1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetOptions.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-lower" 42 43 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 44 const TargetMachine &TM, const WebAssemblySubtarget &STI) 45 : TargetLowering(TM), Subtarget(&STI) { 46 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 47 48 // Booleans always contain 0 or 1. 49 setBooleanContents(ZeroOrOneBooleanContent); 50 // Except in SIMD vectors 51 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 52 // We don't know the microarchitecture here, so just reduce register pressure. 53 setSchedulingPreference(Sched::RegPressure); 54 // Tell ISel that we have a stack pointer. 55 setStackPointerRegisterToSaveRestore( 56 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 57 // Set up the register classes. 58 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 59 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 60 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 61 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 62 if (Subtarget->hasSIMD128()) { 63 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 69 } 70 if (Subtarget->hasReferenceTypes()) { 71 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 72 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 73 } 74 // Compute derived properties from the register classes. 75 computeRegisterProperties(Subtarget->getRegisterInfo()); 76 77 // Transform loads and stores to pointers in address space 1 to loads and 78 // stores to WebAssembly global variables, outside linear memory. 79 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 80 setOperationAction(ISD::LOAD, T, Custom); 81 setOperationAction(ISD::STORE, T, Custom); 82 } 83 if (Subtarget->hasSIMD128()) { 84 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 85 MVT::v2f64}) { 86 setOperationAction(ISD::LOAD, T, Custom); 87 setOperationAction(ISD::STORE, T, Custom); 88 } 89 } 90 if (Subtarget->hasReferenceTypes()) { 91 // We need custom load and store lowering for both externref, funcref and 92 // Other. The MVT::Other here represents tables of reference types. 93 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 94 setOperationAction(ISD::LOAD, T, Custom); 95 setOperationAction(ISD::STORE, T, Custom); 96 } 97 } 98 99 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 100 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 101 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 102 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 103 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 104 setOperationAction(ISD::BRIND, MVT::Other, Custom); 105 106 // Take the default expansion for va_arg, va_copy, and va_end. There is no 107 // default action for va_start, so we do that custom. 108 setOperationAction(ISD::VASTART, MVT::Other, Custom); 109 setOperationAction(ISD::VAARG, MVT::Other, Expand); 110 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 111 setOperationAction(ISD::VAEND, MVT::Other, Expand); 112 113 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 114 // Don't expand the floating-point types to constant pools. 115 setOperationAction(ISD::ConstantFP, T, Legal); 116 // Expand floating-point comparisons. 117 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 118 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 119 setCondCodeAction(CC, T, Expand); 120 // Expand floating-point library function operators. 121 for (auto Op : 122 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 123 setOperationAction(Op, T, Expand); 124 // Note supported floating-point library function operators that otherwise 125 // default to expand. 126 for (auto Op : 127 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 128 setOperationAction(Op, T, Legal); 129 // Support minimum and maximum, which otherwise default to expand. 130 setOperationAction(ISD::FMINIMUM, T, Legal); 131 setOperationAction(ISD::FMAXIMUM, T, Legal); 132 // WebAssembly currently has no builtin f16 support. 133 setOperationAction(ISD::FP16_TO_FP, T, Expand); 134 setOperationAction(ISD::FP_TO_FP16, T, Expand); 135 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 136 setTruncStoreAction(T, MVT::f16, Expand); 137 } 138 139 // Expand unavailable integer operations. 140 for (auto Op : 141 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 142 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 143 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 144 for (auto T : {MVT::i32, MVT::i64}) 145 setOperationAction(Op, T, Expand); 146 if (Subtarget->hasSIMD128()) 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 148 setOperationAction(Op, T, Expand); 149 } 150 151 if (Subtarget->hasNontrappingFPToInt()) 152 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 153 for (auto T : {MVT::i32, MVT::i64}) 154 setOperationAction(Op, T, Custom); 155 156 // SIMD-specific configuration 157 if (Subtarget->hasSIMD128()) { 158 // Hoist bitcasts out of shuffles 159 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 160 161 // Combine extends of extract_subvectors into widening ops 162 setTargetDAGCombine(ISD::SIGN_EXTEND); 163 setTargetDAGCombine(ISD::ZERO_EXTEND); 164 165 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 166 // conversions ops 167 setTargetDAGCombine(ISD::SINT_TO_FP); 168 setTargetDAGCombine(ISD::UINT_TO_FP); 169 setTargetDAGCombine(ISD::FP_EXTEND); 170 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 171 172 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 173 // into conversion ops 174 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 175 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 176 setTargetDAGCombine(ISD::FP_ROUND); 177 setTargetDAGCombine(ISD::CONCAT_VECTORS); 178 179 // Support saturating add for i8x16 and i16x8 180 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 181 for (auto T : {MVT::v16i8, MVT::v8i16}) 182 setOperationAction(Op, T, Legal); 183 184 // Support integer abs 185 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 186 setOperationAction(ISD::ABS, T, Legal); 187 188 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 189 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 190 MVT::v2f64}) 191 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 192 193 // We have custom shuffle lowering to expose the shuffle mask 194 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 195 MVT::v2f64}) 196 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 197 198 // Custom lowering since wasm shifts must have a scalar shift amount 199 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 200 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 201 setOperationAction(Op, T, Custom); 202 203 // Custom lower lane accesses to expand out variable indices 204 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 205 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 206 MVT::v2f64}) 207 setOperationAction(Op, T, Custom); 208 209 // There is no i8x16.mul instruction 210 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 211 212 // There is no vector conditional select instruction 213 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 214 MVT::v2f64}) 215 setOperationAction(ISD::SELECT_CC, T, Expand); 216 217 // Expand integer operations supported for scalars but not SIMD 218 for (auto Op : 219 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 220 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 221 setOperationAction(Op, T, Expand); 222 223 // But we do have integer min and max operations 224 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 225 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 226 setOperationAction(Op, T, Legal); 227 228 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 229 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 230 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 231 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 232 233 // Custom lower bit counting operations for other types to scalarize them. 234 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 235 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 236 setOperationAction(Op, T, Custom); 237 238 // Expand float operations supported for scalars but not SIMD 239 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 240 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 241 for (auto T : {MVT::v4f32, MVT::v2f64}) 242 setOperationAction(Op, T, Expand); 243 244 // Unsigned comparison operations are unavailable for i64x2 vectors. 245 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 246 setCondCodeAction(CC, MVT::v2i64, Custom); 247 248 // 64x2 conversions are not in the spec 249 for (auto Op : 250 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 251 for (auto T : {MVT::v2i64, MVT::v2f64}) 252 setOperationAction(Op, T, Expand); 253 254 // But saturating fp_to_int converstions are 255 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 256 setOperationAction(Op, MVT::v4i32, Custom); 257 } 258 259 // As a special case, these operators use the type to mean the type to 260 // sign-extend from. 261 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 262 if (!Subtarget->hasSignExt()) { 263 // Sign extends are legal only when extending a vector extract 264 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 265 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 266 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 267 } 268 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 269 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 270 271 // Dynamic stack allocation: use the default expansion. 272 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 273 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 274 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 275 276 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 277 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 278 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 279 280 // Expand these forms; we pattern-match the forms that we can handle in isel. 281 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 282 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 283 setOperationAction(Op, T, Expand); 284 285 // We have custom switch handling. 286 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 287 288 // WebAssembly doesn't have: 289 // - Floating-point extending loads. 290 // - Floating-point truncating stores. 291 // - i1 extending loads. 292 // - truncating SIMD stores and most extending loads 293 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 294 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 295 for (auto T : MVT::integer_valuetypes()) 296 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 297 setLoadExtAction(Ext, T, MVT::i1, Promote); 298 if (Subtarget->hasSIMD128()) { 299 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 300 MVT::v2f64}) { 301 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 302 if (MVT(T) != MemT) { 303 setTruncStoreAction(T, MemT, Expand); 304 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 305 setLoadExtAction(Ext, T, MemT, Expand); 306 } 307 } 308 } 309 // But some vector extending loads are legal 310 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 311 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 312 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 313 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 314 } 315 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 316 } 317 318 // Don't do anything clever with build_pairs 319 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 320 321 // Trap lowers to wasm unreachable 322 setOperationAction(ISD::TRAP, MVT::Other, Legal); 323 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 324 325 // Exception handling intrinsics 326 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 327 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 328 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 329 330 setMaxAtomicSizeInBitsSupported(64); 331 332 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 333 // consistent with the f64 and f128 names. 334 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 335 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 336 337 // Define the emscripten name for return address helper. 338 // TODO: when implementing other Wasm backends, make this generic or only do 339 // this on emscripten depending on what they end up doing. 340 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 341 342 // Always convert switches to br_tables unless there is only one case, which 343 // is equivalent to a simple branch. This reduces code size for wasm, and we 344 // defer possible jump table optimizations to the VM. 345 setMinimumJumpTableEntries(2); 346 } 347 348 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 349 uint32_t AS) const { 350 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 351 return MVT::externref; 352 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 353 return MVT::funcref; 354 return TargetLowering::getPointerTy(DL, AS); 355 } 356 357 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 358 uint32_t AS) const { 359 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 360 return MVT::externref; 361 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 362 return MVT::funcref; 363 return TargetLowering::getPointerMemTy(DL, AS); 364 } 365 366 TargetLowering::AtomicExpansionKind 367 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 368 // We have wasm instructions for these 369 switch (AI->getOperation()) { 370 case AtomicRMWInst::Add: 371 case AtomicRMWInst::Sub: 372 case AtomicRMWInst::And: 373 case AtomicRMWInst::Or: 374 case AtomicRMWInst::Xor: 375 case AtomicRMWInst::Xchg: 376 return AtomicExpansionKind::None; 377 default: 378 break; 379 } 380 return AtomicExpansionKind::CmpXChg; 381 } 382 383 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 384 // Implementation copied from X86TargetLowering. 385 unsigned Opc = VecOp.getOpcode(); 386 387 // Assume target opcodes can't be scalarized. 388 // TODO - do we have any exceptions? 389 if (Opc >= ISD::BUILTIN_OP_END) 390 return false; 391 392 // If the vector op is not supported, try to convert to scalar. 393 EVT VecVT = VecOp.getValueType(); 394 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 395 return true; 396 397 // If the vector op is supported, but the scalar op is not, the transform may 398 // not be worthwhile. 399 EVT ScalarVT = VecVT.getScalarType(); 400 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 401 } 402 403 FastISel *WebAssemblyTargetLowering::createFastISel( 404 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 405 return WebAssembly::createFastISel(FuncInfo, LibInfo); 406 } 407 408 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 409 EVT VT) const { 410 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 411 if (BitWidth > 1 && BitWidth < 8) 412 BitWidth = 8; 413 414 if (BitWidth > 64) { 415 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 416 // the count to be an i32. 417 BitWidth = 32; 418 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 419 "32-bit shift counts ought to be enough for anyone"); 420 } 421 422 MVT Result = MVT::getIntegerVT(BitWidth); 423 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 424 "Unable to represent scalar shift amount type"); 425 return Result; 426 } 427 428 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 429 // undefined result on invalid/overflow, to the WebAssembly opcode, which 430 // traps on invalid/overflow. 431 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 432 MachineBasicBlock *BB, 433 const TargetInstrInfo &TII, 434 bool IsUnsigned, bool Int64, 435 bool Float64, unsigned LoweredOpcode) { 436 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 437 438 Register OutReg = MI.getOperand(0).getReg(); 439 Register InReg = MI.getOperand(1).getReg(); 440 441 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 442 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 443 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 444 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 445 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 446 unsigned Eqz = WebAssembly::EQZ_I32; 447 unsigned And = WebAssembly::AND_I32; 448 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 449 int64_t Substitute = IsUnsigned ? 0 : Limit; 450 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 451 auto &Context = BB->getParent()->getFunction().getContext(); 452 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 453 454 const BasicBlock *LLVMBB = BB->getBasicBlock(); 455 MachineFunction *F = BB->getParent(); 456 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 457 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 458 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 459 460 MachineFunction::iterator It = ++BB->getIterator(); 461 F->insert(It, FalseMBB); 462 F->insert(It, TrueMBB); 463 F->insert(It, DoneMBB); 464 465 // Transfer the remainder of BB and its successor edges to DoneMBB. 466 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 467 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 468 469 BB->addSuccessor(TrueMBB); 470 BB->addSuccessor(FalseMBB); 471 TrueMBB->addSuccessor(DoneMBB); 472 FalseMBB->addSuccessor(DoneMBB); 473 474 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 475 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 476 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 477 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 478 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 479 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 480 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 481 482 MI.eraseFromParent(); 483 // For signed numbers, we can do a single comparison to determine whether 484 // fabs(x) is within range. 485 if (IsUnsigned) { 486 Tmp0 = InReg; 487 } else { 488 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 489 } 490 BuildMI(BB, DL, TII.get(FConst), Tmp1) 491 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 492 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 493 494 // For unsigned numbers, we have to do a separate comparison with zero. 495 if (IsUnsigned) { 496 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 497 Register SecondCmpReg = 498 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 499 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 500 BuildMI(BB, DL, TII.get(FConst), Tmp1) 501 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 502 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 503 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 504 CmpReg = AndReg; 505 } 506 507 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 508 509 // Create the CFG diamond to select between doing the conversion or using 510 // the substitute value. 511 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 512 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 513 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 514 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 515 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 516 .addReg(FalseReg) 517 .addMBB(FalseMBB) 518 .addReg(TrueReg) 519 .addMBB(TrueMBB); 520 521 return DoneMBB; 522 } 523 524 static MachineBasicBlock * 525 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 526 const WebAssemblySubtarget *Subtarget, 527 const TargetInstrInfo &TII) { 528 MachineInstr &CallParams = *CallResults.getPrevNode(); 529 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 530 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 531 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 532 533 bool IsIndirect = CallParams.getOperand(0).isReg(); 534 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 535 536 bool IsFuncrefCall = false; 537 if (IsIndirect) { 538 Register Reg = CallParams.getOperand(0).getReg(); 539 const MachineFunction *MF = BB->getParent(); 540 const MachineRegisterInfo &MRI = MF->getRegInfo(); 541 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 542 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 543 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 544 } 545 546 unsigned CallOp; 547 if (IsIndirect && IsRetCall) { 548 CallOp = WebAssembly::RET_CALL_INDIRECT; 549 } else if (IsIndirect) { 550 CallOp = WebAssembly::CALL_INDIRECT; 551 } else if (IsRetCall) { 552 CallOp = WebAssembly::RET_CALL; 553 } else { 554 CallOp = WebAssembly::CALL; 555 } 556 557 MachineFunction &MF = *BB->getParent(); 558 const MCInstrDesc &MCID = TII.get(CallOp); 559 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 560 561 // See if we must truncate the function pointer. 562 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 563 // as 64-bit for uniformity with other pointer types. 564 // See also: WebAssemblyFastISel::selectCall 565 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 566 Register Reg32 = 567 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 568 auto &FnPtr = CallParams.getOperand(0); 569 BuildMI(*BB, CallResults.getIterator(), DL, 570 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 571 .addReg(FnPtr.getReg()); 572 FnPtr.setReg(Reg32); 573 } 574 575 // Move the function pointer to the end of the arguments for indirect calls 576 if (IsIndirect) { 577 auto FnPtr = CallParams.getOperand(0); 578 CallParams.RemoveOperand(0); 579 580 // For funcrefs, call_indirect is done through __funcref_call_table and the 581 // funcref is always installed in slot 0 of the table, therefore instead of having 582 // the function pointer added at the end of the params list, a zero (the index in 583 // __funcref_call_table is added). 584 if (IsFuncrefCall) { 585 Register RegZero = 586 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 587 MachineInstrBuilder MIBC0 = 588 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 589 590 BB->insert(CallResults.getIterator(), MIBC0); 591 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 592 } else 593 CallParams.addOperand(FnPtr); 594 } 595 596 for (auto Def : CallResults.defs()) 597 MIB.add(Def); 598 599 if (IsIndirect) { 600 // Placeholder for the type index. 601 MIB.addImm(0); 602 // The table into which this call_indirect indexes. 603 MCSymbolWasm *Table = IsFuncrefCall 604 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 605 MF.getContext(), Subtarget) 606 : WebAssembly::getOrCreateFunctionTableSymbol( 607 MF.getContext(), Subtarget); 608 if (Subtarget->hasReferenceTypes()) { 609 MIB.addSym(Table); 610 } else { 611 // For the MVP there is at most one table whose number is 0, but we can't 612 // write a table symbol or issue relocations. Instead we just ensure the 613 // table is live and write a zero. 614 Table->setNoStrip(); 615 MIB.addImm(0); 616 } 617 } 618 619 for (auto Use : CallParams.uses()) 620 MIB.add(Use); 621 622 BB->insert(CallResults.getIterator(), MIB); 623 CallParams.eraseFromParent(); 624 CallResults.eraseFromParent(); 625 626 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 627 // table slot with ref.null upon call_indirect return. 628 // 629 // This generates the following code, which comes right after a call_indirect 630 // of a funcref: 631 // 632 // i32.const 0 633 // ref.null func 634 // table.set __funcref_call_table 635 if (IsIndirect && IsFuncrefCall) { 636 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 637 MF.getContext(), Subtarget); 638 Register RegZero = 639 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 640 MachineInstr *Const0 = 641 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 642 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 643 644 Register RegFuncref = 645 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 646 MachineInstr *RefNull = 647 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 648 BB->insertAfter(Const0->getIterator(), RefNull); 649 650 MachineInstr *TableSet = 651 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 652 .addSym(Table) 653 .addReg(RegZero) 654 .addReg(RegFuncref); 655 BB->insertAfter(RefNull->getIterator(), TableSet); 656 } 657 658 return BB; 659 } 660 661 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 662 MachineInstr &MI, MachineBasicBlock *BB) const { 663 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 664 DebugLoc DL = MI.getDebugLoc(); 665 666 switch (MI.getOpcode()) { 667 default: 668 llvm_unreachable("Unexpected instr type to insert"); 669 case WebAssembly::FP_TO_SINT_I32_F32: 670 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 671 WebAssembly::I32_TRUNC_S_F32); 672 case WebAssembly::FP_TO_UINT_I32_F32: 673 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 674 WebAssembly::I32_TRUNC_U_F32); 675 case WebAssembly::FP_TO_SINT_I64_F32: 676 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 677 WebAssembly::I64_TRUNC_S_F32); 678 case WebAssembly::FP_TO_UINT_I64_F32: 679 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 680 WebAssembly::I64_TRUNC_U_F32); 681 case WebAssembly::FP_TO_SINT_I32_F64: 682 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 683 WebAssembly::I32_TRUNC_S_F64); 684 case WebAssembly::FP_TO_UINT_I32_F64: 685 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 686 WebAssembly::I32_TRUNC_U_F64); 687 case WebAssembly::FP_TO_SINT_I64_F64: 688 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 689 WebAssembly::I64_TRUNC_S_F64); 690 case WebAssembly::FP_TO_UINT_I64_F64: 691 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 692 WebAssembly::I64_TRUNC_U_F64); 693 case WebAssembly::CALL_RESULTS: 694 case WebAssembly::RET_CALL_RESULTS: 695 return LowerCallResults(MI, DL, BB, Subtarget, TII); 696 } 697 } 698 699 const char * 700 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 701 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 702 case WebAssemblyISD::FIRST_NUMBER: 703 case WebAssemblyISD::FIRST_MEM_OPCODE: 704 break; 705 #define HANDLE_NODETYPE(NODE) \ 706 case WebAssemblyISD::NODE: \ 707 return "WebAssemblyISD::" #NODE; 708 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 709 #include "WebAssemblyISD.def" 710 #undef HANDLE_MEM_NODETYPE 711 #undef HANDLE_NODETYPE 712 } 713 return nullptr; 714 } 715 716 std::pair<unsigned, const TargetRegisterClass *> 717 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 718 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 719 // First, see if this is a constraint that directly corresponds to a 720 // WebAssembly register class. 721 if (Constraint.size() == 1) { 722 switch (Constraint[0]) { 723 case 'r': 724 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 725 if (Subtarget->hasSIMD128() && VT.isVector()) { 726 if (VT.getSizeInBits() == 128) 727 return std::make_pair(0U, &WebAssembly::V128RegClass); 728 } 729 if (VT.isInteger() && !VT.isVector()) { 730 if (VT.getSizeInBits() <= 32) 731 return std::make_pair(0U, &WebAssembly::I32RegClass); 732 if (VT.getSizeInBits() <= 64) 733 return std::make_pair(0U, &WebAssembly::I64RegClass); 734 } 735 if (VT.isFloatingPoint() && !VT.isVector()) { 736 switch (VT.getSizeInBits()) { 737 case 32: 738 return std::make_pair(0U, &WebAssembly::F32RegClass); 739 case 64: 740 return std::make_pair(0U, &WebAssembly::F64RegClass); 741 default: 742 break; 743 } 744 } 745 break; 746 default: 747 break; 748 } 749 } 750 751 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 752 } 753 754 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 755 // Assume ctz is a relatively cheap operation. 756 return true; 757 } 758 759 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 760 // Assume clz is a relatively cheap operation. 761 return true; 762 } 763 764 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 765 const AddrMode &AM, 766 Type *Ty, unsigned AS, 767 Instruction *I) const { 768 // WebAssembly offsets are added as unsigned without wrapping. The 769 // isLegalAddressingMode gives us no way to determine if wrapping could be 770 // happening, so we approximate this by accepting only non-negative offsets. 771 if (AM.BaseOffs < 0) 772 return false; 773 774 // WebAssembly has no scale register operands. 775 if (AM.Scale != 0) 776 return false; 777 778 // Everything else is legal. 779 return true; 780 } 781 782 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 783 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 784 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 785 // WebAssembly supports unaligned accesses, though it should be declared 786 // with the p2align attribute on loads and stores which do so, and there 787 // may be a performance impact. We tell LLVM they're "fast" because 788 // for the kinds of things that LLVM uses this for (merging adjacent stores 789 // of constants, etc.), WebAssembly implementations will either want the 790 // unaligned access or they'll split anyway. 791 if (Fast) 792 *Fast = true; 793 return true; 794 } 795 796 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 797 AttributeList Attr) const { 798 // The current thinking is that wasm engines will perform this optimization, 799 // so we can save on code size. 800 return true; 801 } 802 803 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 804 EVT ExtT = ExtVal.getValueType(); 805 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 806 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 807 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 808 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 809 } 810 811 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 812 const GlobalAddressSDNode *GA) const { 813 // Wasm doesn't support function addresses with offsets 814 const GlobalValue *GV = GA->getGlobal(); 815 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 816 } 817 818 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 819 LLVMContext &C, 820 EVT VT) const { 821 if (VT.isVector()) 822 return VT.changeVectorElementTypeToInteger(); 823 824 // So far, all branch instructions in Wasm take an I32 condition. 825 // The default TargetLowering::getSetCCResultType returns the pointer size, 826 // which would be useful to reduce instruction counts when testing 827 // against 64-bit pointers/values if at some point Wasm supports that. 828 return EVT::getIntegerVT(C, 32); 829 } 830 831 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 832 const CallInst &I, 833 MachineFunction &MF, 834 unsigned Intrinsic) const { 835 switch (Intrinsic) { 836 case Intrinsic::wasm_memory_atomic_notify: 837 Info.opc = ISD::INTRINSIC_W_CHAIN; 838 Info.memVT = MVT::i32; 839 Info.ptrVal = I.getArgOperand(0); 840 Info.offset = 0; 841 Info.align = Align(4); 842 // atomic.notify instruction does not really load the memory specified with 843 // this argument, but MachineMemOperand should either be load or store, so 844 // we set this to a load. 845 // FIXME Volatile isn't really correct, but currently all LLVM atomic 846 // instructions are treated as volatiles in the backend, so we should be 847 // consistent. The same applies for wasm_atomic_wait intrinsics too. 848 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 849 return true; 850 case Intrinsic::wasm_memory_atomic_wait32: 851 Info.opc = ISD::INTRINSIC_W_CHAIN; 852 Info.memVT = MVT::i32; 853 Info.ptrVal = I.getArgOperand(0); 854 Info.offset = 0; 855 Info.align = Align(4); 856 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 857 return true; 858 case Intrinsic::wasm_memory_atomic_wait64: 859 Info.opc = ISD::INTRINSIC_W_CHAIN; 860 Info.memVT = MVT::i64; 861 Info.ptrVal = I.getArgOperand(0); 862 Info.offset = 0; 863 Info.align = Align(8); 864 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 865 return true; 866 default: 867 return false; 868 } 869 } 870 871 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 872 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 873 const SelectionDAG &DAG, unsigned Depth) const { 874 switch (Op.getOpcode()) { 875 default: 876 break; 877 case ISD::INTRINSIC_WO_CHAIN: { 878 unsigned IntNo = Op.getConstantOperandVal(0); 879 switch (IntNo) { 880 default: 881 break; 882 case Intrinsic::wasm_bitmask: { 883 unsigned BitWidth = Known.getBitWidth(); 884 EVT VT = Op.getOperand(1).getSimpleValueType(); 885 unsigned PossibleBits = VT.getVectorNumElements(); 886 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 887 Known.Zero |= ZeroMask; 888 break; 889 } 890 } 891 } 892 } 893 } 894 895 TargetLoweringBase::LegalizeTypeAction 896 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 897 if (VT.isFixedLengthVector()) { 898 MVT EltVT = VT.getVectorElementType(); 899 // We have legal vector types with these lane types, so widening the 900 // vector would let us use some of the lanes directly without having to 901 // extend or truncate values. 902 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 903 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 904 return TypeWidenVector; 905 } 906 907 return TargetLoweringBase::getPreferredVectorAction(VT); 908 } 909 910 //===----------------------------------------------------------------------===// 911 // WebAssembly Lowering private implementation. 912 //===----------------------------------------------------------------------===// 913 914 //===----------------------------------------------------------------------===// 915 // Lowering Code 916 //===----------------------------------------------------------------------===// 917 918 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 919 MachineFunction &MF = DAG.getMachineFunction(); 920 DAG.getContext()->diagnose( 921 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 922 } 923 924 // Test whether the given calling convention is supported. 925 static bool callingConvSupported(CallingConv::ID CallConv) { 926 // We currently support the language-independent target-independent 927 // conventions. We don't yet have a way to annotate calls with properties like 928 // "cold", and we don't have any call-clobbered registers, so these are mostly 929 // all handled the same. 930 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 931 CallConv == CallingConv::Cold || 932 CallConv == CallingConv::PreserveMost || 933 CallConv == CallingConv::PreserveAll || 934 CallConv == CallingConv::CXX_FAST_TLS || 935 CallConv == CallingConv::WASM_EmscriptenInvoke || 936 CallConv == CallingConv::Swift; 937 } 938 939 SDValue 940 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 941 SmallVectorImpl<SDValue> &InVals) const { 942 SelectionDAG &DAG = CLI.DAG; 943 SDLoc DL = CLI.DL; 944 SDValue Chain = CLI.Chain; 945 SDValue Callee = CLI.Callee; 946 MachineFunction &MF = DAG.getMachineFunction(); 947 auto Layout = MF.getDataLayout(); 948 949 CallingConv::ID CallConv = CLI.CallConv; 950 if (!callingConvSupported(CallConv)) 951 fail(DL, DAG, 952 "WebAssembly doesn't support language-specific or target-specific " 953 "calling conventions yet"); 954 if (CLI.IsPatchPoint) 955 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 956 957 if (CLI.IsTailCall) { 958 auto NoTail = [&](const char *Msg) { 959 if (CLI.CB && CLI.CB->isMustTailCall()) 960 fail(DL, DAG, Msg); 961 CLI.IsTailCall = false; 962 }; 963 964 if (!Subtarget->hasTailCall()) 965 NoTail("WebAssembly 'tail-call' feature not enabled"); 966 967 // Varargs calls cannot be tail calls because the buffer is on the stack 968 if (CLI.IsVarArg) 969 NoTail("WebAssembly does not support varargs tail calls"); 970 971 // Do not tail call unless caller and callee return types match 972 const Function &F = MF.getFunction(); 973 const TargetMachine &TM = getTargetMachine(); 974 Type *RetTy = F.getReturnType(); 975 SmallVector<MVT, 4> CallerRetTys; 976 SmallVector<MVT, 4> CalleeRetTys; 977 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 978 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 979 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 980 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 981 CalleeRetTys.begin()); 982 if (!TypesMatch) 983 NoTail("WebAssembly tail call requires caller and callee return types to " 984 "match"); 985 986 // If pointers to local stack values are passed, we cannot tail call 987 if (CLI.CB) { 988 for (auto &Arg : CLI.CB->args()) { 989 Value *Val = Arg.get(); 990 // Trace the value back through pointer operations 991 while (true) { 992 Value *Src = Val->stripPointerCastsAndAliases(); 993 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 994 Src = GEP->getPointerOperand(); 995 if (Val == Src) 996 break; 997 Val = Src; 998 } 999 if (isa<AllocaInst>(Val)) { 1000 NoTail( 1001 "WebAssembly does not support tail calling with stack arguments"); 1002 break; 1003 } 1004 } 1005 } 1006 } 1007 1008 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1009 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1010 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1011 1012 // The generic code may have added an sret argument. If we're lowering an 1013 // invoke function, the ABI requires that the function pointer be the first 1014 // argument, so we may have to swap the arguments. 1015 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1016 Outs[0].Flags.isSRet()) { 1017 std::swap(Outs[0], Outs[1]); 1018 std::swap(OutVals[0], OutVals[1]); 1019 } 1020 1021 bool HasSwiftSelfArg = false; 1022 bool HasSwiftErrorArg = false; 1023 unsigned NumFixedArgs = 0; 1024 for (unsigned I = 0; I < Outs.size(); ++I) { 1025 const ISD::OutputArg &Out = Outs[I]; 1026 SDValue &OutVal = OutVals[I]; 1027 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1028 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1029 if (Out.Flags.isNest()) 1030 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1031 if (Out.Flags.isInAlloca()) 1032 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1033 if (Out.Flags.isInConsecutiveRegs()) 1034 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1035 if (Out.Flags.isInConsecutiveRegsLast()) 1036 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1037 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1038 auto &MFI = MF.getFrameInfo(); 1039 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1040 Out.Flags.getNonZeroByValAlign(), 1041 /*isSS=*/false); 1042 SDValue SizeNode = 1043 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1044 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1045 Chain = DAG.getMemcpy( 1046 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1047 /*isVolatile*/ false, /*AlwaysInline=*/false, 1048 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1049 OutVal = FINode; 1050 } 1051 // Count the number of fixed args *after* legalization. 1052 NumFixedArgs += Out.IsFixed; 1053 } 1054 1055 bool IsVarArg = CLI.IsVarArg; 1056 auto PtrVT = getPointerTy(Layout); 1057 1058 // For swiftcc, emit additional swiftself and swifterror arguments 1059 // if there aren't. These additional arguments are also added for callee 1060 // signature They are necessary to match callee and caller signature for 1061 // indirect call. 1062 if (CallConv == CallingConv::Swift) { 1063 if (!HasSwiftSelfArg) { 1064 NumFixedArgs++; 1065 ISD::OutputArg Arg; 1066 Arg.Flags.setSwiftSelf(); 1067 CLI.Outs.push_back(Arg); 1068 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1069 CLI.OutVals.push_back(ArgVal); 1070 } 1071 if (!HasSwiftErrorArg) { 1072 NumFixedArgs++; 1073 ISD::OutputArg Arg; 1074 Arg.Flags.setSwiftError(); 1075 CLI.Outs.push_back(Arg); 1076 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1077 CLI.OutVals.push_back(ArgVal); 1078 } 1079 } 1080 1081 // Analyze operands of the call, assigning locations to each operand. 1082 SmallVector<CCValAssign, 16> ArgLocs; 1083 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1084 1085 if (IsVarArg) { 1086 // Outgoing non-fixed arguments are placed in a buffer. First 1087 // compute their offsets and the total amount of buffer space needed. 1088 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1089 const ISD::OutputArg &Out = Outs[I]; 1090 SDValue &Arg = OutVals[I]; 1091 EVT VT = Arg.getValueType(); 1092 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1093 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1094 Align Alignment = 1095 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1096 unsigned Offset = 1097 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1098 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1099 Offset, VT.getSimpleVT(), 1100 CCValAssign::Full)); 1101 } 1102 } 1103 1104 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1105 1106 SDValue FINode; 1107 if (IsVarArg && NumBytes) { 1108 // For non-fixed arguments, next emit stores to store the argument values 1109 // to the stack buffer at the offsets computed above. 1110 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1111 Layout.getStackAlignment(), 1112 /*isSS=*/false); 1113 unsigned ValNo = 0; 1114 SmallVector<SDValue, 8> Chains; 1115 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1116 assert(ArgLocs[ValNo].getValNo() == ValNo && 1117 "ArgLocs should remain in order and only hold varargs args"); 1118 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1119 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1120 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1121 DAG.getConstant(Offset, DL, PtrVT)); 1122 Chains.push_back( 1123 DAG.getStore(Chain, DL, Arg, Add, 1124 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1125 } 1126 if (!Chains.empty()) 1127 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1128 } else if (IsVarArg) { 1129 FINode = DAG.getIntPtrConstant(0, DL); 1130 } 1131 1132 if (Callee->getOpcode() == ISD::GlobalAddress) { 1133 // If the callee is a GlobalAddress node (quite common, every direct call 1134 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1135 // doesn't at MO_GOT which is not needed for direct calls. 1136 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1137 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1138 getPointerTy(DAG.getDataLayout()), 1139 GA->getOffset()); 1140 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1141 getPointerTy(DAG.getDataLayout()), Callee); 1142 } 1143 1144 // Compute the operands for the CALLn node. 1145 SmallVector<SDValue, 16> Ops; 1146 Ops.push_back(Chain); 1147 Ops.push_back(Callee); 1148 1149 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1150 // isn't reliable. 1151 Ops.append(OutVals.begin(), 1152 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1153 // Add a pointer to the vararg buffer. 1154 if (IsVarArg) 1155 Ops.push_back(FINode); 1156 1157 SmallVector<EVT, 8> InTys; 1158 for (const auto &In : Ins) { 1159 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1160 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1161 if (In.Flags.isInAlloca()) 1162 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1163 if (In.Flags.isInConsecutiveRegs()) 1164 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1165 if (In.Flags.isInConsecutiveRegsLast()) 1166 fail(DL, DAG, 1167 "WebAssembly hasn't implemented cons regs last return values"); 1168 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1169 // registers. 1170 InTys.push_back(In.VT); 1171 } 1172 1173 // Lastly, if this is a call to a funcref we need to add an instruction 1174 // table.set to the chain and transform the call. 1175 if (CLI.CB && 1176 WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) { 1177 // In the absence of function references proposal where a funcref call is 1178 // lowered to call_ref, using reference types we generate a table.set to set 1179 // the funcref to a special table used solely for this purpose, followed by 1180 // a call_indirect. Here we just generate the table set, and return the 1181 // SDValue of the table.set so that LowerCall can finalize the lowering by 1182 // generating the call_indirect. 1183 SDValue Chain = Ops[0]; 1184 1185 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1186 MF.getContext(), Subtarget); 1187 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1188 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1189 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1190 SDValue TableSet = DAG.getMemIntrinsicNode( 1191 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1192 MVT::funcref, 1193 // Machine Mem Operand args 1194 MachinePointerInfo( 1195 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1196 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1197 MachineMemOperand::MOStore); 1198 1199 Ops[0] = TableSet; // The new chain is the TableSet itself 1200 } 1201 1202 if (CLI.IsTailCall) { 1203 // ret_calls do not return values to the current frame 1204 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1205 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1206 } 1207 1208 InTys.push_back(MVT::Other); 1209 SDVTList InTyList = DAG.getVTList(InTys); 1210 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1211 1212 for (size_t I = 0; I < Ins.size(); ++I) 1213 InVals.push_back(Res.getValue(I)); 1214 1215 // Return the chain 1216 return Res.getValue(Ins.size()); 1217 } 1218 1219 bool WebAssemblyTargetLowering::CanLowerReturn( 1220 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1221 const SmallVectorImpl<ISD::OutputArg> &Outs, 1222 LLVMContext & /*Context*/) const { 1223 // WebAssembly can only handle returning tuples with multivalue enabled 1224 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1225 } 1226 1227 SDValue WebAssemblyTargetLowering::LowerReturn( 1228 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1229 const SmallVectorImpl<ISD::OutputArg> &Outs, 1230 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1231 SelectionDAG &DAG) const { 1232 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1233 "MVP WebAssembly can only return up to one value"); 1234 if (!callingConvSupported(CallConv)) 1235 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1236 1237 SmallVector<SDValue, 4> RetOps(1, Chain); 1238 RetOps.append(OutVals.begin(), OutVals.end()); 1239 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1240 1241 // Record the number and types of the return values. 1242 for (const ISD::OutputArg &Out : Outs) { 1243 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1244 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1245 assert(Out.IsFixed && "non-fixed return value is not valid"); 1246 if (Out.Flags.isInAlloca()) 1247 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1248 if (Out.Flags.isInConsecutiveRegs()) 1249 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1250 if (Out.Flags.isInConsecutiveRegsLast()) 1251 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1252 } 1253 1254 return Chain; 1255 } 1256 1257 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1258 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1259 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1260 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1261 if (!callingConvSupported(CallConv)) 1262 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1263 1264 MachineFunction &MF = DAG.getMachineFunction(); 1265 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1266 1267 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1268 // of the incoming values before they're represented by virtual registers. 1269 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1270 1271 bool HasSwiftErrorArg = false; 1272 bool HasSwiftSelfArg = false; 1273 for (const ISD::InputArg &In : Ins) { 1274 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1275 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1276 if (In.Flags.isInAlloca()) 1277 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1278 if (In.Flags.isNest()) 1279 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1280 if (In.Flags.isInConsecutiveRegs()) 1281 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1282 if (In.Flags.isInConsecutiveRegsLast()) 1283 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1284 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1285 // registers. 1286 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1287 DAG.getTargetConstant(InVals.size(), 1288 DL, MVT::i32)) 1289 : DAG.getUNDEF(In.VT)); 1290 1291 // Record the number and types of arguments. 1292 MFI->addParam(In.VT); 1293 } 1294 1295 // For swiftcc, emit additional swiftself and swifterror arguments 1296 // if there aren't. These additional arguments are also added for callee 1297 // signature They are necessary to match callee and caller signature for 1298 // indirect call. 1299 auto PtrVT = getPointerTy(MF.getDataLayout()); 1300 if (CallConv == CallingConv::Swift) { 1301 if (!HasSwiftSelfArg) { 1302 MFI->addParam(PtrVT); 1303 } 1304 if (!HasSwiftErrorArg) { 1305 MFI->addParam(PtrVT); 1306 } 1307 } 1308 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1309 // the buffer is passed as an argument. 1310 if (IsVarArg) { 1311 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1312 Register VarargVreg = 1313 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1314 MFI->setVarargBufferVreg(VarargVreg); 1315 Chain = DAG.getCopyToReg( 1316 Chain, DL, VarargVreg, 1317 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1318 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1319 MFI->addParam(PtrVT); 1320 } 1321 1322 // Record the number and types of arguments and results. 1323 SmallVector<MVT, 4> Params; 1324 SmallVector<MVT, 4> Results; 1325 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1326 MF.getFunction(), DAG.getTarget(), Params, Results); 1327 for (MVT VT : Results) 1328 MFI->addResult(VT); 1329 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1330 // the param logic here with ComputeSignatureVTs 1331 assert(MFI->getParams().size() == Params.size() && 1332 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1333 Params.begin())); 1334 1335 return Chain; 1336 } 1337 1338 void WebAssemblyTargetLowering::ReplaceNodeResults( 1339 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1340 switch (N->getOpcode()) { 1341 case ISD::SIGN_EXTEND_INREG: 1342 // Do not add any results, signifying that N should not be custom lowered 1343 // after all. This happens because simd128 turns on custom lowering for 1344 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1345 // illegal type. 1346 break; 1347 default: 1348 llvm_unreachable( 1349 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1350 } 1351 } 1352 1353 //===----------------------------------------------------------------------===// 1354 // Custom lowering hooks. 1355 //===----------------------------------------------------------------------===// 1356 1357 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1358 SelectionDAG &DAG) const { 1359 SDLoc DL(Op); 1360 switch (Op.getOpcode()) { 1361 default: 1362 llvm_unreachable("unimplemented operation lowering"); 1363 return SDValue(); 1364 case ISD::FrameIndex: 1365 return LowerFrameIndex(Op, DAG); 1366 case ISD::GlobalAddress: 1367 return LowerGlobalAddress(Op, DAG); 1368 case ISD::GlobalTLSAddress: 1369 return LowerGlobalTLSAddress(Op, DAG); 1370 case ISD::ExternalSymbol: 1371 return LowerExternalSymbol(Op, DAG); 1372 case ISD::JumpTable: 1373 return LowerJumpTable(Op, DAG); 1374 case ISD::BR_JT: 1375 return LowerBR_JT(Op, DAG); 1376 case ISD::VASTART: 1377 return LowerVASTART(Op, DAG); 1378 case ISD::BlockAddress: 1379 case ISD::BRIND: 1380 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1381 return SDValue(); 1382 case ISD::RETURNADDR: 1383 return LowerRETURNADDR(Op, DAG); 1384 case ISD::FRAMEADDR: 1385 return LowerFRAMEADDR(Op, DAG); 1386 case ISD::CopyToReg: 1387 return LowerCopyToReg(Op, DAG); 1388 case ISD::EXTRACT_VECTOR_ELT: 1389 case ISD::INSERT_VECTOR_ELT: 1390 return LowerAccessVectorElement(Op, DAG); 1391 case ISD::INTRINSIC_VOID: 1392 case ISD::INTRINSIC_WO_CHAIN: 1393 case ISD::INTRINSIC_W_CHAIN: 1394 return LowerIntrinsic(Op, DAG); 1395 case ISD::SIGN_EXTEND_INREG: 1396 return LowerSIGN_EXTEND_INREG(Op, DAG); 1397 case ISD::BUILD_VECTOR: 1398 return LowerBUILD_VECTOR(Op, DAG); 1399 case ISD::VECTOR_SHUFFLE: 1400 return LowerVECTOR_SHUFFLE(Op, DAG); 1401 case ISD::SETCC: 1402 return LowerSETCC(Op, DAG); 1403 case ISD::SHL: 1404 case ISD::SRA: 1405 case ISD::SRL: 1406 return LowerShift(Op, DAG); 1407 case ISD::FP_TO_SINT_SAT: 1408 case ISD::FP_TO_UINT_SAT: 1409 return LowerFP_TO_INT_SAT(Op, DAG); 1410 case ISD::LOAD: 1411 return LowerLoad(Op, DAG); 1412 case ISD::STORE: 1413 return LowerStore(Op, DAG); 1414 case ISD::CTPOP: 1415 case ISD::CTLZ: 1416 case ISD::CTTZ: 1417 return DAG.UnrollVectorOp(Op.getNode()); 1418 } 1419 } 1420 1421 static bool IsWebAssemblyGlobal(SDValue Op) { 1422 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1423 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1424 1425 return false; 1426 } 1427 1428 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1429 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1430 if (!FI) 1431 return None; 1432 1433 auto &MF = DAG.getMachineFunction(); 1434 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1435 } 1436 1437 static bool IsWebAssemblyTable(SDValue Op) { 1438 const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 1439 if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) { 1440 const GlobalValue *Value = GA->getGlobal(); 1441 const Type *Ty = Value->getValueType(); 1442 1443 if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType())) 1444 return true; 1445 } 1446 return false; 1447 } 1448 1449 // This function will accept as Op any access to a table, so Op can 1450 // be the actual table or an offset into the table. 1451 static bool IsWebAssemblyTableWithOffset(SDValue Op) { 1452 if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2) 1453 return (Op->getOperand(1).getSimpleValueType() == MVT::i32 && 1454 IsWebAssemblyTableWithOffset(Op->getOperand(0))) || 1455 (Op->getOperand(0).getSimpleValueType() == MVT::i32 && 1456 IsWebAssemblyTableWithOffset(Op->getOperand(1))); 1457 1458 return IsWebAssemblyTable(Op); 1459 } 1460 1461 // Helper for table pattern matching used in LowerStore and LowerLoad 1462 bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG, 1463 const SDLoc &DL, 1464 const SDValue &Base, 1465 GlobalAddressSDNode *&GA, 1466 SDValue &Idx) const { 1467 // We expect the following graph for a load of the form: 1468 // table[<var> + <constant offset>] 1469 // 1470 // Case 1: 1471 // externref = load t1 1472 // t1: i32 = add t2, i32:<constant offset> 1473 // t2: i32 = add tX, table 1474 // 1475 // This is in some cases simplified to just: 1476 // Case 2: 1477 // externref = load t1 1478 // t1: i32 = add t2, i32:tX 1479 // 1480 // So, unfortunately we need to check for both cases and if we are in the 1481 // first case extract the table GlobalAddressNode and build a new node tY 1482 // that's tY: i32 = add i32:<constant offset>, i32:tX 1483 // 1484 if (IsWebAssemblyTable(Base)) { 1485 GA = cast<GlobalAddressSDNode>(Base); 1486 Idx = DAG.getConstant(0, DL, MVT::i32); 1487 } else { 1488 GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0)); 1489 if (GA) { 1490 // We are in Case 2 above. 1491 Idx = Base->getOperand(1); 1492 if (!Idx || GA->getNumValues() != 1 || Idx->getNumValues() != 1) 1493 return false; 1494 } else { 1495 // This might be Case 1 above (or an error) 1496 SDValue V = Base->getOperand(0); 1497 GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1)); 1498 1499 if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA) 1500 return false; 1501 1502 SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1), 1503 V->getOperand(0)); 1504 Idx = IdxV; 1505 } 1506 } 1507 1508 return true; 1509 } 1510 1511 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1512 SelectionDAG &DAG) const { 1513 SDLoc DL(Op); 1514 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1515 const SDValue &Value = SN->getValue(); 1516 const SDValue &Base = SN->getBasePtr(); 1517 const SDValue &Offset = SN->getOffset(); 1518 1519 if (IsWebAssemblyTableWithOffset(Base)) { 1520 if (!Offset->isUndef()) 1521 report_fatal_error( 1522 "unexpected offset when loading from webassembly table", false); 1523 1524 SDValue Idx; 1525 GlobalAddressSDNode *GA; 1526 1527 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1528 report_fatal_error("failed pattern matching for lowering table store", 1529 false); 1530 1531 SDVTList Tys = DAG.getVTList(MVT::Other); 1532 SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value}; 1533 SDValue TableSet = 1534 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps, 1535 SN->getMemoryVT(), SN->getMemOperand()); 1536 return TableSet; 1537 } 1538 1539 if (IsWebAssemblyGlobal(Base)) { 1540 if (!Offset->isUndef()) 1541 report_fatal_error("unexpected offset when storing to webassembly global", 1542 false); 1543 1544 SDVTList Tys = DAG.getVTList(MVT::Other); 1545 SDValue Ops[] = {SN->getChain(), Value, Base}; 1546 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1547 SN->getMemoryVT(), SN->getMemOperand()); 1548 } 1549 1550 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1551 if (!Offset->isUndef()) 1552 report_fatal_error("unexpected offset when storing to webassembly local", 1553 false); 1554 1555 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1556 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1557 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1558 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1559 } 1560 1561 return Op; 1562 } 1563 1564 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1565 SelectionDAG &DAG) const { 1566 SDLoc DL(Op); 1567 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1568 const SDValue &Base = LN->getBasePtr(); 1569 const SDValue &Offset = LN->getOffset(); 1570 1571 if (IsWebAssemblyTableWithOffset(Base)) { 1572 if (!Offset->isUndef()) 1573 report_fatal_error( 1574 "unexpected offset when loading from webassembly table", false); 1575 1576 GlobalAddressSDNode *GA; 1577 SDValue Idx; 1578 1579 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1580 report_fatal_error("failed pattern matching for lowering table load", 1581 false); 1582 1583 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1584 SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx}; 1585 SDValue TableGet = 1586 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps, 1587 LN->getMemoryVT(), LN->getMemOperand()); 1588 return TableGet; 1589 } 1590 1591 if (IsWebAssemblyGlobal(Base)) { 1592 if (!Offset->isUndef()) 1593 report_fatal_error( 1594 "unexpected offset when loading from webassembly global", false); 1595 1596 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1597 SDValue Ops[] = {LN->getChain(), Base}; 1598 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1599 LN->getMemoryVT(), LN->getMemOperand()); 1600 } 1601 1602 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1603 if (!Offset->isUndef()) 1604 report_fatal_error( 1605 "unexpected offset when loading from webassembly local", false); 1606 1607 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1608 EVT LocalVT = LN->getValueType(0); 1609 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1610 {LN->getChain(), Idx}); 1611 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1612 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1613 return Result; 1614 } 1615 1616 return Op; 1617 } 1618 1619 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1620 SelectionDAG &DAG) const { 1621 SDValue Src = Op.getOperand(2); 1622 if (isa<FrameIndexSDNode>(Src.getNode())) { 1623 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1624 // the FI to some LEA-like instruction, but since we don't have that, we 1625 // need to insert some kind of instruction that can take an FI operand and 1626 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1627 // local.copy between Op and its FI operand. 1628 SDValue Chain = Op.getOperand(0); 1629 SDLoc DL(Op); 1630 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1631 EVT VT = Src.getValueType(); 1632 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1633 : WebAssembly::COPY_I64, 1634 DL, VT, Src), 1635 0); 1636 return Op.getNode()->getNumValues() == 1 1637 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1638 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1639 Op.getNumOperands() == 4 ? Op.getOperand(3) 1640 : SDValue()); 1641 } 1642 return SDValue(); 1643 } 1644 1645 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1646 SelectionDAG &DAG) const { 1647 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1648 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1649 } 1650 1651 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1652 SelectionDAG &DAG) const { 1653 SDLoc DL(Op); 1654 1655 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1656 fail(DL, DAG, 1657 "Non-Emscripten WebAssembly hasn't implemented " 1658 "__builtin_return_address"); 1659 return SDValue(); 1660 } 1661 1662 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1663 return SDValue(); 1664 1665 unsigned Depth = Op.getConstantOperandVal(0); 1666 MakeLibCallOptions CallOptions; 1667 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1668 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1669 .first; 1670 } 1671 1672 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1673 SelectionDAG &DAG) const { 1674 // Non-zero depths are not supported by WebAssembly currently. Use the 1675 // legalizer's default expansion, which is to return 0 (what this function is 1676 // documented to do). 1677 if (Op.getConstantOperandVal(0) > 0) 1678 return SDValue(); 1679 1680 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1681 EVT VT = Op.getValueType(); 1682 Register FP = 1683 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1684 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1685 } 1686 1687 SDValue 1688 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1689 SelectionDAG &DAG) const { 1690 SDLoc DL(Op); 1691 const auto *GA = cast<GlobalAddressSDNode>(Op); 1692 1693 MachineFunction &MF = DAG.getMachineFunction(); 1694 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1695 report_fatal_error("cannot use thread-local storage without bulk memory", 1696 false); 1697 1698 const GlobalValue *GV = GA->getGlobal(); 1699 1700 // Currently Emscripten does not support dynamic linking with threads. 1701 // Therefore, if we have thread-local storage, only the local-exec model 1702 // is possible. 1703 // TODO: remove this and implement proper TLS models once Emscripten 1704 // supports dynamic linking with threads. 1705 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1706 !Subtarget->getTargetTriple().isOSEmscripten()) { 1707 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1708 "non-Emscripten OSes: variable " + 1709 GV->getName(), 1710 false); 1711 } 1712 1713 auto model = GV->getThreadLocalMode(); 1714 1715 // Unsupported TLS modes 1716 assert(model != GlobalValue::NotThreadLocal); 1717 assert(model != GlobalValue::InitialExecTLSModel); 1718 1719 if (model == GlobalValue::LocalExecTLSModel || 1720 model == GlobalValue::LocalDynamicTLSModel || 1721 (model == GlobalValue::GeneralDynamicTLSModel && 1722 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { 1723 // For DSO-local TLS variables we use offset from __tls_base 1724 1725 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1726 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1727 : WebAssembly::GLOBAL_GET_I32; 1728 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1729 1730 SDValue BaseAddr( 1731 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1732 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1733 0); 1734 1735 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1736 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1737 SDValue SymOffset = 1738 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1739 1740 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1741 } 1742 1743 assert(model == GlobalValue::GeneralDynamicTLSModel); 1744 1745 EVT VT = Op.getValueType(); 1746 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1747 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1748 GA->getOffset(), 1749 WebAssemblyII::MO_GOT_TLS)); 1750 } 1751 1752 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1753 SelectionDAG &DAG) const { 1754 SDLoc DL(Op); 1755 const auto *GA = cast<GlobalAddressSDNode>(Op); 1756 EVT VT = Op.getValueType(); 1757 assert(GA->getTargetFlags() == 0 && 1758 "Unexpected target flags on generic GlobalAddressSDNode"); 1759 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1760 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1761 1762 unsigned OperandFlags = 0; 1763 if (isPositionIndependent()) { 1764 const GlobalValue *GV = GA->getGlobal(); 1765 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1766 MachineFunction &MF = DAG.getMachineFunction(); 1767 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1768 const char *BaseName; 1769 if (GV->getValueType()->isFunctionTy()) { 1770 BaseName = MF.createExternalSymbolName("__table_base"); 1771 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1772 } 1773 else { 1774 BaseName = MF.createExternalSymbolName("__memory_base"); 1775 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1776 } 1777 SDValue BaseAddr = 1778 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1779 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1780 1781 SDValue SymAddr = DAG.getNode( 1782 WebAssemblyISD::WrapperREL, DL, VT, 1783 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1784 OperandFlags)); 1785 1786 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1787 } 1788 OperandFlags = WebAssemblyII::MO_GOT; 1789 } 1790 1791 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1792 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1793 GA->getOffset(), OperandFlags)); 1794 } 1795 1796 SDValue 1797 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1798 SelectionDAG &DAG) const { 1799 SDLoc DL(Op); 1800 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1801 EVT VT = Op.getValueType(); 1802 assert(ES->getTargetFlags() == 0 && 1803 "Unexpected target flags on generic ExternalSymbolSDNode"); 1804 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1805 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1806 } 1807 1808 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1809 SelectionDAG &DAG) const { 1810 // There's no need for a Wrapper node because we always incorporate a jump 1811 // table operand into a BR_TABLE instruction, rather than ever 1812 // materializing it in a register. 1813 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1814 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1815 JT->getTargetFlags()); 1816 } 1817 1818 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1819 SelectionDAG &DAG) const { 1820 SDLoc DL(Op); 1821 SDValue Chain = Op.getOperand(0); 1822 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1823 SDValue Index = Op.getOperand(2); 1824 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1825 1826 SmallVector<SDValue, 8> Ops; 1827 Ops.push_back(Chain); 1828 Ops.push_back(Index); 1829 1830 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1831 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1832 1833 // Add an operand for each case. 1834 for (auto MBB : MBBs) 1835 Ops.push_back(DAG.getBasicBlock(MBB)); 1836 1837 // Add the first MBB as a dummy default target for now. This will be replaced 1838 // with the proper default target (and the preceding range check eliminated) 1839 // if possible by WebAssemblyFixBrTableDefaults. 1840 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1841 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1842 } 1843 1844 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1845 SelectionDAG &DAG) const { 1846 SDLoc DL(Op); 1847 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1848 1849 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1850 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1851 1852 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1853 MFI->getVarargBufferVreg(), PtrVT); 1854 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1855 MachinePointerInfo(SV)); 1856 } 1857 1858 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1859 SelectionDAG &DAG) const { 1860 MachineFunction &MF = DAG.getMachineFunction(); 1861 unsigned IntNo; 1862 switch (Op.getOpcode()) { 1863 case ISD::INTRINSIC_VOID: 1864 case ISD::INTRINSIC_W_CHAIN: 1865 IntNo = Op.getConstantOperandVal(1); 1866 break; 1867 case ISD::INTRINSIC_WO_CHAIN: 1868 IntNo = Op.getConstantOperandVal(0); 1869 break; 1870 default: 1871 llvm_unreachable("Invalid intrinsic"); 1872 } 1873 SDLoc DL(Op); 1874 1875 switch (IntNo) { 1876 default: 1877 return SDValue(); // Don't custom lower most intrinsics. 1878 1879 case Intrinsic::wasm_lsda: { 1880 auto PtrVT = getPointerTy(MF.getDataLayout()); 1881 const char *SymName = MF.createExternalSymbolName( 1882 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 1883 if (isPositionIndependent()) { 1884 SDValue Node = DAG.getTargetExternalSymbol( 1885 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 1886 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 1887 SDValue BaseAddr = 1888 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1889 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1890 SDValue SymAddr = 1891 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 1892 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1893 } 1894 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 1895 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 1896 } 1897 1898 case Intrinsic::wasm_shuffle: { 1899 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1900 SDValue Ops[18]; 1901 size_t OpIdx = 0; 1902 Ops[OpIdx++] = Op.getOperand(1); 1903 Ops[OpIdx++] = Op.getOperand(2); 1904 while (OpIdx < 18) { 1905 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1906 if (MaskIdx.isUndef() || 1907 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1908 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1909 } else { 1910 Ops[OpIdx++] = MaskIdx; 1911 } 1912 } 1913 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1914 } 1915 } 1916 } 1917 1918 SDValue 1919 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1920 SelectionDAG &DAG) const { 1921 SDLoc DL(Op); 1922 // If sign extension operations are disabled, allow sext_inreg only if operand 1923 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1924 // extension operations, but allowing sext_inreg in this context lets us have 1925 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1926 // everywhere would be simpler in this file, but would necessitate large and 1927 // brittle patterns to undo the expansion and select extract_lane_s 1928 // instructions. 1929 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1930 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1931 return SDValue(); 1932 1933 const SDValue &Extract = Op.getOperand(0); 1934 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1935 if (VecT.getVectorElementType().getSizeInBits() > 32) 1936 return SDValue(); 1937 MVT ExtractedLaneT = 1938 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1939 MVT ExtractedVecT = 1940 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1941 if (ExtractedVecT == VecT) 1942 return Op; 1943 1944 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1945 const SDNode *Index = Extract.getOperand(1).getNode(); 1946 if (!isa<ConstantSDNode>(Index)) 1947 return SDValue(); 1948 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1949 unsigned Scale = 1950 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1951 assert(Scale > 1); 1952 SDValue NewIndex = 1953 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1954 SDValue NewExtract = DAG.getNode( 1955 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1956 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1957 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1958 Op.getOperand(1)); 1959 } 1960 1961 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1962 SDLoc DL(Op); 1963 if (Op.getValueType() != MVT::v2f64) 1964 return SDValue(); 1965 1966 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1967 unsigned &Index) -> bool { 1968 switch (Op.getOpcode()) { 1969 case ISD::SINT_TO_FP: 1970 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1971 break; 1972 case ISD::UINT_TO_FP: 1973 Opcode = WebAssemblyISD::CONVERT_LOW_U; 1974 break; 1975 case ISD::FP_EXTEND: 1976 Opcode = WebAssemblyISD::PROMOTE_LOW; 1977 break; 1978 default: 1979 return false; 1980 } 1981 1982 auto ExtractVector = Op.getOperand(0); 1983 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1984 return false; 1985 1986 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 1987 return false; 1988 1989 SrcVec = ExtractVector.getOperand(0); 1990 Index = ExtractVector.getConstantOperandVal(1); 1991 return true; 1992 }; 1993 1994 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 1995 SDValue LHSSrcVec, RHSSrcVec; 1996 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 1997 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 1998 return SDValue(); 1999 2000 if (LHSOpcode != RHSOpcode) 2001 return SDValue(); 2002 2003 MVT ExpectedSrcVT; 2004 switch (LHSOpcode) { 2005 case WebAssemblyISD::CONVERT_LOW_S: 2006 case WebAssemblyISD::CONVERT_LOW_U: 2007 ExpectedSrcVT = MVT::v4i32; 2008 break; 2009 case WebAssemblyISD::PROMOTE_LOW: 2010 ExpectedSrcVT = MVT::v4f32; 2011 break; 2012 } 2013 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 2014 return SDValue(); 2015 2016 auto Src = LHSSrcVec; 2017 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 2018 // Shuffle the source vector so that the converted lanes are the low lanes. 2019 Src = DAG.getVectorShuffle( 2020 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2021 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2022 } 2023 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2024 } 2025 2026 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2027 SelectionDAG &DAG) const { 2028 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2029 return ConvertLow; 2030 2031 SDLoc DL(Op); 2032 const EVT VecT = Op.getValueType(); 2033 const EVT LaneT = Op.getOperand(0).getValueType(); 2034 const size_t Lanes = Op.getNumOperands(); 2035 bool CanSwizzle = VecT == MVT::v16i8; 2036 2037 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2038 // possible number of lanes at once followed by a sequence of replace_lane 2039 // instructions to individually initialize any remaining lanes. 2040 2041 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2042 // swizzled lanes should be given greater weight. 2043 2044 // TODO: Investigate looping rather than always extracting/replacing specific 2045 // lanes to fill gaps. 2046 2047 auto IsConstant = [](const SDValue &V) { 2048 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2049 }; 2050 2051 // Returns the source vector and index vector pair if they exist. Checks for: 2052 // (extract_vector_elt 2053 // $src, 2054 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2055 // ) 2056 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2057 auto Bail = std::make_pair(SDValue(), SDValue()); 2058 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2059 return Bail; 2060 const SDValue &SwizzleSrc = Lane->getOperand(0); 2061 const SDValue &IndexExt = Lane->getOperand(1); 2062 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2063 return Bail; 2064 const SDValue &Index = IndexExt->getOperand(0); 2065 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2066 return Bail; 2067 const SDValue &SwizzleIndices = Index->getOperand(0); 2068 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2069 SwizzleIndices.getValueType() != MVT::v16i8 || 2070 Index->getOperand(1)->getOpcode() != ISD::Constant || 2071 Index->getConstantOperandVal(1) != I) 2072 return Bail; 2073 return std::make_pair(SwizzleSrc, SwizzleIndices); 2074 }; 2075 2076 // If the lane is extracted from another vector at a constant index, return 2077 // that vector. The source vector must not have more lanes than the dest 2078 // because the shufflevector indices are in terms of the destination lanes and 2079 // would not be able to address the smaller individual source lanes. 2080 auto GetShuffleSrc = [&](const SDValue &Lane) { 2081 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2082 return SDValue(); 2083 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2084 return SDValue(); 2085 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2086 VecT.getVectorNumElements()) 2087 return SDValue(); 2088 return Lane->getOperand(0); 2089 }; 2090 2091 using ValueEntry = std::pair<SDValue, size_t>; 2092 SmallVector<ValueEntry, 16> SplatValueCounts; 2093 2094 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2095 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2096 2097 using ShuffleEntry = std::pair<SDValue, size_t>; 2098 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2099 2100 auto AddCount = [](auto &Counts, const auto &Val) { 2101 auto CountIt = 2102 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2103 if (CountIt == Counts.end()) { 2104 Counts.emplace_back(Val, 1); 2105 } else { 2106 CountIt->second++; 2107 } 2108 }; 2109 2110 auto GetMostCommon = [](auto &Counts) { 2111 auto CommonIt = 2112 std::max_element(Counts.begin(), Counts.end(), 2113 [](auto A, auto B) { return A.second < B.second; }); 2114 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2115 return *CommonIt; 2116 }; 2117 2118 size_t NumConstantLanes = 0; 2119 2120 // Count eligible lanes for each type of vector creation op 2121 for (size_t I = 0; I < Lanes; ++I) { 2122 const SDValue &Lane = Op->getOperand(I); 2123 if (Lane.isUndef()) 2124 continue; 2125 2126 AddCount(SplatValueCounts, Lane); 2127 2128 if (IsConstant(Lane)) 2129 NumConstantLanes++; 2130 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2131 AddCount(ShuffleCounts, ShuffleSrc); 2132 if (CanSwizzle) { 2133 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2134 if (SwizzleSrcs.first) 2135 AddCount(SwizzleCounts, SwizzleSrcs); 2136 } 2137 } 2138 2139 SDValue SplatValue; 2140 size_t NumSplatLanes; 2141 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2142 2143 SDValue SwizzleSrc; 2144 SDValue SwizzleIndices; 2145 size_t NumSwizzleLanes = 0; 2146 if (SwizzleCounts.size()) 2147 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2148 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2149 2150 // Shuffles can draw from up to two vectors, so find the two most common 2151 // sources. 2152 SDValue ShuffleSrc1, ShuffleSrc2; 2153 size_t NumShuffleLanes = 0; 2154 if (ShuffleCounts.size()) { 2155 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2156 llvm::erase_if(ShuffleCounts, 2157 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2158 } 2159 if (ShuffleCounts.size()) { 2160 size_t AdditionalShuffleLanes; 2161 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2162 GetMostCommon(ShuffleCounts); 2163 NumShuffleLanes += AdditionalShuffleLanes; 2164 } 2165 2166 // Predicate returning true if the lane is properly initialized by the 2167 // original instruction 2168 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2169 SDValue Result; 2170 // Prefer swizzles over shuffles over vector consts over splats 2171 if (NumSwizzleLanes >= NumShuffleLanes && 2172 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2173 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2174 SwizzleIndices); 2175 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2176 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2177 return Swizzled == GetSwizzleSrcs(I, Lane); 2178 }; 2179 } else if (NumShuffleLanes >= NumConstantLanes && 2180 NumShuffleLanes >= NumSplatLanes) { 2181 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2182 size_t DestLaneCount = VecT.getVectorNumElements(); 2183 size_t Scale1 = 1; 2184 size_t Scale2 = 1; 2185 SDValue Src1 = ShuffleSrc1; 2186 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2187 if (Src1.getValueType() != VecT) { 2188 size_t LaneSize = 2189 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2190 assert(LaneSize > DestLaneSize); 2191 Scale1 = LaneSize / DestLaneSize; 2192 Src1 = DAG.getBitcast(VecT, Src1); 2193 } 2194 if (Src2.getValueType() != VecT) { 2195 size_t LaneSize = 2196 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2197 assert(LaneSize > DestLaneSize); 2198 Scale2 = LaneSize / DestLaneSize; 2199 Src2 = DAG.getBitcast(VecT, Src2); 2200 } 2201 2202 int Mask[16]; 2203 assert(DestLaneCount <= 16); 2204 for (size_t I = 0; I < DestLaneCount; ++I) { 2205 const SDValue &Lane = Op->getOperand(I); 2206 SDValue Src = GetShuffleSrc(Lane); 2207 if (Src == ShuffleSrc1) { 2208 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2209 } else if (Src && Src == ShuffleSrc2) { 2210 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2211 } else { 2212 Mask[I] = -1; 2213 } 2214 } 2215 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2216 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2217 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2218 auto Src = GetShuffleSrc(Lane); 2219 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2220 }; 2221 } else if (NumConstantLanes >= NumSplatLanes) { 2222 SmallVector<SDValue, 16> ConstLanes; 2223 for (const SDValue &Lane : Op->op_values()) { 2224 if (IsConstant(Lane)) { 2225 // Values may need to be fixed so that they will sign extend to be 2226 // within the expected range during ISel. Check whether the value is in 2227 // bounds based on the lane bit width and if it is out of bounds, lop 2228 // off the extra bits and subtract 2^n to reflect giving the high bit 2229 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2230 // cannot possibly be out of range. 2231 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2232 int64_t Val = Const ? Const->getSExtValue() : 0; 2233 uint64_t LaneBits = 128 / Lanes; 2234 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2235 "Unexpected out of bounds negative value"); 2236 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2237 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); 2238 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2239 } else { 2240 ConstLanes.push_back(Lane); 2241 } 2242 } else if (LaneT.isFloatingPoint()) { 2243 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2244 } else { 2245 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2246 } 2247 } 2248 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2249 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2250 return IsConstant(Lane); 2251 }; 2252 } else { 2253 // Use a splat, but possibly a load_splat 2254 LoadSDNode *SplattedLoad; 2255 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 2256 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 2257 Result = DAG.getMemIntrinsicNode( 2258 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 2259 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 2260 SplattedLoad->getOffset()}, 2261 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 2262 } else { 2263 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2264 } 2265 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2266 return Lane == SplatValue; 2267 }; 2268 } 2269 2270 assert(Result); 2271 assert(IsLaneConstructed); 2272 2273 // Add replace_lane instructions for any unhandled values 2274 for (size_t I = 0; I < Lanes; ++I) { 2275 const SDValue &Lane = Op->getOperand(I); 2276 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2277 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2278 DAG.getConstant(I, DL, MVT::i32)); 2279 } 2280 2281 return Result; 2282 } 2283 2284 SDValue 2285 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2286 SelectionDAG &DAG) const { 2287 SDLoc DL(Op); 2288 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2289 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2290 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2291 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2292 2293 // Space for two vector args and sixteen mask indices 2294 SDValue Ops[18]; 2295 size_t OpIdx = 0; 2296 Ops[OpIdx++] = Op.getOperand(0); 2297 Ops[OpIdx++] = Op.getOperand(1); 2298 2299 // Expand mask indices to byte indices and materialize them as operands 2300 for (int M : Mask) { 2301 for (size_t J = 0; J < LaneBytes; ++J) { 2302 // Lower undefs (represented by -1 in mask) to zero 2303 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 2304 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2305 } 2306 } 2307 2308 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2309 } 2310 2311 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2312 SelectionDAG &DAG) const { 2313 SDLoc DL(Op); 2314 // The legalizer does not know how to expand the unsupported comparison modes 2315 // of i64x2 vectors, so we manually unroll them here. 2316 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2317 SmallVector<SDValue, 2> LHS, RHS; 2318 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2319 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2320 const SDValue &CC = Op->getOperand(2); 2321 auto MakeLane = [&](unsigned I) { 2322 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2323 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2324 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2325 }; 2326 return DAG.getBuildVector(Op->getValueType(0), DL, 2327 {MakeLane(0), MakeLane(1)}); 2328 } 2329 2330 SDValue 2331 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2332 SelectionDAG &DAG) const { 2333 // Allow constant lane indices, expand variable lane indices 2334 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2335 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2336 return Op; 2337 else 2338 // Perform default expansion 2339 return SDValue(); 2340 } 2341 2342 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2343 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2344 // 32-bit and 64-bit unrolled shifts will have proper semantics 2345 if (LaneT.bitsGE(MVT::i32)) 2346 return DAG.UnrollVectorOp(Op.getNode()); 2347 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2348 SDLoc DL(Op); 2349 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2350 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2351 unsigned ShiftOpcode = Op.getOpcode(); 2352 SmallVector<SDValue, 16> ShiftedElements; 2353 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2354 SmallVector<SDValue, 16> ShiftElements; 2355 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2356 SmallVector<SDValue, 16> UnrolledOps; 2357 for (size_t i = 0; i < NumLanes; ++i) { 2358 SDValue MaskedShiftValue = 2359 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2360 SDValue ShiftedValue = ShiftedElements[i]; 2361 if (ShiftOpcode == ISD::SRA) 2362 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2363 ShiftedValue, DAG.getValueType(LaneT)); 2364 UnrolledOps.push_back( 2365 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2366 } 2367 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2368 } 2369 2370 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2371 SelectionDAG &DAG) const { 2372 SDLoc DL(Op); 2373 2374 // Only manually lower vector shifts 2375 assert(Op.getSimpleValueType().isVector()); 2376 2377 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2378 if (!ShiftVal) 2379 return unrollVectorShift(Op, DAG); 2380 2381 // Use anyext because none of the high bits can affect the shift 2382 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2383 2384 unsigned Opcode; 2385 switch (Op.getOpcode()) { 2386 case ISD::SHL: 2387 Opcode = WebAssemblyISD::VEC_SHL; 2388 break; 2389 case ISD::SRA: 2390 Opcode = WebAssemblyISD::VEC_SHR_S; 2391 break; 2392 case ISD::SRL: 2393 Opcode = WebAssemblyISD::VEC_SHR_U; 2394 break; 2395 default: 2396 llvm_unreachable("unexpected opcode"); 2397 } 2398 2399 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2400 } 2401 2402 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2403 SelectionDAG &DAG) const { 2404 SDLoc DL(Op); 2405 EVT ResT = Op.getValueType(); 2406 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2407 2408 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2409 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2410 return Op; 2411 2412 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2413 return Op; 2414 2415 return SDValue(); 2416 } 2417 2418 //===----------------------------------------------------------------------===// 2419 // Custom DAG combine hooks 2420 //===----------------------------------------------------------------------===// 2421 static SDValue 2422 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2423 auto &DAG = DCI.DAG; 2424 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2425 2426 // Hoist vector bitcasts that don't change the number of lanes out of unary 2427 // shuffles, where they are less likely to get in the way of other combines. 2428 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2429 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2430 SDValue Bitcast = N->getOperand(0); 2431 if (Bitcast.getOpcode() != ISD::BITCAST) 2432 return SDValue(); 2433 if (!N->getOperand(1).isUndef()) 2434 return SDValue(); 2435 SDValue CastOp = Bitcast.getOperand(0); 2436 MVT SrcType = CastOp.getSimpleValueType(); 2437 MVT DstType = Bitcast.getSimpleValueType(); 2438 if (!SrcType.is128BitVector() || 2439 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2440 return SDValue(); 2441 SDValue NewShuffle = DAG.getVectorShuffle( 2442 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2443 return DAG.getBitcast(DstType, NewShuffle); 2444 } 2445 2446 static SDValue 2447 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2448 auto &DAG = DCI.DAG; 2449 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2450 N->getOpcode() == ISD::ZERO_EXTEND); 2451 2452 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2453 // possible before the extract_subvector can be expanded. 2454 auto Extract = N->getOperand(0); 2455 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2456 return SDValue(); 2457 auto Source = Extract.getOperand(0); 2458 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2459 if (IndexNode == nullptr) 2460 return SDValue(); 2461 auto Index = IndexNode->getZExtValue(); 2462 2463 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2464 // extracted subvector is the low or high half of its source. 2465 EVT ResVT = N->getValueType(0); 2466 if (ResVT == MVT::v8i16) { 2467 if (Extract.getValueType() != MVT::v8i8 || 2468 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2469 return SDValue(); 2470 } else if (ResVT == MVT::v4i32) { 2471 if (Extract.getValueType() != MVT::v4i16 || 2472 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2473 return SDValue(); 2474 } else if (ResVT == MVT::v2i64) { 2475 if (Extract.getValueType() != MVT::v2i32 || 2476 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2477 return SDValue(); 2478 } else { 2479 return SDValue(); 2480 } 2481 2482 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2483 bool IsLow = Index == 0; 2484 2485 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2486 : WebAssemblyISD::EXTEND_HIGH_S) 2487 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2488 : WebAssemblyISD::EXTEND_HIGH_U); 2489 2490 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2491 } 2492 2493 static SDValue 2494 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2495 auto &DAG = DCI.DAG; 2496 2497 auto GetWasmConversionOp = [](unsigned Op) { 2498 switch (Op) { 2499 case ISD::FP_TO_SINT_SAT: 2500 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2501 case ISD::FP_TO_UINT_SAT: 2502 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2503 case ISD::FP_ROUND: 2504 return WebAssemblyISD::DEMOTE_ZERO; 2505 } 2506 llvm_unreachable("unexpected op"); 2507 }; 2508 2509 auto IsZeroSplat = [](SDValue SplatVal) { 2510 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2511 APInt SplatValue, SplatUndef; 2512 unsigned SplatBitSize; 2513 bool HasAnyUndefs; 2514 return Splat && 2515 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2516 HasAnyUndefs) && 2517 SplatValue == 0; 2518 }; 2519 2520 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2521 // Combine this: 2522 // 2523 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2524 // 2525 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2526 // 2527 // Or this: 2528 // 2529 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2530 // 2531 // into (f32x4.demote_zero_f64x2 $x). 2532 EVT ResVT; 2533 EVT ExpectedConversionType; 2534 auto Conversion = N->getOperand(0); 2535 auto ConversionOp = Conversion.getOpcode(); 2536 switch (ConversionOp) { 2537 case ISD::FP_TO_SINT_SAT: 2538 case ISD::FP_TO_UINT_SAT: 2539 ResVT = MVT::v4i32; 2540 ExpectedConversionType = MVT::v2i32; 2541 break; 2542 case ISD::FP_ROUND: 2543 ResVT = MVT::v4f32; 2544 ExpectedConversionType = MVT::v2f32; 2545 break; 2546 default: 2547 return SDValue(); 2548 } 2549 2550 if (N->getValueType(0) != ResVT) 2551 return SDValue(); 2552 2553 if (Conversion.getValueType() != ExpectedConversionType) 2554 return SDValue(); 2555 2556 auto Source = Conversion.getOperand(0); 2557 if (Source.getValueType() != MVT::v2f64) 2558 return SDValue(); 2559 2560 if (!IsZeroSplat(N->getOperand(1)) || 2561 N->getOperand(1).getValueType() != ExpectedConversionType) 2562 return SDValue(); 2563 2564 unsigned Op = GetWasmConversionOp(ConversionOp); 2565 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2566 } 2567 2568 // Combine this: 2569 // 2570 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2571 // 2572 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2573 // 2574 // Or this: 2575 // 2576 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2577 // 2578 // into (f32x4.demote_zero_f64x2 $x). 2579 EVT ResVT; 2580 auto ConversionOp = N->getOpcode(); 2581 switch (ConversionOp) { 2582 case ISD::FP_TO_SINT_SAT: 2583 case ISD::FP_TO_UINT_SAT: 2584 ResVT = MVT::v4i32; 2585 break; 2586 case ISD::FP_ROUND: 2587 ResVT = MVT::v4f32; 2588 break; 2589 default: 2590 llvm_unreachable("unexpected op"); 2591 } 2592 2593 if (N->getValueType(0) != ResVT) 2594 return SDValue(); 2595 2596 auto Concat = N->getOperand(0); 2597 if (Concat.getValueType() != MVT::v4f64) 2598 return SDValue(); 2599 2600 auto Source = Concat.getOperand(0); 2601 if (Source.getValueType() != MVT::v2f64) 2602 return SDValue(); 2603 2604 if (!IsZeroSplat(Concat.getOperand(1)) || 2605 Concat.getOperand(1).getValueType() != MVT::v2f64) 2606 return SDValue(); 2607 2608 unsigned Op = GetWasmConversionOp(ConversionOp); 2609 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2610 } 2611 2612 SDValue 2613 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2614 DAGCombinerInfo &DCI) const { 2615 switch (N->getOpcode()) { 2616 default: 2617 return SDValue(); 2618 case ISD::VECTOR_SHUFFLE: 2619 return performVECTOR_SHUFFLECombine(N, DCI); 2620 case ISD::SIGN_EXTEND: 2621 case ISD::ZERO_EXTEND: 2622 return performVectorExtendCombine(N, DCI); 2623 case ISD::FP_TO_SINT_SAT: 2624 case ISD::FP_TO_UINT_SAT: 2625 case ISD::FP_ROUND: 2626 case ISD::CONCAT_VECTORS: 2627 return performVectorTruncZeroCombine(N, DCI); 2628 } 2629 } 2630