1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssemblyMachineFunctionInfo.h"
19 #include "WebAssemblySubtarget.h"
20 #include "WebAssemblyTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsWebAssembly.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "wasm-lower"
42 
43 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
44     const TargetMachine &TM, const WebAssemblySubtarget &STI)
45     : TargetLowering(TM), Subtarget(&STI) {
46   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
47 
48   // Booleans always contain 0 or 1.
49   setBooleanContents(ZeroOrOneBooleanContent);
50   // Except in SIMD vectors
51   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
52   // We don't know the microarchitecture here, so just reduce register pressure.
53   setSchedulingPreference(Sched::RegPressure);
54   // Tell ISel that we have a stack pointer.
55   setStackPointerRegisterToSaveRestore(
56       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
57   // Set up the register classes.
58   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
59   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
60   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
61   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
62   if (Subtarget->hasSIMD128()) {
63     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
68     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
69   }
70   if (Subtarget->hasReferenceTypes()) {
71     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
72     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
73   }
74   // Compute derived properties from the register classes.
75   computeRegisterProperties(Subtarget->getRegisterInfo());
76 
77   // Transform loads and stores to pointers in address space 1 to loads and
78   // stores to WebAssembly global variables, outside linear memory.
79   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
80     setOperationAction(ISD::LOAD, T, Custom);
81     setOperationAction(ISD::STORE, T, Custom);
82   }
83   if (Subtarget->hasSIMD128()) {
84     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
85                    MVT::v2f64}) {
86       setOperationAction(ISD::LOAD, T, Custom);
87       setOperationAction(ISD::STORE, T, Custom);
88     }
89   }
90   if (Subtarget->hasReferenceTypes()) {
91     for (auto T : {MVT::externref, MVT::funcref}) {
92       setOperationAction(ISD::LOAD, T, Custom);
93       setOperationAction(ISD::STORE, T, Custom);
94     }
95   }
96 
97   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
98   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
99   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
100   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
101   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
102   setOperationAction(ISD::BRIND, MVT::Other, Custom);
103 
104   // Take the default expansion for va_arg, va_copy, and va_end. There is no
105   // default action for va_start, so we do that custom.
106   setOperationAction(ISD::VASTART, MVT::Other, Custom);
107   setOperationAction(ISD::VAARG, MVT::Other, Expand);
108   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
109   setOperationAction(ISD::VAEND, MVT::Other, Expand);
110 
111   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
112     // Don't expand the floating-point types to constant pools.
113     setOperationAction(ISD::ConstantFP, T, Legal);
114     // Expand floating-point comparisons.
115     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
116                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
117       setCondCodeAction(CC, T, Expand);
118     // Expand floating-point library function operators.
119     for (auto Op :
120          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
121       setOperationAction(Op, T, Expand);
122     // Note supported floating-point library function operators that otherwise
123     // default to expand.
124     for (auto Op :
125          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
126       setOperationAction(Op, T, Legal);
127     // Support minimum and maximum, which otherwise default to expand.
128     setOperationAction(ISD::FMINIMUM, T, Legal);
129     setOperationAction(ISD::FMAXIMUM, T, Legal);
130     // WebAssembly currently has no builtin f16 support.
131     setOperationAction(ISD::FP16_TO_FP, T, Expand);
132     setOperationAction(ISD::FP_TO_FP16, T, Expand);
133     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
134     setTruncStoreAction(T, MVT::f16, Expand);
135   }
136 
137   // Expand unavailable integer operations.
138   for (auto Op :
139        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
140         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
141         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
142     for (auto T : {MVT::i32, MVT::i64})
143       setOperationAction(Op, T, Expand);
144     if (Subtarget->hasSIMD128())
145       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
146         setOperationAction(Op, T, Expand);
147   }
148 
149   if (Subtarget->hasNontrappingFPToInt())
150     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
151       for (auto T : {MVT::i32, MVT::i64})
152         setOperationAction(Op, T, Custom);
153 
154   // SIMD-specific configuration
155   if (Subtarget->hasSIMD128()) {
156     // Hoist bitcasts out of shuffles
157     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
158 
159     // Combine extends of extract_subvectors into widening ops
160     setTargetDAGCombine(ISD::SIGN_EXTEND);
161     setTargetDAGCombine(ISD::ZERO_EXTEND);
162 
163     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
164     // conversions ops
165     setTargetDAGCombine(ISD::SINT_TO_FP);
166     setTargetDAGCombine(ISD::UINT_TO_FP);
167     setTargetDAGCombine(ISD::FP_EXTEND);
168     setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
169 
170     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
171     // into conversion ops
172     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
173     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
174     setTargetDAGCombine(ISD::FP_ROUND);
175     setTargetDAGCombine(ISD::CONCAT_VECTORS);
176 
177     // Support saturating add for i8x16 and i16x8
178     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
179       for (auto T : {MVT::v16i8, MVT::v8i16})
180         setOperationAction(Op, T, Legal);
181 
182     // Support integer abs
183     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
184       setOperationAction(ISD::ABS, T, Legal);
185 
186     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
187     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
188                    MVT::v2f64})
189       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
190 
191     // We have custom shuffle lowering to expose the shuffle mask
192     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
193                    MVT::v2f64})
194       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
195 
196     // Custom lowering since wasm shifts must have a scalar shift amount
197     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
198       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
199         setOperationAction(Op, T, Custom);
200 
201     // Custom lower lane accesses to expand out variable indices
202     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
203       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
204                      MVT::v2f64})
205         setOperationAction(Op, T, Custom);
206 
207     // There is no i8x16.mul instruction
208     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
209 
210     // There is no vector conditional select instruction
211     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
212                    MVT::v2f64})
213       setOperationAction(ISD::SELECT_CC, T, Expand);
214 
215     // Expand integer operations supported for scalars but not SIMD
216     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
217                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
218       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
219         setOperationAction(Op, T, Expand);
220 
221     // But we do have integer min and max operations
222     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
223       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
224         setOperationAction(Op, T, Legal);
225 
226     // And we have popcnt for i8x16
227     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
228 
229     // Expand float operations supported for scalars but not SIMD
230     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
231                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
232       for (auto T : {MVT::v4f32, MVT::v2f64})
233         setOperationAction(Op, T, Expand);
234 
235     // Unsigned comparison operations are unavailable for i64x2 vectors.
236     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
237       setCondCodeAction(CC, MVT::v2i64, Custom);
238 
239     // 64x2 conversions are not in the spec
240     for (auto Op :
241          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
242       for (auto T : {MVT::v2i64, MVT::v2f64})
243         setOperationAction(Op, T, Expand);
244 
245     // But saturating fp_to_int converstions are
246     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
247       setOperationAction(Op, MVT::v4i32, Custom);
248   }
249 
250   // As a special case, these operators use the type to mean the type to
251   // sign-extend from.
252   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
253   if (!Subtarget->hasSignExt()) {
254     // Sign extends are legal only when extending a vector extract
255     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
256     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
257       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
258   }
259   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
260     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
261 
262   // Dynamic stack allocation: use the default expansion.
263   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
264   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
265   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
266 
267   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
268   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
269   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
270 
271   // Expand these forms; we pattern-match the forms that we can handle in isel.
272   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
273     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
274       setOperationAction(Op, T, Expand);
275 
276   // We have custom switch handling.
277   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
278 
279   // WebAssembly doesn't have:
280   //  - Floating-point extending loads.
281   //  - Floating-point truncating stores.
282   //  - i1 extending loads.
283   //  - truncating SIMD stores and most extending loads
284   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
285   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
286   for (auto T : MVT::integer_valuetypes())
287     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
288       setLoadExtAction(Ext, T, MVT::i1, Promote);
289   if (Subtarget->hasSIMD128()) {
290     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
291                    MVT::v2f64}) {
292       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
293         if (MVT(T) != MemT) {
294           setTruncStoreAction(T, MemT, Expand);
295           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
296             setLoadExtAction(Ext, T, MemT, Expand);
297         }
298       }
299     }
300     // But some vector extending loads are legal
301     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
302       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
303       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
304       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
305     }
306     // And some truncating stores are legal as well
307     setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
308     setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
309   }
310 
311   // Don't do anything clever with build_pairs
312   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
313 
314   // Trap lowers to wasm unreachable
315   setOperationAction(ISD::TRAP, MVT::Other, Legal);
316   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
317 
318   // Exception handling intrinsics
319   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
320   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
321   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
322 
323   setMaxAtomicSizeInBitsSupported(64);
324 
325   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
326   // consistent with the f64 and f128 names.
327   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
328   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
329 
330   // Define the emscripten name for return address helper.
331   // TODO: when implementing other Wasm backends, make this generic or only do
332   // this on emscripten depending on what they end up doing.
333   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
334 
335   // Always convert switches to br_tables unless there is only one case, which
336   // is equivalent to a simple branch. This reduces code size for wasm, and we
337   // defer possible jump table optimizations to the VM.
338   setMinimumJumpTableEntries(2);
339 }
340 
341 TargetLowering::AtomicExpansionKind
342 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
343   // We have wasm instructions for these
344   switch (AI->getOperation()) {
345   case AtomicRMWInst::Add:
346   case AtomicRMWInst::Sub:
347   case AtomicRMWInst::And:
348   case AtomicRMWInst::Or:
349   case AtomicRMWInst::Xor:
350   case AtomicRMWInst::Xchg:
351     return AtomicExpansionKind::None;
352   default:
353     break;
354   }
355   return AtomicExpansionKind::CmpXChg;
356 }
357 
358 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
359   // Implementation copied from X86TargetLowering.
360   unsigned Opc = VecOp.getOpcode();
361 
362   // Assume target opcodes can't be scalarized.
363   // TODO - do we have any exceptions?
364   if (Opc >= ISD::BUILTIN_OP_END)
365     return false;
366 
367   // If the vector op is not supported, try to convert to scalar.
368   EVT VecVT = VecOp.getValueType();
369   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
370     return true;
371 
372   // If the vector op is supported, but the scalar op is not, the transform may
373   // not be worthwhile.
374   EVT ScalarVT = VecVT.getScalarType();
375   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
376 }
377 
378 FastISel *WebAssemblyTargetLowering::createFastISel(
379     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
380   return WebAssembly::createFastISel(FuncInfo, LibInfo);
381 }
382 
383 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
384                                                       EVT VT) const {
385   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
386   if (BitWidth > 1 && BitWidth < 8)
387     BitWidth = 8;
388 
389   if (BitWidth > 64) {
390     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
391     // the count to be an i32.
392     BitWidth = 32;
393     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
394            "32-bit shift counts ought to be enough for anyone");
395   }
396 
397   MVT Result = MVT::getIntegerVT(BitWidth);
398   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
399          "Unable to represent scalar shift amount type");
400   return Result;
401 }
402 
403 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
404 // undefined result on invalid/overflow, to the WebAssembly opcode, which
405 // traps on invalid/overflow.
406 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
407                                        MachineBasicBlock *BB,
408                                        const TargetInstrInfo &TII,
409                                        bool IsUnsigned, bool Int64,
410                                        bool Float64, unsigned LoweredOpcode) {
411   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
412 
413   Register OutReg = MI.getOperand(0).getReg();
414   Register InReg = MI.getOperand(1).getReg();
415 
416   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
417   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
418   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
419   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
420   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
421   unsigned Eqz = WebAssembly::EQZ_I32;
422   unsigned And = WebAssembly::AND_I32;
423   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
424   int64_t Substitute = IsUnsigned ? 0 : Limit;
425   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
426   auto &Context = BB->getParent()->getFunction().getContext();
427   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
428 
429   const BasicBlock *LLVMBB = BB->getBasicBlock();
430   MachineFunction *F = BB->getParent();
431   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
432   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
433   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
434 
435   MachineFunction::iterator It = ++BB->getIterator();
436   F->insert(It, FalseMBB);
437   F->insert(It, TrueMBB);
438   F->insert(It, DoneMBB);
439 
440   // Transfer the remainder of BB and its successor edges to DoneMBB.
441   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
442   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
443 
444   BB->addSuccessor(TrueMBB);
445   BB->addSuccessor(FalseMBB);
446   TrueMBB->addSuccessor(DoneMBB);
447   FalseMBB->addSuccessor(DoneMBB);
448 
449   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
450   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
451   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
452   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
453   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
454   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
455   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
456 
457   MI.eraseFromParent();
458   // For signed numbers, we can do a single comparison to determine whether
459   // fabs(x) is within range.
460   if (IsUnsigned) {
461     Tmp0 = InReg;
462   } else {
463     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
464   }
465   BuildMI(BB, DL, TII.get(FConst), Tmp1)
466       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
467   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
468 
469   // For unsigned numbers, we have to do a separate comparison with zero.
470   if (IsUnsigned) {
471     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
472     Register SecondCmpReg =
473         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
474     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
475     BuildMI(BB, DL, TII.get(FConst), Tmp1)
476         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
477     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
478     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
479     CmpReg = AndReg;
480   }
481 
482   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
483 
484   // Create the CFG diamond to select between doing the conversion or using
485   // the substitute value.
486   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
487   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
488   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
489   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
490   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
491       .addReg(FalseReg)
492       .addMBB(FalseMBB)
493       .addReg(TrueReg)
494       .addMBB(TrueMBB);
495 
496   return DoneMBB;
497 }
498 
499 static MachineBasicBlock *
500 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
501                  const WebAssemblySubtarget *Subtarget,
502                  const TargetInstrInfo &TII) {
503   MachineInstr &CallParams = *CallResults.getPrevNode();
504   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
505   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
506          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
507 
508   bool IsIndirect = CallParams.getOperand(0).isReg();
509   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
510 
511   bool IsFuncrefCall = false;
512   if (IsIndirect) {
513     Register Reg = CallParams.getOperand(0).getReg();
514     const MachineFunction *MF = BB->getParent();
515     const MachineRegisterInfo &MRI = MF->getRegInfo();
516     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
517     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
518     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
519   }
520 
521   unsigned CallOp;
522   if (IsIndirect && IsRetCall) {
523     CallOp = WebAssembly::RET_CALL_INDIRECT;
524   } else if (IsIndirect) {
525     CallOp = WebAssembly::CALL_INDIRECT;
526   } else if (IsRetCall) {
527     CallOp = WebAssembly::RET_CALL;
528   } else {
529     CallOp = WebAssembly::CALL;
530   }
531 
532   MachineFunction &MF = *BB->getParent();
533   const MCInstrDesc &MCID = TII.get(CallOp);
534   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
535 
536   // See if we must truncate the function pointer.
537   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
538   // as 64-bit for uniformity with other pointer types.
539   // See also: WebAssemblyFastISel::selectCall
540   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
541     Register Reg32 =
542         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
543     auto &FnPtr = CallParams.getOperand(0);
544     BuildMI(*BB, CallResults.getIterator(), DL,
545             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
546         .addReg(FnPtr.getReg());
547     FnPtr.setReg(Reg32);
548   }
549 
550   // Move the function pointer to the end of the arguments for indirect calls
551   if (IsIndirect) {
552     auto FnPtr = CallParams.getOperand(0);
553     CallParams.RemoveOperand(0);
554     CallParams.addOperand(FnPtr);
555   }
556 
557   for (auto Def : CallResults.defs())
558     MIB.add(Def);
559 
560   if (IsIndirect) {
561     // Placeholder for the type index.
562     MIB.addImm(0);
563     // The table into which this call_indirect indexes.
564     MCSymbolWasm *Table = IsFuncrefCall
565                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
566                                     MF.getContext(), Subtarget)
567                               : WebAssembly::getOrCreateFunctionTableSymbol(
568                                     MF.getContext(), Subtarget);
569     if (Subtarget->hasReferenceTypes()) {
570       MIB.addSym(Table);
571     } else {
572       // For the MVP there is at most one table whose number is 0, but we can't
573       // write a table symbol or issue relocations.  Instead we just ensure the
574       // table is live and write a zero.
575       Table->setNoStrip();
576       MIB.addImm(0);
577     }
578   }
579 
580   for (auto Use : CallParams.uses())
581     MIB.add(Use);
582 
583   BB->insert(CallResults.getIterator(), MIB);
584   CallParams.eraseFromParent();
585   CallResults.eraseFromParent();
586 
587   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
588   // table slot with ref.null upon call_indirect return.
589   //
590   // This generates the following code, which comes right after a call_indirect
591   // of a funcref:
592   //
593   //    i32.const 0
594   //    ref.null func
595   //    table.set __funcref_call_table
596   if (IsIndirect && IsFuncrefCall) {
597     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
598         MF.getContext(), Subtarget);
599     Register RegZero =
600         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
601     MachineInstr *Const0 =
602         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
603     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
604 
605     Register RegFuncref =
606         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
607     MachineInstr *RefNull =
608         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref)
609             .addImm(static_cast<int32_t>(WebAssembly::HeapType::Funcref));
610     BB->insertAfter(Const0->getIterator(), RefNull);
611 
612     MachineInstr *TableSet =
613         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
614             .addSym(Table)
615             .addReg(RegZero)
616             .addReg(RegFuncref);
617     BB->insertAfter(RefNull->getIterator(), TableSet);
618   }
619 
620   return BB;
621 }
622 
623 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
624     MachineInstr &MI, MachineBasicBlock *BB) const {
625   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
626   DebugLoc DL = MI.getDebugLoc();
627 
628   switch (MI.getOpcode()) {
629   default:
630     llvm_unreachable("Unexpected instr type to insert");
631   case WebAssembly::FP_TO_SINT_I32_F32:
632     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
633                         WebAssembly::I32_TRUNC_S_F32);
634   case WebAssembly::FP_TO_UINT_I32_F32:
635     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
636                         WebAssembly::I32_TRUNC_U_F32);
637   case WebAssembly::FP_TO_SINT_I64_F32:
638     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
639                         WebAssembly::I64_TRUNC_S_F32);
640   case WebAssembly::FP_TO_UINT_I64_F32:
641     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
642                         WebAssembly::I64_TRUNC_U_F32);
643   case WebAssembly::FP_TO_SINT_I32_F64:
644     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
645                         WebAssembly::I32_TRUNC_S_F64);
646   case WebAssembly::FP_TO_UINT_I32_F64:
647     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
648                         WebAssembly::I32_TRUNC_U_F64);
649   case WebAssembly::FP_TO_SINT_I64_F64:
650     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
651                         WebAssembly::I64_TRUNC_S_F64);
652   case WebAssembly::FP_TO_UINT_I64_F64:
653     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
654                         WebAssembly::I64_TRUNC_U_F64);
655   case WebAssembly::CALL_RESULTS:
656   case WebAssembly::RET_CALL_RESULTS:
657     return LowerCallResults(MI, DL, BB, Subtarget, TII);
658   }
659 }
660 
661 const char *
662 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
663   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
664   case WebAssemblyISD::FIRST_NUMBER:
665   case WebAssemblyISD::FIRST_MEM_OPCODE:
666     break;
667 #define HANDLE_NODETYPE(NODE)                                                  \
668   case WebAssemblyISD::NODE:                                                   \
669     return "WebAssemblyISD::" #NODE;
670 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
671 #include "WebAssemblyISD.def"
672 #undef HANDLE_MEM_NODETYPE
673 #undef HANDLE_NODETYPE
674   }
675   return nullptr;
676 }
677 
678 std::pair<unsigned, const TargetRegisterClass *>
679 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
680     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
681   // First, see if this is a constraint that directly corresponds to a
682   // WebAssembly register class.
683   if (Constraint.size() == 1) {
684     switch (Constraint[0]) {
685     case 'r':
686       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
687       if (Subtarget->hasSIMD128() && VT.isVector()) {
688         if (VT.getSizeInBits() == 128)
689           return std::make_pair(0U, &WebAssembly::V128RegClass);
690       }
691       if (VT.isInteger() && !VT.isVector()) {
692         if (VT.getSizeInBits() <= 32)
693           return std::make_pair(0U, &WebAssembly::I32RegClass);
694         if (VT.getSizeInBits() <= 64)
695           return std::make_pair(0U, &WebAssembly::I64RegClass);
696       }
697       if (VT.isFloatingPoint() && !VT.isVector()) {
698         switch (VT.getSizeInBits()) {
699         case 32:
700           return std::make_pair(0U, &WebAssembly::F32RegClass);
701         case 64:
702           return std::make_pair(0U, &WebAssembly::F64RegClass);
703         default:
704           break;
705         }
706       }
707       break;
708     default:
709       break;
710     }
711   }
712 
713   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
714 }
715 
716 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
717   // Assume ctz is a relatively cheap operation.
718   return true;
719 }
720 
721 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
722   // Assume clz is a relatively cheap operation.
723   return true;
724 }
725 
726 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
727                                                       const AddrMode &AM,
728                                                       Type *Ty, unsigned AS,
729                                                       Instruction *I) const {
730   // WebAssembly offsets are added as unsigned without wrapping. The
731   // isLegalAddressingMode gives us no way to determine if wrapping could be
732   // happening, so we approximate this by accepting only non-negative offsets.
733   if (AM.BaseOffs < 0)
734     return false;
735 
736   // WebAssembly has no scale register operands.
737   if (AM.Scale != 0)
738     return false;
739 
740   // Everything else is legal.
741   return true;
742 }
743 
744 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
745     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
746     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
747   // WebAssembly supports unaligned accesses, though it should be declared
748   // with the p2align attribute on loads and stores which do so, and there
749   // may be a performance impact. We tell LLVM they're "fast" because
750   // for the kinds of things that LLVM uses this for (merging adjacent stores
751   // of constants, etc.), WebAssembly implementations will either want the
752   // unaligned access or they'll split anyway.
753   if (Fast)
754     *Fast = true;
755   return true;
756 }
757 
758 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
759                                               AttributeList Attr) const {
760   // The current thinking is that wasm engines will perform this optimization,
761   // so we can save on code size.
762   return true;
763 }
764 
765 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
766   EVT ExtT = ExtVal.getValueType();
767   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
768   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
769          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
770          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
771 }
772 
773 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
774     const GlobalAddressSDNode *GA) const {
775   // Wasm doesn't support function addresses with offsets
776   const GlobalValue *GV = GA->getGlobal();
777   return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
778 }
779 
780 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
781                                                   LLVMContext &C,
782                                                   EVT VT) const {
783   if (VT.isVector())
784     return VT.changeVectorElementTypeToInteger();
785 
786   // So far, all branch instructions in Wasm take an I32 condition.
787   // The default TargetLowering::getSetCCResultType returns the pointer size,
788   // which would be useful to reduce instruction counts when testing
789   // against 64-bit pointers/values if at some point Wasm supports that.
790   return EVT::getIntegerVT(C, 32);
791 }
792 
793 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
794                                                    const CallInst &I,
795                                                    MachineFunction &MF,
796                                                    unsigned Intrinsic) const {
797   switch (Intrinsic) {
798   case Intrinsic::wasm_memory_atomic_notify:
799     Info.opc = ISD::INTRINSIC_W_CHAIN;
800     Info.memVT = MVT::i32;
801     Info.ptrVal = I.getArgOperand(0);
802     Info.offset = 0;
803     Info.align = Align(4);
804     // atomic.notify instruction does not really load the memory specified with
805     // this argument, but MachineMemOperand should either be load or store, so
806     // we set this to a load.
807     // FIXME Volatile isn't really correct, but currently all LLVM atomic
808     // instructions are treated as volatiles in the backend, so we should be
809     // consistent. The same applies for wasm_atomic_wait intrinsics too.
810     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
811     return true;
812   case Intrinsic::wasm_memory_atomic_wait32:
813     Info.opc = ISD::INTRINSIC_W_CHAIN;
814     Info.memVT = MVT::i32;
815     Info.ptrVal = I.getArgOperand(0);
816     Info.offset = 0;
817     Info.align = Align(4);
818     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
819     return true;
820   case Intrinsic::wasm_memory_atomic_wait64:
821     Info.opc = ISD::INTRINSIC_W_CHAIN;
822     Info.memVT = MVT::i64;
823     Info.ptrVal = I.getArgOperand(0);
824     Info.offset = 0;
825     Info.align = Align(8);
826     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
827     return true;
828   default:
829     return false;
830   }
831 }
832 
833 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
834     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
835     const SelectionDAG &DAG, unsigned Depth) const {
836   switch (Op.getOpcode()) {
837   default:
838     break;
839   case ISD::INTRINSIC_WO_CHAIN: {
840     unsigned IntNo = Op.getConstantOperandVal(0);
841     switch (IntNo) {
842     default:
843       break;
844     case Intrinsic::wasm_bitmask: {
845       unsigned BitWidth = Known.getBitWidth();
846       EVT VT = Op.getOperand(1).getSimpleValueType();
847       unsigned PossibleBits = VT.getVectorNumElements();
848       APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
849       Known.Zero |= ZeroMask;
850       break;
851     }
852     }
853   }
854   }
855 }
856 
857 //===----------------------------------------------------------------------===//
858 // WebAssembly Lowering private implementation.
859 //===----------------------------------------------------------------------===//
860 
861 //===----------------------------------------------------------------------===//
862 // Lowering Code
863 //===----------------------------------------------------------------------===//
864 
865 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
866   MachineFunction &MF = DAG.getMachineFunction();
867   DAG.getContext()->diagnose(
868       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
869 }
870 
871 // Test whether the given calling convention is supported.
872 static bool callingConvSupported(CallingConv::ID CallConv) {
873   // We currently support the language-independent target-independent
874   // conventions. We don't yet have a way to annotate calls with properties like
875   // "cold", and we don't have any call-clobbered registers, so these are mostly
876   // all handled the same.
877   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
878          CallConv == CallingConv::Cold ||
879          CallConv == CallingConv::PreserveMost ||
880          CallConv == CallingConv::PreserveAll ||
881          CallConv == CallingConv::CXX_FAST_TLS ||
882          CallConv == CallingConv::WASM_EmscriptenInvoke ||
883          CallConv == CallingConv::Swift;
884 }
885 
886 SDValue
887 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
888                                      SmallVectorImpl<SDValue> &InVals) const {
889   SelectionDAG &DAG = CLI.DAG;
890   SDLoc DL = CLI.DL;
891   SDValue Chain = CLI.Chain;
892   SDValue Callee = CLI.Callee;
893   MachineFunction &MF = DAG.getMachineFunction();
894   auto Layout = MF.getDataLayout();
895 
896   CallingConv::ID CallConv = CLI.CallConv;
897   if (!callingConvSupported(CallConv))
898     fail(DL, DAG,
899          "WebAssembly doesn't support language-specific or target-specific "
900          "calling conventions yet");
901   if (CLI.IsPatchPoint)
902     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
903 
904   if (CLI.IsTailCall) {
905     auto NoTail = [&](const char *Msg) {
906       if (CLI.CB && CLI.CB->isMustTailCall())
907         fail(DL, DAG, Msg);
908       CLI.IsTailCall = false;
909     };
910 
911     if (!Subtarget->hasTailCall())
912       NoTail("WebAssembly 'tail-call' feature not enabled");
913 
914     // Varargs calls cannot be tail calls because the buffer is on the stack
915     if (CLI.IsVarArg)
916       NoTail("WebAssembly does not support varargs tail calls");
917 
918     // Do not tail call unless caller and callee return types match
919     const Function &F = MF.getFunction();
920     const TargetMachine &TM = getTargetMachine();
921     Type *RetTy = F.getReturnType();
922     SmallVector<MVT, 4> CallerRetTys;
923     SmallVector<MVT, 4> CalleeRetTys;
924     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
925     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
926     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
927                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
928                                  CalleeRetTys.begin());
929     if (!TypesMatch)
930       NoTail("WebAssembly tail call requires caller and callee return types to "
931              "match");
932 
933     // If pointers to local stack values are passed, we cannot tail call
934     if (CLI.CB) {
935       for (auto &Arg : CLI.CB->args()) {
936         Value *Val = Arg.get();
937         // Trace the value back through pointer operations
938         while (true) {
939           Value *Src = Val->stripPointerCastsAndAliases();
940           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
941             Src = GEP->getPointerOperand();
942           if (Val == Src)
943             break;
944           Val = Src;
945         }
946         if (isa<AllocaInst>(Val)) {
947           NoTail(
948               "WebAssembly does not support tail calling with stack arguments");
949           break;
950         }
951       }
952     }
953   }
954 
955   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
956   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
957   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
958 
959   // The generic code may have added an sret argument. If we're lowering an
960   // invoke function, the ABI requires that the function pointer be the first
961   // argument, so we may have to swap the arguments.
962   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
963       Outs[0].Flags.isSRet()) {
964     std::swap(Outs[0], Outs[1]);
965     std::swap(OutVals[0], OutVals[1]);
966   }
967 
968   bool HasSwiftSelfArg = false;
969   bool HasSwiftErrorArg = false;
970   unsigned NumFixedArgs = 0;
971   for (unsigned I = 0; I < Outs.size(); ++I) {
972     const ISD::OutputArg &Out = Outs[I];
973     SDValue &OutVal = OutVals[I];
974     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
975     HasSwiftErrorArg |= Out.Flags.isSwiftError();
976     if (Out.Flags.isNest())
977       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
978     if (Out.Flags.isInAlloca())
979       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
980     if (Out.Flags.isInConsecutiveRegs())
981       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
982     if (Out.Flags.isInConsecutiveRegsLast())
983       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
984     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
985       auto &MFI = MF.getFrameInfo();
986       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
987                                      Out.Flags.getNonZeroByValAlign(),
988                                      /*isSS=*/false);
989       SDValue SizeNode =
990           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
991       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
992       Chain = DAG.getMemcpy(
993           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
994           /*isVolatile*/ false, /*AlwaysInline=*/false,
995           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
996       OutVal = FINode;
997     }
998     // Count the number of fixed args *after* legalization.
999     NumFixedArgs += Out.IsFixed;
1000   }
1001 
1002   bool IsVarArg = CLI.IsVarArg;
1003   auto PtrVT = getPointerTy(Layout);
1004 
1005   // For swiftcc, emit additional swiftself and swifterror arguments
1006   // if there aren't. These additional arguments are also added for callee
1007   // signature They are necessary to match callee and caller signature for
1008   // indirect call.
1009   if (CallConv == CallingConv::Swift) {
1010     if (!HasSwiftSelfArg) {
1011       NumFixedArgs++;
1012       ISD::OutputArg Arg;
1013       Arg.Flags.setSwiftSelf();
1014       CLI.Outs.push_back(Arg);
1015       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1016       CLI.OutVals.push_back(ArgVal);
1017     }
1018     if (!HasSwiftErrorArg) {
1019       NumFixedArgs++;
1020       ISD::OutputArg Arg;
1021       Arg.Flags.setSwiftError();
1022       CLI.Outs.push_back(Arg);
1023       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1024       CLI.OutVals.push_back(ArgVal);
1025     }
1026   }
1027 
1028   // Analyze operands of the call, assigning locations to each operand.
1029   SmallVector<CCValAssign, 16> ArgLocs;
1030   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1031 
1032   if (IsVarArg) {
1033     // Outgoing non-fixed arguments are placed in a buffer. First
1034     // compute their offsets and the total amount of buffer space needed.
1035     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1036       const ISD::OutputArg &Out = Outs[I];
1037       SDValue &Arg = OutVals[I];
1038       EVT VT = Arg.getValueType();
1039       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1040       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1041       Align Alignment =
1042           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1043       unsigned Offset =
1044           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1045       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1046                                         Offset, VT.getSimpleVT(),
1047                                         CCValAssign::Full));
1048     }
1049   }
1050 
1051   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1052 
1053   SDValue FINode;
1054   if (IsVarArg && NumBytes) {
1055     // For non-fixed arguments, next emit stores to store the argument values
1056     // to the stack buffer at the offsets computed above.
1057     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1058                                                  Layout.getStackAlignment(),
1059                                                  /*isSS=*/false);
1060     unsigned ValNo = 0;
1061     SmallVector<SDValue, 8> Chains;
1062     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1063       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1064              "ArgLocs should remain in order and only hold varargs args");
1065       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1066       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1067       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1068                                 DAG.getConstant(Offset, DL, PtrVT));
1069       Chains.push_back(
1070           DAG.getStore(Chain, DL, Arg, Add,
1071                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1072     }
1073     if (!Chains.empty())
1074       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1075   } else if (IsVarArg) {
1076     FINode = DAG.getIntPtrConstant(0, DL);
1077   }
1078 
1079   if (Callee->getOpcode() == ISD::GlobalAddress) {
1080     // If the callee is a GlobalAddress node (quite common, every direct call
1081     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1082     // doesn't at MO_GOT which is not needed for direct calls.
1083     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1084     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1085                                         getPointerTy(DAG.getDataLayout()),
1086                                         GA->getOffset());
1087     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1088                          getPointerTy(DAG.getDataLayout()), Callee);
1089   }
1090 
1091   // Compute the operands for the CALLn node.
1092   SmallVector<SDValue, 16> Ops;
1093   Ops.push_back(Chain);
1094   Ops.push_back(Callee);
1095 
1096   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1097   // isn't reliable.
1098   Ops.append(OutVals.begin(),
1099              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1100   // Add a pointer to the vararg buffer.
1101   if (IsVarArg)
1102     Ops.push_back(FINode);
1103 
1104   SmallVector<EVT, 8> InTys;
1105   for (const auto &In : Ins) {
1106     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1107     assert(!In.Flags.isNest() && "nest is not valid for return values");
1108     if (In.Flags.isInAlloca())
1109       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1110     if (In.Flags.isInConsecutiveRegs())
1111       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1112     if (In.Flags.isInConsecutiveRegsLast())
1113       fail(DL, DAG,
1114            "WebAssembly hasn't implemented cons regs last return values");
1115     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1116     // registers.
1117     InTys.push_back(In.VT);
1118   }
1119 
1120   // Lastly, if this is a call to a funcref we need to add an instruction
1121   // table.set to the chain and transform the call.
1122   if (CLI.CB && isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
1123     // In the absence of function references proposal where a funcref call is
1124     // lowered to call_ref, using reference types we generate a table.set to set
1125     // the funcref to a special table used solely for this purpose, followed by
1126     // a call_indirect. Here we just generate the table set, and return the
1127     // SDValue of the table.set so that LowerCall can finalize the lowering by
1128     // generating the call_indirect.
1129     SDValue Chain = Ops[0];
1130 
1131     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1132         MF.getContext(), Subtarget);
1133     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1134     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1135     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1136     SDValue TableSet = DAG.getMemIntrinsicNode(
1137         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1138         MVT::funcref,
1139         // Machine Mem Operand args
1140         MachinePointerInfo(WasmAddressSpace::FUNCREF),
1141         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1142         MachineMemOperand::MOStore);
1143 
1144     Ops[0] = TableSet; // The new chain is the TableSet itself
1145   }
1146 
1147   if (CLI.IsTailCall) {
1148     // ret_calls do not return values to the current frame
1149     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1150     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1151   }
1152 
1153   InTys.push_back(MVT::Other);
1154   SDVTList InTyList = DAG.getVTList(InTys);
1155   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1156 
1157   for (size_t I = 0; I < Ins.size(); ++I)
1158     InVals.push_back(Res.getValue(I));
1159 
1160   // Return the chain
1161   return Res.getValue(Ins.size());
1162 }
1163 
1164 bool WebAssemblyTargetLowering::CanLowerReturn(
1165     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1166     const SmallVectorImpl<ISD::OutputArg> &Outs,
1167     LLVMContext & /*Context*/) const {
1168   // WebAssembly can only handle returning tuples with multivalue enabled
1169   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1170 }
1171 
1172 SDValue WebAssemblyTargetLowering::LowerReturn(
1173     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1174     const SmallVectorImpl<ISD::OutputArg> &Outs,
1175     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1176     SelectionDAG &DAG) const {
1177   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1178          "MVP WebAssembly can only return up to one value");
1179   if (!callingConvSupported(CallConv))
1180     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1181 
1182   SmallVector<SDValue, 4> RetOps(1, Chain);
1183   RetOps.append(OutVals.begin(), OutVals.end());
1184   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1185 
1186   // Record the number and types of the return values.
1187   for (const ISD::OutputArg &Out : Outs) {
1188     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1189     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1190     assert(Out.IsFixed && "non-fixed return value is not valid");
1191     if (Out.Flags.isInAlloca())
1192       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1193     if (Out.Flags.isInConsecutiveRegs())
1194       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1195     if (Out.Flags.isInConsecutiveRegsLast())
1196       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1197   }
1198 
1199   return Chain;
1200 }
1201 
1202 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1203     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1204     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1205     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1206   if (!callingConvSupported(CallConv))
1207     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1208 
1209   MachineFunction &MF = DAG.getMachineFunction();
1210   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1211 
1212   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1213   // of the incoming values before they're represented by virtual registers.
1214   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1215 
1216   bool HasSwiftErrorArg = false;
1217   bool HasSwiftSelfArg = false;
1218   for (const ISD::InputArg &In : Ins) {
1219     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1220     HasSwiftErrorArg |= In.Flags.isSwiftError();
1221     if (In.Flags.isInAlloca())
1222       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1223     if (In.Flags.isNest())
1224       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1225     if (In.Flags.isInConsecutiveRegs())
1226       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1227     if (In.Flags.isInConsecutiveRegsLast())
1228       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1229     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1230     // registers.
1231     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1232                                            DAG.getTargetConstant(InVals.size(),
1233                                                                  DL, MVT::i32))
1234                              : DAG.getUNDEF(In.VT));
1235 
1236     // Record the number and types of arguments.
1237     MFI->addParam(In.VT);
1238   }
1239 
1240   // For swiftcc, emit additional swiftself and swifterror arguments
1241   // if there aren't. These additional arguments are also added for callee
1242   // signature They are necessary to match callee and caller signature for
1243   // indirect call.
1244   auto PtrVT = getPointerTy(MF.getDataLayout());
1245   if (CallConv == CallingConv::Swift) {
1246     if (!HasSwiftSelfArg) {
1247       MFI->addParam(PtrVT);
1248     }
1249     if (!HasSwiftErrorArg) {
1250       MFI->addParam(PtrVT);
1251     }
1252   }
1253   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1254   // the buffer is passed as an argument.
1255   if (IsVarArg) {
1256     MVT PtrVT = getPointerTy(MF.getDataLayout());
1257     Register VarargVreg =
1258         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1259     MFI->setVarargBufferVreg(VarargVreg);
1260     Chain = DAG.getCopyToReg(
1261         Chain, DL, VarargVreg,
1262         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1263                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1264     MFI->addParam(PtrVT);
1265   }
1266 
1267   // Record the number and types of arguments and results.
1268   SmallVector<MVT, 4> Params;
1269   SmallVector<MVT, 4> Results;
1270   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1271                       MF.getFunction(), DAG.getTarget(), Params, Results);
1272   for (MVT VT : Results)
1273     MFI->addResult(VT);
1274   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1275   // the param logic here with ComputeSignatureVTs
1276   assert(MFI->getParams().size() == Params.size() &&
1277          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1278                     Params.begin()));
1279 
1280   return Chain;
1281 }
1282 
1283 void WebAssemblyTargetLowering::ReplaceNodeResults(
1284     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1285   switch (N->getOpcode()) {
1286   case ISD::SIGN_EXTEND_INREG:
1287     // Do not add any results, signifying that N should not be custom lowered
1288     // after all. This happens because simd128 turns on custom lowering for
1289     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1290     // illegal type.
1291     break;
1292   default:
1293     llvm_unreachable(
1294         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1295   }
1296 }
1297 
1298 //===----------------------------------------------------------------------===//
1299 //  Custom lowering hooks.
1300 //===----------------------------------------------------------------------===//
1301 
1302 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1303                                                   SelectionDAG &DAG) const {
1304   SDLoc DL(Op);
1305   switch (Op.getOpcode()) {
1306   default:
1307     llvm_unreachable("unimplemented operation lowering");
1308     return SDValue();
1309   case ISD::FrameIndex:
1310     return LowerFrameIndex(Op, DAG);
1311   case ISD::GlobalAddress:
1312     return LowerGlobalAddress(Op, DAG);
1313   case ISD::GlobalTLSAddress:
1314     return LowerGlobalTLSAddress(Op, DAG);
1315   case ISD::ExternalSymbol:
1316     return LowerExternalSymbol(Op, DAG);
1317   case ISD::JumpTable:
1318     return LowerJumpTable(Op, DAG);
1319   case ISD::BR_JT:
1320     return LowerBR_JT(Op, DAG);
1321   case ISD::VASTART:
1322     return LowerVASTART(Op, DAG);
1323   case ISD::BlockAddress:
1324   case ISD::BRIND:
1325     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1326     return SDValue();
1327   case ISD::RETURNADDR:
1328     return LowerRETURNADDR(Op, DAG);
1329   case ISD::FRAMEADDR:
1330     return LowerFRAMEADDR(Op, DAG);
1331   case ISD::CopyToReg:
1332     return LowerCopyToReg(Op, DAG);
1333   case ISD::EXTRACT_VECTOR_ELT:
1334   case ISD::INSERT_VECTOR_ELT:
1335     return LowerAccessVectorElement(Op, DAG);
1336   case ISD::INTRINSIC_VOID:
1337   case ISD::INTRINSIC_WO_CHAIN:
1338   case ISD::INTRINSIC_W_CHAIN:
1339     return LowerIntrinsic(Op, DAG);
1340   case ISD::SIGN_EXTEND_INREG:
1341     return LowerSIGN_EXTEND_INREG(Op, DAG);
1342   case ISD::BUILD_VECTOR:
1343     return LowerBUILD_VECTOR(Op, DAG);
1344   case ISD::VECTOR_SHUFFLE:
1345     return LowerVECTOR_SHUFFLE(Op, DAG);
1346   case ISD::SETCC:
1347     return LowerSETCC(Op, DAG);
1348   case ISD::SHL:
1349   case ISD::SRA:
1350   case ISD::SRL:
1351     return LowerShift(Op, DAG);
1352   case ISD::FP_TO_SINT_SAT:
1353   case ISD::FP_TO_UINT_SAT:
1354     return LowerFP_TO_INT_SAT(Op, DAG);
1355   case ISD::LOAD:
1356     return LowerLoad(Op, DAG);
1357   case ISD::STORE:
1358     return LowerStore(Op, DAG);
1359   }
1360 }
1361 
1362 static bool IsWebAssemblyGlobal(SDValue Op) {
1363   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1364     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1365 
1366   return false;
1367 }
1368 
1369 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
1370   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1371   if (!FI)
1372     return None;
1373 
1374   auto &MF = DAG.getMachineFunction();
1375   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1376 }
1377 
1378 bool WebAssemblyTargetLowering::isFuncrefType(const Type *Ty) {
1379   return isa<PointerType>(Ty) &&
1380          Ty->getPointerAddressSpace() == WasmAddressSpace::FUNCREF;
1381 }
1382 
1383 bool WebAssemblyTargetLowering::isExternrefType(const Type *Ty) {
1384   return isa<PointerType>(Ty) &&
1385          Ty->getPointerAddressSpace() == WasmAddressSpace::EXTERNREF;
1386 }
1387 
1388 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1389                                               SelectionDAG &DAG) const {
1390   SDLoc DL(Op);
1391   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1392   const SDValue &Value = SN->getValue();
1393   const SDValue &Base = SN->getBasePtr();
1394   const SDValue &Offset = SN->getOffset();
1395 
1396   if (IsWebAssemblyGlobal(Base)) {
1397     if (!Offset->isUndef())
1398       report_fatal_error("unexpected offset when storing to webassembly global",
1399                          false);
1400 
1401     SDVTList Tys = DAG.getVTList(MVT::Other);
1402     SDValue Ops[] = {SN->getChain(), Value, Base};
1403     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1404                                    SN->getMemoryVT(), SN->getMemOperand());
1405   }
1406 
1407   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1408     if (!Offset->isUndef())
1409       report_fatal_error("unexpected offset when storing to webassembly local",
1410                          false);
1411 
1412     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1413     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1414     SDValue Ops[] = {SN->getChain(), Idx, Value};
1415     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1416   }
1417 
1418   return Op;
1419 }
1420 
1421 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1422                                              SelectionDAG &DAG) const {
1423   SDLoc DL(Op);
1424   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1425   const SDValue &Base = LN->getBasePtr();
1426   const SDValue &Offset = LN->getOffset();
1427 
1428   if (IsWebAssemblyGlobal(Base)) {
1429     if (!Offset->isUndef())
1430       report_fatal_error(
1431           "unexpected offset when loading from webassembly global", false);
1432 
1433     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1434     SDValue Ops[] = {LN->getChain(), Base};
1435     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1436                                    LN->getMemoryVT(), LN->getMemOperand());
1437   }
1438 
1439   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1440     if (!Offset->isUndef())
1441       report_fatal_error(
1442           "unexpected offset when loading from webassembly local", false);
1443 
1444     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1445     EVT LocalVT = LN->getValueType(0);
1446     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1447                                    {LN->getChain(), Idx});
1448     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1449     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1450     return Result;
1451   }
1452 
1453   return Op;
1454 }
1455 
1456 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1457                                                   SelectionDAG &DAG) const {
1458   SDValue Src = Op.getOperand(2);
1459   if (isa<FrameIndexSDNode>(Src.getNode())) {
1460     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1461     // the FI to some LEA-like instruction, but since we don't have that, we
1462     // need to insert some kind of instruction that can take an FI operand and
1463     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1464     // local.copy between Op and its FI operand.
1465     SDValue Chain = Op.getOperand(0);
1466     SDLoc DL(Op);
1467     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1468     EVT VT = Src.getValueType();
1469     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1470                                                    : WebAssembly::COPY_I64,
1471                                     DL, VT, Src),
1472                  0);
1473     return Op.getNode()->getNumValues() == 1
1474                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1475                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1476                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1477                                                            : SDValue());
1478   }
1479   return SDValue();
1480 }
1481 
1482 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1483                                                    SelectionDAG &DAG) const {
1484   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1485   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1486 }
1487 
1488 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1489                                                    SelectionDAG &DAG) const {
1490   SDLoc DL(Op);
1491 
1492   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1493     fail(DL, DAG,
1494          "Non-Emscripten WebAssembly hasn't implemented "
1495          "__builtin_return_address");
1496     return SDValue();
1497   }
1498 
1499   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1500     return SDValue();
1501 
1502   unsigned Depth = Op.getConstantOperandVal(0);
1503   MakeLibCallOptions CallOptions;
1504   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1505                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1506       .first;
1507 }
1508 
1509 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1510                                                   SelectionDAG &DAG) const {
1511   // Non-zero depths are not supported by WebAssembly currently. Use the
1512   // legalizer's default expansion, which is to return 0 (what this function is
1513   // documented to do).
1514   if (Op.getConstantOperandVal(0) > 0)
1515     return SDValue();
1516 
1517   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1518   EVT VT = Op.getValueType();
1519   Register FP =
1520       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1521   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1522 }
1523 
1524 SDValue
1525 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1526                                                  SelectionDAG &DAG) const {
1527   SDLoc DL(Op);
1528   const auto *GA = cast<GlobalAddressSDNode>(Op);
1529   MVT PtrVT = getPointerTy(DAG.getDataLayout());
1530 
1531   MachineFunction &MF = DAG.getMachineFunction();
1532   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1533     report_fatal_error("cannot use thread-local storage without bulk memory",
1534                        false);
1535 
1536   const GlobalValue *GV = GA->getGlobal();
1537 
1538   // Currently Emscripten does not support dynamic linking with threads.
1539   // Therefore, if we have thread-local storage, only the local-exec model
1540   // is possible.
1541   // TODO: remove this and implement proper TLS models once Emscripten
1542   // supports dynamic linking with threads.
1543   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1544       !Subtarget->getTargetTriple().isOSEmscripten()) {
1545     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1546                        "non-Emscripten OSes: variable " +
1547                            GV->getName(),
1548                        false);
1549   }
1550 
1551   auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1552                                      : WebAssembly::GLOBAL_GET_I32;
1553   const char *BaseName = MF.createExternalSymbolName("__tls_base");
1554 
1555   SDValue BaseAddr(
1556       DAG.getMachineNode(GlobalGet, DL, PtrVT,
1557                          DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1558       0);
1559 
1560   SDValue TLSOffset = DAG.getTargetGlobalAddress(
1561       GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1562   SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset);
1563 
1564   return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1565 }
1566 
1567 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1568                                                       SelectionDAG &DAG) const {
1569   SDLoc DL(Op);
1570   const auto *GA = cast<GlobalAddressSDNode>(Op);
1571   EVT VT = Op.getValueType();
1572   assert(GA->getTargetFlags() == 0 &&
1573          "Unexpected target flags on generic GlobalAddressSDNode");
1574   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1575     fail(DL, DAG, "Invalid address space for WebAssembly target");
1576 
1577   unsigned OperandFlags = 0;
1578   if (isPositionIndependent()) {
1579     const GlobalValue *GV = GA->getGlobal();
1580     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1581       MachineFunction &MF = DAG.getMachineFunction();
1582       MVT PtrVT = getPointerTy(MF.getDataLayout());
1583       const char *BaseName;
1584       if (GV->getValueType()->isFunctionTy()) {
1585         BaseName = MF.createExternalSymbolName("__table_base");
1586         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1587       }
1588       else {
1589         BaseName = MF.createExternalSymbolName("__memory_base");
1590         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1591       }
1592       SDValue BaseAddr =
1593           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1594                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1595 
1596       SDValue SymAddr = DAG.getNode(
1597           WebAssemblyISD::WrapperPIC, DL, VT,
1598           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1599                                      OperandFlags));
1600 
1601       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1602     } else {
1603       OperandFlags = WebAssemblyII::MO_GOT;
1604     }
1605   }
1606 
1607   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1608                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1609                                                 GA->getOffset(), OperandFlags));
1610 }
1611 
1612 SDValue
1613 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1614                                                SelectionDAG &DAG) const {
1615   SDLoc DL(Op);
1616   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1617   EVT VT = Op.getValueType();
1618   assert(ES->getTargetFlags() == 0 &&
1619          "Unexpected target flags on generic ExternalSymbolSDNode");
1620   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1621                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1622 }
1623 
1624 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1625                                                   SelectionDAG &DAG) const {
1626   // There's no need for a Wrapper node because we always incorporate a jump
1627   // table operand into a BR_TABLE instruction, rather than ever
1628   // materializing it in a register.
1629   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1630   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1631                                 JT->getTargetFlags());
1632 }
1633 
1634 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1635                                               SelectionDAG &DAG) const {
1636   SDLoc DL(Op);
1637   SDValue Chain = Op.getOperand(0);
1638   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1639   SDValue Index = Op.getOperand(2);
1640   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1641 
1642   SmallVector<SDValue, 8> Ops;
1643   Ops.push_back(Chain);
1644   Ops.push_back(Index);
1645 
1646   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1647   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1648 
1649   // Add an operand for each case.
1650   for (auto MBB : MBBs)
1651     Ops.push_back(DAG.getBasicBlock(MBB));
1652 
1653   // Add the first MBB as a dummy default target for now. This will be replaced
1654   // with the proper default target (and the preceding range check eliminated)
1655   // if possible by WebAssemblyFixBrTableDefaults.
1656   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1657   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1658 }
1659 
1660 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1661                                                 SelectionDAG &DAG) const {
1662   SDLoc DL(Op);
1663   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1664 
1665   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1666   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1667 
1668   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1669                                     MFI->getVarargBufferVreg(), PtrVT);
1670   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1671                       MachinePointerInfo(SV));
1672 }
1673 
1674 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1675                                                   SelectionDAG &DAG) const {
1676   MachineFunction &MF = DAG.getMachineFunction();
1677   unsigned IntNo;
1678   switch (Op.getOpcode()) {
1679   case ISD::INTRINSIC_VOID:
1680   case ISD::INTRINSIC_W_CHAIN:
1681     IntNo = Op.getConstantOperandVal(1);
1682     break;
1683   case ISD::INTRINSIC_WO_CHAIN:
1684     IntNo = Op.getConstantOperandVal(0);
1685     break;
1686   default:
1687     llvm_unreachable("Invalid intrinsic");
1688   }
1689   SDLoc DL(Op);
1690 
1691   switch (IntNo) {
1692   default:
1693     return SDValue(); // Don't custom lower most intrinsics.
1694 
1695   case Intrinsic::wasm_lsda: {
1696     EVT VT = Op.getValueType();
1697     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1698     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1699     auto &Context = MF.getMMI().getContext();
1700     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1701                                             Twine(MF.getFunctionNumber()));
1702     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1703                        DAG.getMCSymbol(S, PtrVT));
1704   }
1705 
1706   case Intrinsic::wasm_shuffle: {
1707     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1708     SDValue Ops[18];
1709     size_t OpIdx = 0;
1710     Ops[OpIdx++] = Op.getOperand(1);
1711     Ops[OpIdx++] = Op.getOperand(2);
1712     while (OpIdx < 18) {
1713       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1714       if (MaskIdx.isUndef() ||
1715           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1716         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1717       } else {
1718         Ops[OpIdx++] = MaskIdx;
1719       }
1720     }
1721     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1722   }
1723   }
1724 }
1725 
1726 SDValue
1727 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1728                                                   SelectionDAG &DAG) const {
1729   SDLoc DL(Op);
1730   // If sign extension operations are disabled, allow sext_inreg only if operand
1731   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1732   // extension operations, but allowing sext_inreg in this context lets us have
1733   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1734   // everywhere would be simpler in this file, but would necessitate large and
1735   // brittle patterns to undo the expansion and select extract_lane_s
1736   // instructions.
1737   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1738   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1739     return SDValue();
1740 
1741   const SDValue &Extract = Op.getOperand(0);
1742   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1743   if (VecT.getVectorElementType().getSizeInBits() > 32)
1744     return SDValue();
1745   MVT ExtractedLaneT =
1746       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1747   MVT ExtractedVecT =
1748       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1749   if (ExtractedVecT == VecT)
1750     return Op;
1751 
1752   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1753   const SDNode *Index = Extract.getOperand(1).getNode();
1754   if (!isa<ConstantSDNode>(Index))
1755     return SDValue();
1756   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1757   unsigned Scale =
1758       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1759   assert(Scale > 1);
1760   SDValue NewIndex =
1761       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1762   SDValue NewExtract = DAG.getNode(
1763       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1764       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1765   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1766                      Op.getOperand(1));
1767 }
1768 
1769 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1770                                                      SelectionDAG &DAG) const {
1771   SDLoc DL(Op);
1772   const EVT VecT = Op.getValueType();
1773   const EVT LaneT = Op.getOperand(0).getValueType();
1774   const size_t Lanes = Op.getNumOperands();
1775   bool CanSwizzle = VecT == MVT::v16i8;
1776 
1777   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1778   // possible number of lanes at once followed by a sequence of replace_lane
1779   // instructions to individually initialize any remaining lanes.
1780 
1781   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1782   // swizzled lanes should be given greater weight.
1783 
1784   // TODO: Investigate looping rather than always extracting/replacing specific
1785   // lanes to fill gaps.
1786 
1787   auto IsConstant = [](const SDValue &V) {
1788     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1789   };
1790 
1791   // Returns the source vector and index vector pair if they exist. Checks for:
1792   //   (extract_vector_elt
1793   //     $src,
1794   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1795   //   )
1796   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1797     auto Bail = std::make_pair(SDValue(), SDValue());
1798     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1799       return Bail;
1800     const SDValue &SwizzleSrc = Lane->getOperand(0);
1801     const SDValue &IndexExt = Lane->getOperand(1);
1802     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1803       return Bail;
1804     const SDValue &Index = IndexExt->getOperand(0);
1805     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1806       return Bail;
1807     const SDValue &SwizzleIndices = Index->getOperand(0);
1808     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1809         SwizzleIndices.getValueType() != MVT::v16i8 ||
1810         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1811         Index->getConstantOperandVal(1) != I)
1812       return Bail;
1813     return std::make_pair(SwizzleSrc, SwizzleIndices);
1814   };
1815 
1816   // If the lane is extracted from another vector at a constant index, return
1817   // that vector. The source vector must not have more lanes than the dest
1818   // because the shufflevector indices are in terms of the destination lanes and
1819   // would not be able to address the smaller individual source lanes.
1820   auto GetShuffleSrc = [&](const SDValue &Lane) {
1821     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1822       return SDValue();
1823     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
1824       return SDValue();
1825     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
1826         VecT.getVectorNumElements())
1827       return SDValue();
1828     return Lane->getOperand(0);
1829   };
1830 
1831   using ValueEntry = std::pair<SDValue, size_t>;
1832   SmallVector<ValueEntry, 16> SplatValueCounts;
1833 
1834   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1835   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1836 
1837   using ShuffleEntry = std::pair<SDValue, size_t>;
1838   SmallVector<ShuffleEntry, 16> ShuffleCounts;
1839 
1840   auto AddCount = [](auto &Counts, const auto &Val) {
1841     auto CountIt =
1842         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
1843     if (CountIt == Counts.end()) {
1844       Counts.emplace_back(Val, 1);
1845     } else {
1846       CountIt->second++;
1847     }
1848   };
1849 
1850   auto GetMostCommon = [](auto &Counts) {
1851     auto CommonIt =
1852         std::max_element(Counts.begin(), Counts.end(),
1853                          [](auto A, auto B) { return A.second < B.second; });
1854     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1855     return *CommonIt;
1856   };
1857 
1858   size_t NumConstantLanes = 0;
1859 
1860   // Count eligible lanes for each type of vector creation op
1861   for (size_t I = 0; I < Lanes; ++I) {
1862     const SDValue &Lane = Op->getOperand(I);
1863     if (Lane.isUndef())
1864       continue;
1865 
1866     AddCount(SplatValueCounts, Lane);
1867 
1868     if (IsConstant(Lane))
1869       NumConstantLanes++;
1870     if (auto ShuffleSrc = GetShuffleSrc(Lane))
1871       AddCount(ShuffleCounts, ShuffleSrc);
1872     if (CanSwizzle) {
1873       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1874       if (SwizzleSrcs.first)
1875         AddCount(SwizzleCounts, SwizzleSrcs);
1876     }
1877   }
1878 
1879   SDValue SplatValue;
1880   size_t NumSplatLanes;
1881   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1882 
1883   SDValue SwizzleSrc;
1884   SDValue SwizzleIndices;
1885   size_t NumSwizzleLanes = 0;
1886   if (SwizzleCounts.size())
1887     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1888                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1889 
1890   // Shuffles can draw from up to two vectors, so find the two most common
1891   // sources.
1892   SDValue ShuffleSrc1, ShuffleSrc2;
1893   size_t NumShuffleLanes = 0;
1894   if (ShuffleCounts.size()) {
1895     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
1896     ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(),
1897                                        ShuffleCounts.end(),
1898                                        [&](const auto &Pair) {
1899                                          return Pair.first == ShuffleSrc1;
1900                                        }),
1901                         ShuffleCounts.end());
1902   }
1903   if (ShuffleCounts.size()) {
1904     size_t AdditionalShuffleLanes;
1905     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
1906         GetMostCommon(ShuffleCounts);
1907     NumShuffleLanes += AdditionalShuffleLanes;
1908   }
1909 
1910   // Predicate returning true if the lane is properly initialized by the
1911   // original instruction
1912   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1913   SDValue Result;
1914   // Prefer swizzles over shuffles over vector consts over splats
1915   if (NumSwizzleLanes >= NumShuffleLanes &&
1916       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
1917     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1918                          SwizzleIndices);
1919     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1920     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1921       return Swizzled == GetSwizzleSrcs(I, Lane);
1922     };
1923   } else if (NumShuffleLanes >= NumConstantLanes &&
1924              NumShuffleLanes >= NumSplatLanes) {
1925     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
1926     size_t DestLaneCount = VecT.getVectorNumElements();
1927     size_t Scale1 = 1;
1928     size_t Scale2 = 1;
1929     SDValue Src1 = ShuffleSrc1;
1930     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
1931     if (Src1.getValueType() != VecT) {
1932       size_t LaneSize =
1933           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1934       assert(LaneSize > DestLaneSize);
1935       Scale1 = LaneSize / DestLaneSize;
1936       Src1 = DAG.getBitcast(VecT, Src1);
1937     }
1938     if (Src2.getValueType() != VecT) {
1939       size_t LaneSize =
1940           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1941       assert(LaneSize > DestLaneSize);
1942       Scale2 = LaneSize / DestLaneSize;
1943       Src2 = DAG.getBitcast(VecT, Src2);
1944     }
1945 
1946     int Mask[16];
1947     assert(DestLaneCount <= 16);
1948     for (size_t I = 0; I < DestLaneCount; ++I) {
1949       const SDValue &Lane = Op->getOperand(I);
1950       SDValue Src = GetShuffleSrc(Lane);
1951       if (Src == ShuffleSrc1) {
1952         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
1953       } else if (Src && Src == ShuffleSrc2) {
1954         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
1955       } else {
1956         Mask[I] = -1;
1957       }
1958     }
1959     ArrayRef<int> MaskRef(Mask, DestLaneCount);
1960     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
1961     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
1962       auto Src = GetShuffleSrc(Lane);
1963       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
1964     };
1965   } else if (NumConstantLanes >= NumSplatLanes) {
1966     SmallVector<SDValue, 16> ConstLanes;
1967     for (const SDValue &Lane : Op->op_values()) {
1968       if (IsConstant(Lane)) {
1969         ConstLanes.push_back(Lane);
1970       } else if (LaneT.isFloatingPoint()) {
1971         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1972       } else {
1973         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1974       }
1975     }
1976     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1977     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1978       return IsConstant(Lane);
1979     };
1980   } else {
1981     // Use a splat, but possibly a load_splat
1982     LoadSDNode *SplattedLoad;
1983     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1984         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1985       Result = DAG.getMemIntrinsicNode(
1986           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1987           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1988            SplattedLoad->getOffset()},
1989           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1990     } else {
1991       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1992     }
1993     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
1994       return Lane == SplatValue;
1995     };
1996   }
1997 
1998   assert(Result);
1999   assert(IsLaneConstructed);
2000 
2001   // Add replace_lane instructions for any unhandled values
2002   for (size_t I = 0; I < Lanes; ++I) {
2003     const SDValue &Lane = Op->getOperand(I);
2004     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2005       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2006                            DAG.getConstant(I, DL, MVT::i32));
2007   }
2008 
2009   return Result;
2010 }
2011 
2012 SDValue
2013 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2014                                                SelectionDAG &DAG) const {
2015   SDLoc DL(Op);
2016   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2017   MVT VecType = Op.getOperand(0).getSimpleValueType();
2018   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2019   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2020 
2021   // Space for two vector args and sixteen mask indices
2022   SDValue Ops[18];
2023   size_t OpIdx = 0;
2024   Ops[OpIdx++] = Op.getOperand(0);
2025   Ops[OpIdx++] = Op.getOperand(1);
2026 
2027   // Expand mask indices to byte indices and materialize them as operands
2028   for (int M : Mask) {
2029     for (size_t J = 0; J < LaneBytes; ++J) {
2030       // Lower undefs (represented by -1 in mask) to zero
2031       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
2032       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2033     }
2034   }
2035 
2036   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2037 }
2038 
2039 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2040                                               SelectionDAG &DAG) const {
2041   SDLoc DL(Op);
2042   // The legalizer does not know how to expand the unsupported comparison modes
2043   // of i64x2 vectors, so we manually unroll them here.
2044   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2045   SmallVector<SDValue, 2> LHS, RHS;
2046   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2047   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2048   const SDValue &CC = Op->getOperand(2);
2049   auto MakeLane = [&](unsigned I) {
2050     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2051                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2052                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2053   };
2054   return DAG.getBuildVector(Op->getValueType(0), DL,
2055                             {MakeLane(0), MakeLane(1)});
2056 }
2057 
2058 SDValue
2059 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2060                                                     SelectionDAG &DAG) const {
2061   // Allow constant lane indices, expand variable lane indices
2062   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2063   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
2064     return Op;
2065   else
2066     // Perform default expansion
2067     return SDValue();
2068 }
2069 
2070 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2071   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2072   // 32-bit and 64-bit unrolled shifts will have proper semantics
2073   if (LaneT.bitsGE(MVT::i32))
2074     return DAG.UnrollVectorOp(Op.getNode());
2075   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2076   SDLoc DL(Op);
2077   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2078   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2079   unsigned ShiftOpcode = Op.getOpcode();
2080   SmallVector<SDValue, 16> ShiftedElements;
2081   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2082   SmallVector<SDValue, 16> ShiftElements;
2083   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2084   SmallVector<SDValue, 16> UnrolledOps;
2085   for (size_t i = 0; i < NumLanes; ++i) {
2086     SDValue MaskedShiftValue =
2087         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2088     SDValue ShiftedValue = ShiftedElements[i];
2089     if (ShiftOpcode == ISD::SRA)
2090       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2091                                  ShiftedValue, DAG.getValueType(LaneT));
2092     UnrolledOps.push_back(
2093         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2094   }
2095   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2096 }
2097 
2098 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2099                                               SelectionDAG &DAG) const {
2100   SDLoc DL(Op);
2101 
2102   // Only manually lower vector shifts
2103   assert(Op.getSimpleValueType().isVector());
2104 
2105   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2106   if (!ShiftVal)
2107     return unrollVectorShift(Op, DAG);
2108 
2109   // Use anyext because none of the high bits can affect the shift
2110   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2111 
2112   unsigned Opcode;
2113   switch (Op.getOpcode()) {
2114   case ISD::SHL:
2115     Opcode = WebAssemblyISD::VEC_SHL;
2116     break;
2117   case ISD::SRA:
2118     Opcode = WebAssemblyISD::VEC_SHR_S;
2119     break;
2120   case ISD::SRL:
2121     Opcode = WebAssemblyISD::VEC_SHR_U;
2122     break;
2123   default:
2124     llvm_unreachable("unexpected opcode");
2125   }
2126 
2127   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2128 }
2129 
2130 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2131                                                       SelectionDAG &DAG) const {
2132   SDLoc DL(Op);
2133   EVT ResT = Op.getValueType();
2134   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2135 
2136   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2137       (SatVT == MVT::i32 || SatVT == MVT::i64))
2138     return Op;
2139 
2140   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2141     return Op;
2142 
2143   return SDValue();
2144 }
2145 
2146 //===----------------------------------------------------------------------===//
2147 //   Custom DAG combine hooks
2148 //===----------------------------------------------------------------------===//
2149 static SDValue
2150 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2151   auto &DAG = DCI.DAG;
2152   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2153 
2154   // Hoist vector bitcasts that don't change the number of lanes out of unary
2155   // shuffles, where they are less likely to get in the way of other combines.
2156   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2157   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2158   SDValue Bitcast = N->getOperand(0);
2159   if (Bitcast.getOpcode() != ISD::BITCAST)
2160     return SDValue();
2161   if (!N->getOperand(1).isUndef())
2162     return SDValue();
2163   SDValue CastOp = Bitcast.getOperand(0);
2164   MVT SrcType = CastOp.getSimpleValueType();
2165   MVT DstType = Bitcast.getSimpleValueType();
2166   if (!SrcType.is128BitVector() ||
2167       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2168     return SDValue();
2169   SDValue NewShuffle = DAG.getVectorShuffle(
2170       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2171   return DAG.getBitcast(DstType, NewShuffle);
2172 }
2173 
2174 static SDValue
2175 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2176   auto &DAG = DCI.DAG;
2177   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2178          N->getOpcode() == ISD::ZERO_EXTEND);
2179 
2180   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2181   // possible before the extract_subvector can be expanded.
2182   auto Extract = N->getOperand(0);
2183   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2184     return SDValue();
2185   auto Source = Extract.getOperand(0);
2186   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2187   if (IndexNode == nullptr)
2188     return SDValue();
2189   auto Index = IndexNode->getZExtValue();
2190 
2191   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2192   // extracted subvector is the low or high half of its source.
2193   EVT ResVT = N->getValueType(0);
2194   if (ResVT == MVT::v8i16) {
2195     if (Extract.getValueType() != MVT::v8i8 ||
2196         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2197       return SDValue();
2198   } else if (ResVT == MVT::v4i32) {
2199     if (Extract.getValueType() != MVT::v4i16 ||
2200         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2201       return SDValue();
2202   } else if (ResVT == MVT::v2i64) {
2203     if (Extract.getValueType() != MVT::v2i32 ||
2204         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2205       return SDValue();
2206   } else {
2207     return SDValue();
2208   }
2209 
2210   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2211   bool IsLow = Index == 0;
2212 
2213   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2214                                 : WebAssemblyISD::EXTEND_HIGH_S)
2215                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2216                                 : WebAssemblyISD::EXTEND_HIGH_U);
2217 
2218   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2219 }
2220 
2221 static SDValue
2222 performVectorConvertLowCombine(SDNode *N,
2223                                TargetLowering::DAGCombinerInfo &DCI) {
2224   auto &DAG = DCI.DAG;
2225 
2226   EVT ResVT = N->getValueType(0);
2227   if (ResVT != MVT::v2f64)
2228     return SDValue();
2229 
2230   auto GetWasmConversionOp = [](unsigned Op) {
2231     switch (Op) {
2232     case ISD::SINT_TO_FP:
2233       return WebAssemblyISD::CONVERT_LOW_S;
2234     case ISD::UINT_TO_FP:
2235       return WebAssemblyISD::CONVERT_LOW_U;
2236     case ISD::FP_EXTEND:
2237       return WebAssemblyISD::PROMOTE_LOW;
2238     }
2239     llvm_unreachable("unexpected op");
2240   };
2241 
2242   if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
2243     // Combine this:
2244     //
2245     //   (v2f64 (extract_subvector
2246     //     (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0))
2247     //
2248     // into (f64x2.convert_low_i32x4_{s,u} $x).
2249     //
2250     // Or this:
2251     //
2252     //  (v2f64 (extract_subvector
2253     //    (v4f64 (fp_extend (v4f32 $x))), 0))
2254     //
2255     // into (f64x2.promote_low_f32x4 $x).
2256     auto Conversion = N->getOperand(0);
2257     auto ConversionOp = Conversion.getOpcode();
2258     MVT ExpectedSourceType;
2259     switch (ConversionOp) {
2260     case ISD::SINT_TO_FP:
2261     case ISD::UINT_TO_FP:
2262       ExpectedSourceType = MVT::v4i32;
2263       break;
2264     case ISD::FP_EXTEND:
2265       ExpectedSourceType = MVT::v4f32;
2266       break;
2267     default:
2268       return SDValue();
2269     }
2270 
2271     if (Conversion.getValueType() != MVT::v4f64)
2272       return SDValue();
2273 
2274     auto Source = Conversion.getOperand(0);
2275     if (Source.getValueType() != ExpectedSourceType)
2276       return SDValue();
2277 
2278     auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
2279     if (IndexNode == nullptr || IndexNode->getZExtValue() != 0)
2280       return SDValue();
2281 
2282     auto Op = GetWasmConversionOp(ConversionOp);
2283     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2284   }
2285 
2286   // Combine this:
2287   //
2288   //   (v2f64 ({s,u}int_to_fp
2289   //     (v2i32 (extract_subvector (v4i32 $x), 0))))
2290   //
2291   // into (f64x2.convert_low_i32x4_{s,u} $x).
2292   //
2293   // Or this:
2294   //
2295   //   (v2f64 (fp_extend
2296   //     (v2f32 (extract_subvector (v4f32 $x), 0))))
2297   //
2298   // into (f64x2.promote_low_f32x4 $x).
2299   auto ConversionOp = N->getOpcode();
2300   MVT ExpectedExtractType;
2301   MVT ExpectedSourceType;
2302   switch (ConversionOp) {
2303   case ISD::SINT_TO_FP:
2304   case ISD::UINT_TO_FP:
2305     ExpectedExtractType = MVT::v2i32;
2306     ExpectedSourceType = MVT::v4i32;
2307     break;
2308   case ISD::FP_EXTEND:
2309     ExpectedExtractType = MVT::v2f32;
2310     ExpectedSourceType = MVT::v4f32;
2311     break;
2312   default:
2313     llvm_unreachable("unexpected opcode");
2314   }
2315 
2316   auto Extract = N->getOperand(0);
2317   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2318     return SDValue();
2319 
2320   if (Extract.getValueType() != ExpectedExtractType)
2321     return SDValue();
2322 
2323   auto Source = Extract.getOperand(0);
2324   if (Source.getValueType() != ExpectedSourceType)
2325     return SDValue();
2326 
2327   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2328   if (IndexNode == nullptr || IndexNode->getZExtValue() != 0)
2329     return SDValue();
2330 
2331   unsigned Op = GetWasmConversionOp(ConversionOp);
2332   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2333 }
2334 
2335 static SDValue
2336 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2337   auto &DAG = DCI.DAG;
2338 
2339   auto GetWasmConversionOp = [](unsigned Op) {
2340     switch (Op) {
2341     case ISD::FP_TO_SINT_SAT:
2342       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2343     case ISD::FP_TO_UINT_SAT:
2344       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2345     case ISD::FP_ROUND:
2346       return WebAssemblyISD::DEMOTE_ZERO;
2347     }
2348     llvm_unreachable("unexpected op");
2349   };
2350 
2351   auto IsZeroSplat = [](SDValue SplatVal) {
2352     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2353     APInt SplatValue, SplatUndef;
2354     unsigned SplatBitSize;
2355     bool HasAnyUndefs;
2356     return Splat &&
2357            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2358                                   HasAnyUndefs) &&
2359            SplatValue == 0;
2360   };
2361 
2362   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2363     // Combine this:
2364     //
2365     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2366     //
2367     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2368     //
2369     // Or this:
2370     //
2371     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2372     //
2373     // into (f32x4.demote_zero_f64x2 $x).
2374     EVT ResVT;
2375     EVT ExpectedConversionType;
2376     auto Conversion = N->getOperand(0);
2377     auto ConversionOp = Conversion.getOpcode();
2378     switch (ConversionOp) {
2379     case ISD::FP_TO_SINT_SAT:
2380     case ISD::FP_TO_UINT_SAT:
2381       ResVT = MVT::v4i32;
2382       ExpectedConversionType = MVT::v2i32;
2383       break;
2384     case ISD::FP_ROUND:
2385       ResVT = MVT::v4f32;
2386       ExpectedConversionType = MVT::v2f32;
2387       break;
2388     default:
2389       return SDValue();
2390     }
2391 
2392     if (N->getValueType(0) != ResVT)
2393       return SDValue();
2394 
2395     if (Conversion.getValueType() != ExpectedConversionType)
2396       return SDValue();
2397 
2398     auto Source = Conversion.getOperand(0);
2399     if (Source.getValueType() != MVT::v2f64)
2400       return SDValue();
2401 
2402     if (!IsZeroSplat(N->getOperand(1)) ||
2403         N->getOperand(1).getValueType() != ExpectedConversionType)
2404       return SDValue();
2405 
2406     unsigned Op = GetWasmConversionOp(ConversionOp);
2407     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2408   }
2409 
2410   // Combine this:
2411   //
2412   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2413   //
2414   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2415   //
2416   // Or this:
2417   //
2418   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2419   //
2420   // into (f32x4.demote_zero_f64x2 $x).
2421   EVT ResVT;
2422   auto ConversionOp = N->getOpcode();
2423   switch (ConversionOp) {
2424   case ISD::FP_TO_SINT_SAT:
2425   case ISD::FP_TO_UINT_SAT:
2426     ResVT = MVT::v4i32;
2427     break;
2428   case ISD::FP_ROUND:
2429     ResVT = MVT::v4f32;
2430     break;
2431   default:
2432     llvm_unreachable("unexpected op");
2433   }
2434 
2435   if (N->getValueType(0) != ResVT)
2436     return SDValue();
2437 
2438   auto Concat = N->getOperand(0);
2439   if (Concat.getValueType() != MVT::v4f64)
2440     return SDValue();
2441 
2442   auto Source = Concat.getOperand(0);
2443   if (Source.getValueType() != MVT::v2f64)
2444     return SDValue();
2445 
2446   if (!IsZeroSplat(Concat.getOperand(1)) ||
2447       Concat.getOperand(1).getValueType() != MVT::v2f64)
2448     return SDValue();
2449 
2450   unsigned Op = GetWasmConversionOp(ConversionOp);
2451   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2452 }
2453 
2454 SDValue
2455 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2456                                              DAGCombinerInfo &DCI) const {
2457   switch (N->getOpcode()) {
2458   default:
2459     return SDValue();
2460   case ISD::VECTOR_SHUFFLE:
2461     return performVECTOR_SHUFFLECombine(N, DCI);
2462   case ISD::SIGN_EXTEND:
2463   case ISD::ZERO_EXTEND:
2464     return performVectorExtendCombine(N, DCI);
2465   case ISD::SINT_TO_FP:
2466   case ISD::UINT_TO_FP:
2467   case ISD::FP_EXTEND:
2468   case ISD::EXTRACT_SUBVECTOR:
2469     return performVectorConvertLowCombine(N, DCI);
2470   case ISD::FP_TO_SINT_SAT:
2471   case ISD::FP_TO_UINT_SAT:
2472   case ISD::FP_ROUND:
2473   case ISD::CONCAT_VECTORS:
2474     return performVectorTruncZeroCombine(N, DCI);
2475   }
2476 }
2477