1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "WebAssemblyUtilities.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 73 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 74 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 75 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 76 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 77 setOperationAction(ISD::BRIND, MVT::Other, Custom); 78 79 // Take the default expansion for va_arg, va_copy, and va_end. There is no 80 // default action for va_start, so we do that custom. 81 setOperationAction(ISD::VASTART, MVT::Other, Custom); 82 setOperationAction(ISD::VAARG, MVT::Other, Expand); 83 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 84 setOperationAction(ISD::VAEND, MVT::Other, Expand); 85 86 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 87 // Don't expand the floating-point types to constant pools. 88 setOperationAction(ISD::ConstantFP, T, Legal); 89 // Expand floating-point comparisons. 90 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 91 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 92 setCondCodeAction(CC, T, Expand); 93 // Expand floating-point library function operators. 94 for (auto Op : 95 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 96 setOperationAction(Op, T, Expand); 97 // Note supported floating-point library function operators that otherwise 98 // default to expand. 99 for (auto Op : 100 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 101 setOperationAction(Op, T, Legal); 102 // Support minimum and maximum, which otherwise default to expand. 103 setOperationAction(ISD::FMINIMUM, T, Legal); 104 setOperationAction(ISD::FMAXIMUM, T, Legal); 105 // WebAssembly currently has no builtin f16 support. 106 setOperationAction(ISD::FP16_TO_FP, T, Expand); 107 setOperationAction(ISD::FP_TO_FP16, T, Expand); 108 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 109 setTruncStoreAction(T, MVT::f16, Expand); 110 } 111 112 // Expand unavailable integer operations. 113 for (auto Op : 114 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 115 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 116 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 117 for (auto T : {MVT::i32, MVT::i64}) 118 setOperationAction(Op, T, Expand); 119 if (Subtarget->hasSIMD128()) 120 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 121 setOperationAction(Op, T, Expand); 122 } 123 124 // SIMD-specific configuration 125 if (Subtarget->hasSIMD128()) { 126 // Hoist bitcasts out of shuffles 127 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 128 129 // Combine extends of extract_subvectors into widening ops 130 setTargetDAGCombine(ISD::SIGN_EXTEND); 131 setTargetDAGCombine(ISD::ZERO_EXTEND); 132 133 // Support saturating add for i8x16 and i16x8 134 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 135 for (auto T : {MVT::v16i8, MVT::v8i16}) 136 setOperationAction(Op, T, Legal); 137 138 // Support integer abs 139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 140 setOperationAction(ISD::ABS, T, Legal); 141 142 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 143 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 144 MVT::v2f64}) 145 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 146 147 // We have custom shuffle lowering to expose the shuffle mask 148 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 149 MVT::v2f64}) 150 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 151 152 // Custom lowering since wasm shifts must have a scalar shift amount 153 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 154 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 155 setOperationAction(Op, T, Custom); 156 157 // Custom lower lane accesses to expand out variable indices 158 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 159 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 160 MVT::v2f64}) 161 setOperationAction(Op, T, Custom); 162 163 // There is no i8x16.mul instruction 164 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 165 166 // There is no vector conditional select instruction 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 168 MVT::v2f64}) 169 setOperationAction(ISD::SELECT_CC, T, Expand); 170 171 // Expand integer operations supported for scalars but not SIMD 172 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 173 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 174 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 175 setOperationAction(Op, T, Expand); 176 177 // But we do have integer min and max operations 178 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 179 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 180 setOperationAction(Op, T, Legal); 181 182 // Expand float operations supported for scalars but not SIMD 183 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 184 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 185 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 186 for (auto T : {MVT::v4f32, MVT::v2f64}) 187 setOperationAction(Op, T, Expand); 188 189 // Expand operations not supported for i64x2 vectors 190 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 191 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 192 193 // 64x2 conversions are not in the spec 194 for (auto Op : 195 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 196 for (auto T : {MVT::v2i64, MVT::v2f64}) 197 setOperationAction(Op, T, Expand); 198 } 199 200 // As a special case, these operators use the type to mean the type to 201 // sign-extend from. 202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 203 if (!Subtarget->hasSignExt()) { 204 // Sign extends are legal only when extending a vector extract 205 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 206 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 207 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 208 } 209 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 210 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 211 212 // Dynamic stack allocation: use the default expansion. 213 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 214 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 215 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 216 217 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 218 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 219 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 220 221 // Expand these forms; we pattern-match the forms that we can handle in isel. 222 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 223 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 224 setOperationAction(Op, T, Expand); 225 226 // We have custom switch handling. 227 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 228 229 // WebAssembly doesn't have: 230 // - Floating-point extending loads. 231 // - Floating-point truncating stores. 232 // - i1 extending loads. 233 // - truncating SIMD stores and most extending loads 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 235 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 236 for (auto T : MVT::integer_valuetypes()) 237 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 238 setLoadExtAction(Ext, T, MVT::i1, Promote); 239 if (Subtarget->hasSIMD128()) { 240 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 241 MVT::v2f64}) { 242 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 243 if (MVT(T) != MemT) { 244 setTruncStoreAction(T, MemT, Expand); 245 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 246 setLoadExtAction(Ext, T, MemT, Expand); 247 } 248 } 249 } 250 // But some vector extending loads are legal 251 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 252 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 253 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 254 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 255 } 256 // And some truncating stores are legal as well 257 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 258 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 259 } 260 261 // Don't do anything clever with build_pairs 262 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 263 264 // Trap lowers to wasm unreachable 265 setOperationAction(ISD::TRAP, MVT::Other, Legal); 266 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 267 268 // Exception handling intrinsics 269 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 270 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 271 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 272 273 setMaxAtomicSizeInBitsSupported(64); 274 275 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 276 // consistent with the f64 and f128 names. 277 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 278 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 279 280 // Define the emscripten name for return address helper. 281 // TODO: when implementing other Wasm backends, make this generic or only do 282 // this on emscripten depending on what they end up doing. 283 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 284 285 // Always convert switches to br_tables unless there is only one case, which 286 // is equivalent to a simple branch. This reduces code size for wasm, and we 287 // defer possible jump table optimizations to the VM. 288 setMinimumJumpTableEntries(2); 289 } 290 291 TargetLowering::AtomicExpansionKind 292 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 293 // We have wasm instructions for these 294 switch (AI->getOperation()) { 295 case AtomicRMWInst::Add: 296 case AtomicRMWInst::Sub: 297 case AtomicRMWInst::And: 298 case AtomicRMWInst::Or: 299 case AtomicRMWInst::Xor: 300 case AtomicRMWInst::Xchg: 301 return AtomicExpansionKind::None; 302 default: 303 break; 304 } 305 return AtomicExpansionKind::CmpXChg; 306 } 307 308 FastISel *WebAssemblyTargetLowering::createFastISel( 309 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 310 return WebAssembly::createFastISel(FuncInfo, LibInfo); 311 } 312 313 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 314 EVT VT) const { 315 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 316 if (BitWidth > 1 && BitWidth < 8) 317 BitWidth = 8; 318 319 if (BitWidth > 64) { 320 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 321 // the count to be an i32. 322 BitWidth = 32; 323 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 324 "32-bit shift counts ought to be enough for anyone"); 325 } 326 327 MVT Result = MVT::getIntegerVT(BitWidth); 328 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 329 "Unable to represent scalar shift amount type"); 330 return Result; 331 } 332 333 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 334 // undefined result on invalid/overflow, to the WebAssembly opcode, which 335 // traps on invalid/overflow. 336 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 337 MachineBasicBlock *BB, 338 const TargetInstrInfo &TII, 339 bool IsUnsigned, bool Int64, 340 bool Float64, unsigned LoweredOpcode) { 341 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 342 343 Register OutReg = MI.getOperand(0).getReg(); 344 Register InReg = MI.getOperand(1).getReg(); 345 346 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 347 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 348 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 349 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 350 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 351 unsigned Eqz = WebAssembly::EQZ_I32; 352 unsigned And = WebAssembly::AND_I32; 353 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 354 int64_t Substitute = IsUnsigned ? 0 : Limit; 355 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 356 auto &Context = BB->getParent()->getFunction().getContext(); 357 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 358 359 const BasicBlock *LLVMBB = BB->getBasicBlock(); 360 MachineFunction *F = BB->getParent(); 361 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 362 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 363 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 364 365 MachineFunction::iterator It = ++BB->getIterator(); 366 F->insert(It, FalseMBB); 367 F->insert(It, TrueMBB); 368 F->insert(It, DoneMBB); 369 370 // Transfer the remainder of BB and its successor edges to DoneMBB. 371 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 372 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 373 374 BB->addSuccessor(TrueMBB); 375 BB->addSuccessor(FalseMBB); 376 TrueMBB->addSuccessor(DoneMBB); 377 FalseMBB->addSuccessor(DoneMBB); 378 379 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 380 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 381 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 382 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 383 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 384 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 385 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 386 387 MI.eraseFromParent(); 388 // For signed numbers, we can do a single comparison to determine whether 389 // fabs(x) is within range. 390 if (IsUnsigned) { 391 Tmp0 = InReg; 392 } else { 393 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 394 } 395 BuildMI(BB, DL, TII.get(FConst), Tmp1) 396 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 397 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 398 399 // For unsigned numbers, we have to do a separate comparison with zero. 400 if (IsUnsigned) { 401 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 402 Register SecondCmpReg = 403 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 404 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 405 BuildMI(BB, DL, TII.get(FConst), Tmp1) 406 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 407 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 408 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 409 CmpReg = AndReg; 410 } 411 412 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 413 414 // Create the CFG diamond to select between doing the conversion or using 415 // the substitute value. 416 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 417 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 418 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 419 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 420 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 421 .addReg(FalseReg) 422 .addMBB(FalseMBB) 423 .addReg(TrueReg) 424 .addMBB(TrueMBB); 425 426 return DoneMBB; 427 } 428 429 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 430 DebugLoc DL, MachineBasicBlock *BB, 431 const TargetInstrInfo &TII) { 432 MachineInstr &CallParams = *CallResults.getPrevNode(); 433 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 434 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 435 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 436 437 bool IsIndirect = CallParams.getOperand(0).isReg(); 438 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 439 440 unsigned CallOp; 441 if (IsIndirect && IsRetCall) { 442 CallOp = WebAssembly::RET_CALL_INDIRECT; 443 } else if (IsIndirect) { 444 CallOp = WebAssembly::CALL_INDIRECT; 445 } else if (IsRetCall) { 446 CallOp = WebAssembly::RET_CALL; 447 } else { 448 CallOp = WebAssembly::CALL; 449 } 450 451 MachineFunction &MF = *BB->getParent(); 452 const MCInstrDesc &MCID = TII.get(CallOp); 453 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 454 455 // See if we must truncate the function pointer. 456 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 457 // as 64-bit for uniformity with other pointer types. 458 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 459 Register Reg32 = 460 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 461 auto &FnPtr = CallParams.getOperand(0); 462 BuildMI(*BB, CallResults.getIterator(), DL, 463 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 464 .addReg(FnPtr.getReg()); 465 FnPtr.setReg(Reg32); 466 } 467 468 // Move the function pointer to the end of the arguments for indirect calls 469 if (IsIndirect) { 470 auto FnPtr = CallParams.getOperand(0); 471 CallParams.RemoveOperand(0); 472 CallParams.addOperand(FnPtr); 473 } 474 475 for (auto Def : CallResults.defs()) 476 MIB.add(Def); 477 478 if (IsIndirect) { 479 // Placehoder for the type index. 480 MIB.addImm(0); 481 // The table into which this call_indirect indexes. 482 MIB.addSym(WebAssembly::getOrCreateFunctionTableSymbol( 483 MF.getContext(), "__indirect_function_table")); 484 } 485 486 for (auto Use : CallParams.uses()) 487 MIB.add(Use); 488 489 BB->insert(CallResults.getIterator(), MIB); 490 CallParams.eraseFromParent(); 491 CallResults.eraseFromParent(); 492 493 return BB; 494 } 495 496 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 497 MachineInstr &MI, MachineBasicBlock *BB) const { 498 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 499 DebugLoc DL = MI.getDebugLoc(); 500 501 switch (MI.getOpcode()) { 502 default: 503 llvm_unreachable("Unexpected instr type to insert"); 504 case WebAssembly::FP_TO_SINT_I32_F32: 505 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 506 WebAssembly::I32_TRUNC_S_F32); 507 case WebAssembly::FP_TO_UINT_I32_F32: 508 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 509 WebAssembly::I32_TRUNC_U_F32); 510 case WebAssembly::FP_TO_SINT_I64_F32: 511 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 512 WebAssembly::I64_TRUNC_S_F32); 513 case WebAssembly::FP_TO_UINT_I64_F32: 514 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 515 WebAssembly::I64_TRUNC_U_F32); 516 case WebAssembly::FP_TO_SINT_I32_F64: 517 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 518 WebAssembly::I32_TRUNC_S_F64); 519 case WebAssembly::FP_TO_UINT_I32_F64: 520 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 521 WebAssembly::I32_TRUNC_U_F64); 522 case WebAssembly::FP_TO_SINT_I64_F64: 523 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 524 WebAssembly::I64_TRUNC_S_F64); 525 case WebAssembly::FP_TO_UINT_I64_F64: 526 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 527 WebAssembly::I64_TRUNC_U_F64); 528 case WebAssembly::CALL_RESULTS: 529 case WebAssembly::RET_CALL_RESULTS: 530 return LowerCallResults(MI, DL, BB, TII); 531 } 532 } 533 534 const char * 535 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 536 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 537 case WebAssemblyISD::FIRST_NUMBER: 538 case WebAssemblyISD::FIRST_MEM_OPCODE: 539 break; 540 #define HANDLE_NODETYPE(NODE) \ 541 case WebAssemblyISD::NODE: \ 542 return "WebAssemblyISD::" #NODE; 543 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 544 #include "WebAssemblyISD.def" 545 #undef HANDLE_MEM_NODETYPE 546 #undef HANDLE_NODETYPE 547 } 548 return nullptr; 549 } 550 551 std::pair<unsigned, const TargetRegisterClass *> 552 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 553 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 554 // First, see if this is a constraint that directly corresponds to a 555 // WebAssembly register class. 556 if (Constraint.size() == 1) { 557 switch (Constraint[0]) { 558 case 'r': 559 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 560 if (Subtarget->hasSIMD128() && VT.isVector()) { 561 if (VT.getSizeInBits() == 128) 562 return std::make_pair(0U, &WebAssembly::V128RegClass); 563 } 564 if (VT.isInteger() && !VT.isVector()) { 565 if (VT.getSizeInBits() <= 32) 566 return std::make_pair(0U, &WebAssembly::I32RegClass); 567 if (VT.getSizeInBits() <= 64) 568 return std::make_pair(0U, &WebAssembly::I64RegClass); 569 } 570 if (VT.isFloatingPoint() && !VT.isVector()) { 571 switch (VT.getSizeInBits()) { 572 case 32: 573 return std::make_pair(0U, &WebAssembly::F32RegClass); 574 case 64: 575 return std::make_pair(0U, &WebAssembly::F64RegClass); 576 default: 577 break; 578 } 579 } 580 break; 581 default: 582 break; 583 } 584 } 585 586 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 587 } 588 589 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 590 // Assume ctz is a relatively cheap operation. 591 return true; 592 } 593 594 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 595 // Assume clz is a relatively cheap operation. 596 return true; 597 } 598 599 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 600 const AddrMode &AM, 601 Type *Ty, unsigned AS, 602 Instruction *I) const { 603 // WebAssembly offsets are added as unsigned without wrapping. The 604 // isLegalAddressingMode gives us no way to determine if wrapping could be 605 // happening, so we approximate this by accepting only non-negative offsets. 606 if (AM.BaseOffs < 0) 607 return false; 608 609 // WebAssembly has no scale register operands. 610 if (AM.Scale != 0) 611 return false; 612 613 // Everything else is legal. 614 return true; 615 } 616 617 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 618 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 619 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 620 // WebAssembly supports unaligned accesses, though it should be declared 621 // with the p2align attribute on loads and stores which do so, and there 622 // may be a performance impact. We tell LLVM they're "fast" because 623 // for the kinds of things that LLVM uses this for (merging adjacent stores 624 // of constants, etc.), WebAssembly implementations will either want the 625 // unaligned access or they'll split anyway. 626 if (Fast) 627 *Fast = true; 628 return true; 629 } 630 631 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 632 AttributeList Attr) const { 633 // The current thinking is that wasm engines will perform this optimization, 634 // so we can save on code size. 635 return true; 636 } 637 638 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 639 EVT ExtT = ExtVal.getValueType(); 640 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 641 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 642 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 643 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 644 } 645 646 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 647 LLVMContext &C, 648 EVT VT) const { 649 if (VT.isVector()) 650 return VT.changeVectorElementTypeToInteger(); 651 652 // So far, all branch instructions in Wasm take an I32 condition. 653 // The default TargetLowering::getSetCCResultType returns the pointer size, 654 // which would be useful to reduce instruction counts when testing 655 // against 64-bit pointers/values if at some point Wasm supports that. 656 return EVT::getIntegerVT(C, 32); 657 } 658 659 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 660 const CallInst &I, 661 MachineFunction &MF, 662 unsigned Intrinsic) const { 663 switch (Intrinsic) { 664 case Intrinsic::wasm_memory_atomic_notify: 665 Info.opc = ISD::INTRINSIC_W_CHAIN; 666 Info.memVT = MVT::i32; 667 Info.ptrVal = I.getArgOperand(0); 668 Info.offset = 0; 669 Info.align = Align(4); 670 // atomic.notify instruction does not really load the memory specified with 671 // this argument, but MachineMemOperand should either be load or store, so 672 // we set this to a load. 673 // FIXME Volatile isn't really correct, but currently all LLVM atomic 674 // instructions are treated as volatiles in the backend, so we should be 675 // consistent. The same applies for wasm_atomic_wait intrinsics too. 676 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 677 return true; 678 case Intrinsic::wasm_memory_atomic_wait32: 679 Info.opc = ISD::INTRINSIC_W_CHAIN; 680 Info.memVT = MVT::i32; 681 Info.ptrVal = I.getArgOperand(0); 682 Info.offset = 0; 683 Info.align = Align(4); 684 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 685 return true; 686 case Intrinsic::wasm_memory_atomic_wait64: 687 Info.opc = ISD::INTRINSIC_W_CHAIN; 688 Info.memVT = MVT::i64; 689 Info.ptrVal = I.getArgOperand(0); 690 Info.offset = 0; 691 Info.align = Align(8); 692 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 693 return true; 694 case Intrinsic::wasm_load32_zero: 695 case Intrinsic::wasm_load64_zero: 696 Info.opc = ISD::INTRINSIC_W_CHAIN; 697 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 698 Info.ptrVal = I.getArgOperand(0); 699 Info.offset = 0; 700 Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8); 701 Info.flags = MachineMemOperand::MOLoad; 702 return true; 703 case Intrinsic::wasm_load8_lane: 704 case Intrinsic::wasm_load16_lane: 705 case Intrinsic::wasm_load32_lane: 706 case Intrinsic::wasm_load64_lane: 707 case Intrinsic::wasm_store8_lane: 708 case Intrinsic::wasm_store16_lane: 709 case Intrinsic::wasm_store32_lane: 710 case Intrinsic::wasm_store64_lane: { 711 MVT MemVT; 712 Align MemAlign; 713 switch (Intrinsic) { 714 case Intrinsic::wasm_load8_lane: 715 case Intrinsic::wasm_store8_lane: 716 MemVT = MVT::i8; 717 MemAlign = Align(1); 718 break; 719 case Intrinsic::wasm_load16_lane: 720 case Intrinsic::wasm_store16_lane: 721 MemVT = MVT::i16; 722 MemAlign = Align(2); 723 break; 724 case Intrinsic::wasm_load32_lane: 725 case Intrinsic::wasm_store32_lane: 726 MemVT = MVT::i32; 727 MemAlign = Align(4); 728 break; 729 case Intrinsic::wasm_load64_lane: 730 case Intrinsic::wasm_store64_lane: 731 MemVT = MVT::i64; 732 MemAlign = Align(8); 733 break; 734 default: 735 llvm_unreachable("unexpected intrinsic"); 736 } 737 if (Intrinsic == Intrinsic::wasm_load8_lane || 738 Intrinsic == Intrinsic::wasm_load16_lane || 739 Intrinsic == Intrinsic::wasm_load32_lane || 740 Intrinsic == Intrinsic::wasm_load64_lane) { 741 Info.opc = ISD::INTRINSIC_W_CHAIN; 742 Info.flags = MachineMemOperand::MOLoad; 743 } else { 744 Info.opc = ISD::INTRINSIC_VOID; 745 Info.flags = MachineMemOperand::MOStore; 746 } 747 Info.ptrVal = I.getArgOperand(0); 748 Info.memVT = MemVT; 749 Info.offset = 0; 750 Info.align = MemAlign; 751 return true; 752 } 753 case Intrinsic::wasm_prefetch_t: 754 case Intrinsic::wasm_prefetch_nt: { 755 Info.opc = ISD::INTRINSIC_VOID; 756 Info.memVT = MVT::i8; 757 Info.ptrVal = I.getArgOperand(0); 758 Info.offset = 0; 759 Info.align = Align(1); 760 Info.flags = MachineMemOperand::MOLoad; 761 return true; 762 } 763 default: 764 return false; 765 } 766 } 767 768 //===----------------------------------------------------------------------===// 769 // WebAssembly Lowering private implementation. 770 //===----------------------------------------------------------------------===// 771 772 //===----------------------------------------------------------------------===// 773 // Lowering Code 774 //===----------------------------------------------------------------------===// 775 776 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 777 MachineFunction &MF = DAG.getMachineFunction(); 778 DAG.getContext()->diagnose( 779 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 780 } 781 782 // Test whether the given calling convention is supported. 783 static bool callingConvSupported(CallingConv::ID CallConv) { 784 // We currently support the language-independent target-independent 785 // conventions. We don't yet have a way to annotate calls with properties like 786 // "cold", and we don't have any call-clobbered registers, so these are mostly 787 // all handled the same. 788 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 789 CallConv == CallingConv::Cold || 790 CallConv == CallingConv::PreserveMost || 791 CallConv == CallingConv::PreserveAll || 792 CallConv == CallingConv::CXX_FAST_TLS || 793 CallConv == CallingConv::WASM_EmscriptenInvoke || 794 CallConv == CallingConv::Swift; 795 } 796 797 SDValue 798 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 799 SmallVectorImpl<SDValue> &InVals) const { 800 SelectionDAG &DAG = CLI.DAG; 801 SDLoc DL = CLI.DL; 802 SDValue Chain = CLI.Chain; 803 SDValue Callee = CLI.Callee; 804 MachineFunction &MF = DAG.getMachineFunction(); 805 auto Layout = MF.getDataLayout(); 806 807 CallingConv::ID CallConv = CLI.CallConv; 808 if (!callingConvSupported(CallConv)) 809 fail(DL, DAG, 810 "WebAssembly doesn't support language-specific or target-specific " 811 "calling conventions yet"); 812 if (CLI.IsPatchPoint) 813 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 814 815 if (CLI.IsTailCall) { 816 auto NoTail = [&](const char *Msg) { 817 if (CLI.CB && CLI.CB->isMustTailCall()) 818 fail(DL, DAG, Msg); 819 CLI.IsTailCall = false; 820 }; 821 822 if (!Subtarget->hasTailCall()) 823 NoTail("WebAssembly 'tail-call' feature not enabled"); 824 825 // Varargs calls cannot be tail calls because the buffer is on the stack 826 if (CLI.IsVarArg) 827 NoTail("WebAssembly does not support varargs tail calls"); 828 829 // Do not tail call unless caller and callee return types match 830 const Function &F = MF.getFunction(); 831 const TargetMachine &TM = getTargetMachine(); 832 Type *RetTy = F.getReturnType(); 833 SmallVector<MVT, 4> CallerRetTys; 834 SmallVector<MVT, 4> CalleeRetTys; 835 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 836 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 837 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 838 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 839 CalleeRetTys.begin()); 840 if (!TypesMatch) 841 NoTail("WebAssembly tail call requires caller and callee return types to " 842 "match"); 843 844 // If pointers to local stack values are passed, we cannot tail call 845 if (CLI.CB) { 846 for (auto &Arg : CLI.CB->args()) { 847 Value *Val = Arg.get(); 848 // Trace the value back through pointer operations 849 while (true) { 850 Value *Src = Val->stripPointerCastsAndAliases(); 851 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 852 Src = GEP->getPointerOperand(); 853 if (Val == Src) 854 break; 855 Val = Src; 856 } 857 if (isa<AllocaInst>(Val)) { 858 NoTail( 859 "WebAssembly does not support tail calling with stack arguments"); 860 break; 861 } 862 } 863 } 864 } 865 866 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 867 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 868 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 869 870 // The generic code may have added an sret argument. If we're lowering an 871 // invoke function, the ABI requires that the function pointer be the first 872 // argument, so we may have to swap the arguments. 873 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 874 Outs[0].Flags.isSRet()) { 875 std::swap(Outs[0], Outs[1]); 876 std::swap(OutVals[0], OutVals[1]); 877 } 878 879 bool HasSwiftSelfArg = false; 880 bool HasSwiftErrorArg = false; 881 unsigned NumFixedArgs = 0; 882 for (unsigned I = 0; I < Outs.size(); ++I) { 883 const ISD::OutputArg &Out = Outs[I]; 884 SDValue &OutVal = OutVals[I]; 885 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 886 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 887 if (Out.Flags.isNest()) 888 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 889 if (Out.Flags.isInAlloca()) 890 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 891 if (Out.Flags.isInConsecutiveRegs()) 892 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 893 if (Out.Flags.isInConsecutiveRegsLast()) 894 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 895 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 896 auto &MFI = MF.getFrameInfo(); 897 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 898 Out.Flags.getNonZeroByValAlign(), 899 /*isSS=*/false); 900 SDValue SizeNode = 901 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 902 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 903 Chain = DAG.getMemcpy( 904 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 905 /*isVolatile*/ false, /*AlwaysInline=*/false, 906 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 907 OutVal = FINode; 908 } 909 // Count the number of fixed args *after* legalization. 910 NumFixedArgs += Out.IsFixed; 911 } 912 913 bool IsVarArg = CLI.IsVarArg; 914 auto PtrVT = getPointerTy(Layout); 915 916 // For swiftcc, emit additional swiftself and swifterror arguments 917 // if there aren't. These additional arguments are also added for callee 918 // signature They are necessary to match callee and caller signature for 919 // indirect call. 920 if (CallConv == CallingConv::Swift) { 921 if (!HasSwiftSelfArg) { 922 NumFixedArgs++; 923 ISD::OutputArg Arg; 924 Arg.Flags.setSwiftSelf(); 925 CLI.Outs.push_back(Arg); 926 SDValue ArgVal = DAG.getUNDEF(PtrVT); 927 CLI.OutVals.push_back(ArgVal); 928 } 929 if (!HasSwiftErrorArg) { 930 NumFixedArgs++; 931 ISD::OutputArg Arg; 932 Arg.Flags.setSwiftError(); 933 CLI.Outs.push_back(Arg); 934 SDValue ArgVal = DAG.getUNDEF(PtrVT); 935 CLI.OutVals.push_back(ArgVal); 936 } 937 } 938 939 // Analyze operands of the call, assigning locations to each operand. 940 SmallVector<CCValAssign, 16> ArgLocs; 941 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 942 943 if (IsVarArg) { 944 // Outgoing non-fixed arguments are placed in a buffer. First 945 // compute their offsets and the total amount of buffer space needed. 946 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 947 const ISD::OutputArg &Out = Outs[I]; 948 SDValue &Arg = OutVals[I]; 949 EVT VT = Arg.getValueType(); 950 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 951 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 952 Align Alignment = 953 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 954 unsigned Offset = 955 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 956 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 957 Offset, VT.getSimpleVT(), 958 CCValAssign::Full)); 959 } 960 } 961 962 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 963 964 SDValue FINode; 965 if (IsVarArg && NumBytes) { 966 // For non-fixed arguments, next emit stores to store the argument values 967 // to the stack buffer at the offsets computed above. 968 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 969 Layout.getStackAlignment(), 970 /*isSS=*/false); 971 unsigned ValNo = 0; 972 SmallVector<SDValue, 8> Chains; 973 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 974 assert(ArgLocs[ValNo].getValNo() == ValNo && 975 "ArgLocs should remain in order and only hold varargs args"); 976 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 977 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 978 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 979 DAG.getConstant(Offset, DL, PtrVT)); 980 Chains.push_back( 981 DAG.getStore(Chain, DL, Arg, Add, 982 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 983 } 984 if (!Chains.empty()) 985 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 986 } else if (IsVarArg) { 987 FINode = DAG.getIntPtrConstant(0, DL); 988 } 989 990 if (Callee->getOpcode() == ISD::GlobalAddress) { 991 // If the callee is a GlobalAddress node (quite common, every direct call 992 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 993 // doesn't at MO_GOT which is not needed for direct calls. 994 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 995 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 996 getPointerTy(DAG.getDataLayout()), 997 GA->getOffset()); 998 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 999 getPointerTy(DAG.getDataLayout()), Callee); 1000 } 1001 1002 // Compute the operands for the CALLn node. 1003 SmallVector<SDValue, 16> Ops; 1004 Ops.push_back(Chain); 1005 Ops.push_back(Callee); 1006 1007 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1008 // isn't reliable. 1009 Ops.append(OutVals.begin(), 1010 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1011 // Add a pointer to the vararg buffer. 1012 if (IsVarArg) 1013 Ops.push_back(FINode); 1014 1015 SmallVector<EVT, 8> InTys; 1016 for (const auto &In : Ins) { 1017 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1018 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1019 if (In.Flags.isInAlloca()) 1020 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1021 if (In.Flags.isInConsecutiveRegs()) 1022 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1023 if (In.Flags.isInConsecutiveRegsLast()) 1024 fail(DL, DAG, 1025 "WebAssembly hasn't implemented cons regs last return values"); 1026 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1027 // registers. 1028 InTys.push_back(In.VT); 1029 } 1030 1031 if (CLI.IsTailCall) { 1032 // ret_calls do not return values to the current frame 1033 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1034 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1035 } 1036 1037 InTys.push_back(MVT::Other); 1038 SDVTList InTyList = DAG.getVTList(InTys); 1039 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1040 1041 for (size_t I = 0; I < Ins.size(); ++I) 1042 InVals.push_back(Res.getValue(I)); 1043 1044 // Return the chain 1045 return Res.getValue(Ins.size()); 1046 } 1047 1048 bool WebAssemblyTargetLowering::CanLowerReturn( 1049 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1050 const SmallVectorImpl<ISD::OutputArg> &Outs, 1051 LLVMContext & /*Context*/) const { 1052 // WebAssembly can only handle returning tuples with multivalue enabled 1053 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1054 } 1055 1056 SDValue WebAssemblyTargetLowering::LowerReturn( 1057 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1058 const SmallVectorImpl<ISD::OutputArg> &Outs, 1059 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1060 SelectionDAG &DAG) const { 1061 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1062 "MVP WebAssembly can only return up to one value"); 1063 if (!callingConvSupported(CallConv)) 1064 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1065 1066 SmallVector<SDValue, 4> RetOps(1, Chain); 1067 RetOps.append(OutVals.begin(), OutVals.end()); 1068 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1069 1070 // Record the number and types of the return values. 1071 for (const ISD::OutputArg &Out : Outs) { 1072 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1073 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1074 assert(Out.IsFixed && "non-fixed return value is not valid"); 1075 if (Out.Flags.isInAlloca()) 1076 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1077 if (Out.Flags.isInConsecutiveRegs()) 1078 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1079 if (Out.Flags.isInConsecutiveRegsLast()) 1080 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1081 } 1082 1083 return Chain; 1084 } 1085 1086 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1087 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1088 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1089 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1090 if (!callingConvSupported(CallConv)) 1091 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1092 1093 MachineFunction &MF = DAG.getMachineFunction(); 1094 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1095 1096 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1097 // of the incoming values before they're represented by virtual registers. 1098 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1099 1100 bool HasSwiftErrorArg = false; 1101 bool HasSwiftSelfArg = false; 1102 for (const ISD::InputArg &In : Ins) { 1103 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1104 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1105 if (In.Flags.isInAlloca()) 1106 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1107 if (In.Flags.isNest()) 1108 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1109 if (In.Flags.isInConsecutiveRegs()) 1110 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1111 if (In.Flags.isInConsecutiveRegsLast()) 1112 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1113 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1114 // registers. 1115 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1116 DAG.getTargetConstant(InVals.size(), 1117 DL, MVT::i32)) 1118 : DAG.getUNDEF(In.VT)); 1119 1120 // Record the number and types of arguments. 1121 MFI->addParam(In.VT); 1122 } 1123 1124 // For swiftcc, emit additional swiftself and swifterror arguments 1125 // if there aren't. These additional arguments are also added for callee 1126 // signature They are necessary to match callee and caller signature for 1127 // indirect call. 1128 auto PtrVT = getPointerTy(MF.getDataLayout()); 1129 if (CallConv == CallingConv::Swift) { 1130 if (!HasSwiftSelfArg) { 1131 MFI->addParam(PtrVT); 1132 } 1133 if (!HasSwiftErrorArg) { 1134 MFI->addParam(PtrVT); 1135 } 1136 } 1137 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1138 // the buffer is passed as an argument. 1139 if (IsVarArg) { 1140 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1141 Register VarargVreg = 1142 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1143 MFI->setVarargBufferVreg(VarargVreg); 1144 Chain = DAG.getCopyToReg( 1145 Chain, DL, VarargVreg, 1146 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1147 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1148 MFI->addParam(PtrVT); 1149 } 1150 1151 // Record the number and types of arguments and results. 1152 SmallVector<MVT, 4> Params; 1153 SmallVector<MVT, 4> Results; 1154 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1155 MF.getFunction(), DAG.getTarget(), Params, Results); 1156 for (MVT VT : Results) 1157 MFI->addResult(VT); 1158 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1159 // the param logic here with ComputeSignatureVTs 1160 assert(MFI->getParams().size() == Params.size() && 1161 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1162 Params.begin())); 1163 1164 return Chain; 1165 } 1166 1167 void WebAssemblyTargetLowering::ReplaceNodeResults( 1168 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1169 switch (N->getOpcode()) { 1170 case ISD::SIGN_EXTEND_INREG: 1171 // Do not add any results, signifying that N should not be custom lowered 1172 // after all. This happens because simd128 turns on custom lowering for 1173 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1174 // illegal type. 1175 break; 1176 default: 1177 llvm_unreachable( 1178 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1179 } 1180 } 1181 1182 //===----------------------------------------------------------------------===// 1183 // Custom lowering hooks. 1184 //===----------------------------------------------------------------------===// 1185 1186 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1187 SelectionDAG &DAG) const { 1188 SDLoc DL(Op); 1189 switch (Op.getOpcode()) { 1190 default: 1191 llvm_unreachable("unimplemented operation lowering"); 1192 return SDValue(); 1193 case ISD::FrameIndex: 1194 return LowerFrameIndex(Op, DAG); 1195 case ISD::GlobalAddress: 1196 return LowerGlobalAddress(Op, DAG); 1197 case ISD::GlobalTLSAddress: 1198 return LowerGlobalTLSAddress(Op, DAG); 1199 case ISD::ExternalSymbol: 1200 return LowerExternalSymbol(Op, DAG); 1201 case ISD::JumpTable: 1202 return LowerJumpTable(Op, DAG); 1203 case ISD::BR_JT: 1204 return LowerBR_JT(Op, DAG); 1205 case ISD::VASTART: 1206 return LowerVASTART(Op, DAG); 1207 case ISD::BlockAddress: 1208 case ISD::BRIND: 1209 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1210 return SDValue(); 1211 case ISD::RETURNADDR: 1212 return LowerRETURNADDR(Op, DAG); 1213 case ISD::FRAMEADDR: 1214 return LowerFRAMEADDR(Op, DAG); 1215 case ISD::CopyToReg: 1216 return LowerCopyToReg(Op, DAG); 1217 case ISD::EXTRACT_VECTOR_ELT: 1218 case ISD::INSERT_VECTOR_ELT: 1219 return LowerAccessVectorElement(Op, DAG); 1220 case ISD::INTRINSIC_VOID: 1221 case ISD::INTRINSIC_WO_CHAIN: 1222 case ISD::INTRINSIC_W_CHAIN: 1223 return LowerIntrinsic(Op, DAG); 1224 case ISD::SIGN_EXTEND_INREG: 1225 return LowerSIGN_EXTEND_INREG(Op, DAG); 1226 case ISD::BUILD_VECTOR: 1227 return LowerBUILD_VECTOR(Op, DAG); 1228 case ISD::VECTOR_SHUFFLE: 1229 return LowerVECTOR_SHUFFLE(Op, DAG); 1230 case ISD::SETCC: 1231 return LowerSETCC(Op, DAG); 1232 case ISD::SHL: 1233 case ISD::SRA: 1234 case ISD::SRL: 1235 return LowerShift(Op, DAG); 1236 } 1237 } 1238 1239 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1240 SelectionDAG &DAG) const { 1241 SDValue Src = Op.getOperand(2); 1242 if (isa<FrameIndexSDNode>(Src.getNode())) { 1243 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1244 // the FI to some LEA-like instruction, but since we don't have that, we 1245 // need to insert some kind of instruction that can take an FI operand and 1246 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1247 // local.copy between Op and its FI operand. 1248 SDValue Chain = Op.getOperand(0); 1249 SDLoc DL(Op); 1250 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1251 EVT VT = Src.getValueType(); 1252 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1253 : WebAssembly::COPY_I64, 1254 DL, VT, Src), 1255 0); 1256 return Op.getNode()->getNumValues() == 1 1257 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1258 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1259 Op.getNumOperands() == 4 ? Op.getOperand(3) 1260 : SDValue()); 1261 } 1262 return SDValue(); 1263 } 1264 1265 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1266 SelectionDAG &DAG) const { 1267 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1268 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1269 } 1270 1271 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1272 SelectionDAG &DAG) const { 1273 SDLoc DL(Op); 1274 1275 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1276 fail(DL, DAG, 1277 "Non-Emscripten WebAssembly hasn't implemented " 1278 "__builtin_return_address"); 1279 return SDValue(); 1280 } 1281 1282 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1283 return SDValue(); 1284 1285 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1286 MakeLibCallOptions CallOptions; 1287 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1288 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1289 .first; 1290 } 1291 1292 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1293 SelectionDAG &DAG) const { 1294 // Non-zero depths are not supported by WebAssembly currently. Use the 1295 // legalizer's default expansion, which is to return 0 (what this function is 1296 // documented to do). 1297 if (Op.getConstantOperandVal(0) > 0) 1298 return SDValue(); 1299 1300 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1301 EVT VT = Op.getValueType(); 1302 Register FP = 1303 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1304 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1305 } 1306 1307 SDValue 1308 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1309 SelectionDAG &DAG) const { 1310 SDLoc DL(Op); 1311 const auto *GA = cast<GlobalAddressSDNode>(Op); 1312 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1313 1314 MachineFunction &MF = DAG.getMachineFunction(); 1315 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1316 report_fatal_error("cannot use thread-local storage without bulk memory", 1317 false); 1318 1319 const GlobalValue *GV = GA->getGlobal(); 1320 1321 // Currently Emscripten does not support dynamic linking with threads. 1322 // Therefore, if we have thread-local storage, only the local-exec model 1323 // is possible. 1324 // TODO: remove this and implement proper TLS models once Emscripten 1325 // supports dynamic linking with threads. 1326 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1327 !Subtarget->getTargetTriple().isOSEmscripten()) { 1328 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1329 "non-Emscripten OSes: variable " + 1330 GV->getName(), 1331 false); 1332 } 1333 1334 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1335 : WebAssembly::GLOBAL_GET_I32; 1336 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1337 1338 SDValue BaseAddr( 1339 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1340 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1341 0); 1342 1343 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1344 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1345 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1346 1347 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1348 } 1349 1350 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1351 SelectionDAG &DAG) const { 1352 SDLoc DL(Op); 1353 const auto *GA = cast<GlobalAddressSDNode>(Op); 1354 EVT VT = Op.getValueType(); 1355 assert(GA->getTargetFlags() == 0 && 1356 "Unexpected target flags on generic GlobalAddressSDNode"); 1357 if (GA->getAddressSpace() != 0) 1358 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1359 1360 unsigned OperandFlags = 0; 1361 if (isPositionIndependent()) { 1362 const GlobalValue *GV = GA->getGlobal(); 1363 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1364 MachineFunction &MF = DAG.getMachineFunction(); 1365 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1366 const char *BaseName; 1367 if (GV->getValueType()->isFunctionTy()) { 1368 BaseName = MF.createExternalSymbolName("__table_base"); 1369 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1370 } 1371 else { 1372 BaseName = MF.createExternalSymbolName("__memory_base"); 1373 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1374 } 1375 SDValue BaseAddr = 1376 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1377 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1378 1379 SDValue SymAddr = DAG.getNode( 1380 WebAssemblyISD::WrapperPIC, DL, VT, 1381 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1382 OperandFlags)); 1383 1384 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1385 } else { 1386 OperandFlags = WebAssemblyII::MO_GOT; 1387 } 1388 } 1389 1390 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1391 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1392 GA->getOffset(), OperandFlags)); 1393 } 1394 1395 SDValue 1396 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1397 SelectionDAG &DAG) const { 1398 SDLoc DL(Op); 1399 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1400 EVT VT = Op.getValueType(); 1401 assert(ES->getTargetFlags() == 0 && 1402 "Unexpected target flags on generic ExternalSymbolSDNode"); 1403 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1404 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1405 } 1406 1407 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1408 SelectionDAG &DAG) const { 1409 // There's no need for a Wrapper node because we always incorporate a jump 1410 // table operand into a BR_TABLE instruction, rather than ever 1411 // materializing it in a register. 1412 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1413 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1414 JT->getTargetFlags()); 1415 } 1416 1417 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1418 SelectionDAG &DAG) const { 1419 SDLoc DL(Op); 1420 SDValue Chain = Op.getOperand(0); 1421 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1422 SDValue Index = Op.getOperand(2); 1423 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1424 1425 SmallVector<SDValue, 8> Ops; 1426 Ops.push_back(Chain); 1427 Ops.push_back(Index); 1428 1429 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1430 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1431 1432 // Add an operand for each case. 1433 for (auto MBB : MBBs) 1434 Ops.push_back(DAG.getBasicBlock(MBB)); 1435 1436 // Add the first MBB as a dummy default target for now. This will be replaced 1437 // with the proper default target (and the preceding range check eliminated) 1438 // if possible by WebAssemblyFixBrTableDefaults. 1439 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1440 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1441 } 1442 1443 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1444 SelectionDAG &DAG) const { 1445 SDLoc DL(Op); 1446 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1447 1448 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1449 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1450 1451 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1452 MFI->getVarargBufferVreg(), PtrVT); 1453 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1454 MachinePointerInfo(SV)); 1455 } 1456 1457 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1458 SelectionDAG &DAG) { 1459 // We only support C++ exceptions for now 1460 int Tag = 1461 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1462 if (Tag != WebAssembly::CPP_EXCEPTION) 1463 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1464 auto &MF = DAG.getMachineFunction(); 1465 const auto &TLI = DAG.getTargetLoweringInfo(); 1466 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1467 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1468 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1469 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1470 } 1471 1472 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1473 SelectionDAG &DAG) const { 1474 MachineFunction &MF = DAG.getMachineFunction(); 1475 unsigned IntNo; 1476 switch (Op.getOpcode()) { 1477 case ISD::INTRINSIC_VOID: 1478 case ISD::INTRINSIC_W_CHAIN: 1479 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1480 break; 1481 case ISD::INTRINSIC_WO_CHAIN: 1482 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1483 break; 1484 default: 1485 llvm_unreachable("Invalid intrinsic"); 1486 } 1487 SDLoc DL(Op); 1488 1489 switch (IntNo) { 1490 default: 1491 return SDValue(); // Don't custom lower most intrinsics. 1492 1493 case Intrinsic::wasm_lsda: { 1494 EVT VT = Op.getValueType(); 1495 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1496 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1497 auto &Context = MF.getMMI().getContext(); 1498 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1499 Twine(MF.getFunctionNumber())); 1500 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1501 DAG.getMCSymbol(S, PtrVT)); 1502 } 1503 1504 case Intrinsic::wasm_throw: { 1505 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1506 return DAG.getNode(WebAssemblyISD::THROW, DL, 1507 MVT::Other, // outchain type 1508 { 1509 Op.getOperand(0), // inchain 1510 SymNode, // exception symbol 1511 Op.getOperand(3) // thrown value 1512 }); 1513 } 1514 1515 case Intrinsic::wasm_catch: { 1516 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1517 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1518 { 1519 MVT::i32, // outchain type 1520 MVT::Other // return value 1521 }, 1522 { 1523 Op.getOperand(0), // inchain 1524 SymNode // exception symbol 1525 }); 1526 } 1527 1528 case Intrinsic::wasm_shuffle: { 1529 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1530 SDValue Ops[18]; 1531 size_t OpIdx = 0; 1532 Ops[OpIdx++] = Op.getOperand(1); 1533 Ops[OpIdx++] = Op.getOperand(2); 1534 while (OpIdx < 18) { 1535 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1536 if (MaskIdx.isUndef() || 1537 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1538 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1539 } else { 1540 Ops[OpIdx++] = MaskIdx; 1541 } 1542 } 1543 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1544 } 1545 } 1546 } 1547 1548 SDValue 1549 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1550 SelectionDAG &DAG) const { 1551 SDLoc DL(Op); 1552 // If sign extension operations are disabled, allow sext_inreg only if operand 1553 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1554 // extension operations, but allowing sext_inreg in this context lets us have 1555 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1556 // everywhere would be simpler in this file, but would necessitate large and 1557 // brittle patterns to undo the expansion and select extract_lane_s 1558 // instructions. 1559 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1560 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1561 return SDValue(); 1562 1563 const SDValue &Extract = Op.getOperand(0); 1564 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1565 if (VecT.getVectorElementType().getSizeInBits() > 32) 1566 return SDValue(); 1567 MVT ExtractedLaneT = 1568 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1569 MVT ExtractedVecT = 1570 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1571 if (ExtractedVecT == VecT) 1572 return Op; 1573 1574 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1575 const SDNode *Index = Extract.getOperand(1).getNode(); 1576 if (!isa<ConstantSDNode>(Index)) 1577 return SDValue(); 1578 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1579 unsigned Scale = 1580 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1581 assert(Scale > 1); 1582 SDValue NewIndex = 1583 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1584 SDValue NewExtract = DAG.getNode( 1585 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1586 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1587 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1588 Op.getOperand(1)); 1589 } 1590 1591 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1592 SelectionDAG &DAG) const { 1593 SDLoc DL(Op); 1594 const EVT VecT = Op.getValueType(); 1595 const EVT LaneT = Op.getOperand(0).getValueType(); 1596 const size_t Lanes = Op.getNumOperands(); 1597 bool CanSwizzle = VecT == MVT::v16i8; 1598 1599 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1600 // possible number of lanes at once followed by a sequence of replace_lane 1601 // instructions to individually initialize any remaining lanes. 1602 1603 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1604 // swizzled lanes should be given greater weight. 1605 1606 // TODO: Investigate building vectors by shuffling together vectors built by 1607 // separately specialized means. 1608 1609 auto IsConstant = [](const SDValue &V) { 1610 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1611 }; 1612 1613 // Returns the source vector and index vector pair if they exist. Checks for: 1614 // (extract_vector_elt 1615 // $src, 1616 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1617 // ) 1618 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1619 auto Bail = std::make_pair(SDValue(), SDValue()); 1620 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1621 return Bail; 1622 const SDValue &SwizzleSrc = Lane->getOperand(0); 1623 const SDValue &IndexExt = Lane->getOperand(1); 1624 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1625 return Bail; 1626 const SDValue &Index = IndexExt->getOperand(0); 1627 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1628 return Bail; 1629 const SDValue &SwizzleIndices = Index->getOperand(0); 1630 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1631 SwizzleIndices.getValueType() != MVT::v16i8 || 1632 Index->getOperand(1)->getOpcode() != ISD::Constant || 1633 Index->getConstantOperandVal(1) != I) 1634 return Bail; 1635 return std::make_pair(SwizzleSrc, SwizzleIndices); 1636 }; 1637 1638 using ValueEntry = std::pair<SDValue, size_t>; 1639 SmallVector<ValueEntry, 16> SplatValueCounts; 1640 1641 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1642 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1643 1644 auto AddCount = [](auto &Counts, const auto &Val) { 1645 auto CountIt = 1646 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1647 if (CountIt == Counts.end()) { 1648 Counts.emplace_back(Val, 1); 1649 } else { 1650 CountIt->second++; 1651 } 1652 }; 1653 1654 auto GetMostCommon = [](auto &Counts) { 1655 auto CommonIt = 1656 std::max_element(Counts.begin(), Counts.end(), 1657 [](auto A, auto B) { return A.second < B.second; }); 1658 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1659 return *CommonIt; 1660 }; 1661 1662 size_t NumConstantLanes = 0; 1663 1664 // Count eligible lanes for each type of vector creation op 1665 for (size_t I = 0; I < Lanes; ++I) { 1666 const SDValue &Lane = Op->getOperand(I); 1667 if (Lane.isUndef()) 1668 continue; 1669 1670 AddCount(SplatValueCounts, Lane); 1671 1672 if (IsConstant(Lane)) { 1673 NumConstantLanes++; 1674 } else if (CanSwizzle) { 1675 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1676 if (SwizzleSrcs.first) 1677 AddCount(SwizzleCounts, SwizzleSrcs); 1678 } 1679 } 1680 1681 SDValue SplatValue; 1682 size_t NumSplatLanes; 1683 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1684 1685 SDValue SwizzleSrc; 1686 SDValue SwizzleIndices; 1687 size_t NumSwizzleLanes = 0; 1688 if (SwizzleCounts.size()) 1689 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1690 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1691 1692 // Predicate returning true if the lane is properly initialized by the 1693 // original instruction 1694 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1695 SDValue Result; 1696 // Prefer swizzles over vector consts over splats 1697 if (NumSwizzleLanes >= NumSplatLanes && 1698 (!Subtarget->hasUnimplementedSIMD128() || 1699 NumSwizzleLanes >= NumConstantLanes)) { 1700 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1701 SwizzleIndices); 1702 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1703 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1704 return Swizzled == GetSwizzleSrcs(I, Lane); 1705 }; 1706 } else if (NumConstantLanes >= NumSplatLanes && 1707 Subtarget->hasUnimplementedSIMD128()) { 1708 // If we support v128.const, emit it directly 1709 SmallVector<SDValue, 16> ConstLanes; 1710 for (const SDValue &Lane : Op->op_values()) { 1711 if (IsConstant(Lane)) { 1712 ConstLanes.push_back(Lane); 1713 } else if (LaneT.isFloatingPoint()) { 1714 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1715 } else { 1716 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1717 } 1718 } 1719 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1720 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1721 return IsConstant(Lane); 1722 }; 1723 } else if (NumConstantLanes >= NumSplatLanes && VecT.isInteger()) { 1724 // Otherwise, if this is an integer vector, pack the lane values together so 1725 // we can construct the 128-bit constant from a pair of i64s using a splat 1726 // followed by at most one i64x2.replace_lane. Also keep track of the lanes 1727 // that actually matter so we can avoid the replace_lane in more cases. 1728 std::array<uint64_t, 2> I64s{{0, 0}}; 1729 std::array<uint64_t, 2> ConstLaneMasks{{0, 0}}; 1730 size_t LaneBits = 128 / Lanes; 1731 size_t HalfLanes = Lanes / 2; 1732 for (size_t I = 0; I < Lanes; ++I) { 1733 const SDValue &Lane = Op.getOperand(I); 1734 if (IsConstant(Lane)) { 1735 // How much we need to shift Val to position it in an i64 1736 auto Shift = LaneBits * (I % HalfLanes); 1737 auto Mask = maskTrailingOnes<uint64_t>(LaneBits); 1738 auto Val = cast<ConstantSDNode>(Lane.getNode())->getZExtValue() & Mask; 1739 I64s[I / HalfLanes] |= Val << Shift; 1740 ConstLaneMasks[I / HalfLanes] |= Mask << Shift; 1741 } 1742 } 1743 // Check whether all constant lanes in the second half of the vector are 1744 // equivalent in the first half or vice versa to determine whether splatting 1745 // either side will be sufficient to materialize the constant. As a special 1746 // case, if the first and second halves have no constant lanes in common, we 1747 // can just combine them. 1748 bool FirstHalfSufficient = (I64s[0] & ConstLaneMasks[1]) == I64s[1]; 1749 bool SecondHalfSufficient = (I64s[1] & ConstLaneMasks[0]) == I64s[0]; 1750 bool CombinedSufficient = (ConstLaneMasks[0] & ConstLaneMasks[1]) == 0; 1751 1752 uint64_t Splatted; 1753 if (SecondHalfSufficient) { 1754 Splatted = I64s[1]; 1755 } else if (CombinedSufficient) { 1756 Splatted = I64s[0] | I64s[1]; 1757 } else { 1758 Splatted = I64s[0]; 1759 } 1760 1761 Result = DAG.getSplatBuildVector(MVT::v2i64, DL, 1762 DAG.getConstant(Splatted, DL, MVT::i64)); 1763 if (!FirstHalfSufficient && !SecondHalfSufficient && !CombinedSufficient) { 1764 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i64, Result, 1765 DAG.getConstant(I64s[1], DL, MVT::i64), 1766 DAG.getConstant(1, DL, MVT::i32)); 1767 } 1768 Result = DAG.getBitcast(VecT, Result); 1769 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1770 return IsConstant(Lane); 1771 }; 1772 } else { 1773 // Use a splat, but possibly a load_splat 1774 LoadSDNode *SplattedLoad; 1775 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1776 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1777 Result = DAG.getMemIntrinsicNode( 1778 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1779 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1780 SplattedLoad->getOffset()}, 1781 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1782 } else { 1783 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1784 } 1785 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1786 return Lane == SplatValue; 1787 }; 1788 } 1789 1790 assert(Result); 1791 assert(IsLaneConstructed); 1792 1793 // Add replace_lane instructions for any unhandled values 1794 for (size_t I = 0; I < Lanes; ++I) { 1795 const SDValue &Lane = Op->getOperand(I); 1796 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1797 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1798 DAG.getConstant(I, DL, MVT::i32)); 1799 } 1800 1801 return Result; 1802 } 1803 1804 SDValue 1805 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1806 SelectionDAG &DAG) const { 1807 SDLoc DL(Op); 1808 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1809 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1810 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1811 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1812 1813 // Space for two vector args and sixteen mask indices 1814 SDValue Ops[18]; 1815 size_t OpIdx = 0; 1816 Ops[OpIdx++] = Op.getOperand(0); 1817 Ops[OpIdx++] = Op.getOperand(1); 1818 1819 // Expand mask indices to byte indices and materialize them as operands 1820 for (int M : Mask) { 1821 for (size_t J = 0; J < LaneBytes; ++J) { 1822 // Lower undefs (represented by -1 in mask) to zero 1823 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1824 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1825 } 1826 } 1827 1828 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1829 } 1830 1831 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1832 SelectionDAG &DAG) const { 1833 SDLoc DL(Op); 1834 // The legalizer does not know how to expand the comparison modes of i64x2 1835 // vectors because no comparison modes are supported. We could solve this by 1836 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1837 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1838 // comparisons here. 1839 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1840 SmallVector<SDValue, 2> LHS, RHS; 1841 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1842 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1843 const SDValue &CC = Op->getOperand(2); 1844 auto MakeLane = [&](unsigned I) { 1845 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1846 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1847 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1848 }; 1849 return DAG.getBuildVector(Op->getValueType(0), DL, 1850 {MakeLane(0), MakeLane(1)}); 1851 } 1852 1853 SDValue 1854 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1855 SelectionDAG &DAG) const { 1856 // Allow constant lane indices, expand variable lane indices 1857 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1858 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1859 return Op; 1860 else 1861 // Perform default expansion 1862 return SDValue(); 1863 } 1864 1865 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1866 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1867 // 32-bit and 64-bit unrolled shifts will have proper semantics 1868 if (LaneT.bitsGE(MVT::i32)) 1869 return DAG.UnrollVectorOp(Op.getNode()); 1870 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1871 SDLoc DL(Op); 1872 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1873 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1874 unsigned ShiftOpcode = Op.getOpcode(); 1875 SmallVector<SDValue, 16> ShiftedElements; 1876 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1877 SmallVector<SDValue, 16> ShiftElements; 1878 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1879 SmallVector<SDValue, 16> UnrolledOps; 1880 for (size_t i = 0; i < NumLanes; ++i) { 1881 SDValue MaskedShiftValue = 1882 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1883 SDValue ShiftedValue = ShiftedElements[i]; 1884 if (ShiftOpcode == ISD::SRA) 1885 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1886 ShiftedValue, DAG.getValueType(LaneT)); 1887 UnrolledOps.push_back( 1888 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1889 } 1890 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1891 } 1892 1893 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1894 SelectionDAG &DAG) const { 1895 SDLoc DL(Op); 1896 1897 // Only manually lower vector shifts 1898 assert(Op.getSimpleValueType().isVector()); 1899 1900 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1901 if (!ShiftVal) 1902 return unrollVectorShift(Op, DAG); 1903 1904 // Use anyext because none of the high bits can affect the shift 1905 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1906 1907 unsigned Opcode; 1908 switch (Op.getOpcode()) { 1909 case ISD::SHL: 1910 Opcode = WebAssemblyISD::VEC_SHL; 1911 break; 1912 case ISD::SRA: 1913 Opcode = WebAssemblyISD::VEC_SHR_S; 1914 break; 1915 case ISD::SRL: 1916 Opcode = WebAssemblyISD::VEC_SHR_U; 1917 break; 1918 default: 1919 llvm_unreachable("unexpected opcode"); 1920 } 1921 1922 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1923 } 1924 1925 //===----------------------------------------------------------------------===// 1926 // Custom DAG combine hooks 1927 //===----------------------------------------------------------------------===// 1928 static SDValue 1929 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1930 auto &DAG = DCI.DAG; 1931 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1932 1933 // Hoist vector bitcasts that don't change the number of lanes out of unary 1934 // shuffles, where they are less likely to get in the way of other combines. 1935 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1936 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1937 SDValue Bitcast = N->getOperand(0); 1938 if (Bitcast.getOpcode() != ISD::BITCAST) 1939 return SDValue(); 1940 if (!N->getOperand(1).isUndef()) 1941 return SDValue(); 1942 SDValue CastOp = Bitcast.getOperand(0); 1943 MVT SrcType = CastOp.getSimpleValueType(); 1944 MVT DstType = Bitcast.getSimpleValueType(); 1945 if (!SrcType.is128BitVector() || 1946 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1947 return SDValue(); 1948 SDValue NewShuffle = DAG.getVectorShuffle( 1949 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1950 return DAG.getBitcast(DstType, NewShuffle); 1951 } 1952 1953 static SDValue performVectorWidenCombine(SDNode *N, 1954 TargetLowering::DAGCombinerInfo &DCI) { 1955 auto &DAG = DCI.DAG; 1956 assert(N->getOpcode() == ISD::SIGN_EXTEND || 1957 N->getOpcode() == ISD::ZERO_EXTEND); 1958 1959 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 1960 // possible before the extract_subvector can be expanded. 1961 auto Extract = N->getOperand(0); 1962 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 1963 return SDValue(); 1964 auto Source = Extract.getOperand(0); 1965 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 1966 if (IndexNode == nullptr) 1967 return SDValue(); 1968 auto Index = IndexNode->getZExtValue(); 1969 1970 // Only v8i8 and v4i16 extracts can be widened, and only if the extracted 1971 // subvector is the low or high half of its source. 1972 EVT ResVT = N->getValueType(0); 1973 if (ResVT == MVT::v8i16) { 1974 if (Extract.getValueType() != MVT::v8i8 || 1975 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 1976 return SDValue(); 1977 } else if (ResVT == MVT::v4i32) { 1978 if (Extract.getValueType() != MVT::v4i16 || 1979 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 1980 return SDValue(); 1981 } else { 1982 return SDValue(); 1983 } 1984 1985 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 1986 bool IsLow = Index == 0; 1987 1988 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S 1989 : WebAssemblyISD::WIDEN_HIGH_S) 1990 : (IsLow ? WebAssemblyISD::WIDEN_LOW_U 1991 : WebAssemblyISD::WIDEN_HIGH_U); 1992 1993 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 1994 } 1995 1996 SDValue 1997 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 1998 DAGCombinerInfo &DCI) const { 1999 switch (N->getOpcode()) { 2000 default: 2001 return SDValue(); 2002 case ISD::VECTOR_SHUFFLE: 2003 return performVECTOR_SHUFFLECombine(N, DCI); 2004 case ISD::SIGN_EXTEND: 2005 case ISD::ZERO_EXTEND: 2006 return performVectorWidenCombine(N, DCI); 2007 } 2008 } 2009