1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 } 65 if (Subtarget->hasUnimplementedSIMD128()) { 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 73 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 74 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 75 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 76 setOperationAction(ISD::BRIND, MVT::Other, Custom); 77 78 // Take the default expansion for va_arg, va_copy, and va_end. There is no 79 // default action for va_start, so we do that custom. 80 setOperationAction(ISD::VASTART, MVT::Other, Custom); 81 setOperationAction(ISD::VAARG, MVT::Other, Expand); 82 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 83 setOperationAction(ISD::VAEND, MVT::Other, Expand); 84 85 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 86 // Don't expand the floating-point types to constant pools. 87 setOperationAction(ISD::ConstantFP, T, Legal); 88 // Expand floating-point comparisons. 89 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 90 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 91 setCondCodeAction(CC, T, Expand); 92 // Expand floating-point library function operators. 93 for (auto Op : 94 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 95 setOperationAction(Op, T, Expand); 96 // Note supported floating-point library function operators that otherwise 97 // default to expand. 98 for (auto Op : 99 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 100 setOperationAction(Op, T, Legal); 101 // Support minimum and maximum, which otherwise default to expand. 102 setOperationAction(ISD::FMINIMUM, T, Legal); 103 setOperationAction(ISD::FMAXIMUM, T, Legal); 104 // WebAssembly currently has no builtin f16 support. 105 setOperationAction(ISD::FP16_TO_FP, T, Expand); 106 setOperationAction(ISD::FP_TO_FP16, T, Expand); 107 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 108 setTruncStoreAction(T, MVT::f16, Expand); 109 } 110 111 // Expand unavailable integer operations. 112 for (auto Op : 113 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 114 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 115 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 116 for (auto T : {MVT::i32, MVT::i64}) 117 setOperationAction(Op, T, Expand); 118 if (Subtarget->hasSIMD128()) 119 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 120 setOperationAction(Op, T, Expand); 121 if (Subtarget->hasUnimplementedSIMD128()) 122 setOperationAction(Op, MVT::v2i64, Expand); 123 } 124 125 // SIMD-specific configuration 126 if (Subtarget->hasSIMD128()) { 127 // Support saturating add for i8x16 and i16x8 128 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 129 for (auto T : {MVT::v16i8, MVT::v8i16}) 130 setOperationAction(Op, T, Legal); 131 132 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 133 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 134 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 135 if (Subtarget->hasUnimplementedSIMD128()) 136 for (auto T : {MVT::v2i64, MVT::v2f64}) 137 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 138 139 // We have custom shuffle lowering to expose the shuffle mask 140 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 141 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 142 if (Subtarget->hasUnimplementedSIMD128()) 143 for (auto T: {MVT::v2i64, MVT::v2f64}) 144 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 145 146 // Custom lowering since wasm shifts must have a scalar shift amount 147 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 148 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 149 setOperationAction(Op, T, Custom); 150 if (Subtarget->hasUnimplementedSIMD128()) 151 setOperationAction(Op, MVT::v2i64, Custom); 152 } 153 154 // Custom lower lane accesses to expand out variable indices 155 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 156 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 157 setOperationAction(Op, T, Custom); 158 if (Subtarget->hasUnimplementedSIMD128()) 159 for (auto T : {MVT::v2i64, MVT::v2f64}) 160 setOperationAction(Op, T, Custom); 161 } 162 163 // There is no i64x2.mul instruction 164 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 165 166 // There are no vector select instructions 167 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 168 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 169 setOperationAction(Op, T, Expand); 170 if (Subtarget->hasUnimplementedSIMD128()) 171 for (auto T : {MVT::v2i64, MVT::v2f64}) 172 setOperationAction(Op, T, Expand); 173 } 174 175 // Expand integer operations supported for scalars but not SIMD 176 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 177 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 178 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 179 setOperationAction(Op, T, Expand); 180 if (Subtarget->hasUnimplementedSIMD128()) 181 setOperationAction(Op, MVT::v2i64, Expand); 182 } 183 184 // But we do have integer min and max operations 185 if (Subtarget->hasUnimplementedSIMD128()) { 186 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 188 setOperationAction(Op, T, Legal); 189 } 190 191 // Expand float operations supported for scalars but not SIMD 192 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 193 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 194 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) { 195 setOperationAction(Op, MVT::v4f32, Expand); 196 if (Subtarget->hasUnimplementedSIMD128()) 197 setOperationAction(Op, MVT::v2f64, Expand); 198 } 199 200 // Expand operations not supported for i64x2 vectors 201 if (Subtarget->hasUnimplementedSIMD128()) 202 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 203 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 204 205 // Expand additional SIMD ops that V8 hasn't implemented yet 206 if (!Subtarget->hasUnimplementedSIMD128()) { 207 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 208 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 209 } 210 } 211 212 // As a special case, these operators use the type to mean the type to 213 // sign-extend from. 214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 215 if (!Subtarget->hasSignExt()) { 216 // Sign extends are legal only when extending a vector extract 217 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 218 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 219 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 220 } 221 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 222 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 223 224 // Dynamic stack allocation: use the default expansion. 225 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 226 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 227 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 228 229 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 230 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 231 232 // Expand these forms; we pattern-match the forms that we can handle in isel. 233 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 234 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 235 setOperationAction(Op, T, Expand); 236 237 // We have custom switch handling. 238 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 239 240 // WebAssembly doesn't have: 241 // - Floating-point extending loads. 242 // - Floating-point truncating stores. 243 // - i1 extending loads. 244 // - truncating SIMD stores and most extending loads 245 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 246 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 247 for (auto T : MVT::integer_valuetypes()) 248 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 249 setLoadExtAction(Ext, T, MVT::i1, Promote); 250 if (Subtarget->hasSIMD128()) { 251 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 252 MVT::v2f64}) { 253 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 254 if (MVT(T) != MemT) { 255 setTruncStoreAction(T, MemT, Expand); 256 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 257 setLoadExtAction(Ext, T, MemT, Expand); 258 } 259 } 260 } 261 // But some vector extending loads are legal 262 if (Subtarget->hasUnimplementedSIMD128()) { 263 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 264 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 265 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 266 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 267 } 268 } 269 } 270 271 // Don't do anything clever with build_pairs 272 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 273 274 // Trap lowers to wasm unreachable 275 setOperationAction(ISD::TRAP, MVT::Other, Legal); 276 277 // Exception handling intrinsics 278 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 279 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 280 281 setMaxAtomicSizeInBitsSupported(64); 282 283 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 284 // consistent with the f64 and f128 names. 285 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 286 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 287 288 // Define the emscripten name for return address helper. 289 // TODO: when implementing other WASM backends, make this generic or only do 290 // this on emscripten depending on what they end up doing. 291 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 292 293 // Always convert switches to br_tables unless there is only one case, which 294 // is equivalent to a simple branch. This reduces code size for wasm, and we 295 // defer possible jump table optimizations to the VM. 296 setMinimumJumpTableEntries(2); 297 } 298 299 TargetLowering::AtomicExpansionKind 300 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 301 // We have wasm instructions for these 302 switch (AI->getOperation()) { 303 case AtomicRMWInst::Add: 304 case AtomicRMWInst::Sub: 305 case AtomicRMWInst::And: 306 case AtomicRMWInst::Or: 307 case AtomicRMWInst::Xor: 308 case AtomicRMWInst::Xchg: 309 return AtomicExpansionKind::None; 310 default: 311 break; 312 } 313 return AtomicExpansionKind::CmpXChg; 314 } 315 316 FastISel *WebAssemblyTargetLowering::createFastISel( 317 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 318 return WebAssembly::createFastISel(FuncInfo, LibInfo); 319 } 320 321 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 322 EVT VT) const { 323 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 324 if (BitWidth > 1 && BitWidth < 8) 325 BitWidth = 8; 326 327 if (BitWidth > 64) { 328 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 329 // the count to be an i32. 330 BitWidth = 32; 331 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 332 "32-bit shift counts ought to be enough for anyone"); 333 } 334 335 MVT Result = MVT::getIntegerVT(BitWidth); 336 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 337 "Unable to represent scalar shift amount type"); 338 return Result; 339 } 340 341 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 342 // undefined result on invalid/overflow, to the WebAssembly opcode, which 343 // traps on invalid/overflow. 344 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 345 MachineBasicBlock *BB, 346 const TargetInstrInfo &TII, 347 bool IsUnsigned, bool Int64, 348 bool Float64, unsigned LoweredOpcode) { 349 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 350 351 Register OutReg = MI.getOperand(0).getReg(); 352 Register InReg = MI.getOperand(1).getReg(); 353 354 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 355 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 356 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 357 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 358 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 359 unsigned Eqz = WebAssembly::EQZ_I32; 360 unsigned And = WebAssembly::AND_I32; 361 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 362 int64_t Substitute = IsUnsigned ? 0 : Limit; 363 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 364 auto &Context = BB->getParent()->getFunction().getContext(); 365 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 366 367 const BasicBlock *LLVMBB = BB->getBasicBlock(); 368 MachineFunction *F = BB->getParent(); 369 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 370 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 371 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 372 373 MachineFunction::iterator It = ++BB->getIterator(); 374 F->insert(It, FalseMBB); 375 F->insert(It, TrueMBB); 376 F->insert(It, DoneMBB); 377 378 // Transfer the remainder of BB and its successor edges to DoneMBB. 379 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 380 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 381 382 BB->addSuccessor(TrueMBB); 383 BB->addSuccessor(FalseMBB); 384 TrueMBB->addSuccessor(DoneMBB); 385 FalseMBB->addSuccessor(DoneMBB); 386 387 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 388 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 389 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 390 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 391 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 392 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 393 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 394 395 MI.eraseFromParent(); 396 // For signed numbers, we can do a single comparison to determine whether 397 // fabs(x) is within range. 398 if (IsUnsigned) { 399 Tmp0 = InReg; 400 } else { 401 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 402 } 403 BuildMI(BB, DL, TII.get(FConst), Tmp1) 404 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 405 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 406 407 // For unsigned numbers, we have to do a separate comparison with zero. 408 if (IsUnsigned) { 409 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 410 Register SecondCmpReg = 411 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 412 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 413 BuildMI(BB, DL, TII.get(FConst), Tmp1) 414 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 415 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 416 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 417 CmpReg = AndReg; 418 } 419 420 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 421 422 // Create the CFG diamond to select between doing the conversion or using 423 // the substitute value. 424 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 425 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 426 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 427 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 428 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 429 .addReg(FalseReg) 430 .addMBB(FalseMBB) 431 .addReg(TrueReg) 432 .addMBB(TrueMBB); 433 434 return DoneMBB; 435 } 436 437 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 438 DebugLoc DL, MachineBasicBlock *BB, 439 const TargetInstrInfo &TII) { 440 MachineInstr &CallParams = *CallResults.getPrevNode(); 441 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 442 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS); 443 444 MachineFunction &MF = *BB->getParent(); 445 const MCInstrDesc &MCID = TII.get(WebAssembly::CALL); 446 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 447 448 for (auto Def : CallResults.defs()) 449 MIB.add(Def); 450 for (auto Use : CallParams.uses()) 451 MIB.add(Use); 452 453 BB->insert(CallResults.getIterator(), MIB); 454 CallParams.eraseFromParent(); 455 CallResults.eraseFromParent(); 456 457 return BB; 458 } 459 460 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 461 MachineInstr &MI, MachineBasicBlock *BB) const { 462 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 463 DebugLoc DL = MI.getDebugLoc(); 464 465 switch (MI.getOpcode()) { 466 default: 467 llvm_unreachable("Unexpected instr type to insert"); 468 case WebAssembly::FP_TO_SINT_I32_F32: 469 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 470 WebAssembly::I32_TRUNC_S_F32); 471 case WebAssembly::FP_TO_UINT_I32_F32: 472 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 473 WebAssembly::I32_TRUNC_U_F32); 474 case WebAssembly::FP_TO_SINT_I64_F32: 475 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 476 WebAssembly::I64_TRUNC_S_F32); 477 case WebAssembly::FP_TO_UINT_I64_F32: 478 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 479 WebAssembly::I64_TRUNC_U_F32); 480 case WebAssembly::FP_TO_SINT_I32_F64: 481 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 482 WebAssembly::I32_TRUNC_S_F64); 483 case WebAssembly::FP_TO_UINT_I32_F64: 484 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 485 WebAssembly::I32_TRUNC_U_F64); 486 case WebAssembly::FP_TO_SINT_I64_F64: 487 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 488 WebAssembly::I64_TRUNC_S_F64); 489 case WebAssembly::FP_TO_UINT_I64_F64: 490 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 491 WebAssembly::I64_TRUNC_U_F64); 492 case WebAssembly::CALL_RESULTS: 493 return LowerCallResults(MI, DL, BB, TII); 494 } 495 } 496 497 const char * 498 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 499 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 500 case WebAssemblyISD::FIRST_NUMBER: 501 case WebAssemblyISD::FIRST_MEM_OPCODE: 502 break; 503 #define HANDLE_NODETYPE(NODE) \ 504 case WebAssemblyISD::NODE: \ 505 return "WebAssemblyISD::" #NODE; 506 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 507 #include "WebAssemblyISD.def" 508 #undef HANDLE_MEM_NODETYPE 509 #undef HANDLE_NODETYPE 510 } 511 return nullptr; 512 } 513 514 std::pair<unsigned, const TargetRegisterClass *> 515 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 516 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 517 // First, see if this is a constraint that directly corresponds to a 518 // WebAssembly register class. 519 if (Constraint.size() == 1) { 520 switch (Constraint[0]) { 521 case 'r': 522 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 523 if (Subtarget->hasSIMD128() && VT.isVector()) { 524 if (VT.getSizeInBits() == 128) 525 return std::make_pair(0U, &WebAssembly::V128RegClass); 526 } 527 if (VT.isInteger() && !VT.isVector()) { 528 if (VT.getSizeInBits() <= 32) 529 return std::make_pair(0U, &WebAssembly::I32RegClass); 530 if (VT.getSizeInBits() <= 64) 531 return std::make_pair(0U, &WebAssembly::I64RegClass); 532 } 533 break; 534 default: 535 break; 536 } 537 } 538 539 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 540 } 541 542 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 543 // Assume ctz is a relatively cheap operation. 544 return true; 545 } 546 547 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 548 // Assume clz is a relatively cheap operation. 549 return true; 550 } 551 552 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 553 const AddrMode &AM, 554 Type *Ty, unsigned AS, 555 Instruction *I) const { 556 // WebAssembly offsets are added as unsigned without wrapping. The 557 // isLegalAddressingMode gives us no way to determine if wrapping could be 558 // happening, so we approximate this by accepting only non-negative offsets. 559 if (AM.BaseOffs < 0) 560 return false; 561 562 // WebAssembly has no scale register operands. 563 if (AM.Scale != 0) 564 return false; 565 566 // Everything else is legal. 567 return true; 568 } 569 570 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 571 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 572 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 573 // WebAssembly supports unaligned accesses, though it should be declared 574 // with the p2align attribute on loads and stores which do so, and there 575 // may be a performance impact. We tell LLVM they're "fast" because 576 // for the kinds of things that LLVM uses this for (merging adjacent stores 577 // of constants, etc.), WebAssembly implementations will either want the 578 // unaligned access or they'll split anyway. 579 if (Fast) 580 *Fast = true; 581 return true; 582 } 583 584 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 585 AttributeList Attr) const { 586 // The current thinking is that wasm engines will perform this optimization, 587 // so we can save on code size. 588 return true; 589 } 590 591 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 592 if (!Subtarget->hasUnimplementedSIMD128()) 593 return false; 594 MVT ExtT = ExtVal.getSimpleValueType(); 595 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 596 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 597 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 598 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 599 } 600 601 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 602 LLVMContext &C, 603 EVT VT) const { 604 if (VT.isVector()) 605 return VT.changeVectorElementTypeToInteger(); 606 607 return TargetLowering::getSetCCResultType(DL, C, VT); 608 } 609 610 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 611 const CallInst &I, 612 MachineFunction &MF, 613 unsigned Intrinsic) const { 614 switch (Intrinsic) { 615 case Intrinsic::wasm_atomic_notify: 616 Info.opc = ISD::INTRINSIC_W_CHAIN; 617 Info.memVT = MVT::i32; 618 Info.ptrVal = I.getArgOperand(0); 619 Info.offset = 0; 620 Info.align = Align(4); 621 // atomic.notify instruction does not really load the memory specified with 622 // this argument, but MachineMemOperand should either be load or store, so 623 // we set this to a load. 624 // FIXME Volatile isn't really correct, but currently all LLVM atomic 625 // instructions are treated as volatiles in the backend, so we should be 626 // consistent. The same applies for wasm_atomic_wait intrinsics too. 627 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 628 return true; 629 case Intrinsic::wasm_atomic_wait_i32: 630 Info.opc = ISD::INTRINSIC_W_CHAIN; 631 Info.memVT = MVT::i32; 632 Info.ptrVal = I.getArgOperand(0); 633 Info.offset = 0; 634 Info.align = Align(4); 635 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 636 return true; 637 case Intrinsic::wasm_atomic_wait_i64: 638 Info.opc = ISD::INTRINSIC_W_CHAIN; 639 Info.memVT = MVT::i64; 640 Info.ptrVal = I.getArgOperand(0); 641 Info.offset = 0; 642 Info.align = Align(8); 643 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 644 return true; 645 default: 646 return false; 647 } 648 } 649 650 //===----------------------------------------------------------------------===// 651 // WebAssembly Lowering private implementation. 652 //===----------------------------------------------------------------------===// 653 654 //===----------------------------------------------------------------------===// 655 // Lowering Code 656 //===----------------------------------------------------------------------===// 657 658 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 659 MachineFunction &MF = DAG.getMachineFunction(); 660 DAG.getContext()->diagnose( 661 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 662 } 663 664 // Test whether the given calling convention is supported. 665 static bool callingConvSupported(CallingConv::ID CallConv) { 666 // We currently support the language-independent target-independent 667 // conventions. We don't yet have a way to annotate calls with properties like 668 // "cold", and we don't have any call-clobbered registers, so these are mostly 669 // all handled the same. 670 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 671 CallConv == CallingConv::Cold || 672 CallConv == CallingConv::PreserveMost || 673 CallConv == CallingConv::PreserveAll || 674 CallConv == CallingConv::CXX_FAST_TLS || 675 CallConv == CallingConv::WASM_EmscriptenInvoke; 676 } 677 678 SDValue 679 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 680 SmallVectorImpl<SDValue> &InVals) const { 681 SelectionDAG &DAG = CLI.DAG; 682 SDLoc DL = CLI.DL; 683 SDValue Chain = CLI.Chain; 684 SDValue Callee = CLI.Callee; 685 MachineFunction &MF = DAG.getMachineFunction(); 686 auto Layout = MF.getDataLayout(); 687 688 CallingConv::ID CallConv = CLI.CallConv; 689 if (!callingConvSupported(CallConv)) 690 fail(DL, DAG, 691 "WebAssembly doesn't support language-specific or target-specific " 692 "calling conventions yet"); 693 if (CLI.IsPatchPoint) 694 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 695 696 if (CLI.IsTailCall) { 697 bool MustTail = CLI.CS && CLI.CS.isMustTailCall(); 698 if (Subtarget->hasTailCall() && !CLI.IsVarArg) { 699 // Do not tail call unless caller and callee return types match 700 const Function &F = MF.getFunction(); 701 const TargetMachine &TM = getTargetMachine(); 702 Type *RetTy = F.getReturnType(); 703 SmallVector<MVT, 4> CallerRetTys; 704 SmallVector<MVT, 4> CalleeRetTys; 705 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 706 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 707 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 708 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 709 CalleeRetTys.begin()); 710 if (!TypesMatch) { 711 // musttail in this case would be an LLVM IR validation failure 712 assert(!MustTail); 713 CLI.IsTailCall = false; 714 } 715 } else { 716 CLI.IsTailCall = false; 717 if (MustTail) { 718 if (CLI.IsVarArg) { 719 // The return would pop the argument buffer 720 fail(DL, DAG, "WebAssembly does not support varargs tail calls"); 721 } else { 722 fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled"); 723 } 724 } 725 } 726 } 727 728 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 729 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 730 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 731 732 // The generic code may have added an sret argument. If we're lowering an 733 // invoke function, the ABI requires that the function pointer be the first 734 // argument, so we may have to swap the arguments. 735 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 736 Outs[0].Flags.isSRet()) { 737 std::swap(Outs[0], Outs[1]); 738 std::swap(OutVals[0], OutVals[1]); 739 } 740 741 unsigned NumFixedArgs = 0; 742 for (unsigned I = 0; I < Outs.size(); ++I) { 743 const ISD::OutputArg &Out = Outs[I]; 744 SDValue &OutVal = OutVals[I]; 745 if (Out.Flags.isNest()) 746 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 747 if (Out.Flags.isInAlloca()) 748 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 749 if (Out.Flags.isInConsecutiveRegs()) 750 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 751 if (Out.Flags.isInConsecutiveRegsLast()) 752 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 753 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 754 auto &MFI = MF.getFrameInfo(); 755 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 756 Out.Flags.getByValAlign(), 757 /*isSS=*/false); 758 SDValue SizeNode = 759 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 760 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 761 Chain = DAG.getMemcpy( 762 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 763 /*isVolatile*/ false, /*AlwaysInline=*/false, 764 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 765 OutVal = FINode; 766 } 767 // Count the number of fixed args *after* legalization. 768 NumFixedArgs += Out.IsFixed; 769 } 770 771 bool IsVarArg = CLI.IsVarArg; 772 auto PtrVT = getPointerTy(Layout); 773 774 // Analyze operands of the call, assigning locations to each operand. 775 SmallVector<CCValAssign, 16> ArgLocs; 776 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 777 778 if (IsVarArg) { 779 // Outgoing non-fixed arguments are placed in a buffer. First 780 // compute their offsets and the total amount of buffer space needed. 781 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 782 const ISD::OutputArg &Out = Outs[I]; 783 SDValue &Arg = OutVals[I]; 784 EVT VT = Arg.getValueType(); 785 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 786 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 787 unsigned Align = std::max(Out.Flags.getOrigAlign(), 788 Layout.getABITypeAlignment(Ty)); 789 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 790 Align); 791 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 792 Offset, VT.getSimpleVT(), 793 CCValAssign::Full)); 794 } 795 } 796 797 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 798 799 SDValue FINode; 800 if (IsVarArg && NumBytes) { 801 // For non-fixed arguments, next emit stores to store the argument values 802 // to the stack buffer at the offsets computed above. 803 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 804 Layout.getStackAlignment(), 805 /*isSS=*/false); 806 unsigned ValNo = 0; 807 SmallVector<SDValue, 8> Chains; 808 for (SDValue Arg : 809 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 810 assert(ArgLocs[ValNo].getValNo() == ValNo && 811 "ArgLocs should remain in order and only hold varargs args"); 812 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 813 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 814 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 815 DAG.getConstant(Offset, DL, PtrVT)); 816 Chains.push_back( 817 DAG.getStore(Chain, DL, Arg, Add, 818 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 819 } 820 if (!Chains.empty()) 821 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 822 } else if (IsVarArg) { 823 FINode = DAG.getIntPtrConstant(0, DL); 824 } 825 826 if (Callee->getOpcode() == ISD::GlobalAddress) { 827 // If the callee is a GlobalAddress node (quite common, every direct call 828 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 829 // doesn't at MO_GOT which is not needed for direct calls. 830 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 831 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 832 getPointerTy(DAG.getDataLayout()), 833 GA->getOffset()); 834 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 835 getPointerTy(DAG.getDataLayout()), Callee); 836 } 837 838 // Compute the operands for the CALLn node. 839 SmallVector<SDValue, 16> Ops; 840 Ops.push_back(Chain); 841 Ops.push_back(Callee); 842 843 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 844 // isn't reliable. 845 Ops.append(OutVals.begin(), 846 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 847 // Add a pointer to the vararg buffer. 848 if (IsVarArg) 849 Ops.push_back(FINode); 850 851 SmallVector<EVT, 8> InTys; 852 for (const auto &In : Ins) { 853 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 854 assert(!In.Flags.isNest() && "nest is not valid for return values"); 855 if (In.Flags.isInAlloca()) 856 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 857 if (In.Flags.isInConsecutiveRegs()) 858 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 859 if (In.Flags.isInConsecutiveRegsLast()) 860 fail(DL, DAG, 861 "WebAssembly hasn't implemented cons regs last return values"); 862 // Ignore In.getOrigAlign() because all our arguments are passed in 863 // registers. 864 InTys.push_back(In.VT); 865 } 866 867 if (CLI.IsTailCall) { 868 // ret_calls do not return values to the current frame 869 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 870 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 871 } 872 873 InTys.push_back(MVT::Other); 874 unsigned Opc; 875 // TODO: Remove CALL0 and CALL1 in favor of CALL 876 switch (Ins.size()) { 877 case 0: 878 Opc = WebAssemblyISD::CALL0; 879 break; 880 case 1: 881 Opc = WebAssemblyISD::CALL1; 882 break; 883 default: 884 Opc = WebAssemblyISD::CALL; 885 break; 886 } 887 SDVTList InTyList = DAG.getVTList(InTys); 888 SDValue Res = DAG.getNode(Opc, DL, InTyList, Ops); 889 890 for (size_t I = 0; I < Ins.size(); ++I) 891 InVals.push_back(Res.getValue(I)); 892 893 // Return the chain 894 return Res.getValue(Ins.size()); 895 } 896 897 bool WebAssemblyTargetLowering::CanLowerReturn( 898 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 899 const SmallVectorImpl<ISD::OutputArg> &Outs, 900 LLVMContext & /*Context*/) const { 901 // WebAssembly can only handle returning tuples with multivalue enabled 902 return Subtarget->hasMultivalue() || Outs.size() <= 1; 903 } 904 905 SDValue WebAssemblyTargetLowering::LowerReturn( 906 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 907 const SmallVectorImpl<ISD::OutputArg> &Outs, 908 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 909 SelectionDAG &DAG) const { 910 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 911 "MVP WebAssembly can only return up to one value"); 912 if (!callingConvSupported(CallConv)) 913 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 914 915 SmallVector<SDValue, 4> RetOps(1, Chain); 916 RetOps.append(OutVals.begin(), OutVals.end()); 917 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 918 919 // Record the number and types of the return values. 920 for (const ISD::OutputArg &Out : Outs) { 921 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 922 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 923 assert(Out.IsFixed && "non-fixed return value is not valid"); 924 if (Out.Flags.isInAlloca()) 925 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 926 if (Out.Flags.isInConsecutiveRegs()) 927 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 928 if (Out.Flags.isInConsecutiveRegsLast()) 929 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 930 } 931 932 return Chain; 933 } 934 935 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 936 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 937 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 938 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 939 if (!callingConvSupported(CallConv)) 940 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 941 942 MachineFunction &MF = DAG.getMachineFunction(); 943 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 944 945 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 946 // of the incoming values before they're represented by virtual registers. 947 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 948 949 for (const ISD::InputArg &In : Ins) { 950 if (In.Flags.isInAlloca()) 951 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 952 if (In.Flags.isNest()) 953 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 954 if (In.Flags.isInConsecutiveRegs()) 955 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 956 if (In.Flags.isInConsecutiveRegsLast()) 957 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 958 // Ignore In.getOrigAlign() because all our arguments are passed in 959 // registers. 960 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 961 DAG.getTargetConstant(InVals.size(), 962 DL, MVT::i32)) 963 : DAG.getUNDEF(In.VT)); 964 965 // Record the number and types of arguments. 966 MFI->addParam(In.VT); 967 } 968 969 // Varargs are copied into a buffer allocated by the caller, and a pointer to 970 // the buffer is passed as an argument. 971 if (IsVarArg) { 972 MVT PtrVT = getPointerTy(MF.getDataLayout()); 973 Register VarargVreg = 974 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 975 MFI->setVarargBufferVreg(VarargVreg); 976 Chain = DAG.getCopyToReg( 977 Chain, DL, VarargVreg, 978 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 979 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 980 MFI->addParam(PtrVT); 981 } 982 983 // Record the number and types of arguments and results. 984 SmallVector<MVT, 4> Params; 985 SmallVector<MVT, 4> Results; 986 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 987 DAG.getTarget(), Params, Results); 988 for (MVT VT : Results) 989 MFI->addResult(VT); 990 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 991 // the param logic here with ComputeSignatureVTs 992 assert(MFI->getParams().size() == Params.size() && 993 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 994 Params.begin())); 995 996 return Chain; 997 } 998 999 void WebAssemblyTargetLowering::ReplaceNodeResults( 1000 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1001 switch (N->getOpcode()) { 1002 case ISD::SIGN_EXTEND_INREG: 1003 // Do not add any results, signifying that N should not be custom lowered 1004 // after all. This happens because simd128 turns on custom lowering for 1005 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1006 // illegal type. 1007 break; 1008 default: 1009 llvm_unreachable( 1010 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1011 } 1012 } 1013 1014 //===----------------------------------------------------------------------===// 1015 // Custom lowering hooks. 1016 //===----------------------------------------------------------------------===// 1017 1018 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1019 SelectionDAG &DAG) const { 1020 SDLoc DL(Op); 1021 switch (Op.getOpcode()) { 1022 default: 1023 llvm_unreachable("unimplemented operation lowering"); 1024 return SDValue(); 1025 case ISD::FrameIndex: 1026 return LowerFrameIndex(Op, DAG); 1027 case ISD::GlobalAddress: 1028 return LowerGlobalAddress(Op, DAG); 1029 case ISD::ExternalSymbol: 1030 return LowerExternalSymbol(Op, DAG); 1031 case ISD::JumpTable: 1032 return LowerJumpTable(Op, DAG); 1033 case ISD::BR_JT: 1034 return LowerBR_JT(Op, DAG); 1035 case ISD::VASTART: 1036 return LowerVASTART(Op, DAG); 1037 case ISD::BlockAddress: 1038 case ISD::BRIND: 1039 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1040 return SDValue(); 1041 case ISD::RETURNADDR: 1042 return LowerRETURNADDR(Op, DAG); 1043 case ISD::FRAMEADDR: 1044 return LowerFRAMEADDR(Op, DAG); 1045 case ISD::CopyToReg: 1046 return LowerCopyToReg(Op, DAG); 1047 case ISD::EXTRACT_VECTOR_ELT: 1048 case ISD::INSERT_VECTOR_ELT: 1049 return LowerAccessVectorElement(Op, DAG); 1050 case ISD::INTRINSIC_VOID: 1051 case ISD::INTRINSIC_WO_CHAIN: 1052 case ISD::INTRINSIC_W_CHAIN: 1053 return LowerIntrinsic(Op, DAG); 1054 case ISD::SIGN_EXTEND_INREG: 1055 return LowerSIGN_EXTEND_INREG(Op, DAG); 1056 case ISD::BUILD_VECTOR: 1057 return LowerBUILD_VECTOR(Op, DAG); 1058 case ISD::VECTOR_SHUFFLE: 1059 return LowerVECTOR_SHUFFLE(Op, DAG); 1060 case ISD::SETCC: 1061 return LowerSETCC(Op, DAG); 1062 case ISD::SHL: 1063 case ISD::SRA: 1064 case ISD::SRL: 1065 return LowerShift(Op, DAG); 1066 } 1067 } 1068 1069 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1070 SelectionDAG &DAG) const { 1071 SDValue Src = Op.getOperand(2); 1072 if (isa<FrameIndexSDNode>(Src.getNode())) { 1073 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1074 // the FI to some LEA-like instruction, but since we don't have that, we 1075 // need to insert some kind of instruction that can take an FI operand and 1076 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1077 // local.copy between Op and its FI operand. 1078 SDValue Chain = Op.getOperand(0); 1079 SDLoc DL(Op); 1080 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1081 EVT VT = Src.getValueType(); 1082 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1083 : WebAssembly::COPY_I64, 1084 DL, VT, Src), 1085 0); 1086 return Op.getNode()->getNumValues() == 1 1087 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1088 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1089 Op.getNumOperands() == 4 ? Op.getOperand(3) 1090 : SDValue()); 1091 } 1092 return SDValue(); 1093 } 1094 1095 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1096 SelectionDAG &DAG) const { 1097 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1098 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1099 } 1100 1101 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1102 SelectionDAG &DAG) const { 1103 SDLoc DL(Op); 1104 1105 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1106 fail(DL, DAG, 1107 "Non-Emscripten WebAssembly hasn't implemented " 1108 "__builtin_return_address"); 1109 return SDValue(); 1110 } 1111 1112 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1113 return SDValue(); 1114 1115 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1116 MakeLibCallOptions CallOptions; 1117 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1118 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1119 .first; 1120 } 1121 1122 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1123 SelectionDAG &DAG) const { 1124 // Non-zero depths are not supported by WebAssembly currently. Use the 1125 // legalizer's default expansion, which is to return 0 (what this function is 1126 // documented to do). 1127 if (Op.getConstantOperandVal(0) > 0) 1128 return SDValue(); 1129 1130 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1131 EVT VT = Op.getValueType(); 1132 Register FP = 1133 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1134 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1135 } 1136 1137 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1138 SelectionDAG &DAG) const { 1139 SDLoc DL(Op); 1140 const auto *GA = cast<GlobalAddressSDNode>(Op); 1141 EVT VT = Op.getValueType(); 1142 assert(GA->getTargetFlags() == 0 && 1143 "Unexpected target flags on generic GlobalAddressSDNode"); 1144 if (GA->getAddressSpace() != 0) 1145 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1146 1147 unsigned OperandFlags = 0; 1148 if (isPositionIndependent()) { 1149 const GlobalValue *GV = GA->getGlobal(); 1150 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1151 MachineFunction &MF = DAG.getMachineFunction(); 1152 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1153 const char *BaseName; 1154 if (GV->getValueType()->isFunctionTy()) { 1155 BaseName = MF.createExternalSymbolName("__table_base"); 1156 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1157 } 1158 else { 1159 BaseName = MF.createExternalSymbolName("__memory_base"); 1160 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1161 } 1162 SDValue BaseAddr = 1163 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1164 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1165 1166 SDValue SymAddr = DAG.getNode( 1167 WebAssemblyISD::WrapperPIC, DL, VT, 1168 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1169 OperandFlags)); 1170 1171 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1172 } else { 1173 OperandFlags = WebAssemblyII::MO_GOT; 1174 } 1175 } 1176 1177 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1178 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1179 GA->getOffset(), OperandFlags)); 1180 } 1181 1182 SDValue 1183 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1184 SelectionDAG &DAG) const { 1185 SDLoc DL(Op); 1186 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1187 EVT VT = Op.getValueType(); 1188 assert(ES->getTargetFlags() == 0 && 1189 "Unexpected target flags on generic ExternalSymbolSDNode"); 1190 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1191 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1192 } 1193 1194 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1195 SelectionDAG &DAG) const { 1196 // There's no need for a Wrapper node because we always incorporate a jump 1197 // table operand into a BR_TABLE instruction, rather than ever 1198 // materializing it in a register. 1199 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1200 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1201 JT->getTargetFlags()); 1202 } 1203 1204 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1205 SelectionDAG &DAG) const { 1206 SDLoc DL(Op); 1207 SDValue Chain = Op.getOperand(0); 1208 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1209 SDValue Index = Op.getOperand(2); 1210 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1211 1212 SmallVector<SDValue, 8> Ops; 1213 Ops.push_back(Chain); 1214 Ops.push_back(Index); 1215 1216 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1217 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1218 1219 // Add an operand for each case. 1220 for (auto MBB : MBBs) 1221 Ops.push_back(DAG.getBasicBlock(MBB)); 1222 1223 // TODO: For now, we just pick something arbitrary for a default case for now. 1224 // We really want to sniff out the guard and put in the real default case (and 1225 // delete the guard). 1226 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1227 1228 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1229 } 1230 1231 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1232 SelectionDAG &DAG) const { 1233 SDLoc DL(Op); 1234 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1235 1236 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1237 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1238 1239 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1240 MFI->getVarargBufferVreg(), PtrVT); 1241 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1242 MachinePointerInfo(SV), 0); 1243 } 1244 1245 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1246 SelectionDAG &DAG) const { 1247 MachineFunction &MF = DAG.getMachineFunction(); 1248 unsigned IntNo; 1249 switch (Op.getOpcode()) { 1250 case ISD::INTRINSIC_VOID: 1251 case ISD::INTRINSIC_W_CHAIN: 1252 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1253 break; 1254 case ISD::INTRINSIC_WO_CHAIN: 1255 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1256 break; 1257 default: 1258 llvm_unreachable("Invalid intrinsic"); 1259 } 1260 SDLoc DL(Op); 1261 1262 switch (IntNo) { 1263 default: 1264 return SDValue(); // Don't custom lower most intrinsics. 1265 1266 case Intrinsic::wasm_lsda: { 1267 EVT VT = Op.getValueType(); 1268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1269 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1270 auto &Context = MF.getMMI().getContext(); 1271 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1272 Twine(MF.getFunctionNumber())); 1273 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1274 DAG.getMCSymbol(S, PtrVT)); 1275 } 1276 1277 case Intrinsic::wasm_throw: { 1278 // We only support C++ exceptions for now 1279 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1280 if (Tag != CPP_EXCEPTION) 1281 llvm_unreachable("Invalid tag!"); 1282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1283 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1284 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1285 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1286 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1287 return DAG.getNode(WebAssemblyISD::THROW, DL, 1288 MVT::Other, // outchain type 1289 { 1290 Op.getOperand(0), // inchain 1291 SymNode, // exception symbol 1292 Op.getOperand(3) // thrown value 1293 }); 1294 } 1295 } 1296 } 1297 1298 SDValue 1299 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1300 SelectionDAG &DAG) const { 1301 SDLoc DL(Op); 1302 // If sign extension operations are disabled, allow sext_inreg only if operand 1303 // is a vector extract. SIMD does not depend on sign extension operations, but 1304 // allowing sext_inreg in this context lets us have simple patterns to select 1305 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1306 // simpler in this file, but would necessitate large and brittle patterns to 1307 // undo the expansion and select extract_lane_s instructions. 1308 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1309 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1310 const SDValue &Extract = Op.getOperand(0); 1311 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1312 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1313 ->getVT() 1314 .getSimpleVT(); 1315 MVT ExtractedVecT = 1316 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1317 if (ExtractedVecT == VecT) 1318 return Op; 1319 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1320 const SDValue &Index = Extract.getOperand(1); 1321 unsigned IndexVal = 1322 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1323 unsigned Scale = 1324 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1325 assert(Scale > 1); 1326 SDValue NewIndex = 1327 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1328 SDValue NewExtract = DAG.getNode( 1329 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1330 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1331 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), 1332 NewExtract, Op.getOperand(1)); 1333 } 1334 // Otherwise expand 1335 return SDValue(); 1336 } 1337 1338 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1339 SelectionDAG &DAG) const { 1340 SDLoc DL(Op); 1341 const EVT VecT = Op.getValueType(); 1342 const EVT LaneT = Op.getOperand(0).getValueType(); 1343 const size_t Lanes = Op.getNumOperands(); 1344 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8; 1345 1346 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1347 // possible number of lanes at once followed by a sequence of replace_lane 1348 // instructions to individually initialize any remaining lanes. 1349 1350 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1351 // swizzled lanes should be given greater weight. 1352 1353 // TODO: Investigate building vectors by shuffling together vectors built by 1354 // separately specialized means. 1355 1356 auto IsConstant = [](const SDValue &V) { 1357 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1358 }; 1359 1360 // Returns the source vector and index vector pair if they exist. Checks for: 1361 // (extract_vector_elt 1362 // $src, 1363 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1364 // ) 1365 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1366 auto Bail = std::make_pair(SDValue(), SDValue()); 1367 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1368 return Bail; 1369 const SDValue &SwizzleSrc = Lane->getOperand(0); 1370 const SDValue &IndexExt = Lane->getOperand(1); 1371 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1372 return Bail; 1373 const SDValue &Index = IndexExt->getOperand(0); 1374 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1375 return Bail; 1376 const SDValue &SwizzleIndices = Index->getOperand(0); 1377 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1378 SwizzleIndices.getValueType() != MVT::v16i8 || 1379 Index->getOperand(1)->getOpcode() != ISD::Constant || 1380 Index->getConstantOperandVal(1) != I) 1381 return Bail; 1382 return std::make_pair(SwizzleSrc, SwizzleIndices); 1383 }; 1384 1385 using ValueEntry = std::pair<SDValue, size_t>; 1386 SmallVector<ValueEntry, 16> SplatValueCounts; 1387 1388 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1389 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1390 1391 auto AddCount = [](auto &Counts, const auto &Val) { 1392 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1393 [&Val](auto E) { return E.first == Val; }); 1394 if (CountIt == Counts.end()) { 1395 Counts.emplace_back(Val, 1); 1396 } else { 1397 CountIt->second++; 1398 } 1399 }; 1400 1401 auto GetMostCommon = [](auto &Counts) { 1402 auto CommonIt = 1403 std::max_element(Counts.begin(), Counts.end(), 1404 [](auto A, auto B) { return A.second < B.second; }); 1405 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1406 return *CommonIt; 1407 }; 1408 1409 size_t NumConstantLanes = 0; 1410 1411 // Count eligible lanes for each type of vector creation op 1412 for (size_t I = 0; I < Lanes; ++I) { 1413 const SDValue &Lane = Op->getOperand(I); 1414 if (Lane.isUndef()) 1415 continue; 1416 1417 AddCount(SplatValueCounts, Lane); 1418 1419 if (IsConstant(Lane)) { 1420 NumConstantLanes++; 1421 } else if (CanSwizzle) { 1422 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1423 if (SwizzleSrcs.first) 1424 AddCount(SwizzleCounts, SwizzleSrcs); 1425 } 1426 } 1427 1428 SDValue SplatValue; 1429 size_t NumSplatLanes; 1430 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1431 1432 SDValue SwizzleSrc; 1433 SDValue SwizzleIndices; 1434 size_t NumSwizzleLanes = 0; 1435 if (SwizzleCounts.size()) 1436 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1437 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1438 1439 // Predicate returning true if the lane is properly initialized by the 1440 // original instruction 1441 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1442 SDValue Result; 1443 if (Subtarget->hasUnimplementedSIMD128()) { 1444 // Prefer swizzles over vector consts over splats 1445 if (NumSwizzleLanes >= NumSplatLanes && 1446 NumSwizzleLanes >= NumConstantLanes) { 1447 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1448 SwizzleIndices); 1449 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1450 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1451 return Swizzled == GetSwizzleSrcs(I, Lane); 1452 }; 1453 } else if (NumConstantLanes >= NumSplatLanes) { 1454 SmallVector<SDValue, 16> ConstLanes; 1455 for (const SDValue &Lane : Op->op_values()) { 1456 if (IsConstant(Lane)) { 1457 ConstLanes.push_back(Lane); 1458 } else if (LaneT.isFloatingPoint()) { 1459 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1460 } else { 1461 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1462 } 1463 } 1464 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1465 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1466 return IsConstant(Lane); 1467 }; 1468 } 1469 } 1470 if (!Result) { 1471 // Use a splat, but possibly a load_splat 1472 LoadSDNode *SplattedLoad; 1473 if (Subtarget->hasUnimplementedSIMD128() && 1474 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1475 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1476 Result = DAG.getMemIntrinsicNode( 1477 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1478 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1479 SplattedLoad->getOffset()}, 1480 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1481 } else { 1482 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1483 } 1484 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1485 return Lane == SplatValue; 1486 }; 1487 } 1488 1489 // Add replace_lane instructions for any unhandled values 1490 for (size_t I = 0; I < Lanes; ++I) { 1491 const SDValue &Lane = Op->getOperand(I); 1492 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1493 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1494 DAG.getConstant(I, DL, MVT::i32)); 1495 } 1496 1497 return Result; 1498 } 1499 1500 SDValue 1501 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1502 SelectionDAG &DAG) const { 1503 SDLoc DL(Op); 1504 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1505 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1506 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1507 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1508 1509 // Space for two vector args and sixteen mask indices 1510 SDValue Ops[18]; 1511 size_t OpIdx = 0; 1512 Ops[OpIdx++] = Op.getOperand(0); 1513 Ops[OpIdx++] = Op.getOperand(1); 1514 1515 // Expand mask indices to byte indices and materialize them as operands 1516 for (int M : Mask) { 1517 for (size_t J = 0; J < LaneBytes; ++J) { 1518 // Lower undefs (represented by -1 in mask) to zero 1519 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1520 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1521 } 1522 } 1523 1524 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1525 } 1526 1527 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1528 SelectionDAG &DAG) const { 1529 SDLoc DL(Op); 1530 // The legalizer does not know how to expand the comparison modes of i64x2 1531 // vectors because no comparison modes are supported. We could solve this by 1532 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1533 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1534 // comparisons here. 1535 assert(Subtarget->hasUnimplementedSIMD128()); 1536 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1537 SmallVector<SDValue, 2> LHS, RHS; 1538 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1539 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1540 const SDValue &CC = Op->getOperand(2); 1541 auto MakeLane = [&](unsigned I) { 1542 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1543 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1544 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1545 }; 1546 return DAG.getBuildVector(Op->getValueType(0), DL, 1547 {MakeLane(0), MakeLane(1)}); 1548 } 1549 1550 SDValue 1551 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1552 SelectionDAG &DAG) const { 1553 // Allow constant lane indices, expand variable lane indices 1554 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1555 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1556 return Op; 1557 else 1558 // Perform default expansion 1559 return SDValue(); 1560 } 1561 1562 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1563 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1564 // 32-bit and 64-bit unrolled shifts will have proper semantics 1565 if (LaneT.bitsGE(MVT::i32)) 1566 return DAG.UnrollVectorOp(Op.getNode()); 1567 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1568 SDLoc DL(Op); 1569 SDValue ShiftVal = Op.getOperand(1); 1570 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1571 SDValue MaskedShiftVal = DAG.getNode( 1572 ISD::AND, // mask opcode 1573 DL, ShiftVal.getValueType(), // masked value type 1574 ShiftVal, // original shift value operand 1575 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1576 ); 1577 1578 return DAG.UnrollVectorOp( 1579 DAG.getNode(Op.getOpcode(), // original shift opcode 1580 DL, Op.getValueType(), // original return type 1581 Op.getOperand(0), // original vector operand, 1582 MaskedShiftVal // new masked shift value operand 1583 ) 1584 .getNode()); 1585 } 1586 1587 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1588 SelectionDAG &DAG) const { 1589 SDLoc DL(Op); 1590 1591 // Only manually lower vector shifts 1592 assert(Op.getSimpleValueType().isVector()); 1593 1594 // Unroll non-splat vector shifts 1595 BuildVectorSDNode *ShiftVec; 1596 SDValue SplatVal; 1597 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1598 !(SplatVal = ShiftVec->getSplatValue())) 1599 return unrollVectorShift(Op, DAG); 1600 1601 // All splats except i64x2 const splats are handled by patterns 1602 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1603 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1604 return Op; 1605 1606 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1607 unsigned Opcode; 1608 switch (Op.getOpcode()) { 1609 case ISD::SHL: 1610 Opcode = WebAssemblyISD::VEC_SHL; 1611 break; 1612 case ISD::SRA: 1613 Opcode = WebAssemblyISD::VEC_SHR_S; 1614 break; 1615 case ISD::SRL: 1616 Opcode = WebAssemblyISD::VEC_SHR_U; 1617 break; 1618 default: 1619 llvm_unreachable("unexpected opcode"); 1620 } 1621 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1622 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1623 DAG.getConstant(Shift, DL, MVT::i32)); 1624 } 1625 1626 //===----------------------------------------------------------------------===// 1627 // WebAssembly Optimization Hooks 1628 //===----------------------------------------------------------------------===// 1629