1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file implements the WebAssemblyTargetLowering class. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "WebAssemblyISelLowering.h" 16 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 // Emit proposed instructions that may not have been implemented in engines 40 cl::opt<bool> EnableUnimplementedWasmSIMDInstrs( 41 "wasm-enable-unimplemented-simd", 42 cl::desc("Emit potentially-unimplemented WebAssembly SIMD instructions"), 43 cl::init(false)); 44 45 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 46 const TargetMachine &TM, const WebAssemblySubtarget &STI) 47 : TargetLowering(TM), Subtarget(&STI) { 48 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 49 50 // Booleans always contain 0 or 1. 51 setBooleanContents(ZeroOrOneBooleanContent); 52 // Except in SIMD vectors 53 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 54 // WebAssembly does not produce floating-point exceptions on normal floating 55 // point operations. 56 setHasFloatingPointExceptions(false); 57 // We don't know the microarchitecture here, so just reduce register pressure. 58 setSchedulingPreference(Sched::RegPressure); 59 // Tell ISel that we have a stack pointer. 60 setStackPointerRegisterToSaveRestore( 61 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 62 // Set up the register classes. 63 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 64 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 65 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 66 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 67 if (Subtarget->hasSIMD128()) { 68 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 70 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 71 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 72 if (EnableUnimplementedWasmSIMDInstrs) { 73 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 74 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 75 } 76 } 77 // Compute derived properties from the register classes. 78 computeRegisterProperties(Subtarget->getRegisterInfo()); 79 80 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 81 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 82 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 83 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 84 setOperationAction(ISD::BRIND, MVT::Other, Custom); 85 86 // Take the default expansion for va_arg, va_copy, and va_end. There is no 87 // default action for va_start, so we do that custom. 88 setOperationAction(ISD::VASTART, MVT::Other, Custom); 89 setOperationAction(ISD::VAARG, MVT::Other, Expand); 90 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 91 setOperationAction(ISD::VAEND, MVT::Other, Expand); 92 93 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 94 // Don't expand the floating-point types to constant pools. 95 setOperationAction(ISD::ConstantFP, T, Legal); 96 // Expand floating-point comparisons. 97 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 98 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 99 setCondCodeAction(CC, T, Expand); 100 // Expand floating-point library function operators. 101 for (auto Op : 102 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 103 setOperationAction(Op, T, Expand); 104 // Note supported floating-point library function operators that otherwise 105 // default to expand. 106 for (auto Op : 107 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 108 setOperationAction(Op, T, Legal); 109 // Support minimum and maximum, which otherwise default to expand. 110 setOperationAction(ISD::FMINIMUM, T, Legal); 111 setOperationAction(ISD::FMAXIMUM, T, Legal); 112 // WebAssembly currently has no builtin f16 support. 113 setOperationAction(ISD::FP16_TO_FP, T, Expand); 114 setOperationAction(ISD::FP_TO_FP16, T, Expand); 115 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 116 setTruncStoreAction(T, MVT::f16, Expand); 117 } 118 119 // Support saturating add for i8x16 and i16x8 120 if (Subtarget->hasSIMD128()) 121 for (auto T : {MVT::v16i8, MVT::v8i16}) 122 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 123 setOperationAction(Op, T, Legal); 124 125 for (auto T : {MVT::i32, MVT::i64}) { 126 // Expand unavailable integer operations. 127 for (auto Op : 128 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 129 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 130 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 131 setOperationAction(Op, T, Expand); 132 } 133 } 134 135 // There is no i64x2.mul instruction 136 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 137 138 // We have custom shuffle lowering to expose the shuffle mask 139 if (Subtarget->hasSIMD128()) { 140 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) { 141 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 142 } 143 if (EnableUnimplementedWasmSIMDInstrs) { 144 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); 145 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); 146 } 147 } 148 149 // Custom lowering since wasm shifts must have a scalar shift amount 150 if (Subtarget->hasSIMD128()) { 151 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 152 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 153 setOperationAction(Op, T, Custom); 154 if (EnableUnimplementedWasmSIMDInstrs) 155 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 156 setOperationAction(Op, MVT::v2i64, Custom); 157 } 158 159 // There are no select instructions for vectors 160 if (Subtarget->hasSIMD128()) 161 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 162 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 163 setOperationAction(Op, T, Expand); 164 if (EnableUnimplementedWasmSIMDInstrs) 165 for (auto T : {MVT::v2i64, MVT::v2f64}) 166 setOperationAction(Op, T, Expand); 167 } 168 169 // As a special case, these operators use the type to mean the type to 170 // sign-extend from. 171 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 172 if (!Subtarget->hasSignExt()) { 173 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 174 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 175 } 176 for (auto T : MVT::integer_vector_valuetypes()) 177 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 178 179 // Dynamic stack allocation: use the default expansion. 180 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 181 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 182 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 183 184 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 185 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 186 187 // Expand these forms; we pattern-match the forms that we can handle in isel. 188 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 189 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 190 setOperationAction(Op, T, Expand); 191 192 // We have custom switch handling. 193 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 194 195 // WebAssembly doesn't have: 196 // - Floating-point extending loads. 197 // - Floating-point truncating stores. 198 // - i1 extending loads. 199 // - extending/truncating SIMD loads/stores 200 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 201 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 202 for (auto T : MVT::integer_valuetypes()) 203 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 204 setLoadExtAction(Ext, T, MVT::i1, Promote); 205 if (Subtarget->hasSIMD128()) { 206 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 207 MVT::v2f64}) { 208 for (auto MemT : MVT::vector_valuetypes()) { 209 if (MVT(T) != MemT) { 210 setTruncStoreAction(T, MemT, Expand); 211 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 212 setLoadExtAction(Ext, T, MemT, Expand); 213 } 214 } 215 } 216 } 217 218 // Custom lower lane accesses to expand out variable indices 219 if (Subtarget->hasSIMD128()) { 220 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) { 221 setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom); 222 setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom); 223 } 224 if (EnableUnimplementedWasmSIMDInstrs) { 225 for (auto T : {MVT::v2i64, MVT::v2f64}) { 226 setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom); 227 setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom); 228 } 229 } 230 } 231 232 // Trap lowers to wasm unreachable 233 setOperationAction(ISD::TRAP, MVT::Other, Legal); 234 235 // Exception handling intrinsics 236 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 237 238 setMaxAtomicSizeInBitsSupported(64); 239 } 240 241 TargetLowering::AtomicExpansionKind 242 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 243 // We have wasm instructions for these 244 switch (AI->getOperation()) { 245 case AtomicRMWInst::Add: 246 case AtomicRMWInst::Sub: 247 case AtomicRMWInst::And: 248 case AtomicRMWInst::Or: 249 case AtomicRMWInst::Xor: 250 case AtomicRMWInst::Xchg: 251 return AtomicExpansionKind::None; 252 default: 253 break; 254 } 255 return AtomicExpansionKind::CmpXChg; 256 } 257 258 FastISel *WebAssemblyTargetLowering::createFastISel( 259 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 260 return WebAssembly::createFastISel(FuncInfo, LibInfo); 261 } 262 263 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 264 const GlobalAddressSDNode * /*GA*/) const { 265 // All offsets can be folded. 266 return true; 267 } 268 269 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 270 EVT VT) const { 271 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 272 if (BitWidth > 1 && BitWidth < 8) 273 BitWidth = 8; 274 275 if (BitWidth > 64) { 276 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 277 // the count to be an i32. 278 BitWidth = 32; 279 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 280 "32-bit shift counts ought to be enough for anyone"); 281 } 282 283 MVT Result = MVT::getIntegerVT(BitWidth); 284 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 285 "Unable to represent scalar shift amount type"); 286 return Result; 287 } 288 289 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 290 // undefined result on invalid/overflow, to the WebAssembly opcode, which 291 // traps on invalid/overflow. 292 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 293 MachineBasicBlock *BB, 294 const TargetInstrInfo &TII, 295 bool IsUnsigned, bool Int64, 296 bool Float64, unsigned LoweredOpcode) { 297 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 298 299 unsigned OutReg = MI.getOperand(0).getReg(); 300 unsigned InReg = MI.getOperand(1).getReg(); 301 302 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 303 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 304 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 305 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 306 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 307 unsigned Eqz = WebAssembly::EQZ_I32; 308 unsigned And = WebAssembly::AND_I32; 309 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 310 int64_t Substitute = IsUnsigned ? 0 : Limit; 311 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 312 auto &Context = BB->getParent()->getFunction().getContext(); 313 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 314 315 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 316 MachineFunction *F = BB->getParent(); 317 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVM_BB); 318 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 319 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVM_BB); 320 321 MachineFunction::iterator It = ++BB->getIterator(); 322 F->insert(It, FalseMBB); 323 F->insert(It, TrueMBB); 324 F->insert(It, DoneMBB); 325 326 // Transfer the remainder of BB and its successor edges to DoneMBB. 327 DoneMBB->splice(DoneMBB->begin(), BB, 328 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 329 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 330 331 BB->addSuccessor(TrueMBB); 332 BB->addSuccessor(FalseMBB); 333 TrueMBB->addSuccessor(DoneMBB); 334 FalseMBB->addSuccessor(DoneMBB); 335 336 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 337 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 338 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 339 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 340 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 341 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 342 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 343 344 MI.eraseFromParent(); 345 // For signed numbers, we can do a single comparison to determine whether 346 // fabs(x) is within range. 347 if (IsUnsigned) { 348 Tmp0 = InReg; 349 } else { 350 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 351 } 352 BuildMI(BB, DL, TII.get(FConst), Tmp1) 353 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 354 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 355 356 // For unsigned numbers, we have to do a separate comparison with zero. 357 if (IsUnsigned) { 358 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 359 unsigned SecondCmpReg = 360 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 361 unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 362 BuildMI(BB, DL, TII.get(FConst), Tmp1) 363 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 364 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 365 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 366 CmpReg = AndReg; 367 } 368 369 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 370 371 // Create the CFG diamond to select between doing the conversion or using 372 // the substitute value. 373 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 374 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 375 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 376 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 377 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 378 .addReg(FalseReg) 379 .addMBB(FalseMBB) 380 .addReg(TrueReg) 381 .addMBB(TrueMBB); 382 383 return DoneMBB; 384 } 385 386 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 387 MachineInstr &MI, MachineBasicBlock *BB) const { 388 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 389 DebugLoc DL = MI.getDebugLoc(); 390 391 switch (MI.getOpcode()) { 392 default: 393 llvm_unreachable("Unexpected instr type to insert"); 394 case WebAssembly::FP_TO_SINT_I32_F32: 395 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 396 WebAssembly::I32_TRUNC_S_F32); 397 case WebAssembly::FP_TO_UINT_I32_F32: 398 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 399 WebAssembly::I32_TRUNC_U_F32); 400 case WebAssembly::FP_TO_SINT_I64_F32: 401 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 402 WebAssembly::I64_TRUNC_S_F32); 403 case WebAssembly::FP_TO_UINT_I64_F32: 404 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 405 WebAssembly::I64_TRUNC_U_F32); 406 case WebAssembly::FP_TO_SINT_I32_F64: 407 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 408 WebAssembly::I32_TRUNC_S_F64); 409 case WebAssembly::FP_TO_UINT_I32_F64: 410 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 411 WebAssembly::I32_TRUNC_U_F64); 412 case WebAssembly::FP_TO_SINT_I64_F64: 413 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 414 WebAssembly::I64_TRUNC_S_F64); 415 case WebAssembly::FP_TO_UINT_I64_F64: 416 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 417 WebAssembly::I64_TRUNC_U_F64); 418 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 419 } 420 } 421 422 const char * 423 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 424 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 425 case WebAssemblyISD::FIRST_NUMBER: 426 break; 427 #define HANDLE_NODETYPE(NODE) \ 428 case WebAssemblyISD::NODE: \ 429 return "WebAssemblyISD::" #NODE; 430 #include "WebAssemblyISD.def" 431 #undef HANDLE_NODETYPE 432 } 433 return nullptr; 434 } 435 436 std::pair<unsigned, const TargetRegisterClass *> 437 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 438 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 439 // First, see if this is a constraint that directly corresponds to a 440 // WebAssembly register class. 441 if (Constraint.size() == 1) { 442 switch (Constraint[0]) { 443 case 'r': 444 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 445 if (Subtarget->hasSIMD128() && VT.isVector()) { 446 if (VT.getSizeInBits() == 128) 447 return std::make_pair(0U, &WebAssembly::V128RegClass); 448 } 449 if (VT.isInteger() && !VT.isVector()) { 450 if (VT.getSizeInBits() <= 32) 451 return std::make_pair(0U, &WebAssembly::I32RegClass); 452 if (VT.getSizeInBits() <= 64) 453 return std::make_pair(0U, &WebAssembly::I64RegClass); 454 } 455 break; 456 default: 457 break; 458 } 459 } 460 461 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 462 } 463 464 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 465 // Assume ctz is a relatively cheap operation. 466 return true; 467 } 468 469 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 470 // Assume clz is a relatively cheap operation. 471 return true; 472 } 473 474 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 475 const AddrMode &AM, 476 Type *Ty, unsigned AS, 477 Instruction *I) const { 478 // WebAssembly offsets are added as unsigned without wrapping. The 479 // isLegalAddressingMode gives us no way to determine if wrapping could be 480 // happening, so we approximate this by accepting only non-negative offsets. 481 if (AM.BaseOffs < 0) 482 return false; 483 484 // WebAssembly has no scale register operands. 485 if (AM.Scale != 0) 486 return false; 487 488 // Everything else is legal. 489 return true; 490 } 491 492 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 493 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const { 494 // WebAssembly supports unaligned accesses, though it should be declared 495 // with the p2align attribute on loads and stores which do so, and there 496 // may be a performance impact. We tell LLVM they're "fast" because 497 // for the kinds of things that LLVM uses this for (merging adjacent stores 498 // of constants, etc.), WebAssembly implementations will either want the 499 // unaligned access or they'll split anyway. 500 if (Fast) 501 *Fast = true; 502 return true; 503 } 504 505 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 506 AttributeList Attr) const { 507 // The current thinking is that wasm engines will perform this optimization, 508 // so we can save on code size. 509 return true; 510 } 511 512 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 513 LLVMContext &C, 514 EVT VT) const { 515 if (VT.isVector()) 516 return VT.changeVectorElementTypeToInteger(); 517 518 return TargetLowering::getSetCCResultType(DL, C, VT); 519 } 520 521 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 522 const CallInst &I, 523 MachineFunction &MF, 524 unsigned Intrinsic) const { 525 switch (Intrinsic) { 526 case Intrinsic::wasm_atomic_notify: 527 Info.opc = ISD::INTRINSIC_W_CHAIN; 528 Info.memVT = MVT::i32; 529 Info.ptrVal = I.getArgOperand(0); 530 Info.offset = 0; 531 Info.align = 4; 532 // atomic.notify instruction does not really load the memory specified with 533 // this argument, but MachineMemOperand should either be load or store, so 534 // we set this to a load. 535 // FIXME Volatile isn't really correct, but currently all LLVM atomic 536 // instructions are treated as volatiles in the backend, so we should be 537 // consistent. The same applies for wasm_atomic_wait intrinsics too. 538 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 539 return true; 540 case Intrinsic::wasm_atomic_wait_i32: 541 Info.opc = ISD::INTRINSIC_W_CHAIN; 542 Info.memVT = MVT::i32; 543 Info.ptrVal = I.getArgOperand(0); 544 Info.offset = 0; 545 Info.align = 4; 546 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 547 return true; 548 case Intrinsic::wasm_atomic_wait_i64: 549 Info.opc = ISD::INTRINSIC_W_CHAIN; 550 Info.memVT = MVT::i64; 551 Info.ptrVal = I.getArgOperand(0); 552 Info.offset = 0; 553 Info.align = 8; 554 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 555 return true; 556 default: 557 return false; 558 } 559 } 560 561 //===----------------------------------------------------------------------===// 562 // WebAssembly Lowering private implementation. 563 //===----------------------------------------------------------------------===// 564 565 //===----------------------------------------------------------------------===// 566 // Lowering Code 567 //===----------------------------------------------------------------------===// 568 569 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *msg) { 570 MachineFunction &MF = DAG.getMachineFunction(); 571 DAG.getContext()->diagnose( 572 DiagnosticInfoUnsupported(MF.getFunction(), msg, DL.getDebugLoc())); 573 } 574 575 // Test whether the given calling convention is supported. 576 static bool CallingConvSupported(CallingConv::ID CallConv) { 577 // We currently support the language-independent target-independent 578 // conventions. We don't yet have a way to annotate calls with properties like 579 // "cold", and we don't have any call-clobbered registers, so these are mostly 580 // all handled the same. 581 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 582 CallConv == CallingConv::Cold || 583 CallConv == CallingConv::PreserveMost || 584 CallConv == CallingConv::PreserveAll || 585 CallConv == CallingConv::CXX_FAST_TLS; 586 } 587 588 SDValue 589 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 590 SmallVectorImpl<SDValue> &InVals) const { 591 SelectionDAG &DAG = CLI.DAG; 592 SDLoc DL = CLI.DL; 593 SDValue Chain = CLI.Chain; 594 SDValue Callee = CLI.Callee; 595 MachineFunction &MF = DAG.getMachineFunction(); 596 auto Layout = MF.getDataLayout(); 597 598 CallingConv::ID CallConv = CLI.CallConv; 599 if (!CallingConvSupported(CallConv)) 600 fail(DL, DAG, 601 "WebAssembly doesn't support language-specific or target-specific " 602 "calling conventions yet"); 603 if (CLI.IsPatchPoint) 604 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 605 606 // WebAssembly doesn't currently support explicit tail calls. If they are 607 // required, fail. Otherwise, just disable them. 608 if ((CallConv == CallingConv::Fast && CLI.IsTailCall && 609 MF.getTarget().Options.GuaranteedTailCallOpt) || 610 (CLI.CS && CLI.CS.isMustTailCall())) 611 fail(DL, DAG, "WebAssembly doesn't support tail call yet"); 612 CLI.IsTailCall = false; 613 614 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 615 if (Ins.size() > 1) 616 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 617 618 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 619 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 620 unsigned NumFixedArgs = 0; 621 for (unsigned i = 0; i < Outs.size(); ++i) { 622 const ISD::OutputArg &Out = Outs[i]; 623 SDValue &OutVal = OutVals[i]; 624 if (Out.Flags.isNest()) 625 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 626 if (Out.Flags.isInAlloca()) 627 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 628 if (Out.Flags.isInConsecutiveRegs()) 629 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 630 if (Out.Flags.isInConsecutiveRegsLast()) 631 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 632 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 633 auto &MFI = MF.getFrameInfo(); 634 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 635 Out.Flags.getByValAlign(), 636 /*isSS=*/false); 637 SDValue SizeNode = 638 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 639 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 640 Chain = DAG.getMemcpy( 641 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 642 /*isVolatile*/ false, /*AlwaysInline=*/false, 643 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 644 OutVal = FINode; 645 } 646 // Count the number of fixed args *after* legalization. 647 NumFixedArgs += Out.IsFixed; 648 } 649 650 bool IsVarArg = CLI.IsVarArg; 651 auto PtrVT = getPointerTy(Layout); 652 653 // Analyze operands of the call, assigning locations to each operand. 654 SmallVector<CCValAssign, 16> ArgLocs; 655 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 656 657 if (IsVarArg) { 658 // Outgoing non-fixed arguments are placed in a buffer. First 659 // compute their offsets and the total amount of buffer space needed. 660 for (SDValue Arg : 661 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 662 EVT VT = Arg.getValueType(); 663 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 664 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 665 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 666 Layout.getABITypeAlignment(Ty)); 667 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 668 Offset, VT.getSimpleVT(), 669 CCValAssign::Full)); 670 } 671 } 672 673 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 674 675 SDValue FINode; 676 if (IsVarArg && NumBytes) { 677 // For non-fixed arguments, next emit stores to store the argument values 678 // to the stack buffer at the offsets computed above. 679 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 680 Layout.getStackAlignment(), 681 /*isSS=*/false); 682 unsigned ValNo = 0; 683 SmallVector<SDValue, 8> Chains; 684 for (SDValue Arg : 685 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 686 assert(ArgLocs[ValNo].getValNo() == ValNo && 687 "ArgLocs should remain in order and only hold varargs args"); 688 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 689 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 690 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 691 DAG.getConstant(Offset, DL, PtrVT)); 692 Chains.push_back( 693 DAG.getStore(Chain, DL, Arg, Add, 694 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 695 } 696 if (!Chains.empty()) 697 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 698 } else if (IsVarArg) { 699 FINode = DAG.getIntPtrConstant(0, DL); 700 } 701 702 // Compute the operands for the CALLn node. 703 SmallVector<SDValue, 16> Ops; 704 Ops.push_back(Chain); 705 Ops.push_back(Callee); 706 707 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 708 // isn't reliable. 709 Ops.append(OutVals.begin(), 710 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 711 // Add a pointer to the vararg buffer. 712 if (IsVarArg) 713 Ops.push_back(FINode); 714 715 SmallVector<EVT, 8> InTys; 716 for (const auto &In : Ins) { 717 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 718 assert(!In.Flags.isNest() && "nest is not valid for return values"); 719 if (In.Flags.isInAlloca()) 720 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 721 if (In.Flags.isInConsecutiveRegs()) 722 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 723 if (In.Flags.isInConsecutiveRegsLast()) 724 fail(DL, DAG, 725 "WebAssembly hasn't implemented cons regs last return values"); 726 // Ignore In.getOrigAlign() because all our arguments are passed in 727 // registers. 728 InTys.push_back(In.VT); 729 } 730 InTys.push_back(MVT::Other); 731 SDVTList InTyList = DAG.getVTList(InTys); 732 SDValue Res = 733 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 734 DL, InTyList, Ops); 735 if (Ins.empty()) { 736 Chain = Res; 737 } else { 738 InVals.push_back(Res); 739 Chain = Res.getValue(1); 740 } 741 742 return Chain; 743 } 744 745 bool WebAssemblyTargetLowering::CanLowerReturn( 746 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 747 const SmallVectorImpl<ISD::OutputArg> &Outs, 748 LLVMContext & /*Context*/) const { 749 // WebAssembly can't currently handle returning tuples. 750 return Outs.size() <= 1; 751 } 752 753 SDValue WebAssemblyTargetLowering::LowerReturn( 754 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 755 const SmallVectorImpl<ISD::OutputArg> &Outs, 756 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 757 SelectionDAG &DAG) const { 758 assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); 759 if (!CallingConvSupported(CallConv)) 760 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 761 762 SmallVector<SDValue, 4> RetOps(1, Chain); 763 RetOps.append(OutVals.begin(), OutVals.end()); 764 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 765 766 // Record the number and types of the return values. 767 for (const ISD::OutputArg &Out : Outs) { 768 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 769 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 770 assert(Out.IsFixed && "non-fixed return value is not valid"); 771 if (Out.Flags.isInAlloca()) 772 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 773 if (Out.Flags.isInConsecutiveRegs()) 774 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 775 if (Out.Flags.isInConsecutiveRegsLast()) 776 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 777 } 778 779 return Chain; 780 } 781 782 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 783 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 784 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 785 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 786 if (!CallingConvSupported(CallConv)) 787 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 788 789 MachineFunction &MF = DAG.getMachineFunction(); 790 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 791 792 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 793 // of the incoming values before they're represented by virtual registers. 794 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 795 796 for (const ISD::InputArg &In : Ins) { 797 if (In.Flags.isInAlloca()) 798 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 799 if (In.Flags.isNest()) 800 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 801 if (In.Flags.isInConsecutiveRegs()) 802 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 803 if (In.Flags.isInConsecutiveRegsLast()) 804 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 805 // Ignore In.getOrigAlign() because all our arguments are passed in 806 // registers. 807 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 808 DAG.getTargetConstant(InVals.size(), 809 DL, MVT::i32)) 810 : DAG.getUNDEF(In.VT)); 811 812 // Record the number and types of arguments. 813 MFI->addParam(In.VT); 814 } 815 816 // Varargs are copied into a buffer allocated by the caller, and a pointer to 817 // the buffer is passed as an argument. 818 if (IsVarArg) { 819 MVT PtrVT = getPointerTy(MF.getDataLayout()); 820 unsigned VarargVreg = 821 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 822 MFI->setVarargBufferVreg(VarargVreg); 823 Chain = DAG.getCopyToReg( 824 Chain, DL, VarargVreg, 825 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 826 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 827 MFI->addParam(PtrVT); 828 } 829 830 // Record the number and types of arguments and results. 831 SmallVector<MVT, 4> Params; 832 SmallVector<MVT, 4> Results; 833 ComputeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 834 DAG.getTarget(), Params, Results); 835 for (MVT VT : Results) 836 MFI->addResult(VT); 837 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 838 // the param logic here with ComputeSignatureVTs 839 assert(MFI->getParams().size() == Params.size() && 840 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 841 Params.begin())); 842 843 return Chain; 844 } 845 846 //===----------------------------------------------------------------------===// 847 // Custom lowering hooks. 848 //===----------------------------------------------------------------------===// 849 850 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 851 SelectionDAG &DAG) const { 852 SDLoc DL(Op); 853 switch (Op.getOpcode()) { 854 default: 855 llvm_unreachable("unimplemented operation lowering"); 856 return SDValue(); 857 case ISD::FrameIndex: 858 return LowerFrameIndex(Op, DAG); 859 case ISD::GlobalAddress: 860 return LowerGlobalAddress(Op, DAG); 861 case ISD::ExternalSymbol: 862 return LowerExternalSymbol(Op, DAG); 863 case ISD::JumpTable: 864 return LowerJumpTable(Op, DAG); 865 case ISD::BR_JT: 866 return LowerBR_JT(Op, DAG); 867 case ISD::VASTART: 868 return LowerVASTART(Op, DAG); 869 case ISD::BlockAddress: 870 case ISD::BRIND: 871 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 872 return SDValue(); 873 case ISD::RETURNADDR: // Probably nothing meaningful can be returned here. 874 fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address"); 875 return SDValue(); 876 case ISD::FRAMEADDR: 877 return LowerFRAMEADDR(Op, DAG); 878 case ISD::CopyToReg: 879 return LowerCopyToReg(Op, DAG); 880 case ISD::INTRINSIC_WO_CHAIN: 881 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 882 case ISD::EXTRACT_VECTOR_ELT: 883 case ISD::INSERT_VECTOR_ELT: 884 return LowerAccessVectorElement(Op, DAG); 885 case ISD::VECTOR_SHUFFLE: 886 return LowerVECTOR_SHUFFLE(Op, DAG); 887 case ISD::SHL: 888 case ISD::SRA: 889 case ISD::SRL: 890 return LowerShift(Op, DAG); 891 } 892 } 893 894 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 895 SelectionDAG &DAG) const { 896 SDValue Src = Op.getOperand(2); 897 if (isa<FrameIndexSDNode>(Src.getNode())) { 898 // CopyToReg nodes don't support FrameIndex operands. Other targets select 899 // the FI to some LEA-like instruction, but since we don't have that, we 900 // need to insert some kind of instruction that can take an FI operand and 901 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 902 // copy_local between Op and its FI operand. 903 SDValue Chain = Op.getOperand(0); 904 SDLoc DL(Op); 905 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 906 EVT VT = Src.getValueType(); 907 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 908 : WebAssembly::COPY_I64, 909 DL, VT, Src), 910 0); 911 return Op.getNode()->getNumValues() == 1 912 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 913 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 914 Op.getNumOperands() == 4 ? Op.getOperand(3) 915 : SDValue()); 916 } 917 return SDValue(); 918 } 919 920 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 921 SelectionDAG &DAG) const { 922 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 923 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 924 } 925 926 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 927 SelectionDAG &DAG) const { 928 // Non-zero depths are not supported by WebAssembly currently. Use the 929 // legalizer's default expansion, which is to return 0 (what this function is 930 // documented to do). 931 if (Op.getConstantOperandVal(0) > 0) 932 return SDValue(); 933 934 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 935 EVT VT = Op.getValueType(); 936 unsigned FP = 937 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 938 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 939 } 940 941 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 942 SelectionDAG &DAG) const { 943 SDLoc DL(Op); 944 const auto *GA = cast<GlobalAddressSDNode>(Op); 945 EVT VT = Op.getValueType(); 946 assert(GA->getTargetFlags() == 0 && 947 "Unexpected target flags on generic GlobalAddressSDNode"); 948 if (GA->getAddressSpace() != 0) 949 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 950 return DAG.getNode( 951 WebAssemblyISD::Wrapper, DL, VT, 952 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset())); 953 } 954 955 SDValue 956 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 957 SelectionDAG &DAG) const { 958 SDLoc DL(Op); 959 const auto *ES = cast<ExternalSymbolSDNode>(Op); 960 EVT VT = Op.getValueType(); 961 assert(ES->getTargetFlags() == 0 && 962 "Unexpected target flags on generic ExternalSymbolSDNode"); 963 // Set the TargetFlags to 0x1 which indicates that this is a "function" 964 // symbol rather than a data symbol. We do this unconditionally even though 965 // we don't know anything about the symbol other than its name, because all 966 // external symbols used in target-independent SelectionDAG code are for 967 // functions. 968 return DAG.getNode( 969 WebAssemblyISD::Wrapper, DL, VT, 970 DAG.getTargetExternalSymbol(ES->getSymbol(), VT, 971 WebAssemblyII::MO_SYMBOL_FUNCTION)); 972 } 973 974 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 975 SelectionDAG &DAG) const { 976 // There's no need for a Wrapper node because we always incorporate a jump 977 // table operand into a BR_TABLE instruction, rather than ever 978 // materializing it in a register. 979 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 980 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 981 JT->getTargetFlags()); 982 } 983 984 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 985 SelectionDAG &DAG) const { 986 SDLoc DL(Op); 987 SDValue Chain = Op.getOperand(0); 988 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 989 SDValue Index = Op.getOperand(2); 990 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 991 992 SmallVector<SDValue, 8> Ops; 993 Ops.push_back(Chain); 994 Ops.push_back(Index); 995 996 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 997 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 998 999 // Add an operand for each case. 1000 for (auto MBB : MBBs) 1001 Ops.push_back(DAG.getBasicBlock(MBB)); 1002 1003 // TODO: For now, we just pick something arbitrary for a default case for now. 1004 // We really want to sniff out the guard and put in the real default case (and 1005 // delete the guard). 1006 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1007 1008 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1009 } 1010 1011 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1012 SelectionDAG &DAG) const { 1013 SDLoc DL(Op); 1014 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1015 1016 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1017 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1018 1019 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1020 MFI->getVarargBufferVreg(), PtrVT); 1021 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1022 MachinePointerInfo(SV), 0); 1023 } 1024 1025 SDValue 1026 WebAssemblyTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1027 SelectionDAG &DAG) const { 1028 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1029 SDLoc DL(Op); 1030 switch (IntNo) { 1031 default: 1032 return {}; // Don't custom lower most intrinsics. 1033 1034 case Intrinsic::wasm_lsda: { 1035 MachineFunction &MF = DAG.getMachineFunction(); 1036 EVT VT = Op.getValueType(); 1037 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1038 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1039 auto &Context = MF.getMMI().getContext(); 1040 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1041 Twine(MF.getFunctionNumber())); 1042 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1043 DAG.getMCSymbol(S, PtrVT)); 1044 } 1045 } 1046 } 1047 1048 SDValue 1049 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1050 SelectionDAG &DAG) const { 1051 SDLoc DL(Op); 1052 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1053 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1054 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1055 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1056 1057 // Space for two vector args and sixteen mask indices 1058 SDValue Ops[18]; 1059 size_t OpIdx = 0; 1060 Ops[OpIdx++] = Op.getOperand(0); 1061 Ops[OpIdx++] = Op.getOperand(1); 1062 1063 // Expand mask indices to byte indices and materialize them as operands 1064 for (size_t I = 0, Lanes = Mask.size(); I < Lanes; ++I) { 1065 for (size_t J = 0; J < LaneBytes; ++J) { 1066 // Lower undefs (represented by -1 in mask) to zero 1067 uint64_t ByteIndex = 1068 Mask[I] == -1 ? 0 : (uint64_t)Mask[I] * LaneBytes + J; 1069 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1070 } 1071 } 1072 1073 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1074 } 1075 1076 SDValue 1077 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1078 SelectionDAG &DAG) const { 1079 // Allow constant lane indices, expand variable lane indices 1080 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1081 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1082 return Op; 1083 else 1084 // Perform default expansion 1085 return SDValue(); 1086 } 1087 1088 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1089 SelectionDAG &DAG) const { 1090 SDLoc DL(Op); 1091 1092 // Only manually lower vector shifts 1093 assert(Op.getSimpleValueType().isVector()); 1094 1095 // Unroll non-splat vector shifts 1096 BuildVectorSDNode *ShiftVec; 1097 SDValue SplatVal; 1098 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1099 !(SplatVal = ShiftVec->getSplatValue())) 1100 return DAG.UnrollVectorOp(Op.getNode()); 1101 1102 // All splats except i64x2 const splats are handled by patterns 1103 ConstantSDNode *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1104 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1105 return Op; 1106 1107 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1108 unsigned Opcode; 1109 switch (Op.getOpcode()) { 1110 case ISD::SHL: 1111 Opcode = WebAssemblyISD::VEC_SHL; 1112 break; 1113 case ISD::SRA: 1114 Opcode = WebAssemblyISD::VEC_SHR_S; 1115 break; 1116 case ISD::SRL: 1117 Opcode = WebAssemblyISD::VEC_SHR_U; 1118 break; 1119 default: 1120 llvm_unreachable("unexpected opcode"); 1121 } 1122 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1123 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1124 DAG.getConstant(Shift, DL, MVT::i32)); 1125 } 1126 1127 //===----------------------------------------------------------------------===// 1128 // WebAssembly Optimization Hooks 1129 //===----------------------------------------------------------------------===// 1130