1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyUtilities.h"
17 #include "WebAssemblyMachineFunctionInfo.h"
18 #include "WebAssemblySubtarget.h"
19 #include "WebAssemblyTargetMachine.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGNodes.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsWebAssembly.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetOptions.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "wasm-lower"
41 
42 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
43     const TargetMachine &TM, const WebAssemblySubtarget &STI)
44     : TargetLowering(TM), Subtarget(&STI) {
45   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
46 
47   // Booleans always contain 0 or 1.
48   setBooleanContents(ZeroOrOneBooleanContent);
49   // Except in SIMD vectors
50   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
51   // We don't know the microarchitecture here, so just reduce register pressure.
52   setSchedulingPreference(Sched::RegPressure);
53   // Tell ISel that we have a stack pointer.
54   setStackPointerRegisterToSaveRestore(
55       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
56   // Set up the register classes.
57   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
58   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
59   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
60   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
61   if (Subtarget->hasSIMD128()) {
62     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
68   }
69   // Compute derived properties from the register classes.
70   computeRegisterProperties(Subtarget->getRegisterInfo());
71 
72   // Transform loads and stores to pointers in address space 1 to loads and
73   // stores to WebAssembly global variables, outside linear memory.
74   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
75     setOperationAction(ISD::LOAD, T, Custom);
76     setOperationAction(ISD::STORE, T, Custom);
77   }
78   if (Subtarget->hasSIMD128()) {
79     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
80                    MVT::v2f64}) {
81       setOperationAction(ISD::LOAD, T, Custom);
82       setOperationAction(ISD::STORE, T, Custom);
83     }
84   }
85 
86   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
87   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
88   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
89   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
90   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
91   setOperationAction(ISD::BRIND, MVT::Other, Custom);
92 
93   // Take the default expansion for va_arg, va_copy, and va_end. There is no
94   // default action for va_start, so we do that custom.
95   setOperationAction(ISD::VASTART, MVT::Other, Custom);
96   setOperationAction(ISD::VAARG, MVT::Other, Expand);
97   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
98   setOperationAction(ISD::VAEND, MVT::Other, Expand);
99 
100   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
101     // Don't expand the floating-point types to constant pools.
102     setOperationAction(ISD::ConstantFP, T, Legal);
103     // Expand floating-point comparisons.
104     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
105                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
106       setCondCodeAction(CC, T, Expand);
107     // Expand floating-point library function operators.
108     for (auto Op :
109          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
110       setOperationAction(Op, T, Expand);
111     // Note supported floating-point library function operators that otherwise
112     // default to expand.
113     for (auto Op :
114          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
115       setOperationAction(Op, T, Legal);
116     // Support minimum and maximum, which otherwise default to expand.
117     setOperationAction(ISD::FMINIMUM, T, Legal);
118     setOperationAction(ISD::FMAXIMUM, T, Legal);
119     // WebAssembly currently has no builtin f16 support.
120     setOperationAction(ISD::FP16_TO_FP, T, Expand);
121     setOperationAction(ISD::FP_TO_FP16, T, Expand);
122     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
123     setTruncStoreAction(T, MVT::f16, Expand);
124   }
125 
126   // Expand unavailable integer operations.
127   for (auto Op :
128        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
129         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
130         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
131     for (auto T : {MVT::i32, MVT::i64})
132       setOperationAction(Op, T, Expand);
133     if (Subtarget->hasSIMD128())
134       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
135         setOperationAction(Op, T, Expand);
136   }
137 
138   if (Subtarget->hasNontrappingFPToInt())
139     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
140       for (auto T : {MVT::i32, MVT::i64})
141         setOperationAction(Op, T, Custom);
142 
143   // SIMD-specific configuration
144   if (Subtarget->hasSIMD128()) {
145     // Hoist bitcasts out of shuffles
146     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
147 
148     // Combine extends of extract_subvectors into widening ops
149     setTargetDAGCombine(ISD::SIGN_EXTEND);
150     setTargetDAGCombine(ISD::ZERO_EXTEND);
151 
152     // Combine int_to_fp of extract_vectors and vice versa into conversions ops
153     setTargetDAGCombine(ISD::SINT_TO_FP);
154     setTargetDAGCombine(ISD::UINT_TO_FP);
155     setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
156 
157     // Combine concat of {s,u}int_to_fp_sat to i32x4.trunc_sat_f64x2_zero_{s,u}
158     setTargetDAGCombine(ISD::CONCAT_VECTORS);
159 
160     // Support saturating add for i8x16 and i16x8
161     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
162       for (auto T : {MVT::v16i8, MVT::v8i16})
163         setOperationAction(Op, T, Legal);
164 
165     // Support integer abs
166     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
167       setOperationAction(ISD::ABS, T, Legal);
168 
169     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
170     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
171                    MVT::v2f64})
172       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
173 
174     // We have custom shuffle lowering to expose the shuffle mask
175     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
176                    MVT::v2f64})
177       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
178 
179     // Custom lowering since wasm shifts must have a scalar shift amount
180     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
181       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
182         setOperationAction(Op, T, Custom);
183 
184     // Custom lower lane accesses to expand out variable indices
185     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
186       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
187                      MVT::v2f64})
188         setOperationAction(Op, T, Custom);
189 
190     // There is no i8x16.mul instruction
191     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
192 
193     // There is no vector conditional select instruction
194     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
195                    MVT::v2f64})
196       setOperationAction(ISD::SELECT_CC, T, Expand);
197 
198     // Expand integer operations supported for scalars but not SIMD
199     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
200                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
201       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
202         setOperationAction(Op, T, Expand);
203 
204     // But we do have integer min and max operations
205     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
206       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
207         setOperationAction(Op, T, Legal);
208 
209     // Expand float operations supported for scalars but not SIMD
210     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
211                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
212       for (auto T : {MVT::v4f32, MVT::v2f64})
213         setOperationAction(Op, T, Expand);
214 
215     // Unsigned comparison operations are unavailable for i64x2 vectors.
216     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
217       setCondCodeAction(CC, MVT::v2i64, Custom);
218 
219     // 64x2 conversions are not in the spec
220     for (auto Op :
221          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
222       for (auto T : {MVT::v2i64, MVT::v2f64})
223         setOperationAction(Op, T, Expand);
224 
225     // But saturating fp_to_int converstions are
226     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
227       setOperationAction(Op, MVT::v4i32, Custom);
228   }
229 
230   // As a special case, these operators use the type to mean the type to
231   // sign-extend from.
232   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
233   if (!Subtarget->hasSignExt()) {
234     // Sign extends are legal only when extending a vector extract
235     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
236     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
237       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
238   }
239   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
240     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
241 
242   // Dynamic stack allocation: use the default expansion.
243   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
244   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
245   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
246 
247   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
248   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
249   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
250 
251   // Expand these forms; we pattern-match the forms that we can handle in isel.
252   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
253     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
254       setOperationAction(Op, T, Expand);
255 
256   // We have custom switch handling.
257   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
258 
259   // WebAssembly doesn't have:
260   //  - Floating-point extending loads.
261   //  - Floating-point truncating stores.
262   //  - i1 extending loads.
263   //  - truncating SIMD stores and most extending loads
264   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
265   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
266   for (auto T : MVT::integer_valuetypes())
267     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
268       setLoadExtAction(Ext, T, MVT::i1, Promote);
269   if (Subtarget->hasSIMD128()) {
270     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
271                    MVT::v2f64}) {
272       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
273         if (MVT(T) != MemT) {
274           setTruncStoreAction(T, MemT, Expand);
275           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
276             setLoadExtAction(Ext, T, MemT, Expand);
277         }
278       }
279     }
280     // But some vector extending loads are legal
281     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
282       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
283       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
284       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
285     }
286     // And some truncating stores are legal as well
287     setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
288     setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
289   }
290 
291   // Don't do anything clever with build_pairs
292   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
293 
294   // Trap lowers to wasm unreachable
295   setOperationAction(ISD::TRAP, MVT::Other, Legal);
296   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
297 
298   // Exception handling intrinsics
299   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
300   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
301   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
302 
303   setMaxAtomicSizeInBitsSupported(64);
304 
305   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
306   // consistent with the f64 and f128 names.
307   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
308   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
309 
310   // Define the emscripten name for return address helper.
311   // TODO: when implementing other Wasm backends, make this generic or only do
312   // this on emscripten depending on what they end up doing.
313   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
314 
315   // Always convert switches to br_tables unless there is only one case, which
316   // is equivalent to a simple branch. This reduces code size for wasm, and we
317   // defer possible jump table optimizations to the VM.
318   setMinimumJumpTableEntries(2);
319 }
320 
321 TargetLowering::AtomicExpansionKind
322 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
323   // We have wasm instructions for these
324   switch (AI->getOperation()) {
325   case AtomicRMWInst::Add:
326   case AtomicRMWInst::Sub:
327   case AtomicRMWInst::And:
328   case AtomicRMWInst::Or:
329   case AtomicRMWInst::Xor:
330   case AtomicRMWInst::Xchg:
331     return AtomicExpansionKind::None;
332   default:
333     break;
334   }
335   return AtomicExpansionKind::CmpXChg;
336 }
337 
338 FastISel *WebAssemblyTargetLowering::createFastISel(
339     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
340   return WebAssembly::createFastISel(FuncInfo, LibInfo);
341 }
342 
343 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
344                                                       EVT VT) const {
345   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
346   if (BitWidth > 1 && BitWidth < 8)
347     BitWidth = 8;
348 
349   if (BitWidth > 64) {
350     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
351     // the count to be an i32.
352     BitWidth = 32;
353     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
354            "32-bit shift counts ought to be enough for anyone");
355   }
356 
357   MVT Result = MVT::getIntegerVT(BitWidth);
358   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
359          "Unable to represent scalar shift amount type");
360   return Result;
361 }
362 
363 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
364 // undefined result on invalid/overflow, to the WebAssembly opcode, which
365 // traps on invalid/overflow.
366 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
367                                        MachineBasicBlock *BB,
368                                        const TargetInstrInfo &TII,
369                                        bool IsUnsigned, bool Int64,
370                                        bool Float64, unsigned LoweredOpcode) {
371   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
372 
373   Register OutReg = MI.getOperand(0).getReg();
374   Register InReg = MI.getOperand(1).getReg();
375 
376   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
377   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
378   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
379   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
380   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
381   unsigned Eqz = WebAssembly::EQZ_I32;
382   unsigned And = WebAssembly::AND_I32;
383   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
384   int64_t Substitute = IsUnsigned ? 0 : Limit;
385   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
386   auto &Context = BB->getParent()->getFunction().getContext();
387   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
388 
389   const BasicBlock *LLVMBB = BB->getBasicBlock();
390   MachineFunction *F = BB->getParent();
391   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
392   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
393   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
394 
395   MachineFunction::iterator It = ++BB->getIterator();
396   F->insert(It, FalseMBB);
397   F->insert(It, TrueMBB);
398   F->insert(It, DoneMBB);
399 
400   // Transfer the remainder of BB and its successor edges to DoneMBB.
401   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
402   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
403 
404   BB->addSuccessor(TrueMBB);
405   BB->addSuccessor(FalseMBB);
406   TrueMBB->addSuccessor(DoneMBB);
407   FalseMBB->addSuccessor(DoneMBB);
408 
409   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
410   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
411   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
412   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
413   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
414   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
415   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
416 
417   MI.eraseFromParent();
418   // For signed numbers, we can do a single comparison to determine whether
419   // fabs(x) is within range.
420   if (IsUnsigned) {
421     Tmp0 = InReg;
422   } else {
423     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
424   }
425   BuildMI(BB, DL, TII.get(FConst), Tmp1)
426       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
427   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
428 
429   // For unsigned numbers, we have to do a separate comparison with zero.
430   if (IsUnsigned) {
431     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
432     Register SecondCmpReg =
433         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
434     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
435     BuildMI(BB, DL, TII.get(FConst), Tmp1)
436         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
437     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
438     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
439     CmpReg = AndReg;
440   }
441 
442   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
443 
444   // Create the CFG diamond to select between doing the conversion or using
445   // the substitute value.
446   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
447   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
448   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
449   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
450   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
451       .addReg(FalseReg)
452       .addMBB(FalseMBB)
453       .addReg(TrueReg)
454       .addMBB(TrueMBB);
455 
456   return DoneMBB;
457 }
458 
459 static MachineBasicBlock *
460 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
461                  const WebAssemblySubtarget *Subtarget,
462                  const TargetInstrInfo &TII) {
463   MachineInstr &CallParams = *CallResults.getPrevNode();
464   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
465   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
466          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
467 
468   bool IsIndirect = CallParams.getOperand(0).isReg();
469   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
470 
471   unsigned CallOp;
472   if (IsIndirect && IsRetCall) {
473     CallOp = WebAssembly::RET_CALL_INDIRECT;
474   } else if (IsIndirect) {
475     CallOp = WebAssembly::CALL_INDIRECT;
476   } else if (IsRetCall) {
477     CallOp = WebAssembly::RET_CALL;
478   } else {
479     CallOp = WebAssembly::CALL;
480   }
481 
482   MachineFunction &MF = *BB->getParent();
483   const MCInstrDesc &MCID = TII.get(CallOp);
484   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
485 
486   // See if we must truncate the function pointer.
487   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
488   // as 64-bit for uniformity with other pointer types.
489   // See also: WebAssemblyFastISel::selectCall
490   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
491     Register Reg32 =
492         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
493     auto &FnPtr = CallParams.getOperand(0);
494     BuildMI(*BB, CallResults.getIterator(), DL,
495             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
496         .addReg(FnPtr.getReg());
497     FnPtr.setReg(Reg32);
498   }
499 
500   // Move the function pointer to the end of the arguments for indirect calls
501   if (IsIndirect) {
502     auto FnPtr = CallParams.getOperand(0);
503     CallParams.RemoveOperand(0);
504     CallParams.addOperand(FnPtr);
505   }
506 
507   for (auto Def : CallResults.defs())
508     MIB.add(Def);
509 
510   if (IsIndirect) {
511     // Placeholder for the type index.
512     MIB.addImm(0);
513     // The table into which this call_indirect indexes.
514     MCSymbolWasm *Table =
515         WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget);
516     if (Subtarget->hasReferenceTypes()) {
517       MIB.addSym(Table);
518     } else {
519       // For the MVP there is at most one table whose number is 0, but we can't
520       // write a table symbol or issue relocations.  Instead we just ensure the
521       // table is live and write a zero.
522       Table->setNoStrip();
523       MIB.addImm(0);
524     }
525   }
526 
527   for (auto Use : CallParams.uses())
528     MIB.add(Use);
529 
530   BB->insert(CallResults.getIterator(), MIB);
531   CallParams.eraseFromParent();
532   CallResults.eraseFromParent();
533 
534   return BB;
535 }
536 
537 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
538     MachineInstr &MI, MachineBasicBlock *BB) const {
539   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
540   DebugLoc DL = MI.getDebugLoc();
541 
542   switch (MI.getOpcode()) {
543   default:
544     llvm_unreachable("Unexpected instr type to insert");
545   case WebAssembly::FP_TO_SINT_I32_F32:
546     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
547                         WebAssembly::I32_TRUNC_S_F32);
548   case WebAssembly::FP_TO_UINT_I32_F32:
549     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
550                         WebAssembly::I32_TRUNC_U_F32);
551   case WebAssembly::FP_TO_SINT_I64_F32:
552     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
553                         WebAssembly::I64_TRUNC_S_F32);
554   case WebAssembly::FP_TO_UINT_I64_F32:
555     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
556                         WebAssembly::I64_TRUNC_U_F32);
557   case WebAssembly::FP_TO_SINT_I32_F64:
558     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
559                         WebAssembly::I32_TRUNC_S_F64);
560   case WebAssembly::FP_TO_UINT_I32_F64:
561     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
562                         WebAssembly::I32_TRUNC_U_F64);
563   case WebAssembly::FP_TO_SINT_I64_F64:
564     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
565                         WebAssembly::I64_TRUNC_S_F64);
566   case WebAssembly::FP_TO_UINT_I64_F64:
567     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
568                         WebAssembly::I64_TRUNC_U_F64);
569   case WebAssembly::CALL_RESULTS:
570   case WebAssembly::RET_CALL_RESULTS:
571     return LowerCallResults(MI, DL, BB, Subtarget, TII);
572   }
573 }
574 
575 const char *
576 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
577   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
578   case WebAssemblyISD::FIRST_NUMBER:
579   case WebAssemblyISD::FIRST_MEM_OPCODE:
580     break;
581 #define HANDLE_NODETYPE(NODE)                                                  \
582   case WebAssemblyISD::NODE:                                                   \
583     return "WebAssemblyISD::" #NODE;
584 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
585 #include "WebAssemblyISD.def"
586 #undef HANDLE_MEM_NODETYPE
587 #undef HANDLE_NODETYPE
588   }
589   return nullptr;
590 }
591 
592 std::pair<unsigned, const TargetRegisterClass *>
593 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
594     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
595   // First, see if this is a constraint that directly corresponds to a
596   // WebAssembly register class.
597   if (Constraint.size() == 1) {
598     switch (Constraint[0]) {
599     case 'r':
600       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
601       if (Subtarget->hasSIMD128() && VT.isVector()) {
602         if (VT.getSizeInBits() == 128)
603           return std::make_pair(0U, &WebAssembly::V128RegClass);
604       }
605       if (VT.isInteger() && !VT.isVector()) {
606         if (VT.getSizeInBits() <= 32)
607           return std::make_pair(0U, &WebAssembly::I32RegClass);
608         if (VT.getSizeInBits() <= 64)
609           return std::make_pair(0U, &WebAssembly::I64RegClass);
610       }
611       if (VT.isFloatingPoint() && !VT.isVector()) {
612         switch (VT.getSizeInBits()) {
613         case 32:
614           return std::make_pair(0U, &WebAssembly::F32RegClass);
615         case 64:
616           return std::make_pair(0U, &WebAssembly::F64RegClass);
617         default:
618           break;
619         }
620       }
621       break;
622     default:
623       break;
624     }
625   }
626 
627   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
628 }
629 
630 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
631   // Assume ctz is a relatively cheap operation.
632   return true;
633 }
634 
635 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
636   // Assume clz is a relatively cheap operation.
637   return true;
638 }
639 
640 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
641                                                       const AddrMode &AM,
642                                                       Type *Ty, unsigned AS,
643                                                       Instruction *I) const {
644   // WebAssembly offsets are added as unsigned without wrapping. The
645   // isLegalAddressingMode gives us no way to determine if wrapping could be
646   // happening, so we approximate this by accepting only non-negative offsets.
647   if (AM.BaseOffs < 0)
648     return false;
649 
650   // WebAssembly has no scale register operands.
651   if (AM.Scale != 0)
652     return false;
653 
654   // Everything else is legal.
655   return true;
656 }
657 
658 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
659     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
660     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
661   // WebAssembly supports unaligned accesses, though it should be declared
662   // with the p2align attribute on loads and stores which do so, and there
663   // may be a performance impact. We tell LLVM they're "fast" because
664   // for the kinds of things that LLVM uses this for (merging adjacent stores
665   // of constants, etc.), WebAssembly implementations will either want the
666   // unaligned access or they'll split anyway.
667   if (Fast)
668     *Fast = true;
669   return true;
670 }
671 
672 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
673                                               AttributeList Attr) const {
674   // The current thinking is that wasm engines will perform this optimization,
675   // so we can save on code size.
676   return true;
677 }
678 
679 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
680   EVT ExtT = ExtVal.getValueType();
681   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
682   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
683          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
684          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
685 }
686 
687 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
688                                                   LLVMContext &C,
689                                                   EVT VT) const {
690   if (VT.isVector())
691     return VT.changeVectorElementTypeToInteger();
692 
693   // So far, all branch instructions in Wasm take an I32 condition.
694   // The default TargetLowering::getSetCCResultType returns the pointer size,
695   // which would be useful to reduce instruction counts when testing
696   // against 64-bit pointers/values if at some point Wasm supports that.
697   return EVT::getIntegerVT(C, 32);
698 }
699 
700 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
701                                                    const CallInst &I,
702                                                    MachineFunction &MF,
703                                                    unsigned Intrinsic) const {
704   switch (Intrinsic) {
705   case Intrinsic::wasm_memory_atomic_notify:
706     Info.opc = ISD::INTRINSIC_W_CHAIN;
707     Info.memVT = MVT::i32;
708     Info.ptrVal = I.getArgOperand(0);
709     Info.offset = 0;
710     Info.align = Align(4);
711     // atomic.notify instruction does not really load the memory specified with
712     // this argument, but MachineMemOperand should either be load or store, so
713     // we set this to a load.
714     // FIXME Volatile isn't really correct, but currently all LLVM atomic
715     // instructions are treated as volatiles in the backend, so we should be
716     // consistent. The same applies for wasm_atomic_wait intrinsics too.
717     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
718     return true;
719   case Intrinsic::wasm_memory_atomic_wait32:
720     Info.opc = ISD::INTRINSIC_W_CHAIN;
721     Info.memVT = MVT::i32;
722     Info.ptrVal = I.getArgOperand(0);
723     Info.offset = 0;
724     Info.align = Align(4);
725     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
726     return true;
727   case Intrinsic::wasm_memory_atomic_wait64:
728     Info.opc = ISD::INTRINSIC_W_CHAIN;
729     Info.memVT = MVT::i64;
730     Info.ptrVal = I.getArgOperand(0);
731     Info.offset = 0;
732     Info.align = Align(8);
733     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
734     return true;
735   case Intrinsic::wasm_load32_zero:
736   case Intrinsic::wasm_load64_zero:
737     Info.opc = ISD::INTRINSIC_W_CHAIN;
738     Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64;
739     Info.ptrVal = I.getArgOperand(0);
740     Info.offset = 0;
741     Info.align = Align(1);
742     Info.flags = MachineMemOperand::MOLoad;
743     return true;
744   case Intrinsic::wasm_load8_lane:
745   case Intrinsic::wasm_load16_lane:
746   case Intrinsic::wasm_load32_lane:
747   case Intrinsic::wasm_load64_lane:
748   case Intrinsic::wasm_store8_lane:
749   case Intrinsic::wasm_store16_lane:
750   case Intrinsic::wasm_store32_lane:
751   case Intrinsic::wasm_store64_lane: {
752     MVT MemVT;
753     switch (Intrinsic) {
754     case Intrinsic::wasm_load8_lane:
755     case Intrinsic::wasm_store8_lane:
756       MemVT = MVT::i8;
757       break;
758     case Intrinsic::wasm_load16_lane:
759     case Intrinsic::wasm_store16_lane:
760       MemVT = MVT::i16;
761       break;
762     case Intrinsic::wasm_load32_lane:
763     case Intrinsic::wasm_store32_lane:
764       MemVT = MVT::i32;
765       break;
766     case Intrinsic::wasm_load64_lane:
767     case Intrinsic::wasm_store64_lane:
768       MemVT = MVT::i64;
769       break;
770     default:
771       llvm_unreachable("unexpected intrinsic");
772     }
773     if (Intrinsic == Intrinsic::wasm_load8_lane ||
774         Intrinsic == Intrinsic::wasm_load16_lane ||
775         Intrinsic == Intrinsic::wasm_load32_lane ||
776         Intrinsic == Intrinsic::wasm_load64_lane) {
777       Info.opc = ISD::INTRINSIC_W_CHAIN;
778       Info.flags = MachineMemOperand::MOLoad;
779     } else {
780       Info.opc = ISD::INTRINSIC_VOID;
781       Info.flags = MachineMemOperand::MOStore;
782     }
783     Info.ptrVal = I.getArgOperand(0);
784     Info.memVT = MemVT;
785     Info.offset = 0;
786     Info.align = Align(1);
787     return true;
788   }
789   default:
790     return false;
791   }
792 }
793 
794 //===----------------------------------------------------------------------===//
795 // WebAssembly Lowering private implementation.
796 //===----------------------------------------------------------------------===//
797 
798 //===----------------------------------------------------------------------===//
799 // Lowering Code
800 //===----------------------------------------------------------------------===//
801 
802 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
803   MachineFunction &MF = DAG.getMachineFunction();
804   DAG.getContext()->diagnose(
805       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
806 }
807 
808 // Test whether the given calling convention is supported.
809 static bool callingConvSupported(CallingConv::ID CallConv) {
810   // We currently support the language-independent target-independent
811   // conventions. We don't yet have a way to annotate calls with properties like
812   // "cold", and we don't have any call-clobbered registers, so these are mostly
813   // all handled the same.
814   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
815          CallConv == CallingConv::Cold ||
816          CallConv == CallingConv::PreserveMost ||
817          CallConv == CallingConv::PreserveAll ||
818          CallConv == CallingConv::CXX_FAST_TLS ||
819          CallConv == CallingConv::WASM_EmscriptenInvoke ||
820          CallConv == CallingConv::Swift;
821 }
822 
823 SDValue
824 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
825                                      SmallVectorImpl<SDValue> &InVals) const {
826   SelectionDAG &DAG = CLI.DAG;
827   SDLoc DL = CLI.DL;
828   SDValue Chain = CLI.Chain;
829   SDValue Callee = CLI.Callee;
830   MachineFunction &MF = DAG.getMachineFunction();
831   auto Layout = MF.getDataLayout();
832 
833   CallingConv::ID CallConv = CLI.CallConv;
834   if (!callingConvSupported(CallConv))
835     fail(DL, DAG,
836          "WebAssembly doesn't support language-specific or target-specific "
837          "calling conventions yet");
838   if (CLI.IsPatchPoint)
839     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
840 
841   if (CLI.IsTailCall) {
842     auto NoTail = [&](const char *Msg) {
843       if (CLI.CB && CLI.CB->isMustTailCall())
844         fail(DL, DAG, Msg);
845       CLI.IsTailCall = false;
846     };
847 
848     if (!Subtarget->hasTailCall())
849       NoTail("WebAssembly 'tail-call' feature not enabled");
850 
851     // Varargs calls cannot be tail calls because the buffer is on the stack
852     if (CLI.IsVarArg)
853       NoTail("WebAssembly does not support varargs tail calls");
854 
855     // Do not tail call unless caller and callee return types match
856     const Function &F = MF.getFunction();
857     const TargetMachine &TM = getTargetMachine();
858     Type *RetTy = F.getReturnType();
859     SmallVector<MVT, 4> CallerRetTys;
860     SmallVector<MVT, 4> CalleeRetTys;
861     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
862     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
863     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
864                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
865                                  CalleeRetTys.begin());
866     if (!TypesMatch)
867       NoTail("WebAssembly tail call requires caller and callee return types to "
868              "match");
869 
870     // If pointers to local stack values are passed, we cannot tail call
871     if (CLI.CB) {
872       for (auto &Arg : CLI.CB->args()) {
873         Value *Val = Arg.get();
874         // Trace the value back through pointer operations
875         while (true) {
876           Value *Src = Val->stripPointerCastsAndAliases();
877           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
878             Src = GEP->getPointerOperand();
879           if (Val == Src)
880             break;
881           Val = Src;
882         }
883         if (isa<AllocaInst>(Val)) {
884           NoTail(
885               "WebAssembly does not support tail calling with stack arguments");
886           break;
887         }
888       }
889     }
890   }
891 
892   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
893   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
894   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
895 
896   // The generic code may have added an sret argument. If we're lowering an
897   // invoke function, the ABI requires that the function pointer be the first
898   // argument, so we may have to swap the arguments.
899   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
900       Outs[0].Flags.isSRet()) {
901     std::swap(Outs[0], Outs[1]);
902     std::swap(OutVals[0], OutVals[1]);
903   }
904 
905   bool HasSwiftSelfArg = false;
906   bool HasSwiftErrorArg = false;
907   unsigned NumFixedArgs = 0;
908   for (unsigned I = 0; I < Outs.size(); ++I) {
909     const ISD::OutputArg &Out = Outs[I];
910     SDValue &OutVal = OutVals[I];
911     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
912     HasSwiftErrorArg |= Out.Flags.isSwiftError();
913     if (Out.Flags.isNest())
914       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
915     if (Out.Flags.isInAlloca())
916       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
917     if (Out.Flags.isInConsecutiveRegs())
918       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
919     if (Out.Flags.isInConsecutiveRegsLast())
920       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
921     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
922       auto &MFI = MF.getFrameInfo();
923       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
924                                      Out.Flags.getNonZeroByValAlign(),
925                                      /*isSS=*/false);
926       SDValue SizeNode =
927           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
928       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
929       Chain = DAG.getMemcpy(
930           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
931           /*isVolatile*/ false, /*AlwaysInline=*/false,
932           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
933       OutVal = FINode;
934     }
935     // Count the number of fixed args *after* legalization.
936     NumFixedArgs += Out.IsFixed;
937   }
938 
939   bool IsVarArg = CLI.IsVarArg;
940   auto PtrVT = getPointerTy(Layout);
941 
942   // For swiftcc, emit additional swiftself and swifterror arguments
943   // if there aren't. These additional arguments are also added for callee
944   // signature They are necessary to match callee and caller signature for
945   // indirect call.
946   if (CallConv == CallingConv::Swift) {
947     if (!HasSwiftSelfArg) {
948       NumFixedArgs++;
949       ISD::OutputArg Arg;
950       Arg.Flags.setSwiftSelf();
951       CLI.Outs.push_back(Arg);
952       SDValue ArgVal = DAG.getUNDEF(PtrVT);
953       CLI.OutVals.push_back(ArgVal);
954     }
955     if (!HasSwiftErrorArg) {
956       NumFixedArgs++;
957       ISD::OutputArg Arg;
958       Arg.Flags.setSwiftError();
959       CLI.Outs.push_back(Arg);
960       SDValue ArgVal = DAG.getUNDEF(PtrVT);
961       CLI.OutVals.push_back(ArgVal);
962     }
963   }
964 
965   // Analyze operands of the call, assigning locations to each operand.
966   SmallVector<CCValAssign, 16> ArgLocs;
967   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
968 
969   if (IsVarArg) {
970     // Outgoing non-fixed arguments are placed in a buffer. First
971     // compute their offsets and the total amount of buffer space needed.
972     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
973       const ISD::OutputArg &Out = Outs[I];
974       SDValue &Arg = OutVals[I];
975       EVT VT = Arg.getValueType();
976       assert(VT != MVT::iPTR && "Legalized args should be concrete");
977       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
978       Align Alignment =
979           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
980       unsigned Offset =
981           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
982       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
983                                         Offset, VT.getSimpleVT(),
984                                         CCValAssign::Full));
985     }
986   }
987 
988   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
989 
990   SDValue FINode;
991   if (IsVarArg && NumBytes) {
992     // For non-fixed arguments, next emit stores to store the argument values
993     // to the stack buffer at the offsets computed above.
994     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
995                                                  Layout.getStackAlignment(),
996                                                  /*isSS=*/false);
997     unsigned ValNo = 0;
998     SmallVector<SDValue, 8> Chains;
999     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1000       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1001              "ArgLocs should remain in order and only hold varargs args");
1002       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1003       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1004       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1005                                 DAG.getConstant(Offset, DL, PtrVT));
1006       Chains.push_back(
1007           DAG.getStore(Chain, DL, Arg, Add,
1008                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1009     }
1010     if (!Chains.empty())
1011       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1012   } else if (IsVarArg) {
1013     FINode = DAG.getIntPtrConstant(0, DL);
1014   }
1015 
1016   if (Callee->getOpcode() == ISD::GlobalAddress) {
1017     // If the callee is a GlobalAddress node (quite common, every direct call
1018     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1019     // doesn't at MO_GOT which is not needed for direct calls.
1020     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1021     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1022                                         getPointerTy(DAG.getDataLayout()),
1023                                         GA->getOffset());
1024     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1025                          getPointerTy(DAG.getDataLayout()), Callee);
1026   }
1027 
1028   // Compute the operands for the CALLn node.
1029   SmallVector<SDValue, 16> Ops;
1030   Ops.push_back(Chain);
1031   Ops.push_back(Callee);
1032 
1033   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1034   // isn't reliable.
1035   Ops.append(OutVals.begin(),
1036              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1037   // Add a pointer to the vararg buffer.
1038   if (IsVarArg)
1039     Ops.push_back(FINode);
1040 
1041   SmallVector<EVT, 8> InTys;
1042   for (const auto &In : Ins) {
1043     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1044     assert(!In.Flags.isNest() && "nest is not valid for return values");
1045     if (In.Flags.isInAlloca())
1046       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1047     if (In.Flags.isInConsecutiveRegs())
1048       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1049     if (In.Flags.isInConsecutiveRegsLast())
1050       fail(DL, DAG,
1051            "WebAssembly hasn't implemented cons regs last return values");
1052     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1053     // registers.
1054     InTys.push_back(In.VT);
1055   }
1056 
1057   if (CLI.IsTailCall) {
1058     // ret_calls do not return values to the current frame
1059     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1060     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1061   }
1062 
1063   InTys.push_back(MVT::Other);
1064   SDVTList InTyList = DAG.getVTList(InTys);
1065   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1066 
1067   for (size_t I = 0; I < Ins.size(); ++I)
1068     InVals.push_back(Res.getValue(I));
1069 
1070   // Return the chain
1071   return Res.getValue(Ins.size());
1072 }
1073 
1074 bool WebAssemblyTargetLowering::CanLowerReturn(
1075     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1076     const SmallVectorImpl<ISD::OutputArg> &Outs,
1077     LLVMContext & /*Context*/) const {
1078   // WebAssembly can only handle returning tuples with multivalue enabled
1079   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1080 }
1081 
1082 SDValue WebAssemblyTargetLowering::LowerReturn(
1083     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1084     const SmallVectorImpl<ISD::OutputArg> &Outs,
1085     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1086     SelectionDAG &DAG) const {
1087   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1088          "MVP WebAssembly can only return up to one value");
1089   if (!callingConvSupported(CallConv))
1090     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1091 
1092   SmallVector<SDValue, 4> RetOps(1, Chain);
1093   RetOps.append(OutVals.begin(), OutVals.end());
1094   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1095 
1096   // Record the number and types of the return values.
1097   for (const ISD::OutputArg &Out : Outs) {
1098     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1099     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1100     assert(Out.IsFixed && "non-fixed return value is not valid");
1101     if (Out.Flags.isInAlloca())
1102       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1103     if (Out.Flags.isInConsecutiveRegs())
1104       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1105     if (Out.Flags.isInConsecutiveRegsLast())
1106       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1107   }
1108 
1109   return Chain;
1110 }
1111 
1112 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1113     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1114     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1115     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1116   if (!callingConvSupported(CallConv))
1117     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1118 
1119   MachineFunction &MF = DAG.getMachineFunction();
1120   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1121 
1122   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1123   // of the incoming values before they're represented by virtual registers.
1124   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1125 
1126   bool HasSwiftErrorArg = false;
1127   bool HasSwiftSelfArg = false;
1128   for (const ISD::InputArg &In : Ins) {
1129     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1130     HasSwiftErrorArg |= In.Flags.isSwiftError();
1131     if (In.Flags.isInAlloca())
1132       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1133     if (In.Flags.isNest())
1134       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1135     if (In.Flags.isInConsecutiveRegs())
1136       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1137     if (In.Flags.isInConsecutiveRegsLast())
1138       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1139     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1140     // registers.
1141     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1142                                            DAG.getTargetConstant(InVals.size(),
1143                                                                  DL, MVT::i32))
1144                              : DAG.getUNDEF(In.VT));
1145 
1146     // Record the number and types of arguments.
1147     MFI->addParam(In.VT);
1148   }
1149 
1150   // For swiftcc, emit additional swiftself and swifterror arguments
1151   // if there aren't. These additional arguments are also added for callee
1152   // signature They are necessary to match callee and caller signature for
1153   // indirect call.
1154   auto PtrVT = getPointerTy(MF.getDataLayout());
1155   if (CallConv == CallingConv::Swift) {
1156     if (!HasSwiftSelfArg) {
1157       MFI->addParam(PtrVT);
1158     }
1159     if (!HasSwiftErrorArg) {
1160       MFI->addParam(PtrVT);
1161     }
1162   }
1163   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1164   // the buffer is passed as an argument.
1165   if (IsVarArg) {
1166     MVT PtrVT = getPointerTy(MF.getDataLayout());
1167     Register VarargVreg =
1168         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1169     MFI->setVarargBufferVreg(VarargVreg);
1170     Chain = DAG.getCopyToReg(
1171         Chain, DL, VarargVreg,
1172         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1173                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1174     MFI->addParam(PtrVT);
1175   }
1176 
1177   // Record the number and types of arguments and results.
1178   SmallVector<MVT, 4> Params;
1179   SmallVector<MVT, 4> Results;
1180   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1181                       MF.getFunction(), DAG.getTarget(), Params, Results);
1182   for (MVT VT : Results)
1183     MFI->addResult(VT);
1184   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1185   // the param logic here with ComputeSignatureVTs
1186   assert(MFI->getParams().size() == Params.size() &&
1187          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1188                     Params.begin()));
1189 
1190   return Chain;
1191 }
1192 
1193 void WebAssemblyTargetLowering::ReplaceNodeResults(
1194     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1195   switch (N->getOpcode()) {
1196   case ISD::SIGN_EXTEND_INREG:
1197     // Do not add any results, signifying that N should not be custom lowered
1198     // after all. This happens because simd128 turns on custom lowering for
1199     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1200     // illegal type.
1201     break;
1202   default:
1203     llvm_unreachable(
1204         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1205   }
1206 }
1207 
1208 //===----------------------------------------------------------------------===//
1209 //  Custom lowering hooks.
1210 //===----------------------------------------------------------------------===//
1211 
1212 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1213                                                   SelectionDAG &DAG) const {
1214   SDLoc DL(Op);
1215   switch (Op.getOpcode()) {
1216   default:
1217     llvm_unreachable("unimplemented operation lowering");
1218     return SDValue();
1219   case ISD::FrameIndex:
1220     return LowerFrameIndex(Op, DAG);
1221   case ISD::GlobalAddress:
1222     return LowerGlobalAddress(Op, DAG);
1223   case ISD::GlobalTLSAddress:
1224     return LowerGlobalTLSAddress(Op, DAG);
1225   case ISD::ExternalSymbol:
1226     return LowerExternalSymbol(Op, DAG);
1227   case ISD::JumpTable:
1228     return LowerJumpTable(Op, DAG);
1229   case ISD::BR_JT:
1230     return LowerBR_JT(Op, DAG);
1231   case ISD::VASTART:
1232     return LowerVASTART(Op, DAG);
1233   case ISD::BlockAddress:
1234   case ISD::BRIND:
1235     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1236     return SDValue();
1237   case ISD::RETURNADDR:
1238     return LowerRETURNADDR(Op, DAG);
1239   case ISD::FRAMEADDR:
1240     return LowerFRAMEADDR(Op, DAG);
1241   case ISD::CopyToReg:
1242     return LowerCopyToReg(Op, DAG);
1243   case ISD::EXTRACT_VECTOR_ELT:
1244   case ISD::INSERT_VECTOR_ELT:
1245     return LowerAccessVectorElement(Op, DAG);
1246   case ISD::INTRINSIC_VOID:
1247   case ISD::INTRINSIC_WO_CHAIN:
1248   case ISD::INTRINSIC_W_CHAIN:
1249     return LowerIntrinsic(Op, DAG);
1250   case ISD::SIGN_EXTEND_INREG:
1251     return LowerSIGN_EXTEND_INREG(Op, DAG);
1252   case ISD::BUILD_VECTOR:
1253     return LowerBUILD_VECTOR(Op, DAG);
1254   case ISD::VECTOR_SHUFFLE:
1255     return LowerVECTOR_SHUFFLE(Op, DAG);
1256   case ISD::SETCC:
1257     return LowerSETCC(Op, DAG);
1258   case ISD::SHL:
1259   case ISD::SRA:
1260   case ISD::SRL:
1261     return LowerShift(Op, DAG);
1262   case ISD::FP_TO_SINT_SAT:
1263   case ISD::FP_TO_UINT_SAT:
1264     return LowerFP_TO_INT_SAT(Op, DAG);
1265   case ISD::LOAD:
1266     return LowerLoad(Op, DAG);
1267   case ISD::STORE:
1268     return LowerStore(Op, DAG);
1269   }
1270 }
1271 
1272 static bool IsWebAssemblyGlobal(SDValue Op) {
1273   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1274     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1275 
1276   return false;
1277 }
1278 
1279 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
1280   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1281   if (!FI)
1282     return None;
1283 
1284   auto &MF = DAG.getMachineFunction();
1285   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1286 }
1287 
1288 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1289                                               SelectionDAG &DAG) const {
1290   SDLoc DL(Op);
1291   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1292   const SDValue &Value = SN->getValue();
1293   const SDValue &Base = SN->getBasePtr();
1294   const SDValue &Offset = SN->getOffset();
1295 
1296   if (IsWebAssemblyGlobal(Base)) {
1297     if (!Offset->isUndef())
1298       report_fatal_error("unexpected offset when storing to webassembly global",
1299                          false);
1300 
1301     SDVTList Tys = DAG.getVTList(MVT::Other);
1302     SDValue Ops[] = {SN->getChain(), Value, Base};
1303     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1304                                    SN->getMemoryVT(), SN->getMemOperand());
1305   }
1306 
1307   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1308     if (!Offset->isUndef())
1309       report_fatal_error("unexpected offset when storing to webassembly local",
1310                          false);
1311 
1312     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1313     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1314     SDValue Ops[] = {SN->getChain(), Idx, Value};
1315     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1316   }
1317 
1318   return Op;
1319 }
1320 
1321 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1322                                              SelectionDAG &DAG) const {
1323   SDLoc DL(Op);
1324   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1325   const SDValue &Base = LN->getBasePtr();
1326   const SDValue &Offset = LN->getOffset();
1327 
1328   if (IsWebAssemblyGlobal(Base)) {
1329     if (!Offset->isUndef())
1330       report_fatal_error(
1331           "unexpected offset when loading from webassembly global", false);
1332 
1333     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1334     SDValue Ops[] = {LN->getChain(), Base};
1335     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1336                                    LN->getMemoryVT(), LN->getMemOperand());
1337   }
1338 
1339   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1340     if (!Offset->isUndef())
1341       report_fatal_error(
1342           "unexpected offset when loading from webassembly local", false);
1343 
1344     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1345     EVT LocalVT = LN->getValueType(0);
1346     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1347                                    {LN->getChain(), Idx});
1348     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1349     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1350     return Result;
1351   }
1352 
1353   return Op;
1354 }
1355 
1356 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1357                                                   SelectionDAG &DAG) const {
1358   SDValue Src = Op.getOperand(2);
1359   if (isa<FrameIndexSDNode>(Src.getNode())) {
1360     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1361     // the FI to some LEA-like instruction, but since we don't have that, we
1362     // need to insert some kind of instruction that can take an FI operand and
1363     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1364     // local.copy between Op and its FI operand.
1365     SDValue Chain = Op.getOperand(0);
1366     SDLoc DL(Op);
1367     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1368     EVT VT = Src.getValueType();
1369     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1370                                                    : WebAssembly::COPY_I64,
1371                                     DL, VT, Src),
1372                  0);
1373     return Op.getNode()->getNumValues() == 1
1374                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1375                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1376                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1377                                                            : SDValue());
1378   }
1379   return SDValue();
1380 }
1381 
1382 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1383                                                    SelectionDAG &DAG) const {
1384   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1385   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1386 }
1387 
1388 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1389                                                    SelectionDAG &DAG) const {
1390   SDLoc DL(Op);
1391 
1392   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1393     fail(DL, DAG,
1394          "Non-Emscripten WebAssembly hasn't implemented "
1395          "__builtin_return_address");
1396     return SDValue();
1397   }
1398 
1399   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1400     return SDValue();
1401 
1402   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1403   MakeLibCallOptions CallOptions;
1404   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1405                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1406       .first;
1407 }
1408 
1409 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1410                                                   SelectionDAG &DAG) const {
1411   // Non-zero depths are not supported by WebAssembly currently. Use the
1412   // legalizer's default expansion, which is to return 0 (what this function is
1413   // documented to do).
1414   if (Op.getConstantOperandVal(0) > 0)
1415     return SDValue();
1416 
1417   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1418   EVT VT = Op.getValueType();
1419   Register FP =
1420       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1421   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1422 }
1423 
1424 SDValue
1425 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1426                                                  SelectionDAG &DAG) const {
1427   SDLoc DL(Op);
1428   const auto *GA = cast<GlobalAddressSDNode>(Op);
1429   MVT PtrVT = getPointerTy(DAG.getDataLayout());
1430 
1431   MachineFunction &MF = DAG.getMachineFunction();
1432   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1433     report_fatal_error("cannot use thread-local storage without bulk memory",
1434                        false);
1435 
1436   const GlobalValue *GV = GA->getGlobal();
1437 
1438   // Currently Emscripten does not support dynamic linking with threads.
1439   // Therefore, if we have thread-local storage, only the local-exec model
1440   // is possible.
1441   // TODO: remove this and implement proper TLS models once Emscripten
1442   // supports dynamic linking with threads.
1443   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1444       !Subtarget->getTargetTriple().isOSEmscripten()) {
1445     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1446                        "non-Emscripten OSes: variable " +
1447                            GV->getName(),
1448                        false);
1449   }
1450 
1451   auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1452                                      : WebAssembly::GLOBAL_GET_I32;
1453   const char *BaseName = MF.createExternalSymbolName("__tls_base");
1454 
1455   SDValue BaseAddr(
1456       DAG.getMachineNode(GlobalGet, DL, PtrVT,
1457                          DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1458       0);
1459 
1460   SDValue TLSOffset = DAG.getTargetGlobalAddress(
1461       GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1462   SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset);
1463 
1464   return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1465 }
1466 
1467 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1468                                                       SelectionDAG &DAG) const {
1469   SDLoc DL(Op);
1470   const auto *GA = cast<GlobalAddressSDNode>(Op);
1471   EVT VT = Op.getValueType();
1472   assert(GA->getTargetFlags() == 0 &&
1473          "Unexpected target flags on generic GlobalAddressSDNode");
1474   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1475     fail(DL, DAG, "Invalid address space for WebAssembly target");
1476 
1477   unsigned OperandFlags = 0;
1478   if (isPositionIndependent()) {
1479     const GlobalValue *GV = GA->getGlobal();
1480     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1481       MachineFunction &MF = DAG.getMachineFunction();
1482       MVT PtrVT = getPointerTy(MF.getDataLayout());
1483       const char *BaseName;
1484       if (GV->getValueType()->isFunctionTy()) {
1485         BaseName = MF.createExternalSymbolName("__table_base");
1486         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1487       }
1488       else {
1489         BaseName = MF.createExternalSymbolName("__memory_base");
1490         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1491       }
1492       SDValue BaseAddr =
1493           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1494                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1495 
1496       SDValue SymAddr = DAG.getNode(
1497           WebAssemblyISD::WrapperPIC, DL, VT,
1498           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1499                                      OperandFlags));
1500 
1501       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1502     } else {
1503       OperandFlags = WebAssemblyII::MO_GOT;
1504     }
1505   }
1506 
1507   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1508                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1509                                                 GA->getOffset(), OperandFlags));
1510 }
1511 
1512 SDValue
1513 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1514                                                SelectionDAG &DAG) const {
1515   SDLoc DL(Op);
1516   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1517   EVT VT = Op.getValueType();
1518   assert(ES->getTargetFlags() == 0 &&
1519          "Unexpected target flags on generic ExternalSymbolSDNode");
1520   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1521                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1522 }
1523 
1524 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1525                                                   SelectionDAG &DAG) const {
1526   // There's no need for a Wrapper node because we always incorporate a jump
1527   // table operand into a BR_TABLE instruction, rather than ever
1528   // materializing it in a register.
1529   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1530   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1531                                 JT->getTargetFlags());
1532 }
1533 
1534 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1535                                               SelectionDAG &DAG) const {
1536   SDLoc DL(Op);
1537   SDValue Chain = Op.getOperand(0);
1538   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1539   SDValue Index = Op.getOperand(2);
1540   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1541 
1542   SmallVector<SDValue, 8> Ops;
1543   Ops.push_back(Chain);
1544   Ops.push_back(Index);
1545 
1546   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1547   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1548 
1549   // Add an operand for each case.
1550   for (auto MBB : MBBs)
1551     Ops.push_back(DAG.getBasicBlock(MBB));
1552 
1553   // Add the first MBB as a dummy default target for now. This will be replaced
1554   // with the proper default target (and the preceding range check eliminated)
1555   // if possible by WebAssemblyFixBrTableDefaults.
1556   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1557   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1558 }
1559 
1560 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1561                                                 SelectionDAG &DAG) const {
1562   SDLoc DL(Op);
1563   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1564 
1565   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1566   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1567 
1568   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1569                                     MFI->getVarargBufferVreg(), PtrVT);
1570   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1571                       MachinePointerInfo(SV));
1572 }
1573 
1574 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex,
1575                                       SelectionDAG &DAG) {
1576   // We only support C++ exceptions for now
1577   int Tag =
1578       cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue();
1579   if (Tag != WebAssembly::CPP_EXCEPTION)
1580     llvm_unreachable("Invalid tag: We only support C++ exceptions for now");
1581   auto &MF = DAG.getMachineFunction();
1582   const auto &TLI = DAG.getTargetLoweringInfo();
1583   MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1584   const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1585   return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT,
1586                      DAG.getTargetExternalSymbol(SymName, PtrVT));
1587 }
1588 
1589 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1590                                                   SelectionDAG &DAG) const {
1591   MachineFunction &MF = DAG.getMachineFunction();
1592   unsigned IntNo;
1593   switch (Op.getOpcode()) {
1594   case ISD::INTRINSIC_VOID:
1595   case ISD::INTRINSIC_W_CHAIN:
1596     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1597     break;
1598   case ISD::INTRINSIC_WO_CHAIN:
1599     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1600     break;
1601   default:
1602     llvm_unreachable("Invalid intrinsic");
1603   }
1604   SDLoc DL(Op);
1605 
1606   switch (IntNo) {
1607   default:
1608     return SDValue(); // Don't custom lower most intrinsics.
1609 
1610   case Intrinsic::wasm_lsda: {
1611     EVT VT = Op.getValueType();
1612     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1613     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1614     auto &Context = MF.getMMI().getContext();
1615     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1616                                             Twine(MF.getFunctionNumber()));
1617     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1618                        DAG.getMCSymbol(S, PtrVT));
1619   }
1620 
1621   case Intrinsic::wasm_throw: {
1622     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1623     return DAG.getNode(WebAssemblyISD::THROW, DL,
1624                        MVT::Other, // outchain type
1625                        {
1626                            Op.getOperand(0), // inchain
1627                            SymNode,          // exception symbol
1628                            Op.getOperand(3)  // thrown value
1629                        });
1630   }
1631 
1632   case Intrinsic::wasm_catch: {
1633     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1634     return DAG.getNode(WebAssemblyISD::CATCH, DL,
1635                        {
1636                            MVT::i32,  // outchain type
1637                            MVT::Other // return value
1638                        },
1639                        {
1640                            Op.getOperand(0), // inchain
1641                            SymNode           // exception symbol
1642                        });
1643   }
1644 
1645   case Intrinsic::wasm_shuffle: {
1646     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1647     SDValue Ops[18];
1648     size_t OpIdx = 0;
1649     Ops[OpIdx++] = Op.getOperand(1);
1650     Ops[OpIdx++] = Op.getOperand(2);
1651     while (OpIdx < 18) {
1652       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1653       if (MaskIdx.isUndef() ||
1654           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1655         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1656       } else {
1657         Ops[OpIdx++] = MaskIdx;
1658       }
1659     }
1660     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1661   }
1662   }
1663 }
1664 
1665 SDValue
1666 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1667                                                   SelectionDAG &DAG) const {
1668   SDLoc DL(Op);
1669   // If sign extension operations are disabled, allow sext_inreg only if operand
1670   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1671   // extension operations, but allowing sext_inreg in this context lets us have
1672   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1673   // everywhere would be simpler in this file, but would necessitate large and
1674   // brittle patterns to undo the expansion and select extract_lane_s
1675   // instructions.
1676   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1677   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1678     return SDValue();
1679 
1680   const SDValue &Extract = Op.getOperand(0);
1681   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1682   if (VecT.getVectorElementType().getSizeInBits() > 32)
1683     return SDValue();
1684   MVT ExtractedLaneT =
1685       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1686   MVT ExtractedVecT =
1687       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1688   if (ExtractedVecT == VecT)
1689     return Op;
1690 
1691   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1692   const SDNode *Index = Extract.getOperand(1).getNode();
1693   if (!isa<ConstantSDNode>(Index))
1694     return SDValue();
1695   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1696   unsigned Scale =
1697       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1698   assert(Scale > 1);
1699   SDValue NewIndex =
1700       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1701   SDValue NewExtract = DAG.getNode(
1702       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1703       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1704   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1705                      Op.getOperand(1));
1706 }
1707 
1708 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1709                                                      SelectionDAG &DAG) const {
1710   SDLoc DL(Op);
1711   const EVT VecT = Op.getValueType();
1712   const EVT LaneT = Op.getOperand(0).getValueType();
1713   const size_t Lanes = Op.getNumOperands();
1714   bool CanSwizzle = VecT == MVT::v16i8;
1715 
1716   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1717   // possible number of lanes at once followed by a sequence of replace_lane
1718   // instructions to individually initialize any remaining lanes.
1719 
1720   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1721   // swizzled lanes should be given greater weight.
1722 
1723   // TODO: Investigate looping rather than always extracting/replacing specific
1724   // lanes to fill gaps.
1725 
1726   auto IsConstant = [](const SDValue &V) {
1727     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1728   };
1729 
1730   // Returns the source vector and index vector pair if they exist. Checks for:
1731   //   (extract_vector_elt
1732   //     $src,
1733   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1734   //   )
1735   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1736     auto Bail = std::make_pair(SDValue(), SDValue());
1737     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1738       return Bail;
1739     const SDValue &SwizzleSrc = Lane->getOperand(0);
1740     const SDValue &IndexExt = Lane->getOperand(1);
1741     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1742       return Bail;
1743     const SDValue &Index = IndexExt->getOperand(0);
1744     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1745       return Bail;
1746     const SDValue &SwizzleIndices = Index->getOperand(0);
1747     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1748         SwizzleIndices.getValueType() != MVT::v16i8 ||
1749         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1750         Index->getConstantOperandVal(1) != I)
1751       return Bail;
1752     return std::make_pair(SwizzleSrc, SwizzleIndices);
1753   };
1754 
1755   // If the lane is extracted from another vector at a constant index, return
1756   // that vector. The source vector must not have more lanes than the dest
1757   // because the shufflevector indices are in terms of the destination lanes and
1758   // would not be able to address the smaller individual source lanes.
1759   auto GetShuffleSrc = [&](const SDValue &Lane) {
1760     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1761       return SDValue();
1762     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
1763       return SDValue();
1764     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
1765         VecT.getVectorNumElements())
1766       return SDValue();
1767     return Lane->getOperand(0);
1768   };
1769 
1770   using ValueEntry = std::pair<SDValue, size_t>;
1771   SmallVector<ValueEntry, 16> SplatValueCounts;
1772 
1773   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1774   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1775 
1776   using ShuffleEntry = std::pair<SDValue, size_t>;
1777   SmallVector<ShuffleEntry, 16> ShuffleCounts;
1778 
1779   auto AddCount = [](auto &Counts, const auto &Val) {
1780     auto CountIt =
1781         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
1782     if (CountIt == Counts.end()) {
1783       Counts.emplace_back(Val, 1);
1784     } else {
1785       CountIt->second++;
1786     }
1787   };
1788 
1789   auto GetMostCommon = [](auto &Counts) {
1790     auto CommonIt =
1791         std::max_element(Counts.begin(), Counts.end(),
1792                          [](auto A, auto B) { return A.second < B.second; });
1793     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1794     return *CommonIt;
1795   };
1796 
1797   size_t NumConstantLanes = 0;
1798 
1799   // Count eligible lanes for each type of vector creation op
1800   for (size_t I = 0; I < Lanes; ++I) {
1801     const SDValue &Lane = Op->getOperand(I);
1802     if (Lane.isUndef())
1803       continue;
1804 
1805     AddCount(SplatValueCounts, Lane);
1806 
1807     if (IsConstant(Lane))
1808       NumConstantLanes++;
1809     if (auto ShuffleSrc = GetShuffleSrc(Lane))
1810       AddCount(ShuffleCounts, ShuffleSrc);
1811     if (CanSwizzle) {
1812       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1813       if (SwizzleSrcs.first)
1814         AddCount(SwizzleCounts, SwizzleSrcs);
1815     }
1816   }
1817 
1818   SDValue SplatValue;
1819   size_t NumSplatLanes;
1820   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1821 
1822   SDValue SwizzleSrc;
1823   SDValue SwizzleIndices;
1824   size_t NumSwizzleLanes = 0;
1825   if (SwizzleCounts.size())
1826     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1827                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1828 
1829   // Shuffles can draw from up to two vectors, so find the two most common
1830   // sources.
1831   SDValue ShuffleSrc1, ShuffleSrc2;
1832   size_t NumShuffleLanes = 0;
1833   if (ShuffleCounts.size()) {
1834     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
1835     ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(),
1836                                        ShuffleCounts.end(),
1837                                        [&](const auto &Pair) {
1838                                          return Pair.first == ShuffleSrc1;
1839                                        }),
1840                         ShuffleCounts.end());
1841   }
1842   if (ShuffleCounts.size()) {
1843     size_t AdditionalShuffleLanes;
1844     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
1845         GetMostCommon(ShuffleCounts);
1846     NumShuffleLanes += AdditionalShuffleLanes;
1847   }
1848 
1849   // Predicate returning true if the lane is properly initialized by the
1850   // original instruction
1851   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1852   SDValue Result;
1853   // Prefer swizzles over shuffles over vector consts over splats
1854   if (NumSwizzleLanes >= NumShuffleLanes &&
1855       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
1856     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1857                          SwizzleIndices);
1858     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1859     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1860       return Swizzled == GetSwizzleSrcs(I, Lane);
1861     };
1862   } else if (NumShuffleLanes >= NumConstantLanes &&
1863              NumShuffleLanes >= NumSplatLanes) {
1864     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
1865     size_t DestLaneCount = VecT.getVectorNumElements();
1866     size_t Scale1 = 1;
1867     size_t Scale2 = 1;
1868     SDValue Src1 = ShuffleSrc1;
1869     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
1870     if (Src1.getValueType() != VecT) {
1871       size_t LaneSize =
1872           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1873       assert(LaneSize > DestLaneSize);
1874       Scale1 = LaneSize / DestLaneSize;
1875       Src1 = DAG.getBitcast(VecT, Src1);
1876     }
1877     if (Src2.getValueType() != VecT) {
1878       size_t LaneSize =
1879           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1880       assert(LaneSize > DestLaneSize);
1881       Scale2 = LaneSize / DestLaneSize;
1882       Src2 = DAG.getBitcast(VecT, Src2);
1883     }
1884 
1885     int Mask[16];
1886     assert(DestLaneCount <= 16);
1887     for (size_t I = 0; I < DestLaneCount; ++I) {
1888       const SDValue &Lane = Op->getOperand(I);
1889       SDValue Src = GetShuffleSrc(Lane);
1890       if (Src == ShuffleSrc1) {
1891         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
1892       } else if (Src && Src == ShuffleSrc2) {
1893         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
1894       } else {
1895         Mask[I] = -1;
1896       }
1897     }
1898     ArrayRef<int> MaskRef(Mask, DestLaneCount);
1899     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
1900     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
1901       auto Src = GetShuffleSrc(Lane);
1902       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
1903     };
1904   } else if (NumConstantLanes >= NumSplatLanes) {
1905     SmallVector<SDValue, 16> ConstLanes;
1906     for (const SDValue &Lane : Op->op_values()) {
1907       if (IsConstant(Lane)) {
1908         ConstLanes.push_back(Lane);
1909       } else if (LaneT.isFloatingPoint()) {
1910         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1911       } else {
1912         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1913       }
1914     }
1915     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1916     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1917       return IsConstant(Lane);
1918     };
1919   } else {
1920     // Use a splat, but possibly a load_splat
1921     LoadSDNode *SplattedLoad;
1922     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1923         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1924       Result = DAG.getMemIntrinsicNode(
1925           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1926           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1927            SplattedLoad->getOffset()},
1928           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1929     } else {
1930       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1931     }
1932     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
1933       return Lane == SplatValue;
1934     };
1935   }
1936 
1937   assert(Result);
1938   assert(IsLaneConstructed);
1939 
1940   // Add replace_lane instructions for any unhandled values
1941   for (size_t I = 0; I < Lanes; ++I) {
1942     const SDValue &Lane = Op->getOperand(I);
1943     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1944       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1945                            DAG.getConstant(I, DL, MVT::i32));
1946   }
1947 
1948   return Result;
1949 }
1950 
1951 SDValue
1952 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1953                                                SelectionDAG &DAG) const {
1954   SDLoc DL(Op);
1955   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1956   MVT VecType = Op.getOperand(0).getSimpleValueType();
1957   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1958   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1959 
1960   // Space for two vector args and sixteen mask indices
1961   SDValue Ops[18];
1962   size_t OpIdx = 0;
1963   Ops[OpIdx++] = Op.getOperand(0);
1964   Ops[OpIdx++] = Op.getOperand(1);
1965 
1966   // Expand mask indices to byte indices and materialize them as operands
1967   for (int M : Mask) {
1968     for (size_t J = 0; J < LaneBytes; ++J) {
1969       // Lower undefs (represented by -1 in mask) to zero
1970       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1971       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1972     }
1973   }
1974 
1975   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1976 }
1977 
1978 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
1979                                               SelectionDAG &DAG) const {
1980   SDLoc DL(Op);
1981   // The legalizer does not know how to expand the unsupported comparison modes
1982   // of i64x2 vectors, so we manually unroll them here.
1983   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
1984   SmallVector<SDValue, 2> LHS, RHS;
1985   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
1986   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
1987   const SDValue &CC = Op->getOperand(2);
1988   auto MakeLane = [&](unsigned I) {
1989     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
1990                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
1991                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
1992   };
1993   return DAG.getBuildVector(Op->getValueType(0), DL,
1994                             {MakeLane(0), MakeLane(1)});
1995 }
1996 
1997 SDValue
1998 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1999                                                     SelectionDAG &DAG) const {
2000   // Allow constant lane indices, expand variable lane indices
2001   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2002   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
2003     return Op;
2004   else
2005     // Perform default expansion
2006     return SDValue();
2007 }
2008 
2009 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2010   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2011   // 32-bit and 64-bit unrolled shifts will have proper semantics
2012   if (LaneT.bitsGE(MVT::i32))
2013     return DAG.UnrollVectorOp(Op.getNode());
2014   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2015   SDLoc DL(Op);
2016   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2017   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2018   unsigned ShiftOpcode = Op.getOpcode();
2019   SmallVector<SDValue, 16> ShiftedElements;
2020   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2021   SmallVector<SDValue, 16> ShiftElements;
2022   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2023   SmallVector<SDValue, 16> UnrolledOps;
2024   for (size_t i = 0; i < NumLanes; ++i) {
2025     SDValue MaskedShiftValue =
2026         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2027     SDValue ShiftedValue = ShiftedElements[i];
2028     if (ShiftOpcode == ISD::SRA)
2029       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2030                                  ShiftedValue, DAG.getValueType(LaneT));
2031     UnrolledOps.push_back(
2032         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2033   }
2034   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2035 }
2036 
2037 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2038                                               SelectionDAG &DAG) const {
2039   SDLoc DL(Op);
2040 
2041   // Only manually lower vector shifts
2042   assert(Op.getSimpleValueType().isVector());
2043 
2044   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2045   if (!ShiftVal)
2046     return unrollVectorShift(Op, DAG);
2047 
2048   // Use anyext because none of the high bits can affect the shift
2049   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2050 
2051   unsigned Opcode;
2052   switch (Op.getOpcode()) {
2053   case ISD::SHL:
2054     Opcode = WebAssemblyISD::VEC_SHL;
2055     break;
2056   case ISD::SRA:
2057     Opcode = WebAssemblyISD::VEC_SHR_S;
2058     break;
2059   case ISD::SRL:
2060     Opcode = WebAssemblyISD::VEC_SHR_U;
2061     break;
2062   default:
2063     llvm_unreachable("unexpected opcode");
2064   }
2065 
2066   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2067 }
2068 
2069 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2070                                                       SelectionDAG &DAG) const {
2071   SDLoc DL(Op);
2072   EVT ResT = Op.getValueType();
2073   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2074 
2075   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2076       (SatVT == MVT::i32 || SatVT == MVT::i64))
2077     return Op;
2078 
2079   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2080     return Op;
2081 
2082   return SDValue();
2083 }
2084 
2085 //===----------------------------------------------------------------------===//
2086 //   Custom DAG combine hooks
2087 //===----------------------------------------------------------------------===//
2088 static SDValue
2089 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2090   auto &DAG = DCI.DAG;
2091   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2092 
2093   // Hoist vector bitcasts that don't change the number of lanes out of unary
2094   // shuffles, where they are less likely to get in the way of other combines.
2095   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2096   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2097   SDValue Bitcast = N->getOperand(0);
2098   if (Bitcast.getOpcode() != ISD::BITCAST)
2099     return SDValue();
2100   if (!N->getOperand(1).isUndef())
2101     return SDValue();
2102   SDValue CastOp = Bitcast.getOperand(0);
2103   MVT SrcType = CastOp.getSimpleValueType();
2104   MVT DstType = Bitcast.getSimpleValueType();
2105   if (!SrcType.is128BitVector() ||
2106       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2107     return SDValue();
2108   SDValue NewShuffle = DAG.getVectorShuffle(
2109       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2110   return DAG.getBitcast(DstType, NewShuffle);
2111 }
2112 
2113 static SDValue
2114 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2115   auto &DAG = DCI.DAG;
2116   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2117          N->getOpcode() == ISD::ZERO_EXTEND);
2118 
2119   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2120   // possible before the extract_subvector can be expanded.
2121   auto Extract = N->getOperand(0);
2122   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2123     return SDValue();
2124   auto Source = Extract.getOperand(0);
2125   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2126   if (IndexNode == nullptr)
2127     return SDValue();
2128   auto Index = IndexNode->getZExtValue();
2129 
2130   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2131   // extracted subvector is the low or high half of its source.
2132   EVT ResVT = N->getValueType(0);
2133   if (ResVT == MVT::v8i16) {
2134     if (Extract.getValueType() != MVT::v8i8 ||
2135         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2136       return SDValue();
2137   } else if (ResVT == MVT::v4i32) {
2138     if (Extract.getValueType() != MVT::v4i16 ||
2139         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2140       return SDValue();
2141   } else if (ResVT == MVT::v2i64) {
2142     if (Extract.getValueType() != MVT::v2i32 ||
2143         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2144       return SDValue();
2145   } else {
2146     return SDValue();
2147   }
2148 
2149   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2150   bool IsLow = Index == 0;
2151 
2152   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2153                                 : WebAssemblyISD::EXTEND_HIGH_S)
2154                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2155                                 : WebAssemblyISD::EXTEND_HIGH_U);
2156 
2157   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2158 }
2159 
2160 static SDValue
2161 performVectorConvertLowCombine(SDNode *N,
2162                                TargetLowering::DAGCombinerInfo &DCI) {
2163   auto &DAG = DCI.DAG;
2164 
2165   EVT ResVT = N->getValueType(0);
2166   if (ResVT != MVT::v2f64)
2167     return SDValue();
2168 
2169   if (N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) {
2170     // Combine this:
2171     //
2172     //   (v2f64 ({s,u}int_to_fp
2173     //     (v2i32 (extract_subvector (v4i32 $x), 0))))
2174     //
2175     // into (f64x2.convert_low_i32x4_{s,u} $x).
2176     auto Extract = N->getOperand(0);
2177     if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2178       return SDValue();
2179     if (Extract.getValueType() != MVT::v2i32)
2180       return SDValue();
2181     auto Source = Extract.getOperand(0);
2182     if (Source.getValueType() != MVT::v4i32)
2183       return SDValue();
2184     auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2185     if (IndexNode == nullptr || IndexNode->getZExtValue() != 0)
2186       return SDValue();
2187 
2188     unsigned Op = N->getOpcode() == ISD::SINT_TO_FP
2189                       ? WebAssemblyISD::CONVERT_LOW_S
2190                       : WebAssemblyISD::CONVERT_LOW_U;
2191 
2192     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2193 
2194   } else if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
2195     // Combine this:
2196     //
2197     //   (v2f64 (extract_subvector
2198     //     (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0))
2199     //
2200     // into (f64x2.convert_low_i32x4_{s,u} $x).
2201     auto IntToFP = N->getOperand(0);
2202     if (IntToFP.getOpcode() != ISD::SINT_TO_FP &&
2203         IntToFP.getOpcode() != ISD::UINT_TO_FP)
2204       return SDValue();
2205     if (IntToFP.getValueType() != MVT::v4f64)
2206       return SDValue();
2207     auto Source = IntToFP.getOperand(0);
2208     if (Source.getValueType() != MVT::v4i32)
2209       return SDValue();
2210     auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
2211     if (IndexNode == nullptr || IndexNode->getZExtValue() != 0)
2212       return SDValue();
2213 
2214     unsigned Op = IntToFP->getOpcode() == ISD::SINT_TO_FP
2215                       ? WebAssemblyISD::CONVERT_LOW_S
2216                       : WebAssemblyISD::CONVERT_LOW_U;
2217 
2218     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2219 
2220   } else {
2221     llvm_unreachable("unexpected opcode");
2222   }
2223 }
2224 
2225 static SDValue
2226 performVectorTruncSatLowCombine(SDNode *N,
2227                                 TargetLowering::DAGCombinerInfo &DCI) {
2228   auto &DAG = DCI.DAG;
2229   assert(N->getOpcode() == ISD::CONCAT_VECTORS);
2230 
2231   // Combine this:
2232   //
2233   //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2234   //
2235   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2236   EVT ResVT = N->getValueType(0);
2237   if (ResVT != MVT::v4i32)
2238     return SDValue();
2239 
2240   auto FPToInt = N->getOperand(0);
2241   auto FPToIntOp = FPToInt.getOpcode();
2242   if (FPToIntOp != ISD::FP_TO_SINT_SAT && FPToIntOp != ISD::FP_TO_UINT_SAT)
2243     return SDValue();
2244   if (cast<VTSDNode>(FPToInt.getOperand(1))->getVT() != MVT::i32)
2245     return SDValue();
2246 
2247   auto Source = FPToInt.getOperand(0);
2248   if (Source.getValueType() != MVT::v2f64)
2249     return SDValue();
2250 
2251   auto *Splat = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
2252   APInt SplatValue, SplatUndef;
2253   unsigned SplatBitSize;
2254   bool HasAnyUndefs;
2255   if (!Splat || !Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2256                                         HasAnyUndefs))
2257     return SDValue();
2258   if (SplatValue != 0)
2259     return SDValue();
2260 
2261   unsigned Op = FPToIntOp == ISD::FP_TO_SINT_SAT
2262                     ? WebAssemblyISD::TRUNC_SAT_ZERO_S
2263                     : WebAssemblyISD::TRUNC_SAT_ZERO_U;
2264 
2265   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2266 }
2267 
2268 SDValue
2269 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2270                                              DAGCombinerInfo &DCI) const {
2271   switch (N->getOpcode()) {
2272   default:
2273     return SDValue();
2274   case ISD::VECTOR_SHUFFLE:
2275     return performVECTOR_SHUFFLECombine(N, DCI);
2276   case ISD::SIGN_EXTEND:
2277   case ISD::ZERO_EXTEND:
2278     return performVectorExtendCombine(N, DCI);
2279   case ISD::SINT_TO_FP:
2280   case ISD::UINT_TO_FP:
2281   case ISD::EXTRACT_SUBVECTOR:
2282     return performVectorConvertLowCombine(N, DCI);
2283   case ISD::CONCAT_VECTORS:
2284     return performVectorTruncSatLowCombine(N, DCI);
2285   }
2286 }
2287