < NumLanes; ++i) { 2045 SDValue MaskedShiftValue = 2046 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2047 SDValue ShiftedValue = ShiftedElements[i]; 2048 if (ShiftOpcode == ISD::SRA) 2049 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2050 ShiftedValue, DAG.getValueType(LaneT)); 2051 UnrolledOps.push_back( 2052 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2053 } 2054 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2055 } 2056 2057 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2058 SelectionDAG &DAG) const { 2059 SDLoc DL(Op); 2060 2061 // Only manually lower vector shifts 2062 assert(Op.getSimpleValueType().isVector()); 2063 2064 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2065 if (!ShiftVal) 2066 return unrollVectorShift(Op, DAG); 2067 2068 // Use anyext because none of the high bits can affect the shift 2069 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2070 2071 unsigned Opcode; 2072 switch (Op.getOpcode()) { 2073 case ISD::SHL: 2074 Opcode = WebAssemblyISD::VEC_SHL; 2075 break; 2076 case ISD::SRA: 2077 Opcode = WebAssemblyISD::VEC_SHR_S; 2078 break; 2079 case ISD::SRL: 2080 Opcode = WebAssemblyISD::VEC_SHR_U; 2081 break; 2082 default: 2083 llvm_unreachable("unexpected opcode"); 2084 } 2085 2086 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2087 } 2088 2089 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2090 SelectionDAG &DAG) const { 2091 SDLoc DL(Op); 2092 EVT ResT = Op.getValueType(); 2093 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2094 2095 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2096 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2097 return Op; 2098 2099 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2100 return Op; 2101 2102 return SDValue(); 2103 } 2104 2105 //===----------------------------------------------------------------------===// 2106 // Custom DAG combine hooks 2107 //===----------------------------------------------------------------------===// 2108 static SDValue 2109 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2110 auto &DAG = DCI.DAG; 2111 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2112 2113 // Hoist vector bitcasts that don't change the number of lanes out of unary 2114 // shuffles, where they are less likely to get in the way of other combines. 2115 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2116 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2117 SDValue Bitcast = N->getOperand(0); 2118 if (Bitcast.getOpcode() != ISD::BITCAST) 2119 return SDValue(); 2120 if (!N->getOperand(1).isUndef()) 2121 return SDValue(); 2122 SDValue CastOp = Bitcast.getOperand(0); 2123 MVT SrcType = CastOp.getSimpleValueType(); 2124 MVT DstType = Bitcast.getSimpleValueType(); 2125 if (!SrcType.is128BitVector() || 2126 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2127 return SDValue(); 2128 SDValue NewShuffle = DAG.getVectorShuffle( 2129 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2130 return DAG.getBitcast(DstType, NewShuffle); 2131 } 2132 2133 static SDValue 2134 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2135 auto &DAG = DCI.DAG; 2136 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2137 N->getOpcode() == ISD::ZERO_EXTEND); 2138 2139 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2140 // possible before the extract_subvector can be expanded. 2141 auto Extract = N->getOperand(0); 2142 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2143 return SDValue(); 2144 auto Source = Extract.getOperand(0); 2145 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2146 if (IndexNode == nullptr) 2147 return SDValue(); 2148 auto Index = IndexNode->getZExtValue(); 2149 2150 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2151 // extracted subvector is the low or high half of its source. 2152 EVT ResVT = N->getValueType(0); 2153 if (ResVT == MVT::v8i16) { 2154 if (Extract.getValueType() != MVT::v8i8 || 2155 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2156 return SDValue(); 2157 } else if (ResVT == MVT::v4i32) { 2158 if (Extract.getValueType() != MVT::v4i16 || 2159 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2160 return SDValue(); 2161 } else if (ResVT == MVT::v2i64) { 2162 if (Extract.getValueType() != MVT::v2i32 || 2163 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2164 return SDValue(); 2165 } else { 2166 return SDValue(); 2167 } 2168 2169 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2170 bool IsLow = Index == 0; 2171 2172 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2173 : WebAssemblyISD::EXTEND_HIGH_S) 2174 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2175 : WebAssemblyISD::EXTEND_HIGH_U); 2176 2177 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2178 } 2179 2180 static SDValue 2181 performVectorConvertLowCombine(SDNode *N, 2182 TargetLowering::DAGCombinerInfo &DCI) { 2183 auto &DAG = DCI.DAG; 2184 2185 EVT ResVT = N->getValueType(0); 2186 if (ResVT != MVT::v2f64) 2187 return SDValue(); 2188 2189 if (N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) { 2190 // Combine this: 2191 // 2192 // (v2f64 ({s,u}int_to_fp 2193 // (v2i32 (extract_subvector (v4i32 $x), 0)))) 2194 // 2195 // into (f64x2.convert_low_i32x4_{s,u} $x). 2196 auto Extract = N->getOperand(0); 2197 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2198 return SDValue(); 2199 if (Extract.getValueType() != MVT::v2i32) 2200 return SDValue(); 2201 auto Source = Extract.getOperand(0); 2202 if (Source.getValueType() != MVT::v4i32) 2203 return SDValue(); 2204 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2205 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2206 return SDValue(); 2207 2208 unsigned Op = N->getOpcode() == ISD::SINT_TO_FP 2209 ? WebAssemblyISD::CONVERT_LOW_S 2210 : WebAssemblyISD::CONVERT_LOW_U; 2211 2212 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2213 2214 } else if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) { 2215 // Combine this: 2216 // 2217 // (v2f64 (extract_subvector 2218 // (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0)) 2219 // 2220 // into (f64x2.convert_low_i32x4_{s,u} $x). 2221 auto IntToFP = N->getOperand(0); 2222 if (IntToFP.getOpcode() != ISD::SINT_TO_FP && 2223 IntToFP.getOpcode() != ISD::UINT_TO_FP) 2224 return SDValue(); 2225 if (IntToFP.getValueType() != MVT::v4f64) 2226 return SDValue(); 2227 auto Source = IntToFP.getOperand(0); 2228 if (Source.getValueType() != MVT::v4i32) 2229 return SDValue(); 2230 auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2231 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2232 return SDValue(); 2233 2234 unsigned Op = IntToFP->getOpcode() == ISD::SINT_TO_FP 2235 ? WebAssemblyISD::CONVERT_LOW_S 2236 : WebAssemblyISD::CONVERT_LOW_U; 2237 2238 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2239 2240 } else { 2241 llvm_unreachable("unexpected opcode"); 2242 } 2243 } 2244 2245 static SDValue 2246 performVectorTruncSatLowCombine(SDNode *N, 2247 TargetLowering::DAGCombinerInfo &DCI) { 2248 auto &DAG = DCI.DAG; 2249 assert(N->getOpcode() == ISD::CONCAT_VECTORS); 2250 2251 // Combine this: 2252 // 2253 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2254 // 2255 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2256 EVT ResVT = N->getValueType(0); 2257 if (ResVT != MVT::v4i32) 2258 return SDValue(); 2259 2260 auto FPToInt = N->getOperand(0); 2261 auto FPToIntOp = FPToInt.getOpcode(); 2262 if (FPToIntOp != ISD::FP_TO_SINT_SAT && FPToIntOp != ISD::FP_TO_UINT_SAT) 2263 return SDValue(); 2264 if (cast<VTSDNode>(FPToInt.getOperand(1))->getVT() != MVT::i32) 2265 return SDValue(); 2266 2267 auto Source = FPToInt.getOperand(0); 2268 if (Source.getValueType() != MVT::v2f64) 2269 return SDValue(); 2270 2271 auto *Splat = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 2272 APInt SplatValue, SplatUndef; 2273 unsigned SplatBitSize; 2274 bool HasAnyUndefs; 2275 if (!Splat || !Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2276 HasAnyUndefs)) 2277 return SDValue(); 2278 if (SplatValue != 0) 2279 return SDValue(); 2280 2281 unsigned Op = FPToIntOp == ISD::FP_TO_SINT_SAT 2282 ? WebAssemblyISD::TRUNC_SAT_ZERO_S 2283 : WebAssemblyISD::TRUNC_SAT_ZERO_U; 2284 2285 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2286 } 2287 2288 SDValue 2289 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2290 DAGCombinerInfo &DCI) const { 2291 switch (N->getOpcode()) { 2292 default: 2293 return SDValue(); 2294 case ISD::VECTOR_SHUFFLE: 2295 return performVECTOR_SHUFFLECombine(N, DCI); 2296 case ISD::SIGN_EXTEND: 2297 case ISD::ZERO_EXTEND: 2298 return performVectorExtendCombine(N, DCI); 2299 case ISD::SINT_TO_FP: 2300 case ISD::UINT_TO_FP: 2301 case ISD::EXTRACT_SUBVECTOR: 2302 return performVectorConvertLowCombine(N, DCI); 2303 case ISD::CONCAT_VECTORS: 2304 return performVectorTruncSatLowCombine(N, DCI); 2305 } 2306 } 2307