1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "WebAssemblyUtilities.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsWebAssembly.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetOptions.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "wasm-lower"
41 
42 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
43     const TargetMachine &TM, const WebAssemblySubtarget &STI)
44     : TargetLowering(TM), Subtarget(&STI) {
45   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
46 
47   // Booleans always contain 0 or 1.
48   setBooleanContents(ZeroOrOneBooleanContent);
49   // Except in SIMD vectors
50   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
51   // We don't know the microarchitecture here, so just reduce register pressure.
52   setSchedulingPreference(Sched::RegPressure);
53   // Tell ISel that we have a stack pointer.
54   setStackPointerRegisterToSaveRestore(
55       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
56   // Set up the register classes.
57   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
58   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
59   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
60   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
61   if (Subtarget->hasSIMD128()) {
62     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
68   }
69   // Compute derived properties from the register classes.
70   computeRegisterProperties(Subtarget->getRegisterInfo());
71 
72   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
73   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
74   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
75   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
76   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
77   setOperationAction(ISD::BRIND, MVT::Other, Custom);
78 
79   // Take the default expansion for va_arg, va_copy, and va_end. There is no
80   // default action for va_start, so we do that custom.
81   setOperationAction(ISD::VASTART, MVT::Other, Custom);
82   setOperationAction(ISD::VAARG, MVT::Other, Expand);
83   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
84   setOperationAction(ISD::VAEND, MVT::Other, Expand);
85 
86   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
87     // Don't expand the floating-point types to constant pools.
88     setOperationAction(ISD::ConstantFP, T, Legal);
89     // Expand floating-point comparisons.
90     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
91                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
92       setCondCodeAction(CC, T, Expand);
93     // Expand floating-point library function operators.
94     for (auto Op :
95          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
96       setOperationAction(Op, T, Expand);
97     // Note supported floating-point library function operators that otherwise
98     // default to expand.
99     for (auto Op :
100          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
101       setOperationAction(Op, T, Legal);
102     // Support minimum and maximum, which otherwise default to expand.
103     setOperationAction(ISD::FMINIMUM, T, Legal);
104     setOperationAction(ISD::FMAXIMUM, T, Legal);
105     // WebAssembly currently has no builtin f16 support.
106     setOperationAction(ISD::FP16_TO_FP, T, Expand);
107     setOperationAction(ISD::FP_TO_FP16, T, Expand);
108     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
109     setTruncStoreAction(T, MVT::f16, Expand);
110   }
111 
112   // Expand unavailable integer operations.
113   for (auto Op :
114        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
115         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
116         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
117     for (auto T : {MVT::i32, MVT::i64})
118       setOperationAction(Op, T, Expand);
119     if (Subtarget->hasSIMD128())
120       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
121         setOperationAction(Op, T, Expand);
122   }
123 
124   // SIMD-specific configuration
125   if (Subtarget->hasSIMD128()) {
126     // Hoist bitcasts out of shuffles
127     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
128 
129     // Combine extends of extract_subvectors into widening ops
130     setTargetDAGCombine(ISD::SIGN_EXTEND);
131     setTargetDAGCombine(ISD::ZERO_EXTEND);
132 
133     // Support saturating add for i8x16 and i16x8
134     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
135       for (auto T : {MVT::v16i8, MVT::v8i16})
136         setOperationAction(Op, T, Legal);
137 
138     // Support integer abs
139     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
140       setOperationAction(ISD::ABS, T, Legal);
141 
142     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
143     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
144                    MVT::v2f64})
145       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
146 
147     // We have custom shuffle lowering to expose the shuffle mask
148     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
149                    MVT::v2f64})
150       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
151 
152     // Custom lowering since wasm shifts must have a scalar shift amount
153     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
154       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
155         setOperationAction(Op, T, Custom);
156 
157     // Custom lower lane accesses to expand out variable indices
158     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
159       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
160                      MVT::v2f64})
161         setOperationAction(Op, T, Custom);
162 
163     // There is no i8x16.mul instruction
164     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
165 
166     // There is no vector conditional select instruction
167     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
168                    MVT::v2f64})
169       setOperationAction(ISD::SELECT_CC, T, Expand);
170 
171     // Expand integer operations supported for scalars but not SIMD
172     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
173                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
174       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
175         setOperationAction(Op, T, Expand);
176 
177     // But we do have integer min and max operations
178     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
179       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
180         setOperationAction(Op, T, Legal);
181 
182     // Expand float operations supported for scalars but not SIMD
183     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
184                     ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
185                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
186       for (auto T : {MVT::v4f32, MVT::v2f64})
187         setOperationAction(Op, T, Expand);
188 
189     // Expand operations not supported for i64x2 vectors
190     for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC)
191       setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom);
192 
193     // 64x2 conversions are not in the spec
194     for (auto Op :
195          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
196       for (auto T : {MVT::v2i64, MVT::v2f64})
197         setOperationAction(Op, T, Expand);
198   }
199 
200   // As a special case, these operators use the type to mean the type to
201   // sign-extend from.
202   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
203   if (!Subtarget->hasSignExt()) {
204     // Sign extends are legal only when extending a vector extract
205     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
206     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
207       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
208   }
209   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
210     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
211 
212   // Dynamic stack allocation: use the default expansion.
213   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
214   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
215   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
216 
217   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
218   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
219   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
220 
221   // Expand these forms; we pattern-match the forms that we can handle in isel.
222   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
223     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
224       setOperationAction(Op, T, Expand);
225 
226   // We have custom switch handling.
227   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
228 
229   // WebAssembly doesn't have:
230   //  - Floating-point extending loads.
231   //  - Floating-point truncating stores.
232   //  - i1 extending loads.
233   //  - truncating SIMD stores and most extending loads
234   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
235   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
236   for (auto T : MVT::integer_valuetypes())
237     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
238       setLoadExtAction(Ext, T, MVT::i1, Promote);
239   if (Subtarget->hasSIMD128()) {
240     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
241                    MVT::v2f64}) {
242       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
243         if (MVT(T) != MemT) {
244           setTruncStoreAction(T, MemT, Expand);
245           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
246             setLoadExtAction(Ext, T, MemT, Expand);
247         }
248       }
249     }
250     // But some vector extending loads are legal
251     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
252       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
253       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
254       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
255     }
256     // And some truncating stores are legal as well
257     setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
258     setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
259   }
260 
261   // Don't do anything clever with build_pairs
262   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
263 
264   // Trap lowers to wasm unreachable
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
267 
268   // Exception handling intrinsics
269   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
270   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
271 
272   setMaxAtomicSizeInBitsSupported(64);
273 
274   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
275   // consistent with the f64 and f128 names.
276   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
277   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
278 
279   // Define the emscripten name for return address helper.
280   // TODO: when implementing other Wasm backends, make this generic or only do
281   // this on emscripten depending on what they end up doing.
282   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
283 
284   // Always convert switches to br_tables unless there is only one case, which
285   // is equivalent to a simple branch. This reduces code size for wasm, and we
286   // defer possible jump table optimizations to the VM.
287   setMinimumJumpTableEntries(2);
288 }
289 
290 TargetLowering::AtomicExpansionKind
291 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
292   // We have wasm instructions for these
293   switch (AI->getOperation()) {
294   case AtomicRMWInst::Add:
295   case AtomicRMWInst::Sub:
296   case AtomicRMWInst::And:
297   case AtomicRMWInst::Or:
298   case AtomicRMWInst::Xor:
299   case AtomicRMWInst::Xchg:
300     return AtomicExpansionKind::None;
301   default:
302     break;
303   }
304   return AtomicExpansionKind::CmpXChg;
305 }
306 
307 FastISel *WebAssemblyTargetLowering::createFastISel(
308     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
309   return WebAssembly::createFastISel(FuncInfo, LibInfo);
310 }
311 
312 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
313                                                       EVT VT) const {
314   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
315   if (BitWidth > 1 && BitWidth < 8)
316     BitWidth = 8;
317 
318   if (BitWidth > 64) {
319     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
320     // the count to be an i32.
321     BitWidth = 32;
322     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
323            "32-bit shift counts ought to be enough for anyone");
324   }
325 
326   MVT Result = MVT::getIntegerVT(BitWidth);
327   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
328          "Unable to represent scalar shift amount type");
329   return Result;
330 }
331 
332 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
333 // undefined result on invalid/overflow, to the WebAssembly opcode, which
334 // traps on invalid/overflow.
335 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
336                                        MachineBasicBlock *BB,
337                                        const TargetInstrInfo &TII,
338                                        bool IsUnsigned, bool Int64,
339                                        bool Float64, unsigned LoweredOpcode) {
340   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
341 
342   Register OutReg = MI.getOperand(0).getReg();
343   Register InReg = MI.getOperand(1).getReg();
344 
345   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
346   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
347   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
348   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
349   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
350   unsigned Eqz = WebAssembly::EQZ_I32;
351   unsigned And = WebAssembly::AND_I32;
352   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
353   int64_t Substitute = IsUnsigned ? 0 : Limit;
354   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
355   auto &Context = BB->getParent()->getFunction().getContext();
356   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
357 
358   const BasicBlock *LLVMBB = BB->getBasicBlock();
359   MachineFunction *F = BB->getParent();
360   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
361   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
362   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
363 
364   MachineFunction::iterator It = ++BB->getIterator();
365   F->insert(It, FalseMBB);
366   F->insert(It, TrueMBB);
367   F->insert(It, DoneMBB);
368 
369   // Transfer the remainder of BB and its successor edges to DoneMBB.
370   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
371   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
372 
373   BB->addSuccessor(TrueMBB);
374   BB->addSuccessor(FalseMBB);
375   TrueMBB->addSuccessor(DoneMBB);
376   FalseMBB->addSuccessor(DoneMBB);
377 
378   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
379   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
380   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
381   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
382   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
383   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
384   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
385 
386   MI.eraseFromParent();
387   // For signed numbers, we can do a single comparison to determine whether
388   // fabs(x) is within range.
389   if (IsUnsigned) {
390     Tmp0 = InReg;
391   } else {
392     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
393   }
394   BuildMI(BB, DL, TII.get(FConst), Tmp1)
395       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
396   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
397 
398   // For unsigned numbers, we have to do a separate comparison with zero.
399   if (IsUnsigned) {
400     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
401     Register SecondCmpReg =
402         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
403     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
404     BuildMI(BB, DL, TII.get(FConst), Tmp1)
405         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
406     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
407     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
408     CmpReg = AndReg;
409   }
410 
411   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
412 
413   // Create the CFG diamond to select between doing the conversion or using
414   // the substitute value.
415   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
416   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
417   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
418   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
419   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
420       .addReg(FalseReg)
421       .addMBB(FalseMBB)
422       .addReg(TrueReg)
423       .addMBB(TrueMBB);
424 
425   return DoneMBB;
426 }
427 
428 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults,
429                                            DebugLoc DL, MachineBasicBlock *BB,
430                                            const TargetInstrInfo &TII) {
431   MachineInstr &CallParams = *CallResults.getPrevNode();
432   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
433   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
434          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
435 
436   bool IsIndirect = CallParams.getOperand(0).isReg();
437   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
438 
439   unsigned CallOp;
440   if (IsIndirect && IsRetCall) {
441     CallOp = WebAssembly::RET_CALL_INDIRECT;
442   } else if (IsIndirect) {
443     CallOp = WebAssembly::CALL_INDIRECT;
444   } else if (IsRetCall) {
445     CallOp = WebAssembly::RET_CALL;
446   } else {
447     CallOp = WebAssembly::CALL;
448   }
449 
450   MachineFunction &MF = *BB->getParent();
451   const MCInstrDesc &MCID = TII.get(CallOp);
452   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
453 
454   // See if we must truncate the function pointer.
455   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
456   // as 64-bit for uniformity with other pointer types.
457   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
458     Register Reg32 =
459         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
460     auto &FnPtr = CallParams.getOperand(0);
461     BuildMI(*BB, CallResults.getIterator(), DL,
462             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
463         .addReg(FnPtr.getReg());
464     FnPtr.setReg(Reg32);
465   }
466 
467   // Move the function pointer to the end of the arguments for indirect calls
468   if (IsIndirect) {
469     auto FnPtr = CallParams.getOperand(0);
470     CallParams.RemoveOperand(0);
471     CallParams.addOperand(FnPtr);
472   }
473 
474   for (auto Def : CallResults.defs())
475     MIB.add(Def);
476 
477   // Add placeholders for the type index and immediate flags
478   if (IsIndirect) {
479     MIB.addImm(0);
480     MIB.addImm(0);
481 
482     // Ensure that the object file has a __indirect_function_table import, as we
483     // call_indirect against it.
484     MCSymbolWasm *Sym = WebAssembly::getOrCreateFunctionTableSymbol(
485         MF.getContext(), "__indirect_function_table");
486     // Until call_indirect emits TABLE_NUMBER relocs against this symbol, mark
487     // it as NO_STRIP so as to ensure that the indirect function table makes it
488     // to linked output.
489     Sym->setNoStrip();
490   }
491 
492   for (auto Use : CallParams.uses())
493     MIB.add(Use);
494 
495   BB->insert(CallResults.getIterator(), MIB);
496   CallParams.eraseFromParent();
497   CallResults.eraseFromParent();
498 
499   return BB;
500 }
501 
502 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
503     MachineInstr &MI, MachineBasicBlock *BB) const {
504   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
505   DebugLoc DL = MI.getDebugLoc();
506 
507   switch (MI.getOpcode()) {
508   default:
509     llvm_unreachable("Unexpected instr type to insert");
510   case WebAssembly::FP_TO_SINT_I32_F32:
511     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
512                         WebAssembly::I32_TRUNC_S_F32);
513   case WebAssembly::FP_TO_UINT_I32_F32:
514     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
515                         WebAssembly::I32_TRUNC_U_F32);
516   case WebAssembly::FP_TO_SINT_I64_F32:
517     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
518                         WebAssembly::I64_TRUNC_S_F32);
519   case WebAssembly::FP_TO_UINT_I64_F32:
520     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
521                         WebAssembly::I64_TRUNC_U_F32);
522   case WebAssembly::FP_TO_SINT_I32_F64:
523     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
524                         WebAssembly::I32_TRUNC_S_F64);
525   case WebAssembly::FP_TO_UINT_I32_F64:
526     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
527                         WebAssembly::I32_TRUNC_U_F64);
528   case WebAssembly::FP_TO_SINT_I64_F64:
529     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
530                         WebAssembly::I64_TRUNC_S_F64);
531   case WebAssembly::FP_TO_UINT_I64_F64:
532     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
533                         WebAssembly::I64_TRUNC_U_F64);
534   case WebAssembly::CALL_RESULTS:
535   case WebAssembly::RET_CALL_RESULTS:
536     return LowerCallResults(MI, DL, BB, TII);
537   }
538 }
539 
540 const char *
541 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
542   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
543   case WebAssemblyISD::FIRST_NUMBER:
544   case WebAssemblyISD::FIRST_MEM_OPCODE:
545     break;
546 #define HANDLE_NODETYPE(NODE)                                                  \
547   case WebAssemblyISD::NODE:                                                   \
548     return "WebAssemblyISD::" #NODE;
549 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
550 #include "WebAssemblyISD.def"
551 #undef HANDLE_MEM_NODETYPE
552 #undef HANDLE_NODETYPE
553   }
554   return nullptr;
555 }
556 
557 std::pair<unsigned, const TargetRegisterClass *>
558 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
559     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
560   // First, see if this is a constraint that directly corresponds to a
561   // WebAssembly register class.
562   if (Constraint.size() == 1) {
563     switch (Constraint[0]) {
564     case 'r':
565       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
566       if (Subtarget->hasSIMD128() && VT.isVector()) {
567         if (VT.getSizeInBits() == 128)
568           return std::make_pair(0U, &WebAssembly::V128RegClass);
569       }
570       if (VT.isInteger() && !VT.isVector()) {
571         if (VT.getSizeInBits() <= 32)
572           return std::make_pair(0U, &WebAssembly::I32RegClass);
573         if (VT.getSizeInBits() <= 64)
574           return std::make_pair(0U, &WebAssembly::I64RegClass);
575       }
576       if (VT.isFloatingPoint() && !VT.isVector()) {
577         switch (VT.getSizeInBits()) {
578         case 32:
579           return std::make_pair(0U, &WebAssembly::F32RegClass);
580         case 64:
581           return std::make_pair(0U, &WebAssembly::F64RegClass);
582         default:
583           break;
584         }
585       }
586       break;
587     default:
588       break;
589     }
590   }
591 
592   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
593 }
594 
595 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
596   // Assume ctz is a relatively cheap operation.
597   return true;
598 }
599 
600 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
601   // Assume clz is a relatively cheap operation.
602   return true;
603 }
604 
605 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
606                                                       const AddrMode &AM,
607                                                       Type *Ty, unsigned AS,
608                                                       Instruction *I) const {
609   // WebAssembly offsets are added as unsigned without wrapping. The
610   // isLegalAddressingMode gives us no way to determine if wrapping could be
611   // happening, so we approximate this by accepting only non-negative offsets.
612   if (AM.BaseOffs < 0)
613     return false;
614 
615   // WebAssembly has no scale register operands.
616   if (AM.Scale != 0)
617     return false;
618 
619   // Everything else is legal.
620   return true;
621 }
622 
623 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
624     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
625     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
626   // WebAssembly supports unaligned accesses, though it should be declared
627   // with the p2align attribute on loads and stores which do so, and there
628   // may be a performance impact. We tell LLVM they're "fast" because
629   // for the kinds of things that LLVM uses this for (merging adjacent stores
630   // of constants, etc.), WebAssembly implementations will either want the
631   // unaligned access or they'll split anyway.
632   if (Fast)
633     *Fast = true;
634   return true;
635 }
636 
637 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
638                                               AttributeList Attr) const {
639   // The current thinking is that wasm engines will perform this optimization,
640   // so we can save on code size.
641   return true;
642 }
643 
644 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
645   EVT ExtT = ExtVal.getValueType();
646   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
647   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
648          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
649          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
650 }
651 
652 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
653                                                   LLVMContext &C,
654                                                   EVT VT) const {
655   if (VT.isVector())
656     return VT.changeVectorElementTypeToInteger();
657 
658   // So far, all branch instructions in Wasm take an I32 condition.
659   // The default TargetLowering::getSetCCResultType returns the pointer size,
660   // which would be useful to reduce instruction counts when testing
661   // against 64-bit pointers/values if at some point Wasm supports that.
662   return EVT::getIntegerVT(C, 32);
663 }
664 
665 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
666                                                    const CallInst &I,
667                                                    MachineFunction &MF,
668                                                    unsigned Intrinsic) const {
669   switch (Intrinsic) {
670   case Intrinsic::wasm_memory_atomic_notify:
671     Info.opc = ISD::INTRINSIC_W_CHAIN;
672     Info.memVT = MVT::i32;
673     Info.ptrVal = I.getArgOperand(0);
674     Info.offset = 0;
675     Info.align = Align(4);
676     // atomic.notify instruction does not really load the memory specified with
677     // this argument, but MachineMemOperand should either be load or store, so
678     // we set this to a load.
679     // FIXME Volatile isn't really correct, but currently all LLVM atomic
680     // instructions are treated as volatiles in the backend, so we should be
681     // consistent. The same applies for wasm_atomic_wait intrinsics too.
682     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
683     return true;
684   case Intrinsic::wasm_memory_atomic_wait32:
685     Info.opc = ISD::INTRINSIC_W_CHAIN;
686     Info.memVT = MVT::i32;
687     Info.ptrVal = I.getArgOperand(0);
688     Info.offset = 0;
689     Info.align = Align(4);
690     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
691     return true;
692   case Intrinsic::wasm_memory_atomic_wait64:
693     Info.opc = ISD::INTRINSIC_W_CHAIN;
694     Info.memVT = MVT::i64;
695     Info.ptrVal = I.getArgOperand(0);
696     Info.offset = 0;
697     Info.align = Align(8);
698     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
699     return true;
700   case Intrinsic::wasm_load32_zero:
701   case Intrinsic::wasm_load64_zero:
702     Info.opc = ISD::INTRINSIC_W_CHAIN;
703     Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64;
704     Info.ptrVal = I.getArgOperand(0);
705     Info.offset = 0;
706     Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8);
707     Info.flags = MachineMemOperand::MOLoad;
708     return true;
709   case Intrinsic::wasm_load8_lane:
710   case Intrinsic::wasm_load16_lane:
711   case Intrinsic::wasm_load32_lane:
712   case Intrinsic::wasm_load64_lane:
713   case Intrinsic::wasm_store8_lane:
714   case Intrinsic::wasm_store16_lane:
715   case Intrinsic::wasm_store32_lane:
716   case Intrinsic::wasm_store64_lane: {
717     MVT MemVT;
718     Align MemAlign;
719     switch (Intrinsic) {
720     case Intrinsic::wasm_load8_lane:
721     case Intrinsic::wasm_store8_lane:
722       MemVT = MVT::i8;
723       MemAlign = Align(1);
724       break;
725     case Intrinsic::wasm_load16_lane:
726     case Intrinsic::wasm_store16_lane:
727       MemVT = MVT::i16;
728       MemAlign = Align(2);
729       break;
730     case Intrinsic::wasm_load32_lane:
731     case Intrinsic::wasm_store32_lane:
732       MemVT = MVT::i32;
733       MemAlign = Align(4);
734       break;
735     case Intrinsic::wasm_load64_lane:
736     case Intrinsic::wasm_store64_lane:
737       MemVT = MVT::i64;
738       MemAlign = Align(8);
739       break;
740     default:
741       llvm_unreachable("unexpected intrinsic");
742     }
743     if (Intrinsic == Intrinsic::wasm_load8_lane ||
744         Intrinsic == Intrinsic::wasm_load16_lane ||
745         Intrinsic == Intrinsic::wasm_load32_lane ||
746         Intrinsic == Intrinsic::wasm_load64_lane) {
747       Info.opc = ISD::INTRINSIC_W_CHAIN;
748       Info.flags = MachineMemOperand::MOLoad;
749     } else {
750       Info.opc = ISD::INTRINSIC_VOID;
751       Info.flags = MachineMemOperand::MOStore;
752     }
753     Info.ptrVal = I.getArgOperand(0);
754     Info.memVT = MemVT;
755     Info.offset = 0;
756     Info.align = MemAlign;
757     return true;
758   }
759   case Intrinsic::wasm_prefetch_t:
760   case Intrinsic::wasm_prefetch_nt: {
761     Info.opc = ISD::INTRINSIC_VOID;
762     Info.memVT = MVT::i8;
763     Info.ptrVal = I.getArgOperand(0);
764     Info.offset = 0;
765     Info.align = Align(1);
766     Info.flags = MachineMemOperand::MOLoad;
767     return true;
768   }
769   default:
770     return false;
771   }
772 }
773 
774 //===----------------------------------------------------------------------===//
775 // WebAssembly Lowering private implementation.
776 //===----------------------------------------------------------------------===//
777 
778 //===----------------------------------------------------------------------===//
779 // Lowering Code
780 //===----------------------------------------------------------------------===//
781 
782 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
783   MachineFunction &MF = DAG.getMachineFunction();
784   DAG.getContext()->diagnose(
785       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
786 }
787 
788 // Test whether the given calling convention is supported.
789 static bool callingConvSupported(CallingConv::ID CallConv) {
790   // We currently support the language-independent target-independent
791   // conventions. We don't yet have a way to annotate calls with properties like
792   // "cold", and we don't have any call-clobbered registers, so these are mostly
793   // all handled the same.
794   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
795          CallConv == CallingConv::Cold ||
796          CallConv == CallingConv::PreserveMost ||
797          CallConv == CallingConv::PreserveAll ||
798          CallConv == CallingConv::CXX_FAST_TLS ||
799          CallConv == CallingConv::WASM_EmscriptenInvoke ||
800          CallConv == CallingConv::Swift;
801 }
802 
803 SDValue
804 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
805                                      SmallVectorImpl<SDValue> &InVals) const {
806   SelectionDAG &DAG = CLI.DAG;
807   SDLoc DL = CLI.DL;
808   SDValue Chain = CLI.Chain;
809   SDValue Callee = CLI.Callee;
810   MachineFunction &MF = DAG.getMachineFunction();
811   auto Layout = MF.getDataLayout();
812 
813   CallingConv::ID CallConv = CLI.CallConv;
814   if (!callingConvSupported(CallConv))
815     fail(DL, DAG,
816          "WebAssembly doesn't support language-specific or target-specific "
817          "calling conventions yet");
818   if (CLI.IsPatchPoint)
819     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
820 
821   if (CLI.IsTailCall) {
822     auto NoTail = [&](const char *Msg) {
823       if (CLI.CB && CLI.CB->isMustTailCall())
824         fail(DL, DAG, Msg);
825       CLI.IsTailCall = false;
826     };
827 
828     if (!Subtarget->hasTailCall())
829       NoTail("WebAssembly 'tail-call' feature not enabled");
830 
831     // Varargs calls cannot be tail calls because the buffer is on the stack
832     if (CLI.IsVarArg)
833       NoTail("WebAssembly does not support varargs tail calls");
834 
835     // Do not tail call unless caller and callee return types match
836     const Function &F = MF.getFunction();
837     const TargetMachine &TM = getTargetMachine();
838     Type *RetTy = F.getReturnType();
839     SmallVector<MVT, 4> CallerRetTys;
840     SmallVector<MVT, 4> CalleeRetTys;
841     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
842     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
843     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
844                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
845                                  CalleeRetTys.begin());
846     if (!TypesMatch)
847       NoTail("WebAssembly tail call requires caller and callee return types to "
848              "match");
849 
850     // If pointers to local stack values are passed, we cannot tail call
851     if (CLI.CB) {
852       for (auto &Arg : CLI.CB->args()) {
853         Value *Val = Arg.get();
854         // Trace the value back through pointer operations
855         while (true) {
856           Value *Src = Val->stripPointerCastsAndAliases();
857           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
858             Src = GEP->getPointerOperand();
859           if (Val == Src)
860             break;
861           Val = Src;
862         }
863         if (isa<AllocaInst>(Val)) {
864           NoTail(
865               "WebAssembly does not support tail calling with stack arguments");
866           break;
867         }
868       }
869     }
870   }
871 
872   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
873   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
874   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
875 
876   // The generic code may have added an sret argument. If we're lowering an
877   // invoke function, the ABI requires that the function pointer be the first
878   // argument, so we may have to swap the arguments.
879   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
880       Outs[0].Flags.isSRet()) {
881     std::swap(Outs[0], Outs[1]);
882     std::swap(OutVals[0], OutVals[1]);
883   }
884 
885   bool HasSwiftSelfArg = false;
886   bool HasSwiftErrorArg = false;
887   unsigned NumFixedArgs = 0;
888   for (unsigned I = 0; I < Outs.size(); ++I) {
889     const ISD::OutputArg &Out = Outs[I];
890     SDValue &OutVal = OutVals[I];
891     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
892     HasSwiftErrorArg |= Out.Flags.isSwiftError();
893     if (Out.Flags.isNest())
894       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
895     if (Out.Flags.isInAlloca())
896       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
897     if (Out.Flags.isInConsecutiveRegs())
898       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
899     if (Out.Flags.isInConsecutiveRegsLast())
900       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
901     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
902       auto &MFI = MF.getFrameInfo();
903       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
904                                      Out.Flags.getNonZeroByValAlign(),
905                                      /*isSS=*/false);
906       SDValue SizeNode =
907           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
908       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
909       Chain = DAG.getMemcpy(
910           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
911           /*isVolatile*/ false, /*AlwaysInline=*/false,
912           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
913       OutVal = FINode;
914     }
915     // Count the number of fixed args *after* legalization.
916     NumFixedArgs += Out.IsFixed;
917   }
918 
919   bool IsVarArg = CLI.IsVarArg;
920   auto PtrVT = getPointerTy(Layout);
921 
922   // For swiftcc, emit additional swiftself and swifterror arguments
923   // if there aren't. These additional arguments are also added for callee
924   // signature They are necessary to match callee and caller signature for
925   // indirect call.
926   if (CallConv == CallingConv::Swift) {
927     if (!HasSwiftSelfArg) {
928       NumFixedArgs++;
929       ISD::OutputArg Arg;
930       Arg.Flags.setSwiftSelf();
931       CLI.Outs.push_back(Arg);
932       SDValue ArgVal = DAG.getUNDEF(PtrVT);
933       CLI.OutVals.push_back(ArgVal);
934     }
935     if (!HasSwiftErrorArg) {
936       NumFixedArgs++;
937       ISD::OutputArg Arg;
938       Arg.Flags.setSwiftError();
939       CLI.Outs.push_back(Arg);
940       SDValue ArgVal = DAG.getUNDEF(PtrVT);
941       CLI.OutVals.push_back(ArgVal);
942     }
943   }
944 
945   // Analyze operands of the call, assigning locations to each operand.
946   SmallVector<CCValAssign, 16> ArgLocs;
947   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
948 
949   if (IsVarArg) {
950     // Outgoing non-fixed arguments are placed in a buffer. First
951     // compute their offsets and the total amount of buffer space needed.
952     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
953       const ISD::OutputArg &Out = Outs[I];
954       SDValue &Arg = OutVals[I];
955       EVT VT = Arg.getValueType();
956       assert(VT != MVT::iPTR && "Legalized args should be concrete");
957       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
958       Align Alignment =
959           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
960       unsigned Offset =
961           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
962       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
963                                         Offset, VT.getSimpleVT(),
964                                         CCValAssign::Full));
965     }
966   }
967 
968   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
969 
970   SDValue FINode;
971   if (IsVarArg && NumBytes) {
972     // For non-fixed arguments, next emit stores to store the argument values
973     // to the stack buffer at the offsets computed above.
974     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
975                                                  Layout.getStackAlignment(),
976                                                  /*isSS=*/false);
977     unsigned ValNo = 0;
978     SmallVector<SDValue, 8> Chains;
979     for (SDValue Arg :
980          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
981       assert(ArgLocs[ValNo].getValNo() == ValNo &&
982              "ArgLocs should remain in order and only hold varargs args");
983       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
984       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
985       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
986                                 DAG.getConstant(Offset, DL, PtrVT));
987       Chains.push_back(
988           DAG.getStore(Chain, DL, Arg, Add,
989                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
990     }
991     if (!Chains.empty())
992       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
993   } else if (IsVarArg) {
994     FINode = DAG.getIntPtrConstant(0, DL);
995   }
996 
997   if (Callee->getOpcode() == ISD::GlobalAddress) {
998     // If the callee is a GlobalAddress node (quite common, every direct call
999     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1000     // doesn't at MO_GOT which is not needed for direct calls.
1001     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1002     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1003                                         getPointerTy(DAG.getDataLayout()),
1004                                         GA->getOffset());
1005     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1006                          getPointerTy(DAG.getDataLayout()), Callee);
1007   }
1008 
1009   // Compute the operands for the CALLn node.
1010   SmallVector<SDValue, 16> Ops;
1011   Ops.push_back(Chain);
1012   Ops.push_back(Callee);
1013 
1014   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1015   // isn't reliable.
1016   Ops.append(OutVals.begin(),
1017              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1018   // Add a pointer to the vararg buffer.
1019   if (IsVarArg)
1020     Ops.push_back(FINode);
1021 
1022   SmallVector<EVT, 8> InTys;
1023   for (const auto &In : Ins) {
1024     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1025     assert(!In.Flags.isNest() && "nest is not valid for return values");
1026     if (In.Flags.isInAlloca())
1027       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1028     if (In.Flags.isInConsecutiveRegs())
1029       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1030     if (In.Flags.isInConsecutiveRegsLast())
1031       fail(DL, DAG,
1032            "WebAssembly hasn't implemented cons regs last return values");
1033     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1034     // registers.
1035     InTys.push_back(In.VT);
1036   }
1037 
1038   if (CLI.IsTailCall) {
1039     // ret_calls do not return values to the current frame
1040     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1041     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1042   }
1043 
1044   InTys.push_back(MVT::Other);
1045   SDVTList InTyList = DAG.getVTList(InTys);
1046   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1047 
1048   for (size_t I = 0; I < Ins.size(); ++I)
1049     InVals.push_back(Res.getValue(I));
1050 
1051   // Return the chain
1052   return Res.getValue(Ins.size());
1053 }
1054 
1055 bool WebAssemblyTargetLowering::CanLowerReturn(
1056     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1057     const SmallVectorImpl<ISD::OutputArg> &Outs,
1058     LLVMContext & /*Context*/) const {
1059   // WebAssembly can only handle returning tuples with multivalue enabled
1060   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1061 }
1062 
1063 SDValue WebAssemblyTargetLowering::LowerReturn(
1064     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1065     const SmallVectorImpl<ISD::OutputArg> &Outs,
1066     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1067     SelectionDAG &DAG) const {
1068   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1069          "MVP WebAssembly can only return up to one value");
1070   if (!callingConvSupported(CallConv))
1071     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1072 
1073   SmallVector<SDValue, 4> RetOps(1, Chain);
1074   RetOps.append(OutVals.begin(), OutVals.end());
1075   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1076 
1077   // Record the number and types of the return values.
1078   for (const ISD::OutputArg &Out : Outs) {
1079     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1080     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1081     assert(Out.IsFixed && "non-fixed return value is not valid");
1082     if (Out.Flags.isInAlloca())
1083       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1084     if (Out.Flags.isInConsecutiveRegs())
1085       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1086     if (Out.Flags.isInConsecutiveRegsLast())
1087       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1088   }
1089 
1090   return Chain;
1091 }
1092 
1093 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1094     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1095     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1096     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1097   if (!callingConvSupported(CallConv))
1098     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1099 
1100   MachineFunction &MF = DAG.getMachineFunction();
1101   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1102 
1103   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1104   // of the incoming values before they're represented by virtual registers.
1105   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1106 
1107   bool HasSwiftErrorArg = false;
1108   bool HasSwiftSelfArg = false;
1109   for (const ISD::InputArg &In : Ins) {
1110     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1111     HasSwiftErrorArg |= In.Flags.isSwiftError();
1112     if (In.Flags.isInAlloca())
1113       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1114     if (In.Flags.isNest())
1115       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1116     if (In.Flags.isInConsecutiveRegs())
1117       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1118     if (In.Flags.isInConsecutiveRegsLast())
1119       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1120     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1121     // registers.
1122     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1123                                            DAG.getTargetConstant(InVals.size(),
1124                                                                  DL, MVT::i32))
1125                              : DAG.getUNDEF(In.VT));
1126 
1127     // Record the number and types of arguments.
1128     MFI->addParam(In.VT);
1129   }
1130 
1131   // For swiftcc, emit additional swiftself and swifterror arguments
1132   // if there aren't. These additional arguments are also added for callee
1133   // signature They are necessary to match callee and caller signature for
1134   // indirect call.
1135   auto PtrVT = getPointerTy(MF.getDataLayout());
1136   if (CallConv == CallingConv::Swift) {
1137     if (!HasSwiftSelfArg) {
1138       MFI->addParam(PtrVT);
1139     }
1140     if (!HasSwiftErrorArg) {
1141       MFI->addParam(PtrVT);
1142     }
1143   }
1144   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1145   // the buffer is passed as an argument.
1146   if (IsVarArg) {
1147     MVT PtrVT = getPointerTy(MF.getDataLayout());
1148     Register VarargVreg =
1149         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1150     MFI->setVarargBufferVreg(VarargVreg);
1151     Chain = DAG.getCopyToReg(
1152         Chain, DL, VarargVreg,
1153         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1154                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1155     MFI->addParam(PtrVT);
1156   }
1157 
1158   // Record the number and types of arguments and results.
1159   SmallVector<MVT, 4> Params;
1160   SmallVector<MVT, 4> Results;
1161   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1162                       MF.getFunction(), DAG.getTarget(), Params, Results);
1163   for (MVT VT : Results)
1164     MFI->addResult(VT);
1165   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1166   // the param logic here with ComputeSignatureVTs
1167   assert(MFI->getParams().size() == Params.size() &&
1168          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1169                     Params.begin()));
1170 
1171   return Chain;
1172 }
1173 
1174 void WebAssemblyTargetLowering::ReplaceNodeResults(
1175     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1176   switch (N->getOpcode()) {
1177   case ISD::SIGN_EXTEND_INREG:
1178     // Do not add any results, signifying that N should not be custom lowered
1179     // after all. This happens because simd128 turns on custom lowering for
1180     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1181     // illegal type.
1182     break;
1183   default:
1184     llvm_unreachable(
1185         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1186   }
1187 }
1188 
1189 //===----------------------------------------------------------------------===//
1190 //  Custom lowering hooks.
1191 //===----------------------------------------------------------------------===//
1192 
1193 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1194                                                   SelectionDAG &DAG) const {
1195   SDLoc DL(Op);
1196   switch (Op.getOpcode()) {
1197   default:
1198     llvm_unreachable("unimplemented operation lowering");
1199     return SDValue();
1200   case ISD::FrameIndex:
1201     return LowerFrameIndex(Op, DAG);
1202   case ISD::GlobalAddress:
1203     return LowerGlobalAddress(Op, DAG);
1204   case ISD::GlobalTLSAddress:
1205     return LowerGlobalTLSAddress(Op, DAG);
1206   case ISD::ExternalSymbol:
1207     return LowerExternalSymbol(Op, DAG);
1208   case ISD::JumpTable:
1209     return LowerJumpTable(Op, DAG);
1210   case ISD::BR_JT:
1211     return LowerBR_JT(Op, DAG);
1212   case ISD::VASTART:
1213     return LowerVASTART(Op, DAG);
1214   case ISD::BlockAddress:
1215   case ISD::BRIND:
1216     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1217     return SDValue();
1218   case ISD::RETURNADDR:
1219     return LowerRETURNADDR(Op, DAG);
1220   case ISD::FRAMEADDR:
1221     return LowerFRAMEADDR(Op, DAG);
1222   case ISD::CopyToReg:
1223     return LowerCopyToReg(Op, DAG);
1224   case ISD::EXTRACT_VECTOR_ELT:
1225   case ISD::INSERT_VECTOR_ELT:
1226     return LowerAccessVectorElement(Op, DAG);
1227   case ISD::INTRINSIC_VOID:
1228   case ISD::INTRINSIC_WO_CHAIN:
1229   case ISD::INTRINSIC_W_CHAIN:
1230     return LowerIntrinsic(Op, DAG);
1231   case ISD::SIGN_EXTEND_INREG:
1232     return LowerSIGN_EXTEND_INREG(Op, DAG);
1233   case ISD::BUILD_VECTOR:
1234     return LowerBUILD_VECTOR(Op, DAG);
1235   case ISD::VECTOR_SHUFFLE:
1236     return LowerVECTOR_SHUFFLE(Op, DAG);
1237   case ISD::SETCC:
1238     return LowerSETCC(Op, DAG);
1239   case ISD::SHL:
1240   case ISD::SRA:
1241   case ISD::SRL:
1242     return LowerShift(Op, DAG);
1243   }
1244 }
1245 
1246 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1247                                                   SelectionDAG &DAG) const {
1248   SDValue Src = Op.getOperand(2);
1249   if (isa<FrameIndexSDNode>(Src.getNode())) {
1250     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1251     // the FI to some LEA-like instruction, but since we don't have that, we
1252     // need to insert some kind of instruction that can take an FI operand and
1253     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1254     // local.copy between Op and its FI operand.
1255     SDValue Chain = Op.getOperand(0);
1256     SDLoc DL(Op);
1257     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1258     EVT VT = Src.getValueType();
1259     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1260                                                    : WebAssembly::COPY_I64,
1261                                     DL, VT, Src),
1262                  0);
1263     return Op.getNode()->getNumValues() == 1
1264                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1265                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1266                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1267                                                            : SDValue());
1268   }
1269   return SDValue();
1270 }
1271 
1272 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1273                                                    SelectionDAG &DAG) const {
1274   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1275   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1276 }
1277 
1278 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1279                                                    SelectionDAG &DAG) const {
1280   SDLoc DL(Op);
1281 
1282   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1283     fail(DL, DAG,
1284          "Non-Emscripten WebAssembly hasn't implemented "
1285          "__builtin_return_address");
1286     return SDValue();
1287   }
1288 
1289   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1290     return SDValue();
1291 
1292   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1293   MakeLibCallOptions CallOptions;
1294   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1295                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1296       .first;
1297 }
1298 
1299 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1300                                                   SelectionDAG &DAG) const {
1301   // Non-zero depths are not supported by WebAssembly currently. Use the
1302   // legalizer's default expansion, which is to return 0 (what this function is
1303   // documented to do).
1304   if (Op.getConstantOperandVal(0) > 0)
1305     return SDValue();
1306 
1307   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1308   EVT VT = Op.getValueType();
1309   Register FP =
1310       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1311   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1312 }
1313 
1314 SDValue
1315 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1316                                                  SelectionDAG &DAG) const {
1317   SDLoc DL(Op);
1318   const auto *GA = cast<GlobalAddressSDNode>(Op);
1319   MVT PtrVT = getPointerTy(DAG.getDataLayout());
1320 
1321   MachineFunction &MF = DAG.getMachineFunction();
1322   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1323     report_fatal_error("cannot use thread-local storage without bulk memory",
1324                        false);
1325 
1326   const GlobalValue *GV = GA->getGlobal();
1327 
1328   // Currently Emscripten does not support dynamic linking with threads.
1329   // Therefore, if we have thread-local storage, only the local-exec model
1330   // is possible.
1331   // TODO: remove this and implement proper TLS models once Emscripten
1332   // supports dynamic linking with threads.
1333   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1334       !Subtarget->getTargetTriple().isOSEmscripten()) {
1335     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1336                        "non-Emscripten OSes: variable " +
1337                            GV->getName(),
1338                        false);
1339   }
1340 
1341   auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1342                                      : WebAssembly::GLOBAL_GET_I32;
1343   const char *BaseName = MF.createExternalSymbolName("__tls_base");
1344 
1345   SDValue BaseAddr(
1346       DAG.getMachineNode(GlobalGet, DL, PtrVT,
1347                          DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1348       0);
1349 
1350   SDValue TLSOffset = DAG.getTargetGlobalAddress(
1351       GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1352   SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset);
1353 
1354   return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1355 }
1356 
1357 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1358                                                       SelectionDAG &DAG) const {
1359   SDLoc DL(Op);
1360   const auto *GA = cast<GlobalAddressSDNode>(Op);
1361   EVT VT = Op.getValueType();
1362   assert(GA->getTargetFlags() == 0 &&
1363          "Unexpected target flags on generic GlobalAddressSDNode");
1364   if (GA->getAddressSpace() != 0)
1365     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1366 
1367   unsigned OperandFlags = 0;
1368   if (isPositionIndependent()) {
1369     const GlobalValue *GV = GA->getGlobal();
1370     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1371       MachineFunction &MF = DAG.getMachineFunction();
1372       MVT PtrVT = getPointerTy(MF.getDataLayout());
1373       const char *BaseName;
1374       if (GV->getValueType()->isFunctionTy()) {
1375         BaseName = MF.createExternalSymbolName("__table_base");
1376         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1377       }
1378       else {
1379         BaseName = MF.createExternalSymbolName("__memory_base");
1380         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1381       }
1382       SDValue BaseAddr =
1383           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1384                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1385 
1386       SDValue SymAddr = DAG.getNode(
1387           WebAssemblyISD::WrapperPIC, DL, VT,
1388           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1389                                      OperandFlags));
1390 
1391       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1392     } else {
1393       OperandFlags = WebAssemblyII::MO_GOT;
1394     }
1395   }
1396 
1397   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1398                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1399                                                 GA->getOffset(), OperandFlags));
1400 }
1401 
1402 SDValue
1403 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1404                                                SelectionDAG &DAG) const {
1405   SDLoc DL(Op);
1406   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1407   EVT VT = Op.getValueType();
1408   assert(ES->getTargetFlags() == 0 &&
1409          "Unexpected target flags on generic ExternalSymbolSDNode");
1410   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1411                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1412 }
1413 
1414 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1415                                                   SelectionDAG &DAG) const {
1416   // There's no need for a Wrapper node because we always incorporate a jump
1417   // table operand into a BR_TABLE instruction, rather than ever
1418   // materializing it in a register.
1419   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1420   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1421                                 JT->getTargetFlags());
1422 }
1423 
1424 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1425                                               SelectionDAG &DAG) const {
1426   SDLoc DL(Op);
1427   SDValue Chain = Op.getOperand(0);
1428   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1429   SDValue Index = Op.getOperand(2);
1430   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1431 
1432   SmallVector<SDValue, 8> Ops;
1433   Ops.push_back(Chain);
1434   Ops.push_back(Index);
1435 
1436   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1437   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1438 
1439   // Add an operand for each case.
1440   for (auto MBB : MBBs)
1441     Ops.push_back(DAG.getBasicBlock(MBB));
1442 
1443   // Add the first MBB as a dummy default target for now. This will be replaced
1444   // with the proper default target (and the preceding range check eliminated)
1445   // if possible by WebAssemblyFixBrTableDefaults.
1446   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1447   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1448 }
1449 
1450 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1451                                                 SelectionDAG &DAG) const {
1452   SDLoc DL(Op);
1453   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1454 
1455   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1456   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1457 
1458   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1459                                     MFI->getVarargBufferVreg(), PtrVT);
1460   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1461                       MachinePointerInfo(SV));
1462 }
1463 
1464 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1465                                                   SelectionDAG &DAG) const {
1466   MachineFunction &MF = DAG.getMachineFunction();
1467   unsigned IntNo;
1468   switch (Op.getOpcode()) {
1469   case ISD::INTRINSIC_VOID:
1470   case ISD::INTRINSIC_W_CHAIN:
1471     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1472     break;
1473   case ISD::INTRINSIC_WO_CHAIN:
1474     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1475     break;
1476   default:
1477     llvm_unreachable("Invalid intrinsic");
1478   }
1479   SDLoc DL(Op);
1480 
1481   switch (IntNo) {
1482   default:
1483     return SDValue(); // Don't custom lower most intrinsics.
1484 
1485   case Intrinsic::wasm_lsda: {
1486     EVT VT = Op.getValueType();
1487     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1488     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1489     auto &Context = MF.getMMI().getContext();
1490     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1491                                             Twine(MF.getFunctionNumber()));
1492     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1493                        DAG.getMCSymbol(S, PtrVT));
1494   }
1495 
1496   case Intrinsic::wasm_throw: {
1497     // We only support C++ exceptions for now
1498     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1499     if (Tag != CPP_EXCEPTION)
1500       llvm_unreachable("Invalid tag!");
1501     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1502     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1503     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1504     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1505                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
1506     return DAG.getNode(WebAssemblyISD::THROW, DL,
1507                        MVT::Other, // outchain type
1508                        {
1509                            Op.getOperand(0), // inchain
1510                            SymNode,          // exception symbol
1511                            Op.getOperand(3)  // thrown value
1512                        });
1513   }
1514 
1515   case Intrinsic::wasm_shuffle: {
1516     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1517     SDValue Ops[18];
1518     size_t OpIdx = 0;
1519     Ops[OpIdx++] = Op.getOperand(1);
1520     Ops[OpIdx++] = Op.getOperand(2);
1521     while (OpIdx < 18) {
1522       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1523       if (MaskIdx.isUndef() ||
1524           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1525         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1526       } else {
1527         Ops[OpIdx++] = MaskIdx;
1528       }
1529     }
1530     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1531   }
1532   }
1533 }
1534 
1535 SDValue
1536 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1537                                                   SelectionDAG &DAG) const {
1538   SDLoc DL(Op);
1539   // If sign extension operations are disabled, allow sext_inreg only if operand
1540   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1541   // extension operations, but allowing sext_inreg in this context lets us have
1542   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1543   // everywhere would be simpler in this file, but would necessitate large and
1544   // brittle patterns to undo the expansion and select extract_lane_s
1545   // instructions.
1546   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1547   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1548     return SDValue();
1549 
1550   const SDValue &Extract = Op.getOperand(0);
1551   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1552   if (VecT.getVectorElementType().getSizeInBits() > 32)
1553     return SDValue();
1554   MVT ExtractedLaneT =
1555       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1556   MVT ExtractedVecT =
1557       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1558   if (ExtractedVecT == VecT)
1559     return Op;
1560 
1561   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1562   const SDNode *Index = Extract.getOperand(1).getNode();
1563   if (!isa<ConstantSDNode>(Index))
1564     return SDValue();
1565   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1566   unsigned Scale =
1567       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1568   assert(Scale > 1);
1569   SDValue NewIndex =
1570       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1571   SDValue NewExtract = DAG.getNode(
1572       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1573       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1574   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1575                      Op.getOperand(1));
1576 }
1577 
1578 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1579                                                      SelectionDAG &DAG) const {
1580   SDLoc DL(Op);
1581   const EVT VecT = Op.getValueType();
1582   const EVT LaneT = Op.getOperand(0).getValueType();
1583   const size_t Lanes = Op.getNumOperands();
1584   bool CanSwizzle = VecT == MVT::v16i8;
1585 
1586   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1587   // possible number of lanes at once followed by a sequence of replace_lane
1588   // instructions to individually initialize any remaining lanes.
1589 
1590   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1591   // swizzled lanes should be given greater weight.
1592 
1593   // TODO: Investigate building vectors by shuffling together vectors built by
1594   // separately specialized means.
1595 
1596   auto IsConstant = [](const SDValue &V) {
1597     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1598   };
1599 
1600   // Returns the source vector and index vector pair if they exist. Checks for:
1601   //   (extract_vector_elt
1602   //     $src,
1603   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1604   //   )
1605   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1606     auto Bail = std::make_pair(SDValue(), SDValue());
1607     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1608       return Bail;
1609     const SDValue &SwizzleSrc = Lane->getOperand(0);
1610     const SDValue &IndexExt = Lane->getOperand(1);
1611     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1612       return Bail;
1613     const SDValue &Index = IndexExt->getOperand(0);
1614     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1615       return Bail;
1616     const SDValue &SwizzleIndices = Index->getOperand(0);
1617     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1618         SwizzleIndices.getValueType() != MVT::v16i8 ||
1619         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1620         Index->getConstantOperandVal(1) != I)
1621       return Bail;
1622     return std::make_pair(SwizzleSrc, SwizzleIndices);
1623   };
1624 
1625   using ValueEntry = std::pair<SDValue, size_t>;
1626   SmallVector<ValueEntry, 16> SplatValueCounts;
1627 
1628   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1629   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1630 
1631   auto AddCount = [](auto &Counts, const auto &Val) {
1632     auto CountIt = std::find_if(Counts.begin(), Counts.end(),
1633                                 [&Val](auto E) { return E.first == Val; });
1634     if (CountIt == Counts.end()) {
1635       Counts.emplace_back(Val, 1);
1636     } else {
1637       CountIt->second++;
1638     }
1639   };
1640 
1641   auto GetMostCommon = [](auto &Counts) {
1642     auto CommonIt =
1643         std::max_element(Counts.begin(), Counts.end(),
1644                          [](auto A, auto B) { return A.second < B.second; });
1645     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1646     return *CommonIt;
1647   };
1648 
1649   size_t NumConstantLanes = 0;
1650 
1651   // Count eligible lanes for each type of vector creation op
1652   for (size_t I = 0; I < Lanes; ++I) {
1653     const SDValue &Lane = Op->getOperand(I);
1654     if (Lane.isUndef())
1655       continue;
1656 
1657     AddCount(SplatValueCounts, Lane);
1658 
1659     if (IsConstant(Lane)) {
1660       NumConstantLanes++;
1661     } else if (CanSwizzle) {
1662       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1663       if (SwizzleSrcs.first)
1664         AddCount(SwizzleCounts, SwizzleSrcs);
1665     }
1666   }
1667 
1668   SDValue SplatValue;
1669   size_t NumSplatLanes;
1670   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1671 
1672   SDValue SwizzleSrc;
1673   SDValue SwizzleIndices;
1674   size_t NumSwizzleLanes = 0;
1675   if (SwizzleCounts.size())
1676     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1677                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1678 
1679   // Predicate returning true if the lane is properly initialized by the
1680   // original instruction
1681   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1682   SDValue Result;
1683   // Prefer swizzles over vector consts over splats
1684   if (NumSwizzleLanes >= NumSplatLanes &&
1685       (!Subtarget->hasUnimplementedSIMD128() ||
1686        NumSwizzleLanes >= NumConstantLanes)) {
1687     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1688                          SwizzleIndices);
1689     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1690     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1691       return Swizzled == GetSwizzleSrcs(I, Lane);
1692     };
1693   } else if (NumConstantLanes >= NumSplatLanes &&
1694              Subtarget->hasUnimplementedSIMD128()) {
1695     // If we support v128.const, emit it directly
1696     SmallVector<SDValue, 16> ConstLanes;
1697     for (const SDValue &Lane : Op->op_values()) {
1698       if (IsConstant(Lane)) {
1699         ConstLanes.push_back(Lane);
1700       } else if (LaneT.isFloatingPoint()) {
1701         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1702       } else {
1703         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1704       }
1705     }
1706     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1707     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1708       return IsConstant(Lane);
1709     };
1710   } else if (NumConstantLanes >= NumSplatLanes && VecT.isInteger()) {
1711     // Otherwise, if this is an integer vector, pack the lane values together so
1712     // we can construct the 128-bit constant from a pair of i64s using a splat
1713     // followed by at most one i64x2.replace_lane. Also keep track of the lanes
1714     // that actually matter so we can avoid the replace_lane in more cases.
1715     std::array<uint64_t, 2> I64s{{0, 0}};
1716     std::array<uint64_t, 2> ConstLaneMasks{{0, 0}};
1717     size_t LaneBits = 128 / Lanes;
1718     size_t HalfLanes = Lanes / 2;
1719     for (size_t I = 0; I < Lanes; ++I) {
1720       const SDValue &Lane = Op.getOperand(I);
1721       if (IsConstant(Lane)) {
1722         // How much we need to shift Val to position it in an i64
1723         auto Shift = LaneBits * (I % HalfLanes);
1724         auto Mask = maskTrailingOnes<uint64_t>(LaneBits);
1725         auto Val = cast<ConstantSDNode>(Lane.getNode())->getZExtValue() & Mask;
1726         I64s[I / HalfLanes] |= Val << Shift;
1727         ConstLaneMasks[I / HalfLanes] |= Mask << Shift;
1728       }
1729     }
1730     // Check whether all constant lanes in the second half of the vector are
1731     // equivalent in the first half or vice versa to determine whether splatting
1732     // either side will be sufficient to materialize the constant. As a special
1733     // case, if the first and second halves have no constant lanes in common, we
1734     // can just combine them.
1735     bool FirstHalfSufficient = (I64s[0] & ConstLaneMasks[1]) == I64s[1];
1736     bool SecondHalfSufficient = (I64s[1] & ConstLaneMasks[0]) == I64s[0];
1737     bool CombinedSufficient = (ConstLaneMasks[0] & ConstLaneMasks[1]) == 0;
1738 
1739     uint64_t Splatted;
1740     if (SecondHalfSufficient) {
1741       Splatted = I64s[1];
1742     } else if (CombinedSufficient) {
1743       Splatted = I64s[0] | I64s[1];
1744     } else {
1745       Splatted = I64s[0];
1746     }
1747 
1748     Result = DAG.getSplatBuildVector(MVT::v2i64, DL,
1749                                      DAG.getConstant(Splatted, DL, MVT::i64));
1750     if (!FirstHalfSufficient && !SecondHalfSufficient && !CombinedSufficient) {
1751       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i64, Result,
1752                            DAG.getConstant(I64s[1], DL, MVT::i64),
1753                            DAG.getConstant(1, DL, MVT::i32));
1754     }
1755     Result = DAG.getBitcast(VecT, Result);
1756     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1757       return IsConstant(Lane);
1758     };
1759   } else {
1760     // Use a splat, but possibly a load_splat
1761     LoadSDNode *SplattedLoad;
1762     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1763         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1764       Result = DAG.getMemIntrinsicNode(
1765           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1766           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1767            SplattedLoad->getOffset()},
1768           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1769     } else {
1770       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1771     }
1772     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
1773       return Lane == SplatValue;
1774     };
1775   }
1776 
1777   assert(Result);
1778   assert(IsLaneConstructed);
1779 
1780   // Add replace_lane instructions for any unhandled values
1781   for (size_t I = 0; I < Lanes; ++I) {
1782     const SDValue &Lane = Op->getOperand(I);
1783     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1784       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1785                            DAG.getConstant(I, DL, MVT::i32));
1786   }
1787 
1788   return Result;
1789 }
1790 
1791 SDValue
1792 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1793                                                SelectionDAG &DAG) const {
1794   SDLoc DL(Op);
1795   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1796   MVT VecType = Op.getOperand(0).getSimpleValueType();
1797   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1798   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1799 
1800   // Space for two vector args and sixteen mask indices
1801   SDValue Ops[18];
1802   size_t OpIdx = 0;
1803   Ops[OpIdx++] = Op.getOperand(0);
1804   Ops[OpIdx++] = Op.getOperand(1);
1805 
1806   // Expand mask indices to byte indices and materialize them as operands
1807   for (int M : Mask) {
1808     for (size_t J = 0; J < LaneBytes; ++J) {
1809       // Lower undefs (represented by -1 in mask) to zero
1810       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1811       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1812     }
1813   }
1814 
1815   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1816 }
1817 
1818 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
1819                                               SelectionDAG &DAG) const {
1820   SDLoc DL(Op);
1821   // The legalizer does not know how to expand the comparison modes of i64x2
1822   // vectors because no comparison modes are supported. We could solve this by
1823   // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes
1824   // (which return i64x2 results) as well. So instead we manually unroll i64x2
1825   // comparisons here.
1826   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
1827   SmallVector<SDValue, 2> LHS, RHS;
1828   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
1829   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
1830   const SDValue &CC = Op->getOperand(2);
1831   auto MakeLane = [&](unsigned I) {
1832     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
1833                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
1834                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
1835   };
1836   return DAG.getBuildVector(Op->getValueType(0), DL,
1837                             {MakeLane(0), MakeLane(1)});
1838 }
1839 
1840 SDValue
1841 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1842                                                     SelectionDAG &DAG) const {
1843   // Allow constant lane indices, expand variable lane indices
1844   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1845   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1846     return Op;
1847   else
1848     // Perform default expansion
1849     return SDValue();
1850 }
1851 
1852 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1853   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1854   // 32-bit and 64-bit unrolled shifts will have proper semantics
1855   if (LaneT.bitsGE(MVT::i32))
1856     return DAG.UnrollVectorOp(Op.getNode());
1857   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1858   SDLoc DL(Op);
1859   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
1860   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
1861   unsigned ShiftOpcode = Op.getOpcode();
1862   SmallVector<SDValue, 16> ShiftedElements;
1863   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
1864   SmallVector<SDValue, 16> ShiftElements;
1865   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
1866   SmallVector<SDValue, 16> UnrolledOps;
1867   for (size_t i = 0; i < NumLanes; ++i) {
1868     SDValue MaskedShiftValue =
1869         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
1870     SDValue ShiftedValue = ShiftedElements[i];
1871     if (ShiftOpcode == ISD::SRA)
1872       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
1873                                  ShiftedValue, DAG.getValueType(LaneT));
1874     UnrolledOps.push_back(
1875         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
1876   }
1877   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
1878 }
1879 
1880 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1881                                               SelectionDAG &DAG) const {
1882   SDLoc DL(Op);
1883 
1884   // Only manually lower vector shifts
1885   assert(Op.getSimpleValueType().isVector());
1886 
1887   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
1888   if (!ShiftVal)
1889     return unrollVectorShift(Op, DAG);
1890 
1891   // Use anyext because none of the high bits can affect the shift
1892   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
1893 
1894   unsigned Opcode;
1895   switch (Op.getOpcode()) {
1896   case ISD::SHL:
1897     Opcode = WebAssemblyISD::VEC_SHL;
1898     break;
1899   case ISD::SRA:
1900     Opcode = WebAssemblyISD::VEC_SHR_S;
1901     break;
1902   case ISD::SRL:
1903     Opcode = WebAssemblyISD::VEC_SHR_U;
1904     break;
1905   default:
1906     llvm_unreachable("unexpected opcode");
1907   }
1908 
1909   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
1910 }
1911 
1912 //===----------------------------------------------------------------------===//
1913 //   Custom DAG combine hooks
1914 //===----------------------------------------------------------------------===//
1915 static SDValue
1916 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
1917   auto &DAG = DCI.DAG;
1918   auto Shuffle = cast<ShuffleVectorSDNode>(N);
1919 
1920   // Hoist vector bitcasts that don't change the number of lanes out of unary
1921   // shuffles, where they are less likely to get in the way of other combines.
1922   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
1923   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
1924   SDValue Bitcast = N->getOperand(0);
1925   if (Bitcast.getOpcode() != ISD::BITCAST)
1926     return SDValue();
1927   if (!N->getOperand(1).isUndef())
1928     return SDValue();
1929   SDValue CastOp = Bitcast.getOperand(0);
1930   MVT SrcType = CastOp.getSimpleValueType();
1931   MVT DstType = Bitcast.getSimpleValueType();
1932   if (!SrcType.is128BitVector() ||
1933       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
1934     return SDValue();
1935   SDValue NewShuffle = DAG.getVectorShuffle(
1936       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
1937   return DAG.getBitcast(DstType, NewShuffle);
1938 }
1939 
1940 static SDValue performVectorWidenCombine(SDNode *N,
1941                                          TargetLowering::DAGCombinerInfo &DCI) {
1942   auto &DAG = DCI.DAG;
1943   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
1944          N->getOpcode() == ISD::ZERO_EXTEND);
1945 
1946   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
1947   // possible before the extract_subvector can be expanded.
1948   auto Extract = N->getOperand(0);
1949   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
1950     return SDValue();
1951   auto Source = Extract.getOperand(0);
1952   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
1953   if (IndexNode == nullptr)
1954     return SDValue();
1955   auto Index = IndexNode->getZExtValue();
1956 
1957   // Only v8i8 and v4i16 extracts can be widened, and only if the extracted
1958   // subvector is the low or high half of its source.
1959   EVT ResVT = N->getValueType(0);
1960   if (ResVT == MVT::v8i16) {
1961     if (Extract.getValueType() != MVT::v8i8 ||
1962         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
1963       return SDValue();
1964   } else if (ResVT == MVT::v4i32) {
1965     if (Extract.getValueType() != MVT::v4i16 ||
1966         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
1967       return SDValue();
1968   } else {
1969     return SDValue();
1970   }
1971 
1972   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
1973   bool IsLow = Index == 0;
1974 
1975   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S
1976                                 : WebAssemblyISD::WIDEN_HIGH_S)
1977                        : (IsLow ? WebAssemblyISD::WIDEN_LOW_U
1978                                 : WebAssemblyISD::WIDEN_HIGH_U);
1979 
1980   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
1981 }
1982 
1983 SDValue
1984 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
1985                                              DAGCombinerInfo &DCI) const {
1986   switch (N->getOpcode()) {
1987   default:
1988     return SDValue();
1989   case ISD::VECTOR_SHUFFLE:
1990     return performVECTOR_SHUFFLECombine(N, DCI);
1991   case ISD::SIGN_EXTEND:
1992   case ISD::ZERO_EXTEND:
1993     return performVectorWidenCombine(N, DCI);
1994   }
1995 }
1996