1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyUtilities.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/SelectionDAGNodes.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 // Transform loads and stores to pointers in address space 1 to loads and 73 // stores to WebAssembly global variables, outside linear memory. 74 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 75 setOperationAction(ISD::LOAD, T, Custom); 76 setOperationAction(ISD::STORE, T, Custom); 77 } 78 if (Subtarget->hasSIMD128()) { 79 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 80 MVT::v2f64}) { 81 setOperationAction(ISD::LOAD, T, Custom); 82 setOperationAction(ISD::STORE, T, Custom); 83 } 84 } 85 86 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 87 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 88 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 89 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 90 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 91 setOperationAction(ISD::BRIND, MVT::Other, Custom); 92 93 // Take the default expansion for va_arg, va_copy, and va_end. There is no 94 // default action for va_start, so we do that custom. 95 setOperationAction(ISD::VASTART, MVT::Other, Custom); 96 setOperationAction(ISD::VAARG, MVT::Other, Expand); 97 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 98 setOperationAction(ISD::VAEND, MVT::Other, Expand); 99 100 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 101 // Don't expand the floating-point types to constant pools. 102 setOperationAction(ISD::ConstantFP, T, Legal); 103 // Expand floating-point comparisons. 104 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 105 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 106 setCondCodeAction(CC, T, Expand); 107 // Expand floating-point library function operators. 108 for (auto Op : 109 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 110 setOperationAction(Op, T, Expand); 111 // Note supported floating-point library function operators that otherwise 112 // default to expand. 113 for (auto Op : 114 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 115 setOperationAction(Op, T, Legal); 116 // Support minimum and maximum, which otherwise default to expand. 117 setOperationAction(ISD::FMINIMUM, T, Legal); 118 setOperationAction(ISD::FMAXIMUM, T, Legal); 119 // WebAssembly currently has no builtin f16 support. 120 setOperationAction(ISD::FP16_TO_FP, T, Expand); 121 setOperationAction(ISD::FP_TO_FP16, T, Expand); 122 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 123 setTruncStoreAction(T, MVT::f16, Expand); 124 } 125 126 // Expand unavailable integer operations. 127 for (auto Op : 128 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 129 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 130 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 131 for (auto T : {MVT::i32, MVT::i64}) 132 setOperationAction(Op, T, Expand); 133 if (Subtarget->hasSIMD128()) 134 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 135 setOperationAction(Op, T, Expand); 136 } 137 138 if (Subtarget->hasNontrappingFPToInt()) 139 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 140 for (auto T : {MVT::i32, MVT::i64}) 141 setOperationAction(Op, T, Custom); 142 143 // SIMD-specific configuration 144 if (Subtarget->hasSIMD128()) { 145 // Hoist bitcasts out of shuffles 146 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 147 148 // Combine extends of extract_subvectors into widening ops 149 setTargetDAGCombine(ISD::SIGN_EXTEND); 150 setTargetDAGCombine(ISD::ZERO_EXTEND); 151 152 // Combine int_to_fp of extract_vectors and vice versa into conversions ops 153 setTargetDAGCombine(ISD::SINT_TO_FP); 154 setTargetDAGCombine(ISD::UINT_TO_FP); 155 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 156 157 // Combine concat of {s,u}int_to_fp_sat to i32x4.trunc_sat_f64x2_zero_{s,u} 158 setTargetDAGCombine(ISD::CONCAT_VECTORS); 159 160 // Support saturating add for i8x16 and i16x8 161 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 162 for (auto T : {MVT::v16i8, MVT::v8i16}) 163 setOperationAction(Op, T, Legal); 164 165 // Support integer abs 166 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 167 setOperationAction(ISD::ABS, T, Legal); 168 169 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 170 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 171 MVT::v2f64}) 172 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 173 174 // We have custom shuffle lowering to expose the shuffle mask 175 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 176 MVT::v2f64}) 177 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 178 179 // Custom lowering since wasm shifts must have a scalar shift amount 180 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 181 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 182 setOperationAction(Op, T, Custom); 183 184 // Custom lower lane accesses to expand out variable indices 185 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 186 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 187 MVT::v2f64}) 188 setOperationAction(Op, T, Custom); 189 190 // There is no i8x16.mul instruction 191 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 192 193 // There is no vector conditional select instruction 194 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 195 MVT::v2f64}) 196 setOperationAction(ISD::SELECT_CC, T, Expand); 197 198 // Expand integer operations supported for scalars but not SIMD 199 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 200 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 201 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 202 setOperationAction(Op, T, Expand); 203 204 // But we do have integer min and max operations 205 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 206 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 207 setOperationAction(Op, T, Legal); 208 209 // Expand float operations supported for scalars but not SIMD 210 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 211 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 212 for (auto T : {MVT::v4f32, MVT::v2f64}) 213 setOperationAction(Op, T, Expand); 214 215 // Unsigned comparison operations are unavailable for i64x2 vectors. 216 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 217 setCondCodeAction(CC, MVT::v2i64, Custom); 218 219 // 64x2 conversions are not in the spec 220 for (auto Op : 221 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 222 for (auto T : {MVT::v2i64, MVT::v2f64}) 223 setOperationAction(Op, T, Expand); 224 225 // But saturating fp_to_int converstions are 226 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 227 setOperationAction(Op, MVT::v4i32, Custom); 228 } 229 230 // As a special case, these operators use the type to mean the type to 231 // sign-extend from. 232 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 233 if (!Subtarget->hasSignExt()) { 234 // Sign extends are legal only when extending a vector extract 235 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 236 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 237 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 238 } 239 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 240 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 241 242 // Dynamic stack allocation: use the default expansion. 243 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 244 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 245 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 246 247 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 248 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 249 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 250 251 // Expand these forms; we pattern-match the forms that we can handle in isel. 252 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 253 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 254 setOperationAction(Op, T, Expand); 255 256 // We have custom switch handling. 257 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 258 259 // WebAssembly doesn't have: 260 // - Floating-point extending loads. 261 // - Floating-point truncating stores. 262 // - i1 extending loads. 263 // - truncating SIMD stores and most extending loads 264 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 265 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 266 for (auto T : MVT::integer_valuetypes()) 267 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 268 setLoadExtAction(Ext, T, MVT::i1, Promote); 269 if (Subtarget->hasSIMD128()) { 270 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 271 MVT::v2f64}) { 272 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 273 if (MVT(T) != MemT) { 274 setTruncStoreAction(T, MemT, Expand); 275 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 276 setLoadExtAction(Ext, T, MemT, Expand); 277 } 278 } 279 } 280 // But some vector extending loads are legal 281 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 282 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 283 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 284 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 285 } 286 // And some truncating stores are legal as well 287 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 288 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 289 } 290 291 // Don't do anything clever with build_pairs 292 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 293 294 // Trap lowers to wasm unreachable 295 setOperationAction(ISD::TRAP, MVT::Other, Legal); 296 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 297 298 // Exception handling intrinsics 299 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 300 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 301 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 302 303 setMaxAtomicSizeInBitsSupported(64); 304 305 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 306 // consistent with the f64 and f128 names. 307 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 308 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 309 310 // Define the emscripten name for return address helper. 311 // TODO: when implementing other Wasm backends, make this generic or only do 312 // this on emscripten depending on what they end up doing. 313 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 314 315 // Always convert switches to br_tables unless there is only one case, which 316 // is equivalent to a simple branch. This reduces code size for wasm, and we 317 // defer possible jump table optimizations to the VM. 318 setMinimumJumpTableEntries(2); 319 } 320 321 TargetLowering::AtomicExpansionKind 322 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 323 // We have wasm instructions for these 324 switch (AI->getOperation()) { 325 case AtomicRMWInst::Add: 326 case AtomicRMWInst::Sub: 327 case AtomicRMWInst::And: 328 case AtomicRMWInst::Or: 329 case AtomicRMWInst::Xor: 330 case AtomicRMWInst::Xchg: 331 return AtomicExpansionKind::None; 332 default: 333 break; 334 } 335 return AtomicExpansionKind::CmpXChg; 336 } 337 338 FastISel *WebAssemblyTargetLowering::createFastISel( 339 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 340 return WebAssembly::createFastISel(FuncInfo, LibInfo); 341 } 342 343 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 344 EVT VT) const { 345 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 346 if (BitWidth > 1 && BitWidth < 8) 347 BitWidth = 8; 348 349 if (BitWidth > 64) { 350 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 351 // the count to be an i32. 352 BitWidth = 32; 353 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 354 "32-bit shift counts ought to be enough for anyone"); 355 } 356 357 MVT Result = MVT::getIntegerVT(BitWidth); 358 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 359 "Unable to represent scalar shift amount type"); 360 return Result; 361 } 362 363 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 364 // undefined result on invalid/overflow, to the WebAssembly opcode, which 365 // traps on invalid/overflow. 366 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 367 MachineBasicBlock *BB, 368 const TargetInstrInfo &TII, 369 bool IsUnsigned, bool Int64, 370 bool Float64, unsigned LoweredOpcode) { 371 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 372 373 Register OutReg = MI.getOperand(0).getReg(); 374 Register InReg = MI.getOperand(1).getReg(); 375 376 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 377 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 378 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 379 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 380 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 381 unsigned Eqz = WebAssembly::EQZ_I32; 382 unsigned And = WebAssembly::AND_I32; 383 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 384 int64_t Substitute = IsUnsigned ? 0 : Limit; 385 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 386 auto &Context = BB->getParent()->getFunction().getContext(); 387 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 388 389 const BasicBlock *LLVMBB = BB->getBasicBlock(); 390 MachineFunction *F = BB->getParent(); 391 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 392 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 393 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 394 395 MachineFunction::iterator It = ++BB->getIterator(); 396 F->insert(It, FalseMBB); 397 F->insert(It, TrueMBB); 398 F->insert(It, DoneMBB); 399 400 // Transfer the remainder of BB and its successor edges to DoneMBB. 401 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 402 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 403 404 BB->addSuccessor(TrueMBB); 405 BB->addSuccessor(FalseMBB); 406 TrueMBB->addSuccessor(DoneMBB); 407 FalseMBB->addSuccessor(DoneMBB); 408 409 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 410 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 411 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 412 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 413 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 414 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 415 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 416 417 MI.eraseFromParent(); 418 // For signed numbers, we can do a single comparison to determine whether 419 // fabs(x) is within range. 420 if (IsUnsigned) { 421 Tmp0 = InReg; 422 } else { 423 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 424 } 425 BuildMI(BB, DL, TII.get(FConst), Tmp1) 426 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 427 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 428 429 // For unsigned numbers, we have to do a separate comparison with zero. 430 if (IsUnsigned) { 431 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 432 Register SecondCmpReg = 433 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 434 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 435 BuildMI(BB, DL, TII.get(FConst), Tmp1) 436 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 437 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 438 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 439 CmpReg = AndReg; 440 } 441 442 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 443 444 // Create the CFG diamond to select between doing the conversion or using 445 // the substitute value. 446 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 447 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 448 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 449 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 450 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 451 .addReg(FalseReg) 452 .addMBB(FalseMBB) 453 .addReg(TrueReg) 454 .addMBB(TrueMBB); 455 456 return DoneMBB; 457 } 458 459 static MachineBasicBlock * 460 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 461 const WebAssemblySubtarget *Subtarget, 462 const TargetInstrInfo &TII) { 463 MachineInstr &CallParams = *CallResults.getPrevNode(); 464 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 465 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 466 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 467 468 bool IsIndirect = CallParams.getOperand(0).isReg(); 469 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 470 471 unsigned CallOp; 472 if (IsIndirect && IsRetCall) { 473 CallOp = WebAssembly::RET_CALL_INDIRECT; 474 } else if (IsIndirect) { 475 CallOp = WebAssembly::CALL_INDIRECT; 476 } else if (IsRetCall) { 477 CallOp = WebAssembly::RET_CALL; 478 } else { 479 CallOp = WebAssembly::CALL; 480 } 481 482 MachineFunction &MF = *BB->getParent(); 483 const MCInstrDesc &MCID = TII.get(CallOp); 484 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 485 486 // See if we must truncate the function pointer. 487 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 488 // as 64-bit for uniformity with other pointer types. 489 // See also: WebAssemblyFastISel::selectCall 490 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 491 Register Reg32 = 492 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 493 auto &FnPtr = CallParams.getOperand(0); 494 BuildMI(*BB, CallResults.getIterator(), DL, 495 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 496 .addReg(FnPtr.getReg()); 497 FnPtr.setReg(Reg32); 498 } 499 500 // Move the function pointer to the end of the arguments for indirect calls 501 if (IsIndirect) { 502 auto FnPtr = CallParams.getOperand(0); 503 CallParams.RemoveOperand(0); 504 CallParams.addOperand(FnPtr); 505 } 506 507 for (auto Def : CallResults.defs()) 508 MIB.add(Def); 509 510 if (IsIndirect) { 511 // Placeholder for the type index. 512 MIB.addImm(0); 513 // The table into which this call_indirect indexes. 514 MCSymbolWasm *Table = 515 WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget); 516 if (Subtarget->hasReferenceTypes()) { 517 MIB.addSym(Table); 518 } else { 519 // For the MVP there is at most one table whose number is 0, but we can't 520 // write a table symbol or issue relocations. Instead we just ensure the 521 // table is live and write a zero. 522 Table->setNoStrip(); 523 MIB.addImm(0); 524 } 525 } 526 527 for (auto Use : CallParams.uses()) 528 MIB.add(Use); 529 530 BB->insert(CallResults.getIterator(), MIB); 531 CallParams.eraseFromParent(); 532 CallResults.eraseFromParent(); 533 534 return BB; 535 } 536 537 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 538 MachineInstr &MI, MachineBasicBlock *BB) const { 539 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 540 DebugLoc DL = MI.getDebugLoc(); 541 542 switch (MI.getOpcode()) { 543 default: 544 llvm_unreachable("Unexpected instr type to insert"); 545 case WebAssembly::FP_TO_SINT_I32_F32: 546 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 547 WebAssembly::I32_TRUNC_S_F32); 548 case WebAssembly::FP_TO_UINT_I32_F32: 549 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 550 WebAssembly::I32_TRUNC_U_F32); 551 case WebAssembly::FP_TO_SINT_I64_F32: 552 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 553 WebAssembly::I64_TRUNC_S_F32); 554 case WebAssembly::FP_TO_UINT_I64_F32: 555 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 556 WebAssembly::I64_TRUNC_U_F32); 557 case WebAssembly::FP_TO_SINT_I32_F64: 558 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 559 WebAssembly::I32_TRUNC_S_F64); 560 case WebAssembly::FP_TO_UINT_I32_F64: 561 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 562 WebAssembly::I32_TRUNC_U_F64); 563 case WebAssembly::FP_TO_SINT_I64_F64: 564 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 565 WebAssembly::I64_TRUNC_S_F64); 566 case WebAssembly::FP_TO_UINT_I64_F64: 567 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 568 WebAssembly::I64_TRUNC_U_F64); 569 case WebAssembly::CALL_RESULTS: 570 case WebAssembly::RET_CALL_RESULTS: 571 return LowerCallResults(MI, DL, BB, Subtarget, TII); 572 } 573 } 574 575 const char * 576 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 577 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 578 case WebAssemblyISD::FIRST_NUMBER: 579 case WebAssemblyISD::FIRST_MEM_OPCODE: 580 break; 581 #define HANDLE_NODETYPE(NODE) \ 582 case WebAssemblyISD::NODE: \ 583 return "WebAssemblyISD::" #NODE; 584 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 585 #include "WebAssemblyISD.def" 586 #undef HANDLE_MEM_NODETYPE 587 #undef HANDLE_NODETYPE 588 } 589 return nullptr; 590 } 591 592 std::pair<unsigned, const TargetRegisterClass *> 593 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 594 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 595 // First, see if this is a constraint that directly corresponds to a 596 // WebAssembly register class. 597 if (Constraint.size() == 1) { 598 switch (Constraint[0]) { 599 case 'r': 600 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 601 if (Subtarget->hasSIMD128() && VT.isVector()) { 602 if (VT.getSizeInBits() == 128) 603 return std::make_pair(0U, &WebAssembly::V128RegClass); 604 } 605 if (VT.isInteger() && !VT.isVector()) { 606 if (VT.getSizeInBits() <= 32) 607 return std::make_pair(0U, &WebAssembly::I32RegClass); 608 if (VT.getSizeInBits() <= 64) 609 return std::make_pair(0U, &WebAssembly::I64RegClass); 610 } 611 if (VT.isFloatingPoint() && !VT.isVector()) { 612 switch (VT.getSizeInBits()) { 613 case 32: 614 return std::make_pair(0U, &WebAssembly::F32RegClass); 615 case 64: 616 return std::make_pair(0U, &WebAssembly::F64RegClass); 617 default: 618 break; 619 } 620 } 621 break; 622 default: 623 break; 624 } 625 } 626 627 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 628 } 629 630 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 631 // Assume ctz is a relatively cheap operation. 632 return true; 633 } 634 635 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 636 // Assume clz is a relatively cheap operation. 637 return true; 638 } 639 640 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 641 const AddrMode &AM, 642 Type *Ty, unsigned AS, 643 Instruction *I) const { 644 // WebAssembly offsets are added as unsigned without wrapping. The 645 // isLegalAddressingMode gives us no way to determine if wrapping could be 646 // happening, so we approximate this by accepting only non-negative offsets. 647 if (AM.BaseOffs < 0) 648 return false; 649 650 // WebAssembly has no scale register operands. 651 if (AM.Scale != 0) 652 return false; 653 654 // Everything else is legal. 655 return true; 656 } 657 658 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 659 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 660 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 661 // WebAssembly supports unaligned accesses, though it should be declared 662 // with the p2align attribute on loads and stores which do so, and there 663 // may be a performance impact. We tell LLVM they're "fast" because 664 // for the kinds of things that LLVM uses this for (merging adjacent stores 665 // of constants, etc.), WebAssembly implementations will either want the 666 // unaligned access or they'll split anyway. 667 if (Fast) 668 *Fast = true; 669 return true; 670 } 671 672 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 673 AttributeList Attr) const { 674 // The current thinking is that wasm engines will perform this optimization, 675 // so we can save on code size. 676 return true; 677 } 678 679 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 680 EVT ExtT = ExtVal.getValueType(); 681 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 682 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 683 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 684 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 685 } 686 687 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 688 LLVMContext &C, 689 EVT VT) const { 690 if (VT.isVector()) 691 return VT.changeVectorElementTypeToInteger(); 692 693 // So far, all branch instructions in Wasm take an I32 condition. 694 // The default TargetLowering::getSetCCResultType returns the pointer size, 695 // which would be useful to reduce instruction counts when testing 696 // against 64-bit pointers/values if at some point Wasm supports that. 697 return EVT::getIntegerVT(C, 32); 698 } 699 700 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 701 const CallInst &I, 702 MachineFunction &MF, 703 unsigned Intrinsic) const { 704 switch (Intrinsic) { 705 case Intrinsic::wasm_memory_atomic_notify: 706 Info.opc = ISD::INTRINSIC_W_CHAIN; 707 Info.memVT = MVT::i32; 708 Info.ptrVal = I.getArgOperand(0); 709 Info.offset = 0; 710 Info.align = Align(4); 711 // atomic.notify instruction does not really load the memory specified with 712 // this argument, but MachineMemOperand should either be load or store, so 713 // we set this to a load. 714 // FIXME Volatile isn't really correct, but currently all LLVM atomic 715 // instructions are treated as volatiles in the backend, so we should be 716 // consistent. The same applies for wasm_atomic_wait intrinsics too. 717 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 718 return true; 719 case Intrinsic::wasm_memory_atomic_wait32: 720 Info.opc = ISD::INTRINSIC_W_CHAIN; 721 Info.memVT = MVT::i32; 722 Info.ptrVal = I.getArgOperand(0); 723 Info.offset = 0; 724 Info.align = Align(4); 725 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 726 return true; 727 case Intrinsic::wasm_memory_atomic_wait64: 728 Info.opc = ISD::INTRINSIC_W_CHAIN; 729 Info.memVT = MVT::i64; 730 Info.ptrVal = I.getArgOperand(0); 731 Info.offset = 0; 732 Info.align = Align(8); 733 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 734 return true; 735 case Intrinsic::wasm_load32_zero: 736 case Intrinsic::wasm_load64_zero: 737 Info.opc = ISD::INTRINSIC_W_CHAIN; 738 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 739 Info.ptrVal = I.getArgOperand(0); 740 Info.offset = 0; 741 Info.align = Align(1); 742 Info.flags = MachineMemOperand::MOLoad; 743 return true; 744 case Intrinsic::wasm_load8_lane: 745 case Intrinsic::wasm_load16_lane: 746 case Intrinsic::wasm_load32_lane: 747 case Intrinsic::wasm_load64_lane: 748 case Intrinsic::wasm_store8_lane: 749 case Intrinsic::wasm_store16_lane: 750 case Intrinsic::wasm_store32_lane: 751 case Intrinsic::wasm_store64_lane: { 752 MVT MemVT; 753 switch (Intrinsic) { 754 case Intrinsic::wasm_load8_lane: 755 case Intrinsic::wasm_store8_lane: 756 MemVT = MVT::i8; 757 break; 758 case Intrinsic::wasm_load16_lane: 759 case Intrinsic::wasm_store16_lane: 760 MemVT = MVT::i16; 761 break; 762 case Intrinsic::wasm_load32_lane: 763 case Intrinsic::wasm_store32_lane: 764 MemVT = MVT::i32; 765 break; 766 case Intrinsic::wasm_load64_lane: 767 case Intrinsic::wasm_store64_lane: 768 MemVT = MVT::i64; 769 break; 770 default: 771 llvm_unreachable("unexpected intrinsic"); 772 } 773 if (Intrinsic == Intrinsic::wasm_load8_lane || 774 Intrinsic == Intrinsic::wasm_load16_lane || 775 Intrinsic == Intrinsic::wasm_load32_lane || 776 Intrinsic == Intrinsic::wasm_load64_lane) { 777 Info.opc = ISD::INTRINSIC_W_CHAIN; 778 Info.flags = MachineMemOperand::MOLoad; 779 } else { 780 Info.opc = ISD::INTRINSIC_VOID; 781 Info.flags = MachineMemOperand::MOStore; 782 } 783 Info.ptrVal = I.getArgOperand(0); 784 Info.memVT = MemVT; 785 Info.offset = 0; 786 Info.align = Align(1); 787 return true; 788 } 789 default: 790 return false; 791 } 792 } 793 794 //===----------------------------------------------------------------------===// 795 // WebAssembly Lowering private implementation. 796 //===----------------------------------------------------------------------===// 797 798 //===----------------------------------------------------------------------===// 799 // Lowering Code 800 //===----------------------------------------------------------------------===// 801 802 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 803 MachineFunction &MF = DAG.getMachineFunction(); 804 DAG.getContext()->diagnose( 805 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 806 } 807 808 // Test whether the given calling convention is supported. 809 static bool callingConvSupported(CallingConv::ID CallConv) { 810 // We currently support the language-independent target-independent 811 // conventions. We don't yet have a way to annotate calls with properties like 812 // "cold", and we don't have any call-clobbered registers, so these are mostly 813 // all handled the same. 814 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 815 CallConv == CallingConv::Cold || 816 CallConv == CallingConv::PreserveMost || 817 CallConv == CallingConv::PreserveAll || 818 CallConv == CallingConv::CXX_FAST_TLS || 819 CallConv == CallingConv::WASM_EmscriptenInvoke || 820 CallConv == CallingConv::Swift; 821 } 822 823 SDValue 824 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 825 SmallVectorImpl<SDValue> &InVals) const { 826 SelectionDAG &DAG = CLI.DAG; 827 SDLoc DL = CLI.DL; 828 SDValue Chain = CLI.Chain; 829 SDValue Callee = CLI.Callee; 830 MachineFunction &MF = DAG.getMachineFunction(); 831 auto Layout = MF.getDataLayout(); 832 833 CallingConv::ID CallConv = CLI.CallConv; 834 if (!callingConvSupported(CallConv)) 835 fail(DL, DAG, 836 "WebAssembly doesn't support language-specific or target-specific " 837 "calling conventions yet"); 838 if (CLI.IsPatchPoint) 839 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 840 841 if (CLI.IsTailCall) { 842 auto NoTail = [&](const char *Msg) { 843 if (CLI.CB && CLI.CB->isMustTailCall()) 844 fail(DL, DAG, Msg); 845 CLI.IsTailCall = false; 846 }; 847 848 if (!Subtarget->hasTailCall()) 849 NoTail("WebAssembly 'tail-call' feature not enabled"); 850 851 // Varargs calls cannot be tail calls because the buffer is on the stack 852 if (CLI.IsVarArg) 853 NoTail("WebAssembly does not support varargs tail calls"); 854 855 // Do not tail call unless caller and callee return types match 856 const Function &F = MF.getFunction(); 857 const TargetMachine &TM = getTargetMachine(); 858 Type *RetTy = F.getReturnType(); 859 SmallVector<MVT, 4> CallerRetTys; 860 SmallVector<MVT, 4> CalleeRetTys; 861 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 862 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 863 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 864 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 865 CalleeRetTys.begin()); 866 if (!TypesMatch) 867 NoTail("WebAssembly tail call requires caller and callee return types to " 868 "match"); 869 870 // If pointers to local stack values are passed, we cannot tail call 871 if (CLI.CB) { 872 for (auto &Arg : CLI.CB->args()) { 873 Value *Val = Arg.get(); 874 // Trace the value back through pointer operations 875 while (true) { 876 Value *Src = Val->stripPointerCastsAndAliases(); 877 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 878 Src = GEP->getPointerOperand(); 879 if (Val == Src) 880 break; 881 Val = Src; 882 } 883 if (isa<AllocaInst>(Val)) { 884 NoTail( 885 "WebAssembly does not support tail calling with stack arguments"); 886 break; 887 } 888 } 889 } 890 } 891 892 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 893 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 894 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 895 896 // The generic code may have added an sret argument. If we're lowering an 897 // invoke function, the ABI requires that the function pointer be the first 898 // argument, so we may have to swap the arguments. 899 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 900 Outs[0].Flags.isSRet()) { 901 std::swap(Outs[0], Outs[1]); 902 std::swap(OutVals[0], OutVals[1]); 903 } 904 905 bool HasSwiftSelfArg = false; 906 bool HasSwiftErrorArg = false; 907 unsigned NumFixedArgs = 0; 908 for (unsigned I = 0; I < Outs.size(); ++I) { 909 const ISD::OutputArg &Out = Outs[I]; 910 SDValue &OutVal = OutVals[I]; 911 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 912 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 913 if (Out.Flags.isNest()) 914 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 915 if (Out.Flags.isInAlloca()) 916 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 917 if (Out.Flags.isInConsecutiveRegs()) 918 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 919 if (Out.Flags.isInConsecutiveRegsLast()) 920 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 921 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 922 auto &MFI = MF.getFrameInfo(); 923 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 924 Out.Flags.getNonZeroByValAlign(), 925 /*isSS=*/false); 926 SDValue SizeNode = 927 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 928 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 929 Chain = DAG.getMemcpy( 930 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 931 /*isVolatile*/ false, /*AlwaysInline=*/false, 932 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 933 OutVal = FINode; 934 } 935 // Count the number of fixed args *after* legalization. 936 NumFixedArgs += Out.IsFixed; 937 } 938 939 bool IsVarArg = CLI.IsVarArg; 940 auto PtrVT = getPointerTy(Layout); 941 942 // For swiftcc, emit additional swiftself and swifterror arguments 943 // if there aren't. These additional arguments are also added for callee 944 // signature They are necessary to match callee and caller signature for 945 // indirect call. 946 if (CallConv == CallingConv::Swift) { 947 if (!HasSwiftSelfArg) { 948 NumFixedArgs++; 949 ISD::OutputArg Arg; 950 Arg.Flags.setSwiftSelf(); 951 CLI.Outs.push_back(Arg); 952 SDValue ArgVal = DAG.getUNDEF(PtrVT); 953 CLI.OutVals.push_back(ArgVal); 954 } 955 if (!HasSwiftErrorArg) { 956 NumFixedArgs++; 957 ISD::OutputArg Arg; 958 Arg.Flags.setSwiftError(); 959 CLI.Outs.push_back(Arg); 960 SDValue ArgVal = DAG.getUNDEF(PtrVT); 961 CLI.OutVals.push_back(ArgVal); 962 } 963 } 964 965 // Analyze operands of the call, assigning locations to each operand. 966 SmallVector<CCValAssign, 16> ArgLocs; 967 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 968 969 if (IsVarArg) { 970 // Outgoing non-fixed arguments are placed in a buffer. First 971 // compute their offsets and the total amount of buffer space needed. 972 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 973 const ISD::OutputArg &Out = Outs[I]; 974 SDValue &Arg = OutVals[I]; 975 EVT VT = Arg.getValueType(); 976 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 977 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 978 Align Alignment = 979 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 980 unsigned Offset = 981 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 982 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 983 Offset, VT.getSimpleVT(), 984 CCValAssign::Full)); 985 } 986 } 987 988 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 989 990 SDValue FINode; 991 if (IsVarArg && NumBytes) { 992 // For non-fixed arguments, next emit stores to store the argument values 993 // to the stack buffer at the offsets computed above. 994 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 995 Layout.getStackAlignment(), 996 /*isSS=*/false); 997 unsigned ValNo = 0; 998 SmallVector<SDValue, 8> Chains; 999 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1000 assert(ArgLocs[ValNo].getValNo() == ValNo && 1001 "ArgLocs should remain in order and only hold varargs args"); 1002 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1003 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1004 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1005 DAG.getConstant(Offset, DL, PtrVT)); 1006 Chains.push_back( 1007 DAG.getStore(Chain, DL, Arg, Add, 1008 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1009 } 1010 if (!Chains.empty()) 1011 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1012 } else if (IsVarArg) { 1013 FINode = DAG.getIntPtrConstant(0, DL); 1014 } 1015 1016 if (Callee->getOpcode() == ISD::GlobalAddress) { 1017 // If the callee is a GlobalAddress node (quite common, every direct call 1018 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1019 // doesn't at MO_GOT which is not needed for direct calls. 1020 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1021 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1022 getPointerTy(DAG.getDataLayout()), 1023 GA->getOffset()); 1024 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1025 getPointerTy(DAG.getDataLayout()), Callee); 1026 } 1027 1028 // Compute the operands for the CALLn node. 1029 SmallVector<SDValue, 16> Ops; 1030 Ops.push_back(Chain); 1031 Ops.push_back(Callee); 1032 1033 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1034 // isn't reliable. 1035 Ops.append(OutVals.begin(), 1036 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1037 // Add a pointer to the vararg buffer. 1038 if (IsVarArg) 1039 Ops.push_back(FINode); 1040 1041 SmallVector<EVT, 8> InTys; 1042 for (const auto &In : Ins) { 1043 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1044 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1045 if (In.Flags.isInAlloca()) 1046 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1047 if (In.Flags.isInConsecutiveRegs()) 1048 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1049 if (In.Flags.isInConsecutiveRegsLast()) 1050 fail(DL, DAG, 1051 "WebAssembly hasn't implemented cons regs last return values"); 1052 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1053 // registers. 1054 InTys.push_back(In.VT); 1055 } 1056 1057 if (CLI.IsTailCall) { 1058 // ret_calls do not return values to the current frame 1059 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1060 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1061 } 1062 1063 InTys.push_back(MVT::Other); 1064 SDVTList InTyList = DAG.getVTList(InTys); 1065 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1066 1067 for (size_t I = 0; I < Ins.size(); ++I) 1068 InVals.push_back(Res.getValue(I)); 1069 1070 // Return the chain 1071 return Res.getValue(Ins.size()); 1072 } 1073 1074 bool WebAssemblyTargetLowering::CanLowerReturn( 1075 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1076 const SmallVectorImpl<ISD::OutputArg> &Outs, 1077 LLVMContext & /*Context*/) const { 1078 // WebAssembly can only handle returning tuples with multivalue enabled 1079 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1080 } 1081 1082 SDValue WebAssemblyTargetLowering::LowerReturn( 1083 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1084 const SmallVectorImpl<ISD::OutputArg> &Outs, 1085 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1086 SelectionDAG &DAG) const { 1087 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1088 "MVP WebAssembly can only return up to one value"); 1089 if (!callingConvSupported(CallConv)) 1090 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1091 1092 SmallVector<SDValue, 4> RetOps(1, Chain); 1093 RetOps.append(OutVals.begin(), OutVals.end()); 1094 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1095 1096 // Record the number and types of the return values. 1097 for (const ISD::OutputArg &Out : Outs) { 1098 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1099 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1100 assert(Out.IsFixed && "non-fixed return value is not valid"); 1101 if (Out.Flags.isInAlloca()) 1102 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1103 if (Out.Flags.isInConsecutiveRegs()) 1104 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1105 if (Out.Flags.isInConsecutiveRegsLast()) 1106 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1107 } 1108 1109 return Chain; 1110 } 1111 1112 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1113 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1114 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1115 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1116 if (!callingConvSupported(CallConv)) 1117 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1118 1119 MachineFunction &MF = DAG.getMachineFunction(); 1120 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1121 1122 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1123 // of the incoming values before they're represented by virtual registers. 1124 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1125 1126 bool HasSwiftErrorArg = false; 1127 bool HasSwiftSelfArg = false; 1128 for (const ISD::InputArg &In : Ins) { 1129 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1130 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1131 if (In.Flags.isInAlloca()) 1132 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1133 if (In.Flags.isNest()) 1134 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1135 if (In.Flags.isInConsecutiveRegs()) 1136 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1137 if (In.Flags.isInConsecutiveRegsLast()) 1138 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1139 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1140 // registers. 1141 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1142 DAG.getTargetConstant(InVals.size(), 1143 DL, MVT::i32)) 1144 : DAG.getUNDEF(In.VT)); 1145 1146 // Record the number and types of arguments. 1147 MFI->addParam(In.VT); 1148 } 1149 1150 // For swiftcc, emit additional swiftself and swifterror arguments 1151 // if there aren't. These additional arguments are also added for callee 1152 // signature They are necessary to match callee and caller signature for 1153 // indirect call. 1154 auto PtrVT = getPointerTy(MF.getDataLayout()); 1155 if (CallConv == CallingConv::Swift) { 1156 if (!HasSwiftSelfArg) { 1157 MFI->addParam(PtrVT); 1158 } 1159 if (!HasSwiftErrorArg) { 1160 MFI->addParam(PtrVT); 1161 } 1162 } 1163 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1164 // the buffer is passed as an argument. 1165 if (IsVarArg) { 1166 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1167 Register VarargVreg = 1168 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1169 MFI->setVarargBufferVreg(VarargVreg); 1170 Chain = DAG.getCopyToReg( 1171 Chain, DL, VarargVreg, 1172 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1173 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1174 MFI->addParam(PtrVT); 1175 } 1176 1177 // Record the number and types of arguments and results. 1178 SmallVector<MVT, 4> Params; 1179 SmallVector<MVT, 4> Results; 1180 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1181 MF.getFunction(), DAG.getTarget(), Params, Results); 1182 for (MVT VT : Results) 1183 MFI->addResult(VT); 1184 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1185 // the param logic here with ComputeSignatureVTs 1186 assert(MFI->getParams().size() == Params.size() && 1187 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1188 Params.begin())); 1189 1190 return Chain; 1191 } 1192 1193 void WebAssemblyTargetLowering::ReplaceNodeResults( 1194 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1195 switch (N->getOpcode()) { 1196 case ISD::SIGN_EXTEND_INREG: 1197 // Do not add any results, signifying that N should not be custom lowered 1198 // after all. This happens because simd128 turns on custom lowering for 1199 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1200 // illegal type. 1201 break; 1202 default: 1203 llvm_unreachable( 1204 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1205 } 1206 } 1207 1208 //===----------------------------------------------------------------------===// 1209 // Custom lowering hooks. 1210 //===----------------------------------------------------------------------===// 1211 1212 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1213 SelectionDAG &DAG) const { 1214 SDLoc DL(Op); 1215 switch (Op.getOpcode()) { 1216 default: 1217 llvm_unreachable("unimplemented operation lowering"); 1218 return SDValue(); 1219 case ISD::FrameIndex: 1220 return LowerFrameIndex(Op, DAG); 1221 case ISD::GlobalAddress: 1222 return LowerGlobalAddress(Op, DAG); 1223 case ISD::GlobalTLSAddress: 1224 return LowerGlobalTLSAddress(Op, DAG); 1225 case ISD::ExternalSymbol: 1226 return LowerExternalSymbol(Op, DAG); 1227 case ISD::JumpTable: 1228 return LowerJumpTable(Op, DAG); 1229 case ISD::BR_JT: 1230 return LowerBR_JT(Op, DAG); 1231 case ISD::VASTART: 1232 return LowerVASTART(Op, DAG); 1233 case ISD::BlockAddress: 1234 case ISD::BRIND: 1235 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1236 return SDValue(); 1237 case ISD::RETURNADDR: 1238 return LowerRETURNADDR(Op, DAG); 1239 case ISD::FRAMEADDR: 1240 return LowerFRAMEADDR(Op, DAG); 1241 case ISD::CopyToReg: 1242 return LowerCopyToReg(Op, DAG); 1243 case ISD::EXTRACT_VECTOR_ELT: 1244 case ISD::INSERT_VECTOR_ELT: 1245 return LowerAccessVectorElement(Op, DAG); 1246 case ISD::INTRINSIC_VOID: 1247 case ISD::INTRINSIC_WO_CHAIN: 1248 case ISD::INTRINSIC_W_CHAIN: 1249 return LowerIntrinsic(Op, DAG); 1250 case ISD::SIGN_EXTEND_INREG: 1251 return LowerSIGN_EXTEND_INREG(Op, DAG); 1252 case ISD::BUILD_VECTOR: 1253 return LowerBUILD_VECTOR(Op, DAG); 1254 case ISD::VECTOR_SHUFFLE: 1255 return LowerVECTOR_SHUFFLE(Op, DAG); 1256 case ISD::SETCC: 1257 return LowerSETCC(Op, DAG); 1258 case ISD::SHL: 1259 case ISD::SRA: 1260 case ISD::SRL: 1261 return LowerShift(Op, DAG); 1262 case ISD::FP_TO_SINT_SAT: 1263 case ISD::FP_TO_UINT_SAT: 1264 return LowerFP_TO_INT_SAT(Op, DAG); 1265 case ISD::LOAD: 1266 return LowerLoad(Op, DAG); 1267 case ISD::STORE: 1268 return LowerStore(Op, DAG); 1269 } 1270 } 1271 1272 static bool IsWebAssemblyGlobal(SDValue Op) { 1273 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1274 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1275 1276 return false; 1277 } 1278 1279 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1280 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1281 if (!FI) 1282 return None; 1283 1284 auto &MF = DAG.getMachineFunction(); 1285 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1286 } 1287 1288 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1289 SelectionDAG &DAG) const { 1290 SDLoc DL(Op); 1291 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1292 const SDValue &Value = SN->getValue(); 1293 const SDValue &Base = SN->getBasePtr(); 1294 const SDValue &Offset = SN->getOffset(); 1295 1296 if (IsWebAssemblyGlobal(Base)) { 1297 if (!Offset->isUndef()) 1298 report_fatal_error("unexpected offset when storing to webassembly global", 1299 false); 1300 1301 SDVTList Tys = DAG.getVTList(MVT::Other); 1302 SDValue Ops[] = {SN->getChain(), Value, Base}; 1303 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1304 SN->getMemoryVT(), SN->getMemOperand()); 1305 } 1306 1307 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1308 if (!Offset->isUndef()) 1309 report_fatal_error("unexpected offset when storing to webassembly local", 1310 false); 1311 1312 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1313 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1314 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1315 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1316 } 1317 1318 return Op; 1319 } 1320 1321 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1322 SelectionDAG &DAG) const { 1323 SDLoc DL(Op); 1324 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1325 const SDValue &Base = LN->getBasePtr(); 1326 const SDValue &Offset = LN->getOffset(); 1327 1328 if (IsWebAssemblyGlobal(Base)) { 1329 if (!Offset->isUndef()) 1330 report_fatal_error( 1331 "unexpected offset when loading from webassembly global", false); 1332 1333 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1334 SDValue Ops[] = {LN->getChain(), Base}; 1335 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1336 LN->getMemoryVT(), LN->getMemOperand()); 1337 } 1338 1339 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1340 if (!Offset->isUndef()) 1341 report_fatal_error( 1342 "unexpected offset when loading from webassembly local", false); 1343 1344 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1345 EVT LocalVT = LN->getValueType(0); 1346 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1347 {LN->getChain(), Idx}); 1348 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1349 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1350 return Result; 1351 } 1352 1353 return Op; 1354 } 1355 1356 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1357 SelectionDAG &DAG) const { 1358 SDValue Src = Op.getOperand(2); 1359 if (isa<FrameIndexSDNode>(Src.getNode())) { 1360 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1361 // the FI to some LEA-like instruction, but since we don't have that, we 1362 // need to insert some kind of instruction that can take an FI operand and 1363 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1364 // local.copy between Op and its FI operand. 1365 SDValue Chain = Op.getOperand(0); 1366 SDLoc DL(Op); 1367 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1368 EVT VT = Src.getValueType(); 1369 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1370 : WebAssembly::COPY_I64, 1371 DL, VT, Src), 1372 0); 1373 return Op.getNode()->getNumValues() == 1 1374 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1375 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1376 Op.getNumOperands() == 4 ? Op.getOperand(3) 1377 : SDValue()); 1378 } 1379 return SDValue(); 1380 } 1381 1382 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1383 SelectionDAG &DAG) const { 1384 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1385 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1386 } 1387 1388 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1389 SelectionDAG &DAG) const { 1390 SDLoc DL(Op); 1391 1392 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1393 fail(DL, DAG, 1394 "Non-Emscripten WebAssembly hasn't implemented " 1395 "__builtin_return_address"); 1396 return SDValue(); 1397 } 1398 1399 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1400 return SDValue(); 1401 1402 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1403 MakeLibCallOptions CallOptions; 1404 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1405 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1406 .first; 1407 } 1408 1409 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1410 SelectionDAG &DAG) const { 1411 // Non-zero depths are not supported by WebAssembly currently. Use the 1412 // legalizer's default expansion, which is to return 0 (what this function is 1413 // documented to do). 1414 if (Op.getConstantOperandVal(0) > 0) 1415 return SDValue(); 1416 1417 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1418 EVT VT = Op.getValueType(); 1419 Register FP = 1420 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1421 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1422 } 1423 1424 SDValue 1425 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1426 SelectionDAG &DAG) const { 1427 SDLoc DL(Op); 1428 const auto *GA = cast<GlobalAddressSDNode>(Op); 1429 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1430 1431 MachineFunction &MF = DAG.getMachineFunction(); 1432 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1433 report_fatal_error("cannot use thread-local storage without bulk memory", 1434 false); 1435 1436 const GlobalValue *GV = GA->getGlobal(); 1437 1438 // Currently Emscripten does not support dynamic linking with threads. 1439 // Therefore, if we have thread-local storage, only the local-exec model 1440 // is possible. 1441 // TODO: remove this and implement proper TLS models once Emscripten 1442 // supports dynamic linking with threads. 1443 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1444 !Subtarget->getTargetTriple().isOSEmscripten()) { 1445 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1446 "non-Emscripten OSes: variable " + 1447 GV->getName(), 1448 false); 1449 } 1450 1451 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1452 : WebAssembly::GLOBAL_GET_I32; 1453 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1454 1455 SDValue BaseAddr( 1456 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1457 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1458 0); 1459 1460 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1461 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1462 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1463 1464 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1465 } 1466 1467 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1468 SelectionDAG &DAG) const { 1469 SDLoc DL(Op); 1470 const auto *GA = cast<GlobalAddressSDNode>(Op); 1471 EVT VT = Op.getValueType(); 1472 assert(GA->getTargetFlags() == 0 && 1473 "Unexpected target flags on generic GlobalAddressSDNode"); 1474 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1475 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1476 1477 unsigned OperandFlags = 0; 1478 if (isPositionIndependent()) { 1479 const GlobalValue *GV = GA->getGlobal(); 1480 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1481 MachineFunction &MF = DAG.getMachineFunction(); 1482 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1483 const char *BaseName; 1484 if (GV->getValueType()->isFunctionTy()) { 1485 BaseName = MF.createExternalSymbolName("__table_base"); 1486 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1487 } 1488 else { 1489 BaseName = MF.createExternalSymbolName("__memory_base"); 1490 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1491 } 1492 SDValue BaseAddr = 1493 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1494 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1495 1496 SDValue SymAddr = DAG.getNode( 1497 WebAssemblyISD::WrapperPIC, DL, VT, 1498 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1499 OperandFlags)); 1500 1501 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1502 } else { 1503 OperandFlags = WebAssemblyII::MO_GOT; 1504 } 1505 } 1506 1507 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1508 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1509 GA->getOffset(), OperandFlags)); 1510 } 1511 1512 SDValue 1513 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1514 SelectionDAG &DAG) const { 1515 SDLoc DL(Op); 1516 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1517 EVT VT = Op.getValueType(); 1518 assert(ES->getTargetFlags() == 0 && 1519 "Unexpected target flags on generic ExternalSymbolSDNode"); 1520 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1521 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1522 } 1523 1524 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1525 SelectionDAG &DAG) const { 1526 // There's no need for a Wrapper node because we always incorporate a jump 1527 // table operand into a BR_TABLE instruction, rather than ever 1528 // materializing it in a register. 1529 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1530 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1531 JT->getTargetFlags()); 1532 } 1533 1534 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1535 SelectionDAG &DAG) const { 1536 SDLoc DL(Op); 1537 SDValue Chain = Op.getOperand(0); 1538 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1539 SDValue Index = Op.getOperand(2); 1540 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1541 1542 SmallVector<SDValue, 8> Ops; 1543 Ops.push_back(Chain); 1544 Ops.push_back(Index); 1545 1546 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1547 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1548 1549 // Add an operand for each case. 1550 for (auto MBB : MBBs) 1551 Ops.push_back(DAG.getBasicBlock(MBB)); 1552 1553 // Add the first MBB as a dummy default target for now. This will be replaced 1554 // with the proper default target (and the preceding range check eliminated) 1555 // if possible by WebAssemblyFixBrTableDefaults. 1556 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1557 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1558 } 1559 1560 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1561 SelectionDAG &DAG) const { 1562 SDLoc DL(Op); 1563 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1564 1565 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1566 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1567 1568 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1569 MFI->getVarargBufferVreg(), PtrVT); 1570 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1571 MachinePointerInfo(SV)); 1572 } 1573 1574 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1575 SelectionDAG &DAG) { 1576 // We only support C++ exceptions for now 1577 int Tag = 1578 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1579 if (Tag != WebAssembly::CPP_EXCEPTION) 1580 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1581 auto &MF = DAG.getMachineFunction(); 1582 const auto &TLI = DAG.getTargetLoweringInfo(); 1583 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1584 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1585 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1586 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1587 } 1588 1589 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1590 SelectionDAG &DAG) const { 1591 MachineFunction &MF = DAG.getMachineFunction(); 1592 unsigned IntNo; 1593 switch (Op.getOpcode()) { 1594 case ISD::INTRINSIC_VOID: 1595 case ISD::INTRINSIC_W_CHAIN: 1596 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1597 break; 1598 case ISD::INTRINSIC_WO_CHAIN: 1599 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1600 break; 1601 default: 1602 llvm_unreachable("Invalid intrinsic"); 1603 } 1604 SDLoc DL(Op); 1605 1606 switch (IntNo) { 1607 default: 1608 return SDValue(); // Don't custom lower most intrinsics. 1609 1610 case Intrinsic::wasm_lsda: { 1611 EVT VT = Op.getValueType(); 1612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1613 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1614 auto &Context = MF.getMMI().getContext(); 1615 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1616 Twine(MF.getFunctionNumber())); 1617 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1618 DAG.getMCSymbol(S, PtrVT)); 1619 } 1620 1621 case Intrinsic::wasm_throw: { 1622 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1623 return DAG.getNode(WebAssemblyISD::THROW, DL, 1624 MVT::Other, // outchain type 1625 { 1626 Op.getOperand(0), // inchain 1627 SymNode, // exception symbol 1628 Op.getOperand(3) // thrown value 1629 }); 1630 } 1631 1632 case Intrinsic::wasm_catch: { 1633 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1634 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1635 { 1636 MVT::i32, // outchain type 1637 MVT::Other // return value 1638 }, 1639 { 1640 Op.getOperand(0), // inchain 1641 SymNode // exception symbol 1642 }); 1643 } 1644 1645 case Intrinsic::wasm_shuffle: { 1646 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1647 SDValue Ops[18]; 1648 size_t OpIdx = 0; 1649 Ops[OpIdx++] = Op.getOperand(1); 1650 Ops[OpIdx++] = Op.getOperand(2); 1651 while (OpIdx < 18) { 1652 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1653 if (MaskIdx.isUndef() || 1654 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1655 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1656 } else { 1657 Ops[OpIdx++] = MaskIdx; 1658 } 1659 } 1660 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1661 } 1662 } 1663 } 1664 1665 SDValue 1666 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1667 SelectionDAG &DAG) const { 1668 SDLoc DL(Op); 1669 // If sign extension operations are disabled, allow sext_inreg only if operand 1670 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1671 // extension operations, but allowing sext_inreg in this context lets us have 1672 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1673 // everywhere would be simpler in this file, but would necessitate large and 1674 // brittle patterns to undo the expansion and select extract_lane_s 1675 // instructions. 1676 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1677 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1678 return SDValue(); 1679 1680 const SDValue &Extract = Op.getOperand(0); 1681 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1682 if (VecT.getVectorElementType().getSizeInBits() > 32) 1683 return SDValue(); 1684 MVT ExtractedLaneT = 1685 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1686 MVT ExtractedVecT = 1687 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1688 if (ExtractedVecT == VecT) 1689 return Op; 1690 1691 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1692 const SDNode *Index = Extract.getOperand(1).getNode(); 1693 if (!isa<ConstantSDNode>(Index)) 1694 return SDValue(); 1695 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1696 unsigned Scale = 1697 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1698 assert(Scale > 1); 1699 SDValue NewIndex = 1700 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1701 SDValue NewExtract = DAG.getNode( 1702 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1703 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1704 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1705 Op.getOperand(1)); 1706 } 1707 1708 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1709 SelectionDAG &DAG) const { 1710 SDLoc DL(Op); 1711 const EVT VecT = Op.getValueType(); 1712 const EVT LaneT = Op.getOperand(0).getValueType(); 1713 const size_t Lanes = Op.getNumOperands(); 1714 bool CanSwizzle = VecT == MVT::v16i8; 1715 1716 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1717 // possible number of lanes at once followed by a sequence of replace_lane 1718 // instructions to individually initialize any remaining lanes. 1719 1720 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1721 // swizzled lanes should be given greater weight. 1722 1723 // TODO: Investigate looping rather than always extracting/replacing specific 1724 // lanes to fill gaps. 1725 1726 auto IsConstant = [](const SDValue &V) { 1727 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1728 }; 1729 1730 // Returns the source vector and index vector pair if they exist. Checks for: 1731 // (extract_vector_elt 1732 // $src, 1733 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1734 // ) 1735 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1736 auto Bail = std::make_pair(SDValue(), SDValue()); 1737 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1738 return Bail; 1739 const SDValue &SwizzleSrc = Lane->getOperand(0); 1740 const SDValue &IndexExt = Lane->getOperand(1); 1741 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1742 return Bail; 1743 const SDValue &Index = IndexExt->getOperand(0); 1744 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1745 return Bail; 1746 const SDValue &SwizzleIndices = Index->getOperand(0); 1747 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1748 SwizzleIndices.getValueType() != MVT::v16i8 || 1749 Index->getOperand(1)->getOpcode() != ISD::Constant || 1750 Index->getConstantOperandVal(1) != I) 1751 return Bail; 1752 return std::make_pair(SwizzleSrc, SwizzleIndices); 1753 }; 1754 1755 // If the lane is extracted from another vector at a constant index, return 1756 // that vector. The source vector must not have more lanes than the dest 1757 // because the shufflevector indices are in terms of the destination lanes and 1758 // would not be able to address the smaller individual source lanes. 1759 auto GetShuffleSrc = [&](const SDValue &Lane) { 1760 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1761 return SDValue(); 1762 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1763 return SDValue(); 1764 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1765 VecT.getVectorNumElements()) 1766 return SDValue(); 1767 return Lane->getOperand(0); 1768 }; 1769 1770 using ValueEntry = std::pair<SDValue, size_t>; 1771 SmallVector<ValueEntry, 16> SplatValueCounts; 1772 1773 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1774 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1775 1776 using ShuffleEntry = std::pair<SDValue, size_t>; 1777 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1778 1779 auto AddCount = [](auto &Counts, const auto &Val) { 1780 auto CountIt = 1781 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1782 if (CountIt == Counts.end()) { 1783 Counts.emplace_back(Val, 1); 1784 } else { 1785 CountIt->second++; 1786 } 1787 }; 1788 1789 auto GetMostCommon = [](auto &Counts) { 1790 auto CommonIt = 1791 std::max_element(Counts.begin(), Counts.end(), 1792 [](auto A, auto B) { return A.second < B.second; }); 1793 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1794 return *CommonIt; 1795 }; 1796 1797 size_t NumConstantLanes = 0; 1798 1799 // Count eligible lanes for each type of vector creation op 1800 for (size_t I = 0; I < Lanes; ++I) { 1801 const SDValue &Lane = Op->getOperand(I); 1802 if (Lane.isUndef()) 1803 continue; 1804 1805 AddCount(SplatValueCounts, Lane); 1806 1807 if (IsConstant(Lane)) 1808 NumConstantLanes++; 1809 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1810 AddCount(ShuffleCounts, ShuffleSrc); 1811 if (CanSwizzle) { 1812 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1813 if (SwizzleSrcs.first) 1814 AddCount(SwizzleCounts, SwizzleSrcs); 1815 } 1816 } 1817 1818 SDValue SplatValue; 1819 size_t NumSplatLanes; 1820 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1821 1822 SDValue SwizzleSrc; 1823 SDValue SwizzleIndices; 1824 size_t NumSwizzleLanes = 0; 1825 if (SwizzleCounts.size()) 1826 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1827 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1828 1829 // Shuffles can draw from up to two vectors, so find the two most common 1830 // sources. 1831 SDValue ShuffleSrc1, ShuffleSrc2; 1832 size_t NumShuffleLanes = 0; 1833 if (ShuffleCounts.size()) { 1834 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1835 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1836 ShuffleCounts.end(), 1837 [&](const auto &Pair) { 1838 return Pair.first == ShuffleSrc1; 1839 }), 1840 ShuffleCounts.end()); 1841 } 1842 if (ShuffleCounts.size()) { 1843 size_t AdditionalShuffleLanes; 1844 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 1845 GetMostCommon(ShuffleCounts); 1846 NumShuffleLanes += AdditionalShuffleLanes; 1847 } 1848 1849 // Predicate returning true if the lane is properly initialized by the 1850 // original instruction 1851 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1852 SDValue Result; 1853 // Prefer swizzles over shuffles over vector consts over splats 1854 if (NumSwizzleLanes >= NumShuffleLanes && 1855 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 1856 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1857 SwizzleIndices); 1858 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1859 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1860 return Swizzled == GetSwizzleSrcs(I, Lane); 1861 }; 1862 } else if (NumShuffleLanes >= NumConstantLanes && 1863 NumShuffleLanes >= NumSplatLanes) { 1864 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 1865 size_t DestLaneCount = VecT.getVectorNumElements(); 1866 size_t Scale1 = 1; 1867 size_t Scale2 = 1; 1868 SDValue Src1 = ShuffleSrc1; 1869 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 1870 if (Src1.getValueType() != VecT) { 1871 size_t LaneSize = 1872 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1873 assert(LaneSize > DestLaneSize); 1874 Scale1 = LaneSize / DestLaneSize; 1875 Src1 = DAG.getBitcast(VecT, Src1); 1876 } 1877 if (Src2.getValueType() != VecT) { 1878 size_t LaneSize = 1879 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1880 assert(LaneSize > DestLaneSize); 1881 Scale2 = LaneSize / DestLaneSize; 1882 Src2 = DAG.getBitcast(VecT, Src2); 1883 } 1884 1885 int Mask[16]; 1886 assert(DestLaneCount <= 16); 1887 for (size_t I = 0; I < DestLaneCount; ++I) { 1888 const SDValue &Lane = Op->getOperand(I); 1889 SDValue Src = GetShuffleSrc(Lane); 1890 if (Src == ShuffleSrc1) { 1891 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 1892 } else if (Src && Src == ShuffleSrc2) { 1893 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 1894 } else { 1895 Mask[I] = -1; 1896 } 1897 } 1898 ArrayRef<int> MaskRef(Mask, DestLaneCount); 1899 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 1900 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 1901 auto Src = GetShuffleSrc(Lane); 1902 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 1903 }; 1904 } else if (NumConstantLanes >= NumSplatLanes) { 1905 SmallVector<SDValue, 16> ConstLanes; 1906 for (const SDValue &Lane : Op->op_values()) { 1907 if (IsConstant(Lane)) { 1908 ConstLanes.push_back(Lane); 1909 } else if (LaneT.isFloatingPoint()) { 1910 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1911 } else { 1912 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1913 } 1914 } 1915 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1916 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1917 return IsConstant(Lane); 1918 }; 1919 } else { 1920 // Use a splat, but possibly a load_splat 1921 LoadSDNode *SplattedLoad; 1922 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1923 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1924 Result = DAG.getMemIntrinsicNode( 1925 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1926 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1927 SplattedLoad->getOffset()}, 1928 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1929 } else { 1930 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1931 } 1932 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1933 return Lane == SplatValue; 1934 }; 1935 } 1936 1937 assert(Result); 1938 assert(IsLaneConstructed); 1939 1940 // Add replace_lane instructions for any unhandled values 1941 for (size_t I = 0; I < Lanes; ++I) { 1942 const SDValue &Lane = Op->getOperand(I); 1943 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1944 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1945 DAG.getConstant(I, DL, MVT::i32)); 1946 } 1947 1948 return Result; 1949 } 1950 1951 SDValue 1952 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1953 SelectionDAG &DAG) const { 1954 SDLoc DL(Op); 1955 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1956 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1957 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1958 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1959 1960 // Space for two vector args and sixteen mask indices 1961 SDValue Ops[18]; 1962 size_t OpIdx = 0; 1963 Ops[OpIdx++] = Op.getOperand(0); 1964 Ops[OpIdx++] = Op.getOperand(1); 1965 1966 // Expand mask indices to byte indices and materialize them as operands 1967 for (int M : Mask) { 1968 for (size_t J = 0; J < LaneBytes; ++J) { 1969 // Lower undefs (represented by -1 in mask) to zero 1970 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1971 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1972 } 1973 } 1974 1975 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1976 } 1977 1978 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1979 SelectionDAG &DAG) const { 1980 SDLoc DL(Op); 1981 // The legalizer does not know how to expand the unsupported comparison modes 1982 // of i64x2 vectors, so we manually unroll them here. 1983 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1984 SmallVector<SDValue, 2> LHS, RHS; 1985 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1986 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1987 const SDValue &CC = Op->getOperand(2); 1988 auto MakeLane = [&](unsigned I) { 1989 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1990 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1991 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1992 }; 1993 return DAG.getBuildVector(Op->getValueType(0), DL, 1994 {MakeLane(0), MakeLane(1)}); 1995 } 1996 1997 SDValue 1998 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1999 SelectionDAG &DAG) const { 2000 // Allow constant lane indices, expand variable lane indices 2001 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2002 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2003 return Op; 2004 else 2005 // Perform default expansion 2006 return SDValue(); 2007 } 2008 2009 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2010 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2011 // 32-bit and 64-bit unrolled shifts will have proper semantics 2012 if (LaneT.bitsGE(MVT::i32)) 2013 return DAG.UnrollVectorOp(Op.getNode()); 2014 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2015 SDLoc DL(Op); 2016 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2017 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2018 unsigned ShiftOpcode = Op.getOpcode(); 2019 SmallVector<SDValue, 16> ShiftedElements; 2020 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2021 SmallVector<SDValue, 16> ShiftElements; 2022 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2023 SmallVector<SDValue, 16> UnrolledOps; 2024 for (size_t i = 0; i < NumLanes; ++i) { 2025 SDValue MaskedShiftValue = 2026 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2027 SDValue ShiftedValue = ShiftedElements[i]; 2028 if (ShiftOpcode == ISD::SRA) 2029 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2030 ShiftedValue, DAG.getValueType(LaneT)); 2031 UnrolledOps.push_back( 2032 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2033 } 2034 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2035 } 2036 2037 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2038 SelectionDAG &DAG) const { 2039 SDLoc DL(Op); 2040 2041 // Only manually lower vector shifts 2042 assert(Op.getSimpleValueType().isVector()); 2043 2044 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2045 if (!ShiftVal) 2046 return unrollVectorShift(Op, DAG); 2047 2048 // Use anyext because none of the high bits can affect the shift 2049 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2050 2051 unsigned Opcode; 2052 switch (Op.getOpcode()) { 2053 case ISD::SHL: 2054 Opcode = WebAssemblyISD::VEC_SHL; 2055 break; 2056 case ISD::SRA: 2057 Opcode = WebAssemblyISD::VEC_SHR_S; 2058 break; 2059 case ISD::SRL: 2060 Opcode = WebAssemblyISD::VEC_SHR_U; 2061 break; 2062 default: 2063 llvm_unreachable("unexpected opcode"); 2064 } 2065 2066 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2067 } 2068 2069 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2070 SelectionDAG &DAG) const { 2071 SDLoc DL(Op); 2072 EVT ResT = Op.getValueType(); 2073 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2074 2075 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2076 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2077 return Op; 2078 2079 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2080 return Op; 2081 2082 return SDValue(); 2083 } 2084 2085 //===----------------------------------------------------------------------===// 2086 // Custom DAG combine hooks 2087 //===----------------------------------------------------------------------===// 2088 static SDValue 2089 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2090 auto &DAG = DCI.DAG; 2091 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2092 2093 // Hoist vector bitcasts that don't change the number of lanes out of unary 2094 // shuffles, where they are less likely to get in the way of other combines. 2095 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2096 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2097 SDValue Bitcast = N->getOperand(0); 2098 if (Bitcast.getOpcode() != ISD::BITCAST) 2099 return SDValue(); 2100 if (!N->getOperand(1).isUndef()) 2101 return SDValue(); 2102 SDValue CastOp = Bitcast.getOperand(0); 2103 MVT SrcType = CastOp.getSimpleValueType(); 2104 MVT DstType = Bitcast.getSimpleValueType(); 2105 if (!SrcType.is128BitVector() || 2106 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2107 return SDValue(); 2108 SDValue NewShuffle = DAG.getVectorShuffle( 2109 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2110 return DAG.getBitcast(DstType, NewShuffle); 2111 } 2112 2113 static SDValue 2114 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2115 auto &DAG = DCI.DAG; 2116 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2117 N->getOpcode() == ISD::ZERO_EXTEND); 2118 2119 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2120 // possible before the extract_subvector can be expanded. 2121 auto Extract = N->getOperand(0); 2122 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2123 return SDValue(); 2124 auto Source = Extract.getOperand(0); 2125 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2126 if (IndexNode == nullptr) 2127 return SDValue(); 2128 auto Index = IndexNode->getZExtValue(); 2129 2130 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2131 // extracted subvector is the low or high half of its source. 2132 EVT ResVT = N->getValueType(0); 2133 if (ResVT == MVT::v8i16) { 2134 if (Extract.getValueType() != MVT::v8i8 || 2135 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2136 return SDValue(); 2137 } else if (ResVT == MVT::v4i32) { 2138 if (Extract.getValueType() != MVT::v4i16 || 2139 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2140 return SDValue(); 2141 } else if (ResVT == MVT::v2i64) { 2142 if (Extract.getValueType() != MVT::v2i32 || 2143 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2144 return SDValue(); 2145 } else { 2146 return SDValue(); 2147 } 2148 2149 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2150 bool IsLow = Index == 0; 2151 2152 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2153 : WebAssemblyISD::EXTEND_HIGH_S) 2154 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2155 : WebAssemblyISD::EXTEND_HIGH_U); 2156 2157 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2158 } 2159 2160 static SDValue 2161 performVectorConvertLowCombine(SDNode *N, 2162 TargetLowering::DAGCombinerInfo &DCI) { 2163 auto &DAG = DCI.DAG; 2164 2165 EVT ResVT = N->getValueType(0); 2166 if (ResVT != MVT::v2f64) 2167 return SDValue(); 2168 2169 if (N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) { 2170 // Combine this: 2171 // 2172 // (v2f64 ({s,u}int_to_fp 2173 // (v2i32 (extract_subvector (v4i32 $x), 0)))) 2174 // 2175 // into (f64x2.convert_low_i32x4_{s,u} $x). 2176 auto Extract = N->getOperand(0); 2177 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2178 return SDValue(); 2179 if (Extract.getValueType() != MVT::v2i32) 2180 return SDValue(); 2181 auto Source = Extract.getOperand(0); 2182 if (Source.getValueType() != MVT::v4i32) 2183 return SDValue(); 2184 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2185 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2186 return SDValue(); 2187 2188 unsigned Op = N->getOpcode() == ISD::SINT_TO_FP 2189 ? WebAssemblyISD::CONVERT_LOW_S 2190 : WebAssemblyISD::CONVERT_LOW_U; 2191 2192 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2193 2194 } else if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) { 2195 // Combine this: 2196 // 2197 // (v2f64 (extract_subvector 2198 // (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0)) 2199 // 2200 // into (f64x2.convert_low_i32x4_{s,u} $x). 2201 auto IntToFP = N->getOperand(0); 2202 if (IntToFP.getOpcode() != ISD::SINT_TO_FP && 2203 IntToFP.getOpcode() != ISD::UINT_TO_FP) 2204 return SDValue(); 2205 if (IntToFP.getValueType() != MVT::v4f64) 2206 return SDValue(); 2207 auto Source = IntToFP.getOperand(0); 2208 if (Source.getValueType() != MVT::v4i32) 2209 return SDValue(); 2210 auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2211 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2212 return SDValue(); 2213 2214 unsigned Op = IntToFP->getOpcode() == ISD::SINT_TO_FP 2215 ? WebAssemblyISD::CONVERT_LOW_S 2216 : WebAssemblyISD::CONVERT_LOW_U; 2217 2218 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2219 2220 } else { 2221 llvm_unreachable("unexpected opcode"); 2222 } 2223 } 2224 2225 static SDValue 2226 performVectorTruncSatLowCombine(SDNode *N, 2227 TargetLowering::DAGCombinerInfo &DCI) { 2228 auto &DAG = DCI.DAG; 2229 assert(N->getOpcode() == ISD::CONCAT_VECTORS); 2230 2231 // Combine this: 2232 // 2233 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2234 // 2235 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2236 EVT ResVT = N->getValueType(0); 2237 if (ResVT != MVT::v4i32) 2238 return SDValue(); 2239 2240 auto FPToInt = N->getOperand(0); 2241 auto FPToIntOp = FPToInt.getOpcode(); 2242 if (FPToIntOp != ISD::FP_TO_SINT_SAT && FPToIntOp != ISD::FP_TO_UINT_SAT) 2243 return SDValue(); 2244 if (cast<VTSDNode>(FPToInt.getOperand(1))->getVT() != MVT::i32) 2245 return SDValue(); 2246 2247 auto Source = FPToInt.getOperand(0); 2248 if (Source.getValueType() != MVT::v2f64) 2249 return SDValue(); 2250 2251 auto *Splat = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 2252 APInt SplatValue, SplatUndef; 2253 unsigned SplatBitSize; 2254 bool HasAnyUndefs; 2255 if (!Splat || !Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2256 HasAnyUndefs)) 2257 return SDValue(); 2258 if (SplatValue != 0) 2259 return SDValue(); 2260 2261 unsigned Op = FPToIntOp == ISD::FP_TO_SINT_SAT 2262 ? WebAssemblyISD::TRUNC_SAT_ZERO_S 2263 : WebAssemblyISD::TRUNC_SAT_ZERO_U; 2264 2265 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2266 } 2267 2268 SDValue 2269 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2270 DAGCombinerInfo &DCI) const { 2271 switch (N->getOpcode()) { 2272 default: 2273 return SDValue(); 2274 case ISD::VECTOR_SHUFFLE: 2275 return performVECTOR_SHUFFLECombine(N, DCI); 2276 case ISD::SIGN_EXTEND: 2277 case ISD::ZERO_EXTEND: 2278 return performVectorExtendCombine(N, DCI); 2279 case ISD::SINT_TO_FP: 2280 case ISD::UINT_TO_FP: 2281 case ISD::EXTRACT_SUBVECTOR: 2282 return performVectorConvertLowCombine(N, DCI); 2283 case ISD::CONCAT_VECTORS: 2284 return performVectorTruncSatLowCombine(N, DCI); 2285 } 2286 } 2287