1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "wasm-lower"
38 
39 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
40     const TargetMachine &TM, const WebAssemblySubtarget &STI)
41     : TargetLowering(TM), Subtarget(&STI) {
42   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
43 
44   // Booleans always contain 0 or 1.
45   setBooleanContents(ZeroOrOneBooleanContent);
46   // Except in SIMD vectors
47   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
48   // WebAssembly does not produce floating-point exceptions on normal floating
49   // point operations.
50   setHasFloatingPointExceptions(false);
51   // We don't know the microarchitecture here, so just reduce register pressure.
52   setSchedulingPreference(Sched::RegPressure);
53   // Tell ISel that we have a stack pointer.
54   setStackPointerRegisterToSaveRestore(
55       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
56   // Set up the register classes.
57   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
58   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
59   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
60   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
61   if (Subtarget->hasSIMD128()) {
62     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
66   }
67   if (Subtarget->hasUnimplementedSIMD128()) {
68     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
69     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
70   }
71   // Compute derived properties from the register classes.
72   computeRegisterProperties(Subtarget->getRegisterInfo());
73 
74   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
75   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
76   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
77   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
78   setOperationAction(ISD::BRIND, MVT::Other, Custom);
79 
80   // Take the default expansion for va_arg, va_copy, and va_end. There is no
81   // default action for va_start, so we do that custom.
82   setOperationAction(ISD::VASTART, MVT::Other, Custom);
83   setOperationAction(ISD::VAARG, MVT::Other, Expand);
84   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
85   setOperationAction(ISD::VAEND, MVT::Other, Expand);
86 
87   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
88     // Don't expand the floating-point types to constant pools.
89     setOperationAction(ISD::ConstantFP, T, Legal);
90     // Expand floating-point comparisons.
91     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
92                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
93       setCondCodeAction(CC, T, Expand);
94     // Expand floating-point library function operators.
95     for (auto Op :
96          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
97       setOperationAction(Op, T, Expand);
98     // Note supported floating-point library function operators that otherwise
99     // default to expand.
100     for (auto Op :
101          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
102       setOperationAction(Op, T, Legal);
103     // Support minimum and maximum, which otherwise default to expand.
104     setOperationAction(ISD::FMINIMUM, T, Legal);
105     setOperationAction(ISD::FMAXIMUM, T, Legal);
106     // WebAssembly currently has no builtin f16 support.
107     setOperationAction(ISD::FP16_TO_FP, T, Expand);
108     setOperationAction(ISD::FP_TO_FP16, T, Expand);
109     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
110     setTruncStoreAction(T, MVT::f16, Expand);
111   }
112 
113   // Expand unavailable integer operations.
114   for (auto Op :
115        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
116         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
117         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
118     for (auto T : {MVT::i32, MVT::i64})
119       setOperationAction(Op, T, Expand);
120     if (Subtarget->hasSIMD128())
121       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
122         setOperationAction(Op, T, Expand);
123     if (Subtarget->hasUnimplementedSIMD128())
124       setOperationAction(Op, MVT::v2i64, Expand);
125   }
126 
127   // SIMD-specific configuration
128   if (Subtarget->hasSIMD128()) {
129     // Support saturating add for i8x16 and i16x8
130     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
131       for (auto T : {MVT::v16i8, MVT::v8i16})
132         setOperationAction(Op, T, Legal);
133 
134     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
135     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
136       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
137     if (Subtarget->hasUnimplementedSIMD128())
138       for (auto T : {MVT::v2i64, MVT::v2f64})
139         setOperationAction(ISD::BUILD_VECTOR, T, Custom);
140 
141     // We have custom shuffle lowering to expose the shuffle mask
142     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
143       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
144     if (Subtarget->hasUnimplementedSIMD128())
145       for (auto T: {MVT::v2i64, MVT::v2f64})
146         setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
147 
148     // Custom lowering since wasm shifts must have a scalar shift amount
149     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
150       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
151         setOperationAction(Op, T, Custom);
152       if (Subtarget->hasUnimplementedSIMD128())
153         setOperationAction(Op, MVT::v2i64, Custom);
154     }
155 
156     // Custom lower lane accesses to expand out variable indices
157     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
158       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
159         setOperationAction(Op, T, Custom);
160       if (Subtarget->hasUnimplementedSIMD128())
161         for (auto T : {MVT::v2i64, MVT::v2f64})
162           setOperationAction(Op, T, Custom);
163     }
164 
165     // There is no i64x2.mul instruction
166     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
167 
168     // There are no vector select instructions
169     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
170       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
171         setOperationAction(Op, T, Expand);
172       if (Subtarget->hasUnimplementedSIMD128())
173         for (auto T : {MVT::v2i64, MVT::v2f64})
174           setOperationAction(Op, T, Expand);
175     }
176 
177     // Expand integer operations supported for scalars but not SIMD
178     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
179                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
180       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
181         setOperationAction(Op, T, Expand);
182       if (Subtarget->hasUnimplementedSIMD128())
183         setOperationAction(Op, MVT::v2i64, Expand);
184     }
185 
186     // Expand float operations supported for scalars but not SIMD
187     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
188                     ISD::FCOPYSIGN}) {
189       setOperationAction(Op, MVT::v4f32, Expand);
190       if (Subtarget->hasUnimplementedSIMD128())
191         setOperationAction(Op, MVT::v2f64, Expand);
192     }
193 
194     // Expand additional SIMD ops that V8 hasn't implemented yet
195     if (!Subtarget->hasUnimplementedSIMD128()) {
196       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
197       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
198     }
199   }
200 
201   // As a special case, these operators use the type to mean the type to
202   // sign-extend from.
203   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
204   if (!Subtarget->hasSignExt()) {
205     // Sign extends are legal only when extending a vector extract
206     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
207     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
208       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
209   }
210   for (auto T : MVT::integer_vector_valuetypes())
211     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
212 
213   // Dynamic stack allocation: use the default expansion.
214   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
215   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
216   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
217 
218   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
219   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
220 
221   // Expand these forms; we pattern-match the forms that we can handle in isel.
222   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
223     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
224       setOperationAction(Op, T, Expand);
225 
226   // We have custom switch handling.
227   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
228 
229   // WebAssembly doesn't have:
230   //  - Floating-point extending loads.
231   //  - Floating-point truncating stores.
232   //  - i1 extending loads.
233   //  - extending/truncating SIMD loads/stores
234   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
235   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
236   for (auto T : MVT::integer_valuetypes())
237     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
238       setLoadExtAction(Ext, T, MVT::i1, Promote);
239   if (Subtarget->hasSIMD128()) {
240     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
241                    MVT::v2f64}) {
242       for (auto MemT : MVT::vector_valuetypes()) {
243         if (MVT(T) != MemT) {
244           setTruncStoreAction(T, MemT, Expand);
245           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
246             setLoadExtAction(Ext, T, MemT, Expand);
247         }
248       }
249     }
250   }
251 
252   // Don't do anything clever with build_pairs
253   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
254 
255   // Trap lowers to wasm unreachable
256   setOperationAction(ISD::TRAP, MVT::Other, Legal);
257 
258   // Exception handling intrinsics
259   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
260   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
261 
262   setMaxAtomicSizeInBitsSupported(64);
263 
264   if (Subtarget->hasBulkMemory()) {
265     // Use memory.copy and friends over multiple loads and stores
266     MaxStoresPerMemcpy = 1;
267     MaxStoresPerMemcpyOptSize = 1;
268     MaxStoresPerMemmove = 1;
269     MaxStoresPerMemmoveOptSize = 1;
270     MaxStoresPerMemset = 1;
271     MaxStoresPerMemsetOptSize = 1;
272   }
273 }
274 
275 TargetLowering::AtomicExpansionKind
276 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
277   // We have wasm instructions for these
278   switch (AI->getOperation()) {
279   case AtomicRMWInst::Add:
280   case AtomicRMWInst::Sub:
281   case AtomicRMWInst::And:
282   case AtomicRMWInst::Or:
283   case AtomicRMWInst::Xor:
284   case AtomicRMWInst::Xchg:
285     return AtomicExpansionKind::None;
286   default:
287     break;
288   }
289   return AtomicExpansionKind::CmpXChg;
290 }
291 
292 FastISel *WebAssemblyTargetLowering::createFastISel(
293     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
294   return WebAssembly::createFastISel(FuncInfo, LibInfo);
295 }
296 
297 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
298                                                       EVT VT) const {
299   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
300   if (BitWidth > 1 && BitWidth < 8)
301     BitWidth = 8;
302 
303   if (BitWidth > 64) {
304     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
305     // the count to be an i32.
306     BitWidth = 32;
307     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
308            "32-bit shift counts ought to be enough for anyone");
309   }
310 
311   MVT Result = MVT::getIntegerVT(BitWidth);
312   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
313          "Unable to represent scalar shift amount type");
314   return Result;
315 }
316 
317 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
318 // undefined result on invalid/overflow, to the WebAssembly opcode, which
319 // traps on invalid/overflow.
320 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
321                                        MachineBasicBlock *BB,
322                                        const TargetInstrInfo &TII,
323                                        bool IsUnsigned, bool Int64,
324                                        bool Float64, unsigned LoweredOpcode) {
325   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
326 
327   unsigned OutReg = MI.getOperand(0).getReg();
328   unsigned InReg = MI.getOperand(1).getReg();
329 
330   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
331   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
332   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
333   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
334   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
335   unsigned Eqz = WebAssembly::EQZ_I32;
336   unsigned And = WebAssembly::AND_I32;
337   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
338   int64_t Substitute = IsUnsigned ? 0 : Limit;
339   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
340   auto &Context = BB->getParent()->getFunction().getContext();
341   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
342 
343   const BasicBlock *LLVMBB = BB->getBasicBlock();
344   MachineFunction *F = BB->getParent();
345   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
346   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
347   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
348 
349   MachineFunction::iterator It = ++BB->getIterator();
350   F->insert(It, FalseMBB);
351   F->insert(It, TrueMBB);
352   F->insert(It, DoneMBB);
353 
354   // Transfer the remainder of BB and its successor edges to DoneMBB.
355   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
356   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
357 
358   BB->addSuccessor(TrueMBB);
359   BB->addSuccessor(FalseMBB);
360   TrueMBB->addSuccessor(DoneMBB);
361   FalseMBB->addSuccessor(DoneMBB);
362 
363   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
364   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
365   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
366   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
367   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
368   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
369   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
370 
371   MI.eraseFromParent();
372   // For signed numbers, we can do a single comparison to determine whether
373   // fabs(x) is within range.
374   if (IsUnsigned) {
375     Tmp0 = InReg;
376   } else {
377     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
378   }
379   BuildMI(BB, DL, TII.get(FConst), Tmp1)
380       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
381   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
382 
383   // For unsigned numbers, we have to do a separate comparison with zero.
384   if (IsUnsigned) {
385     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
386     unsigned SecondCmpReg =
387         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
388     unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
389     BuildMI(BB, DL, TII.get(FConst), Tmp1)
390         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
391     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
392     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
393     CmpReg = AndReg;
394   }
395 
396   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
397 
398   // Create the CFG diamond to select between doing the conversion or using
399   // the substitute value.
400   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
401   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
402   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
403   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
404   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
405       .addReg(FalseReg)
406       .addMBB(FalseMBB)
407       .addReg(TrueReg)
408       .addMBB(TrueMBB);
409 
410   return DoneMBB;
411 }
412 
413 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
414     MachineInstr &MI, MachineBasicBlock *BB) const {
415   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
416   DebugLoc DL = MI.getDebugLoc();
417 
418   switch (MI.getOpcode()) {
419   default:
420     llvm_unreachable("Unexpected instr type to insert");
421   case WebAssembly::FP_TO_SINT_I32_F32:
422     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
423                         WebAssembly::I32_TRUNC_S_F32);
424   case WebAssembly::FP_TO_UINT_I32_F32:
425     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
426                         WebAssembly::I32_TRUNC_U_F32);
427   case WebAssembly::FP_TO_SINT_I64_F32:
428     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
429                         WebAssembly::I64_TRUNC_S_F32);
430   case WebAssembly::FP_TO_UINT_I64_F32:
431     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
432                         WebAssembly::I64_TRUNC_U_F32);
433   case WebAssembly::FP_TO_SINT_I32_F64:
434     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
435                         WebAssembly::I32_TRUNC_S_F64);
436   case WebAssembly::FP_TO_UINT_I32_F64:
437     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
438                         WebAssembly::I32_TRUNC_U_F64);
439   case WebAssembly::FP_TO_SINT_I64_F64:
440     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
441                         WebAssembly::I64_TRUNC_S_F64);
442   case WebAssembly::FP_TO_UINT_I64_F64:
443     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
444                         WebAssembly::I64_TRUNC_U_F64);
445     llvm_unreachable("Unexpected instruction to emit with custom inserter");
446   }
447 }
448 
449 const char *
450 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
451   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
452   case WebAssemblyISD::FIRST_NUMBER:
453     break;
454 #define HANDLE_NODETYPE(NODE)                                                  \
455   case WebAssemblyISD::NODE:                                                   \
456     return "WebAssemblyISD::" #NODE;
457 #include "WebAssemblyISD.def"
458 #undef HANDLE_NODETYPE
459   }
460   return nullptr;
461 }
462 
463 std::pair<unsigned, const TargetRegisterClass *>
464 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
465     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
466   // First, see if this is a constraint that directly corresponds to a
467   // WebAssembly register class.
468   if (Constraint.size() == 1) {
469     switch (Constraint[0]) {
470     case 'r':
471       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
472       if (Subtarget->hasSIMD128() && VT.isVector()) {
473         if (VT.getSizeInBits() == 128)
474           return std::make_pair(0U, &WebAssembly::V128RegClass);
475       }
476       if (VT.isInteger() && !VT.isVector()) {
477         if (VT.getSizeInBits() <= 32)
478           return std::make_pair(0U, &WebAssembly::I32RegClass);
479         if (VT.getSizeInBits() <= 64)
480           return std::make_pair(0U, &WebAssembly::I64RegClass);
481       }
482       break;
483     default:
484       break;
485     }
486   }
487 
488   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
489 }
490 
491 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
492   // Assume ctz is a relatively cheap operation.
493   return true;
494 }
495 
496 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
497   // Assume clz is a relatively cheap operation.
498   return true;
499 }
500 
501 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
502                                                       const AddrMode &AM,
503                                                       Type *Ty, unsigned AS,
504                                                       Instruction *I) const {
505   // WebAssembly offsets are added as unsigned without wrapping. The
506   // isLegalAddressingMode gives us no way to determine if wrapping could be
507   // happening, so we approximate this by accepting only non-negative offsets.
508   if (AM.BaseOffs < 0)
509     return false;
510 
511   // WebAssembly has no scale register operands.
512   if (AM.Scale != 0)
513     return false;
514 
515   // Everything else is legal.
516   return true;
517 }
518 
519 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
520     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const {
521   // WebAssembly supports unaligned accesses, though it should be declared
522   // with the p2align attribute on loads and stores which do so, and there
523   // may be a performance impact. We tell LLVM they're "fast" because
524   // for the kinds of things that LLVM uses this for (merging adjacent stores
525   // of constants, etc.), WebAssembly implementations will either want the
526   // unaligned access or they'll split anyway.
527   if (Fast)
528     *Fast = true;
529   return true;
530 }
531 
532 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
533                                               AttributeList Attr) const {
534   // The current thinking is that wasm engines will perform this optimization,
535   // so we can save on code size.
536   return true;
537 }
538 
539 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
540                                                   LLVMContext &C,
541                                                   EVT VT) const {
542   if (VT.isVector())
543     return VT.changeVectorElementTypeToInteger();
544 
545   return TargetLowering::getSetCCResultType(DL, C, VT);
546 }
547 
548 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
549                                                    const CallInst &I,
550                                                    MachineFunction &MF,
551                                                    unsigned Intrinsic) const {
552   switch (Intrinsic) {
553   case Intrinsic::wasm_atomic_notify:
554     Info.opc = ISD::INTRINSIC_W_CHAIN;
555     Info.memVT = MVT::i32;
556     Info.ptrVal = I.getArgOperand(0);
557     Info.offset = 0;
558     Info.align = 4;
559     // atomic.notify instruction does not really load the memory specified with
560     // this argument, but MachineMemOperand should either be load or store, so
561     // we set this to a load.
562     // FIXME Volatile isn't really correct, but currently all LLVM atomic
563     // instructions are treated as volatiles in the backend, so we should be
564     // consistent. The same applies for wasm_atomic_wait intrinsics too.
565     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
566     return true;
567   case Intrinsic::wasm_atomic_wait_i32:
568     Info.opc = ISD::INTRINSIC_W_CHAIN;
569     Info.memVT = MVT::i32;
570     Info.ptrVal = I.getArgOperand(0);
571     Info.offset = 0;
572     Info.align = 4;
573     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
574     return true;
575   case Intrinsic::wasm_atomic_wait_i64:
576     Info.opc = ISD::INTRINSIC_W_CHAIN;
577     Info.memVT = MVT::i64;
578     Info.ptrVal = I.getArgOperand(0);
579     Info.offset = 0;
580     Info.align = 8;
581     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
582     return true;
583   default:
584     return false;
585   }
586 }
587 
588 //===----------------------------------------------------------------------===//
589 // WebAssembly Lowering private implementation.
590 //===----------------------------------------------------------------------===//
591 
592 //===----------------------------------------------------------------------===//
593 // Lowering Code
594 //===----------------------------------------------------------------------===//
595 
596 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
597   MachineFunction &MF = DAG.getMachineFunction();
598   DAG.getContext()->diagnose(
599       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
600 }
601 
602 // Test whether the given calling convention is supported.
603 static bool callingConvSupported(CallingConv::ID CallConv) {
604   // We currently support the language-independent target-independent
605   // conventions. We don't yet have a way to annotate calls with properties like
606   // "cold", and we don't have any call-clobbered registers, so these are mostly
607   // all handled the same.
608   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
609          CallConv == CallingConv::Cold ||
610          CallConv == CallingConv::PreserveMost ||
611          CallConv == CallingConv::PreserveAll ||
612          CallConv == CallingConv::CXX_FAST_TLS;
613 }
614 
615 SDValue
616 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
617                                      SmallVectorImpl<SDValue> &InVals) const {
618   SelectionDAG &DAG = CLI.DAG;
619   SDLoc DL = CLI.DL;
620   SDValue Chain = CLI.Chain;
621   SDValue Callee = CLI.Callee;
622   MachineFunction &MF = DAG.getMachineFunction();
623   auto Layout = MF.getDataLayout();
624 
625   CallingConv::ID CallConv = CLI.CallConv;
626   if (!callingConvSupported(CallConv))
627     fail(DL, DAG,
628          "WebAssembly doesn't support language-specific or target-specific "
629          "calling conventions yet");
630   if (CLI.IsPatchPoint)
631     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
632 
633   // WebAssembly doesn't currently support explicit tail calls. If they are
634   // required, fail. Otherwise, just disable them.
635   if ((CallConv == CallingConv::Fast && CLI.IsTailCall &&
636        MF.getTarget().Options.GuaranteedTailCallOpt) ||
637       (CLI.CS && CLI.CS.isMustTailCall()))
638     fail(DL, DAG, "WebAssembly doesn't support tail call yet");
639   CLI.IsTailCall = false;
640 
641   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
642   if (Ins.size() > 1)
643     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
644 
645   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
646   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
647   unsigned NumFixedArgs = 0;
648   for (unsigned I = 0; I < Outs.size(); ++I) {
649     const ISD::OutputArg &Out = Outs[I];
650     SDValue &OutVal = OutVals[I];
651     if (Out.Flags.isNest())
652       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
653     if (Out.Flags.isInAlloca())
654       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
655     if (Out.Flags.isInConsecutiveRegs())
656       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
657     if (Out.Flags.isInConsecutiveRegsLast())
658       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
659     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
660       auto &MFI = MF.getFrameInfo();
661       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
662                                      Out.Flags.getByValAlign(),
663                                      /*isSS=*/false);
664       SDValue SizeNode =
665           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
666       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
667       Chain = DAG.getMemcpy(
668           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
669           /*isVolatile*/ false, /*AlwaysInline=*/false,
670           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
671       OutVal = FINode;
672     }
673     // Count the number of fixed args *after* legalization.
674     NumFixedArgs += Out.IsFixed;
675   }
676 
677   bool IsVarArg = CLI.IsVarArg;
678   auto PtrVT = getPointerTy(Layout);
679 
680   // Analyze operands of the call, assigning locations to each operand.
681   SmallVector<CCValAssign, 16> ArgLocs;
682   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
683 
684   if (IsVarArg) {
685     // Outgoing non-fixed arguments are placed in a buffer. First
686     // compute their offsets and the total amount of buffer space needed.
687     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
688       const ISD::OutputArg &Out = Outs[I];
689       SDValue &Arg = OutVals[I];
690       EVT VT = Arg.getValueType();
691       assert(VT != MVT::iPTR && "Legalized args should be concrete");
692       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
693       unsigned Align = std::max(Out.Flags.getOrigAlign(),
694                                 Layout.getABITypeAlignment(Ty));
695       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
696                                              Align);
697       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
698                                         Offset, VT.getSimpleVT(),
699                                         CCValAssign::Full));
700     }
701   }
702 
703   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
704 
705   SDValue FINode;
706   if (IsVarArg && NumBytes) {
707     // For non-fixed arguments, next emit stores to store the argument values
708     // to the stack buffer at the offsets computed above.
709     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
710                                                  Layout.getStackAlignment(),
711                                                  /*isSS=*/false);
712     unsigned ValNo = 0;
713     SmallVector<SDValue, 8> Chains;
714     for (SDValue Arg :
715          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
716       assert(ArgLocs[ValNo].getValNo() == ValNo &&
717              "ArgLocs should remain in order and only hold varargs args");
718       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
719       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
720       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
721                                 DAG.getConstant(Offset, DL, PtrVT));
722       Chains.push_back(
723           DAG.getStore(Chain, DL, Arg, Add,
724                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
725     }
726     if (!Chains.empty())
727       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
728   } else if (IsVarArg) {
729     FINode = DAG.getIntPtrConstant(0, DL);
730   }
731 
732   // Compute the operands for the CALLn node.
733   SmallVector<SDValue, 16> Ops;
734   Ops.push_back(Chain);
735   Ops.push_back(Callee);
736 
737   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
738   // isn't reliable.
739   Ops.append(OutVals.begin(),
740              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
741   // Add a pointer to the vararg buffer.
742   if (IsVarArg)
743     Ops.push_back(FINode);
744 
745   SmallVector<EVT, 8> InTys;
746   for (const auto &In : Ins) {
747     assert(!In.Flags.isByVal() && "byval is not valid for return values");
748     assert(!In.Flags.isNest() && "nest is not valid for return values");
749     if (In.Flags.isInAlloca())
750       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
751     if (In.Flags.isInConsecutiveRegs())
752       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
753     if (In.Flags.isInConsecutiveRegsLast())
754       fail(DL, DAG,
755            "WebAssembly hasn't implemented cons regs last return values");
756     // Ignore In.getOrigAlign() because all our arguments are passed in
757     // registers.
758     InTys.push_back(In.VT);
759   }
760   InTys.push_back(MVT::Other);
761   SDVTList InTyList = DAG.getVTList(InTys);
762   SDValue Res =
763       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
764                   DL, InTyList, Ops);
765   if (Ins.empty()) {
766     Chain = Res;
767   } else {
768     InVals.push_back(Res);
769     Chain = Res.getValue(1);
770   }
771 
772   return Chain;
773 }
774 
775 bool WebAssemblyTargetLowering::CanLowerReturn(
776     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
777     const SmallVectorImpl<ISD::OutputArg> &Outs,
778     LLVMContext & /*Context*/) const {
779   // WebAssembly can't currently handle returning tuples.
780   return Outs.size() <= 1;
781 }
782 
783 SDValue WebAssemblyTargetLowering::LowerReturn(
784     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
785     const SmallVectorImpl<ISD::OutputArg> &Outs,
786     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
787     SelectionDAG &DAG) const {
788   assert(Outs.size() <= 1 && "WebAssembly can only return up to one value");
789   if (!callingConvSupported(CallConv))
790     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
791 
792   SmallVector<SDValue, 4> RetOps(1, Chain);
793   RetOps.append(OutVals.begin(), OutVals.end());
794   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
795 
796   // Record the number and types of the return values.
797   for (const ISD::OutputArg &Out : Outs) {
798     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
799     assert(!Out.Flags.isNest() && "nest is not valid for return values");
800     assert(Out.IsFixed && "non-fixed return value is not valid");
801     if (Out.Flags.isInAlloca())
802       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
803     if (Out.Flags.isInConsecutiveRegs())
804       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
805     if (Out.Flags.isInConsecutiveRegsLast())
806       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
807   }
808 
809   return Chain;
810 }
811 
812 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
813     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
814     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
815     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
816   if (!callingConvSupported(CallConv))
817     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
818 
819   MachineFunction &MF = DAG.getMachineFunction();
820   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
821 
822   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
823   // of the incoming values before they're represented by virtual registers.
824   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
825 
826   for (const ISD::InputArg &In : Ins) {
827     if (In.Flags.isInAlloca())
828       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
829     if (In.Flags.isNest())
830       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
831     if (In.Flags.isInConsecutiveRegs())
832       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
833     if (In.Flags.isInConsecutiveRegsLast())
834       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
835     // Ignore In.getOrigAlign() because all our arguments are passed in
836     // registers.
837     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
838                                            DAG.getTargetConstant(InVals.size(),
839                                                                  DL, MVT::i32))
840                              : DAG.getUNDEF(In.VT));
841 
842     // Record the number and types of arguments.
843     MFI->addParam(In.VT);
844   }
845 
846   // Varargs are copied into a buffer allocated by the caller, and a pointer to
847   // the buffer is passed as an argument.
848   if (IsVarArg) {
849     MVT PtrVT = getPointerTy(MF.getDataLayout());
850     unsigned VarargVreg =
851         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
852     MFI->setVarargBufferVreg(VarargVreg);
853     Chain = DAG.getCopyToReg(
854         Chain, DL, VarargVreg,
855         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
856                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
857     MFI->addParam(PtrVT);
858   }
859 
860   // Record the number and types of arguments and results.
861   SmallVector<MVT, 4> Params;
862   SmallVector<MVT, 4> Results;
863   computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
864                       DAG.getTarget(), Params, Results);
865   for (MVT VT : Results)
866     MFI->addResult(VT);
867   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
868   // the param logic here with ComputeSignatureVTs
869   assert(MFI->getParams().size() == Params.size() &&
870          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
871                     Params.begin()));
872 
873   return Chain;
874 }
875 
876 //===----------------------------------------------------------------------===//
877 //  Custom lowering hooks.
878 //===----------------------------------------------------------------------===//
879 
880 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
881                                                   SelectionDAG &DAG) const {
882   SDLoc DL(Op);
883   switch (Op.getOpcode()) {
884   default:
885     llvm_unreachable("unimplemented operation lowering");
886     return SDValue();
887   case ISD::FrameIndex:
888     return LowerFrameIndex(Op, DAG);
889   case ISD::GlobalAddress:
890     return LowerGlobalAddress(Op, DAG);
891   case ISD::ExternalSymbol:
892     return LowerExternalSymbol(Op, DAG);
893   case ISD::JumpTable:
894     return LowerJumpTable(Op, DAG);
895   case ISD::BR_JT:
896     return LowerBR_JT(Op, DAG);
897   case ISD::VASTART:
898     return LowerVASTART(Op, DAG);
899   case ISD::BlockAddress:
900   case ISD::BRIND:
901     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
902     return SDValue();
903   case ISD::RETURNADDR: // Probably nothing meaningful can be returned here.
904     fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address");
905     return SDValue();
906   case ISD::FRAMEADDR:
907     return LowerFRAMEADDR(Op, DAG);
908   case ISD::CopyToReg:
909     return LowerCopyToReg(Op, DAG);
910   case ISD::EXTRACT_VECTOR_ELT:
911   case ISD::INSERT_VECTOR_ELT:
912     return LowerAccessVectorElement(Op, DAG);
913   case ISD::INTRINSIC_VOID:
914   case ISD::INTRINSIC_WO_CHAIN:
915   case ISD::INTRINSIC_W_CHAIN:
916     return LowerIntrinsic(Op, DAG);
917   case ISD::SIGN_EXTEND_INREG:
918     return LowerSIGN_EXTEND_INREG(Op, DAG);
919   case ISD::BUILD_VECTOR:
920     return LowerBUILD_VECTOR(Op, DAG);
921   case ISD::VECTOR_SHUFFLE:
922     return LowerVECTOR_SHUFFLE(Op, DAG);
923   case ISD::SHL:
924   case ISD::SRA:
925   case ISD::SRL:
926     return LowerShift(Op, DAG);
927   }
928 }
929 
930 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
931                                                   SelectionDAG &DAG) const {
932   SDValue Src = Op.getOperand(2);
933   if (isa<FrameIndexSDNode>(Src.getNode())) {
934     // CopyToReg nodes don't support FrameIndex operands. Other targets select
935     // the FI to some LEA-like instruction, but since we don't have that, we
936     // need to insert some kind of instruction that can take an FI operand and
937     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
938     // local.copy between Op and its FI operand.
939     SDValue Chain = Op.getOperand(0);
940     SDLoc DL(Op);
941     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
942     EVT VT = Src.getValueType();
943     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
944                                                    : WebAssembly::COPY_I64,
945                                     DL, VT, Src),
946                  0);
947     return Op.getNode()->getNumValues() == 1
948                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
949                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
950                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
951                                                            : SDValue());
952   }
953   return SDValue();
954 }
955 
956 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
957                                                    SelectionDAG &DAG) const {
958   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
959   return DAG.getTargetFrameIndex(FI, Op.getValueType());
960 }
961 
962 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
963                                                   SelectionDAG &DAG) const {
964   // Non-zero depths are not supported by WebAssembly currently. Use the
965   // legalizer's default expansion, which is to return 0 (what this function is
966   // documented to do).
967   if (Op.getConstantOperandVal(0) > 0)
968     return SDValue();
969 
970   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
971   EVT VT = Op.getValueType();
972   unsigned FP =
973       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
974   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
975 }
976 
977 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
978                                                       SelectionDAG &DAG) const {
979   SDLoc DL(Op);
980   const auto *GA = cast<GlobalAddressSDNode>(Op);
981   EVT VT = Op.getValueType();
982   assert(GA->getTargetFlags() == 0 &&
983          "Unexpected target flags on generic GlobalAddressSDNode");
984   if (GA->getAddressSpace() != 0)
985     fail(DL, DAG, "WebAssembly only expects the 0 address space");
986   return DAG.getNode(
987       WebAssemblyISD::Wrapper, DL, VT,
988       DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset()));
989 }
990 
991 SDValue
992 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
993                                                SelectionDAG &DAG) const {
994   SDLoc DL(Op);
995   const auto *ES = cast<ExternalSymbolSDNode>(Op);
996   EVT VT = Op.getValueType();
997   assert(ES->getTargetFlags() == 0 &&
998          "Unexpected target flags on generic ExternalSymbolSDNode");
999   // Set the TargetFlags to MO_SYMBOL_FUNCTION which indicates that this is a
1000   // "function" symbol rather than a data symbol. We do this unconditionally
1001   // even though we don't know anything about the symbol other than its name,
1002   // because all external symbols used in target-independent SelectionDAG code
1003   // are for functions.
1004   return DAG.getNode(
1005       WebAssemblyISD::Wrapper, DL, VT,
1006       DAG.getTargetExternalSymbol(ES->getSymbol(), VT,
1007                                   WebAssemblyII::MO_SYMBOL_FUNCTION));
1008 }
1009 
1010 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1011                                                   SelectionDAG &DAG) const {
1012   // There's no need for a Wrapper node because we always incorporate a jump
1013   // table operand into a BR_TABLE instruction, rather than ever
1014   // materializing it in a register.
1015   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1016   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1017                                 JT->getTargetFlags());
1018 }
1019 
1020 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1021                                               SelectionDAG &DAG) const {
1022   SDLoc DL(Op);
1023   SDValue Chain = Op.getOperand(0);
1024   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1025   SDValue Index = Op.getOperand(2);
1026   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1027 
1028   SmallVector<SDValue, 8> Ops;
1029   Ops.push_back(Chain);
1030   Ops.push_back(Index);
1031 
1032   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1033   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1034 
1035   // Add an operand for each case.
1036   for (auto MBB : MBBs)
1037     Ops.push_back(DAG.getBasicBlock(MBB));
1038 
1039   // TODO: For now, we just pick something arbitrary for a default case for now.
1040   // We really want to sniff out the guard and put in the real default case (and
1041   // delete the guard).
1042   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1043 
1044   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1045 }
1046 
1047 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1048                                                 SelectionDAG &DAG) const {
1049   SDLoc DL(Op);
1050   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1051 
1052   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1053   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1054 
1055   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1056                                     MFI->getVarargBufferVreg(), PtrVT);
1057   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1058                       MachinePointerInfo(SV), 0);
1059 }
1060 
1061 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1062                                                   SelectionDAG &DAG) const {
1063   MachineFunction &MF = DAG.getMachineFunction();
1064   unsigned IntNo;
1065   switch (Op.getOpcode()) {
1066   case ISD::INTRINSIC_VOID:
1067   case ISD::INTRINSIC_W_CHAIN:
1068     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1069     break;
1070   case ISD::INTRINSIC_WO_CHAIN:
1071     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1072     break;
1073   default:
1074     llvm_unreachable("Invalid intrinsic");
1075   }
1076   SDLoc DL(Op);
1077 
1078   switch (IntNo) {
1079   default:
1080     return SDValue(); // Don't custom lower most intrinsics.
1081 
1082   case Intrinsic::wasm_lsda: {
1083     EVT VT = Op.getValueType();
1084     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1085     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1086     auto &Context = MF.getMMI().getContext();
1087     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1088                                             Twine(MF.getFunctionNumber()));
1089     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1090                        DAG.getMCSymbol(S, PtrVT));
1091   }
1092 
1093   case Intrinsic::wasm_throw: {
1094     // We only support C++ exceptions for now
1095     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1096     if (Tag != CPP_EXCEPTION)
1097       llvm_unreachable("Invalid tag!");
1098     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1099     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1100     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1101     SDValue SymNode =
1102         DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1103                     DAG.getTargetExternalSymbol(
1104                         SymName, PtrVT, WebAssemblyII::MO_SYMBOL_EVENT));
1105     return DAG.getNode(WebAssemblyISD::THROW, DL,
1106                        MVT::Other, // outchain type
1107                        {
1108                            Op.getOperand(0), // inchain
1109                            SymNode,          // exception symbol
1110                            Op.getOperand(3)  // thrown value
1111                        });
1112   }
1113   }
1114 }
1115 
1116 SDValue
1117 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1118                                                   SelectionDAG &DAG) const {
1119   // If sign extension operations are disabled, allow sext_inreg only if operand
1120   // is a vector extract. SIMD does not depend on sign extension operations, but
1121   // allowing sext_inreg in this context lets us have simple patterns to select
1122   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1123   // simpler in this file, but would necessitate large and brittle patterns to
1124   // undo the expansion and select extract_lane_s instructions.
1125   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1126   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT)
1127     return Op;
1128   // Otherwise expand
1129   return SDValue();
1130 }
1131 
1132 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1133                                                      SelectionDAG &DAG) const {
1134   SDLoc DL(Op);
1135   const EVT VecT = Op.getValueType();
1136   const EVT LaneT = Op.getOperand(0).getValueType();
1137   const size_t Lanes = Op.getNumOperands();
1138   auto IsConstant = [](const SDValue &V) {
1139     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1140   };
1141 
1142   // Find the most common operand, which is approximately the best to splat
1143   using Entry = std::pair<SDValue, size_t>;
1144   SmallVector<Entry, 16> ValueCounts;
1145   size_t NumConst = 0, NumDynamic = 0;
1146   for (const SDValue &Lane : Op->op_values()) {
1147     if (Lane.isUndef()) {
1148       continue;
1149     } else if (IsConstant(Lane)) {
1150       NumConst++;
1151     } else {
1152       NumDynamic++;
1153     }
1154     auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(),
1155                                 [&Lane](Entry A) { return A.first == Lane; });
1156     if (CountIt == ValueCounts.end()) {
1157       ValueCounts.emplace_back(Lane, 1);
1158     } else {
1159       CountIt->second++;
1160     }
1161   }
1162   auto CommonIt =
1163       std::max_element(ValueCounts.begin(), ValueCounts.end(),
1164                        [](Entry A, Entry B) { return A.second < B.second; });
1165   assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector");
1166   SDValue SplatValue = CommonIt->first;
1167   size_t NumCommon = CommonIt->second;
1168 
1169   // If v128.const is available, consider using it instead of a splat
1170   if (Subtarget->hasUnimplementedSIMD128()) {
1171     // {i32,i64,f32,f64}.const opcode, and value
1172     const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes);
1173     // SIMD prefix and opcode
1174     const size_t SplatBytes = 2;
1175     const size_t SplatConstBytes = SplatBytes + ConstBytes;
1176     // SIMD prefix, opcode, and lane index
1177     const size_t ReplaceBytes = 3;
1178     const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes;
1179     // SIMD prefix, v128.const opcode, and 128-bit value
1180     const size_t VecConstBytes = 18;
1181     // Initial v128.const and a replace_lane for each non-const operand
1182     const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes;
1183     // Initial splat and all necessary replace_lanes
1184     const size_t SplatInitBytes =
1185         IsConstant(SplatValue)
1186             // Initial constant splat
1187             ? (SplatConstBytes +
1188                // Constant replace_lanes
1189                (NumConst - NumCommon) * ReplaceConstBytes +
1190                // Dynamic replace_lanes
1191                (NumDynamic * ReplaceBytes))
1192             // Initial dynamic splat
1193             : (SplatBytes +
1194                // Constant replace_lanes
1195                (NumConst * ReplaceConstBytes) +
1196                // Dynamic replace_lanes
1197                (NumDynamic - NumCommon) * ReplaceBytes);
1198     if (ConstInitBytes < SplatInitBytes) {
1199       // Create build_vector that will lower to initial v128.const
1200       SmallVector<SDValue, 16> ConstLanes;
1201       for (const SDValue &Lane : Op->op_values()) {
1202         if (IsConstant(Lane)) {
1203           ConstLanes.push_back(Lane);
1204         } else if (LaneT.isFloatingPoint()) {
1205           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1206         } else {
1207           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1208         }
1209       }
1210       SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1211       // Add replace_lane instructions for non-const lanes
1212       for (size_t I = 0; I < Lanes; ++I) {
1213         const SDValue &Lane = Op->getOperand(I);
1214         if (!Lane.isUndef() && !IsConstant(Lane))
1215           Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1216                                DAG.getConstant(I, DL, MVT::i32));
1217       }
1218       return Result;
1219     }
1220   }
1221   // Use a splat for the initial vector
1222   SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1223   // Add replace_lane instructions for other values
1224   for (size_t I = 0; I < Lanes; ++I) {
1225     const SDValue &Lane = Op->getOperand(I);
1226     if (Lane != SplatValue)
1227       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1228                            DAG.getConstant(I, DL, MVT::i32));
1229   }
1230   return Result;
1231 }
1232 
1233 SDValue
1234 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1235                                                SelectionDAG &DAG) const {
1236   SDLoc DL(Op);
1237   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1238   MVT VecType = Op.getOperand(0).getSimpleValueType();
1239   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1240   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1241 
1242   // Space for two vector args and sixteen mask indices
1243   SDValue Ops[18];
1244   size_t OpIdx = 0;
1245   Ops[OpIdx++] = Op.getOperand(0);
1246   Ops[OpIdx++] = Op.getOperand(1);
1247 
1248   // Expand mask indices to byte indices and materialize them as operands
1249   for (int M : Mask) {
1250     for (size_t J = 0; J < LaneBytes; ++J) {
1251       // Lower undefs (represented by -1 in mask) to zero
1252       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1253       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1254     }
1255   }
1256 
1257   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1258 }
1259 
1260 SDValue
1261 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1262                                                     SelectionDAG &DAG) const {
1263   // Allow constant lane indices, expand variable lane indices
1264   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1265   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1266     return Op;
1267   else
1268     // Perform default expansion
1269     return SDValue();
1270 }
1271 
1272 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1273   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1274   // 32-bit and 64-bit unrolled shifts will have proper semantics
1275   if (LaneT.bitsGE(MVT::i32))
1276     return DAG.UnrollVectorOp(Op.getNode());
1277   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1278   SDLoc DL(Op);
1279   SDValue ShiftVal = Op.getOperand(1);
1280   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1281   SDValue MaskedShiftVal = DAG.getNode(
1282       ISD::AND,                    // mask opcode
1283       DL, ShiftVal.getValueType(), // masked value type
1284       ShiftVal,                    // original shift value operand
1285       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1286   );
1287 
1288   return DAG.UnrollVectorOp(
1289       DAG.getNode(Op.getOpcode(),        // original shift opcode
1290                   DL, Op.getValueType(), // original return type
1291                   Op.getOperand(0),      // original vector operand,
1292                   MaskedShiftVal         // new masked shift value operand
1293                   )
1294           .getNode());
1295 }
1296 
1297 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1298                                               SelectionDAG &DAG) const {
1299   SDLoc DL(Op);
1300 
1301   // Only manually lower vector shifts
1302   assert(Op.getSimpleValueType().isVector());
1303 
1304   // Expand all vector shifts until V8 fixes its implementation
1305   // TODO: remove this once V8 is fixed
1306   if (!Subtarget->hasUnimplementedSIMD128())
1307     return unrollVectorShift(Op, DAG);
1308 
1309   // Unroll non-splat vector shifts
1310   BuildVectorSDNode *ShiftVec;
1311   SDValue SplatVal;
1312   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1313       !(SplatVal = ShiftVec->getSplatValue()))
1314     return unrollVectorShift(Op, DAG);
1315 
1316   // All splats except i64x2 const splats are handled by patterns
1317   auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1318   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1319     return Op;
1320 
1321   // i64x2 const splats are custom lowered to avoid unnecessary wraps
1322   unsigned Opcode;
1323   switch (Op.getOpcode()) {
1324   case ISD::SHL:
1325     Opcode = WebAssemblyISD::VEC_SHL;
1326     break;
1327   case ISD::SRA:
1328     Opcode = WebAssemblyISD::VEC_SHR_S;
1329     break;
1330   case ISD::SRL:
1331     Opcode = WebAssemblyISD::VEC_SHR_U;
1332     break;
1333   default:
1334     llvm_unreachable("unexpected opcode");
1335   }
1336   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1337   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1338                      DAG.getConstant(Shift, DL, MVT::i32));
1339 }
1340 
1341 //===----------------------------------------------------------------------===//
1342 //                          WebAssembly Optimization Hooks
1343 //===----------------------------------------------------------------------===//
1344