1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 66 } 67 // Compute derived properties from the register classes. 68 computeRegisterProperties(Subtarget->getRegisterInfo()); 69 70 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 71 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 72 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 73 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 74 setOperationAction(ISD::BRIND, MVT::Other, Custom); 75 76 // Take the default expansion for va_arg, va_copy, and va_end. There is no 77 // default action for va_start, so we do that custom. 78 setOperationAction(ISD::VASTART, MVT::Other, Custom); 79 setOperationAction(ISD::VAARG, MVT::Other, Expand); 80 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 81 setOperationAction(ISD::VAEND, MVT::Other, Expand); 82 83 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 84 // Don't expand the floating-point types to constant pools. 85 setOperationAction(ISD::ConstantFP, T, Legal); 86 // Expand floating-point comparisons. 87 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 88 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 89 setCondCodeAction(CC, T, Expand); 90 // Expand floating-point library function operators. 91 for (auto Op : 92 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 93 setOperationAction(Op, T, Expand); 94 // Note supported floating-point library function operators that otherwise 95 // default to expand. 96 for (auto Op : 97 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 98 setOperationAction(Op, T, Legal); 99 // Support minimum and maximum, which otherwise default to expand. 100 setOperationAction(ISD::FMINIMUM, T, Legal); 101 setOperationAction(ISD::FMAXIMUM, T, Legal); 102 // WebAssembly currently has no builtin f16 support. 103 setOperationAction(ISD::FP16_TO_FP, T, Expand); 104 setOperationAction(ISD::FP_TO_FP16, T, Expand); 105 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 106 setTruncStoreAction(T, MVT::f16, Expand); 107 } 108 109 // Expand unavailable integer operations. 110 for (auto Op : 111 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 112 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 113 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 114 for (auto T : {MVT::i32, MVT::i64}) 115 setOperationAction(Op, T, Expand); 116 if (Subtarget->hasSIMD128()) 117 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 118 setOperationAction(Op, T, Expand); 119 } 120 121 // SIMD-specific configuration 122 if (Subtarget->hasSIMD128()) { 123 // Hoist bitcasts out of shuffles 124 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 125 126 // Support saturating add for i8x16 and i16x8 127 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 128 for (auto T : {MVT::v16i8, MVT::v8i16}) 129 setOperationAction(Op, T, Legal); 130 131 // Support integer abs 132 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 133 setOperationAction(ISD::ABS, T, Legal); 134 135 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 136 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 137 MVT::v2f64}) 138 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 139 140 // We have custom shuffle lowering to expose the shuffle mask 141 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 142 MVT::v2f64}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 145 // Custom lowering since wasm shifts must have a scalar shift amount 146 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 148 setOperationAction(Op, T, Custom); 149 150 // Custom lower lane accesses to expand out variable indices 151 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 152 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 153 MVT::v2f64}) 154 setOperationAction(Op, T, Custom); 155 156 // There is no i8x16.mul instruction 157 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 158 159 // There are no vector select instructions 160 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) 161 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 162 MVT::v2f64}) 163 setOperationAction(Op, T, Expand); 164 165 // Expand integer operations supported for scalars but not SIMD 166 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 167 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 168 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 169 setOperationAction(Op, T, Expand); 170 171 // But we do have integer min and max operations 172 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 173 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 174 setOperationAction(Op, T, Legal); 175 176 // Expand float operations supported for scalars but not SIMD 177 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 178 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 179 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 180 for (auto T : {MVT::v4f32, MVT::v2f64}) 181 setOperationAction(Op, T, Expand); 182 183 // Expand operations not supported for i64x2 vectors 184 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 185 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 186 187 // 64x2 conversions are not in the spec 188 for (auto Op : 189 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 190 for (auto T : {MVT::v2i64, MVT::v2f64}) 191 setOperationAction(Op, T, Expand); 192 } 193 194 // As a special case, these operators use the type to mean the type to 195 // sign-extend from. 196 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 197 if (!Subtarget->hasSignExt()) { 198 // Sign extends are legal only when extending a vector extract 199 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 200 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 201 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 202 } 203 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 204 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 205 206 // Dynamic stack allocation: use the default expansion. 207 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 208 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 209 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 210 211 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 212 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 213 214 // Expand these forms; we pattern-match the forms that we can handle in isel. 215 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 216 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 217 setOperationAction(Op, T, Expand); 218 219 // We have custom switch handling. 220 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 221 222 // WebAssembly doesn't have: 223 // - Floating-point extending loads. 224 // - Floating-point truncating stores. 225 // - i1 extending loads. 226 // - truncating SIMD stores and most extending loads 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 228 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 229 for (auto T : MVT::integer_valuetypes()) 230 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 231 setLoadExtAction(Ext, T, MVT::i1, Promote); 232 if (Subtarget->hasSIMD128()) { 233 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 234 MVT::v2f64}) { 235 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 236 if (MVT(T) != MemT) { 237 setTruncStoreAction(T, MemT, Expand); 238 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 239 setLoadExtAction(Ext, T, MemT, Expand); 240 } 241 } 242 } 243 // But some vector extending loads are legal 244 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 245 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 246 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 247 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 248 } 249 } 250 251 // Don't do anything clever with build_pairs 252 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 253 254 // Trap lowers to wasm unreachable 255 setOperationAction(ISD::TRAP, MVT::Other, Legal); 256 257 // Exception handling intrinsics 258 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 259 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 260 261 setMaxAtomicSizeInBitsSupported(64); 262 263 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 264 // consistent with the f64 and f128 names. 265 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 266 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 267 268 // Define the emscripten name for return address helper. 269 // TODO: when implementing other WASM backends, make this generic or only do 270 // this on emscripten depending on what they end up doing. 271 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 272 273 // Always convert switches to br_tables unless there is only one case, which 274 // is equivalent to a simple branch. This reduces code size for wasm, and we 275 // defer possible jump table optimizations to the VM. 276 setMinimumJumpTableEntries(2); 277 } 278 279 TargetLowering::AtomicExpansionKind 280 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 281 // We have wasm instructions for these 282 switch (AI->getOperation()) { 283 case AtomicRMWInst::Add: 284 case AtomicRMWInst::Sub: 285 case AtomicRMWInst::And: 286 case AtomicRMWInst::Or: 287 case AtomicRMWInst::Xor: 288 case AtomicRMWInst::Xchg: 289 return AtomicExpansionKind::None; 290 default: 291 break; 292 } 293 return AtomicExpansionKind::CmpXChg; 294 } 295 296 FastISel *WebAssemblyTargetLowering::createFastISel( 297 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 298 return WebAssembly::createFastISel(FuncInfo, LibInfo); 299 } 300 301 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 302 EVT VT) const { 303 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 304 if (BitWidth > 1 && BitWidth < 8) 305 BitWidth = 8; 306 307 if (BitWidth > 64) { 308 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 309 // the count to be an i32. 310 BitWidth = 32; 311 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 312 "32-bit shift counts ought to be enough for anyone"); 313 } 314 315 MVT Result = MVT::getIntegerVT(BitWidth); 316 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 317 "Unable to represent scalar shift amount type"); 318 return Result; 319 } 320 321 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 322 // undefined result on invalid/overflow, to the WebAssembly opcode, which 323 // traps on invalid/overflow. 324 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 325 MachineBasicBlock *BB, 326 const TargetInstrInfo &TII, 327 bool IsUnsigned, bool Int64, 328 bool Float64, unsigned LoweredOpcode) { 329 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 330 331 Register OutReg = MI.getOperand(0).getReg(); 332 Register InReg = MI.getOperand(1).getReg(); 333 334 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 335 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 336 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 337 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 338 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 339 unsigned Eqz = WebAssembly::EQZ_I32; 340 unsigned And = WebAssembly::AND_I32; 341 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 342 int64_t Substitute = IsUnsigned ? 0 : Limit; 343 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 344 auto &Context = BB->getParent()->getFunction().getContext(); 345 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 346 347 const BasicBlock *LLVMBB = BB->getBasicBlock(); 348 MachineFunction *F = BB->getParent(); 349 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 350 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 351 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 352 353 MachineFunction::iterator It = ++BB->getIterator(); 354 F->insert(It, FalseMBB); 355 F->insert(It, TrueMBB); 356 F->insert(It, DoneMBB); 357 358 // Transfer the remainder of BB and its successor edges to DoneMBB. 359 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 360 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 361 362 BB->addSuccessor(TrueMBB); 363 BB->addSuccessor(FalseMBB); 364 TrueMBB->addSuccessor(DoneMBB); 365 FalseMBB->addSuccessor(DoneMBB); 366 367 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 368 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 369 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 370 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 371 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 372 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 373 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 374 375 MI.eraseFromParent(); 376 // For signed numbers, we can do a single comparison to determine whether 377 // fabs(x) is within range. 378 if (IsUnsigned) { 379 Tmp0 = InReg; 380 } else { 381 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 382 } 383 BuildMI(BB, DL, TII.get(FConst), Tmp1) 384 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 385 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 386 387 // For unsigned numbers, we have to do a separate comparison with zero. 388 if (IsUnsigned) { 389 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 390 Register SecondCmpReg = 391 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 392 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 393 BuildMI(BB, DL, TII.get(FConst), Tmp1) 394 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 395 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 396 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 397 CmpReg = AndReg; 398 } 399 400 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 401 402 // Create the CFG diamond to select between doing the conversion or using 403 // the substitute value. 404 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 405 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 406 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 407 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 408 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 409 .addReg(FalseReg) 410 .addMBB(FalseMBB) 411 .addReg(TrueReg) 412 .addMBB(TrueMBB); 413 414 return DoneMBB; 415 } 416 417 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 418 DebugLoc DL, MachineBasicBlock *BB, 419 const TargetInstrInfo &TII) { 420 MachineInstr &CallParams = *CallResults.getPrevNode(); 421 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 422 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 423 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 424 425 bool IsIndirect = CallParams.getOperand(0).isReg(); 426 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 427 428 unsigned CallOp; 429 if (IsIndirect && IsRetCall) { 430 CallOp = WebAssembly::RET_CALL_INDIRECT; 431 } else if (IsIndirect) { 432 CallOp = WebAssembly::CALL_INDIRECT; 433 } else if (IsRetCall) { 434 CallOp = WebAssembly::RET_CALL; 435 } else { 436 CallOp = WebAssembly::CALL; 437 } 438 439 MachineFunction &MF = *BB->getParent(); 440 const MCInstrDesc &MCID = TII.get(CallOp); 441 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 442 443 // Move the function pointer to the end of the arguments for indirect calls 444 if (IsIndirect) { 445 auto FnPtr = CallParams.getOperand(0); 446 CallParams.RemoveOperand(0); 447 CallParams.addOperand(FnPtr); 448 } 449 450 for (auto Def : CallResults.defs()) 451 MIB.add(Def); 452 453 // Add placeholders for the type index and immediate flags 454 if (IsIndirect) { 455 MIB.addImm(0); 456 MIB.addImm(0); 457 } 458 459 for (auto Use : CallParams.uses()) 460 MIB.add(Use); 461 462 BB->insert(CallResults.getIterator(), MIB); 463 CallParams.eraseFromParent(); 464 CallResults.eraseFromParent(); 465 466 return BB; 467 } 468 469 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 470 MachineInstr &MI, MachineBasicBlock *BB) const { 471 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 472 DebugLoc DL = MI.getDebugLoc(); 473 474 switch (MI.getOpcode()) { 475 default: 476 llvm_unreachable("Unexpected instr type to insert"); 477 case WebAssembly::FP_TO_SINT_I32_F32: 478 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 479 WebAssembly::I32_TRUNC_S_F32); 480 case WebAssembly::FP_TO_UINT_I32_F32: 481 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 482 WebAssembly::I32_TRUNC_U_F32); 483 case WebAssembly::FP_TO_SINT_I64_F32: 484 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 485 WebAssembly::I64_TRUNC_S_F32); 486 case WebAssembly::FP_TO_UINT_I64_F32: 487 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 488 WebAssembly::I64_TRUNC_U_F32); 489 case WebAssembly::FP_TO_SINT_I32_F64: 490 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 491 WebAssembly::I32_TRUNC_S_F64); 492 case WebAssembly::FP_TO_UINT_I32_F64: 493 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 494 WebAssembly::I32_TRUNC_U_F64); 495 case WebAssembly::FP_TO_SINT_I64_F64: 496 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 497 WebAssembly::I64_TRUNC_S_F64); 498 case WebAssembly::FP_TO_UINT_I64_F64: 499 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 500 WebAssembly::I64_TRUNC_U_F64); 501 case WebAssembly::CALL_RESULTS: 502 case WebAssembly::RET_CALL_RESULTS: 503 return LowerCallResults(MI, DL, BB, TII); 504 } 505 } 506 507 const char * 508 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 509 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 510 case WebAssemblyISD::FIRST_NUMBER: 511 case WebAssemblyISD::FIRST_MEM_OPCODE: 512 break; 513 #define HANDLE_NODETYPE(NODE) \ 514 case WebAssemblyISD::NODE: \ 515 return "WebAssemblyISD::" #NODE; 516 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 517 #include "WebAssemblyISD.def" 518 #undef HANDLE_MEM_NODETYPE 519 #undef HANDLE_NODETYPE 520 } 521 return nullptr; 522 } 523 524 std::pair<unsigned, const TargetRegisterClass *> 525 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 526 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 527 // First, see if this is a constraint that directly corresponds to a 528 // WebAssembly register class. 529 if (Constraint.size() == 1) { 530 switch (Constraint[0]) { 531 case 'r': 532 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 533 if (Subtarget->hasSIMD128() && VT.isVector()) { 534 if (VT.getSizeInBits() == 128) 535 return std::make_pair(0U, &WebAssembly::V128RegClass); 536 } 537 if (VT.isInteger() && !VT.isVector()) { 538 if (VT.getSizeInBits() <= 32) 539 return std::make_pair(0U, &WebAssembly::I32RegClass); 540 if (VT.getSizeInBits() <= 64) 541 return std::make_pair(0U, &WebAssembly::I64RegClass); 542 } 543 break; 544 default: 545 break; 546 } 547 } 548 549 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 550 } 551 552 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 553 // Assume ctz is a relatively cheap operation. 554 return true; 555 } 556 557 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 558 // Assume clz is a relatively cheap operation. 559 return true; 560 } 561 562 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 563 const AddrMode &AM, 564 Type *Ty, unsigned AS, 565 Instruction *I) const { 566 // WebAssembly offsets are added as unsigned without wrapping. The 567 // isLegalAddressingMode gives us no way to determine if wrapping could be 568 // happening, so we approximate this by accepting only non-negative offsets. 569 if (AM.BaseOffs < 0) 570 return false; 571 572 // WebAssembly has no scale register operands. 573 if (AM.Scale != 0) 574 return false; 575 576 // Everything else is legal. 577 return true; 578 } 579 580 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 581 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 582 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 583 // WebAssembly supports unaligned accesses, though it should be declared 584 // with the p2align attribute on loads and stores which do so, and there 585 // may be a performance impact. We tell LLVM they're "fast" because 586 // for the kinds of things that LLVM uses this for (merging adjacent stores 587 // of constants, etc.), WebAssembly implementations will either want the 588 // unaligned access or they'll split anyway. 589 if (Fast) 590 *Fast = true; 591 return true; 592 } 593 594 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 595 AttributeList Attr) const { 596 // The current thinking is that wasm engines will perform this optimization, 597 // so we can save on code size. 598 return true; 599 } 600 601 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 602 MVT ExtT = ExtVal.getSimpleValueType(); 603 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 604 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 605 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 606 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 607 } 608 609 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 610 LLVMContext &C, 611 EVT VT) const { 612 if (VT.isVector()) 613 return VT.changeVectorElementTypeToInteger(); 614 615 return TargetLowering::getSetCCResultType(DL, C, VT); 616 } 617 618 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 619 const CallInst &I, 620 MachineFunction &MF, 621 unsigned Intrinsic) const { 622 switch (Intrinsic) { 623 case Intrinsic::wasm_atomic_notify: 624 Info.opc = ISD::INTRINSIC_W_CHAIN; 625 Info.memVT = MVT::i32; 626 Info.ptrVal = I.getArgOperand(0); 627 Info.offset = 0; 628 Info.align = Align(4); 629 // atomic.notify instruction does not really load the memory specified with 630 // this argument, but MachineMemOperand should either be load or store, so 631 // we set this to a load. 632 // FIXME Volatile isn't really correct, but currently all LLVM atomic 633 // instructions are treated as volatiles in the backend, so we should be 634 // consistent. The same applies for wasm_atomic_wait intrinsics too. 635 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 636 return true; 637 case Intrinsic::wasm_atomic_wait_i32: 638 Info.opc = ISD::INTRINSIC_W_CHAIN; 639 Info.memVT = MVT::i32; 640 Info.ptrVal = I.getArgOperand(0); 641 Info.offset = 0; 642 Info.align = Align(4); 643 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 644 return true; 645 case Intrinsic::wasm_atomic_wait_i64: 646 Info.opc = ISD::INTRINSIC_W_CHAIN; 647 Info.memVT = MVT::i64; 648 Info.ptrVal = I.getArgOperand(0); 649 Info.offset = 0; 650 Info.align = Align(8); 651 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 652 return true; 653 default: 654 return false; 655 } 656 } 657 658 //===----------------------------------------------------------------------===// 659 // WebAssembly Lowering private implementation. 660 //===----------------------------------------------------------------------===// 661 662 //===----------------------------------------------------------------------===// 663 // Lowering Code 664 //===----------------------------------------------------------------------===// 665 666 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 667 MachineFunction &MF = DAG.getMachineFunction(); 668 DAG.getContext()->diagnose( 669 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 670 } 671 672 // Test whether the given calling convention is supported. 673 static bool callingConvSupported(CallingConv::ID CallConv) { 674 // We currently support the language-independent target-independent 675 // conventions. We don't yet have a way to annotate calls with properties like 676 // "cold", and we don't have any call-clobbered registers, so these are mostly 677 // all handled the same. 678 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 679 CallConv == CallingConv::Cold || 680 CallConv == CallingConv::PreserveMost || 681 CallConv == CallingConv::PreserveAll || 682 CallConv == CallingConv::CXX_FAST_TLS || 683 CallConv == CallingConv::WASM_EmscriptenInvoke || 684 CallConv == CallingConv::Swift; 685 } 686 687 SDValue 688 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 689 SmallVectorImpl<SDValue> &InVals) const { 690 SelectionDAG &DAG = CLI.DAG; 691 SDLoc DL = CLI.DL; 692 SDValue Chain = CLI.Chain; 693 SDValue Callee = CLI.Callee; 694 MachineFunction &MF = DAG.getMachineFunction(); 695 auto Layout = MF.getDataLayout(); 696 697 CallingConv::ID CallConv = CLI.CallConv; 698 if (!callingConvSupported(CallConv)) 699 fail(DL, DAG, 700 "WebAssembly doesn't support language-specific or target-specific " 701 "calling conventions yet"); 702 if (CLI.IsPatchPoint) 703 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 704 705 if (CLI.IsTailCall) { 706 auto NoTail = [&](const char *Msg) { 707 if (CLI.CB && CLI.CB->isMustTailCall()) 708 fail(DL, DAG, Msg); 709 CLI.IsTailCall = false; 710 }; 711 712 if (!Subtarget->hasTailCall()) 713 NoTail("WebAssembly 'tail-call' feature not enabled"); 714 715 // Varargs calls cannot be tail calls because the buffer is on the stack 716 if (CLI.IsVarArg) 717 NoTail("WebAssembly does not support varargs tail calls"); 718 719 // Do not tail call unless caller and callee return types match 720 const Function &F = MF.getFunction(); 721 const TargetMachine &TM = getTargetMachine(); 722 Type *RetTy = F.getReturnType(); 723 SmallVector<MVT, 4> CallerRetTys; 724 SmallVector<MVT, 4> CalleeRetTys; 725 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 726 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 727 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 728 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 729 CalleeRetTys.begin()); 730 if (!TypesMatch) 731 NoTail("WebAssembly tail call requires caller and callee return types to " 732 "match"); 733 734 // If pointers to local stack values are passed, we cannot tail call 735 if (CLI.CB) { 736 for (auto &Arg : CLI.CB->args()) { 737 Value *Val = Arg.get(); 738 // Trace the value back through pointer operations 739 while (true) { 740 Value *Src = Val->stripPointerCastsAndAliases(); 741 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 742 Src = GEP->getPointerOperand(); 743 if (Val == Src) 744 break; 745 Val = Src; 746 } 747 if (isa<AllocaInst>(Val)) { 748 NoTail( 749 "WebAssembly does not support tail calling with stack arguments"); 750 break; 751 } 752 } 753 } 754 } 755 756 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 757 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 758 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 759 760 // The generic code may have added an sret argument. If we're lowering an 761 // invoke function, the ABI requires that the function pointer be the first 762 // argument, so we may have to swap the arguments. 763 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 764 Outs[0].Flags.isSRet()) { 765 std::swap(Outs[0], Outs[1]); 766 std::swap(OutVals[0], OutVals[1]); 767 } 768 769 bool HasSwiftSelfArg = false; 770 bool HasSwiftErrorArg = false; 771 unsigned NumFixedArgs = 0; 772 for (unsigned I = 0; I < Outs.size(); ++I) { 773 const ISD::OutputArg &Out = Outs[I]; 774 SDValue &OutVal = OutVals[I]; 775 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 776 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 777 if (Out.Flags.isNest()) 778 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 779 if (Out.Flags.isInAlloca()) 780 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 781 if (Out.Flags.isInConsecutiveRegs()) 782 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 783 if (Out.Flags.isInConsecutiveRegsLast()) 784 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 785 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 786 auto &MFI = MF.getFrameInfo(); 787 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 788 Out.Flags.getNonZeroByValAlign(), 789 /*isSS=*/false); 790 SDValue SizeNode = 791 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 792 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 793 Chain = DAG.getMemcpy( 794 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 795 /*isVolatile*/ false, /*AlwaysInline=*/false, 796 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 797 OutVal = FINode; 798 } 799 // Count the number of fixed args *after* legalization. 800 NumFixedArgs += Out.IsFixed; 801 } 802 803 bool IsVarArg = CLI.IsVarArg; 804 auto PtrVT = getPointerTy(Layout); 805 806 // For swiftcc, emit additional swiftself and swifterror arguments 807 // if there aren't. These additional arguments are also added for callee 808 // signature They are necessary to match callee and caller signature for 809 // indirect call. 810 if (CallConv == CallingConv::Swift) { 811 if (!HasSwiftSelfArg) { 812 NumFixedArgs++; 813 ISD::OutputArg Arg; 814 Arg.Flags.setSwiftSelf(); 815 CLI.Outs.push_back(Arg); 816 SDValue ArgVal = DAG.getUNDEF(PtrVT); 817 CLI.OutVals.push_back(ArgVal); 818 } 819 if (!HasSwiftErrorArg) { 820 NumFixedArgs++; 821 ISD::OutputArg Arg; 822 Arg.Flags.setSwiftError(); 823 CLI.Outs.push_back(Arg); 824 SDValue ArgVal = DAG.getUNDEF(PtrVT); 825 CLI.OutVals.push_back(ArgVal); 826 } 827 } 828 829 // Analyze operands of the call, assigning locations to each operand. 830 SmallVector<CCValAssign, 16> ArgLocs; 831 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 832 833 if (IsVarArg) { 834 // Outgoing non-fixed arguments are placed in a buffer. First 835 // compute their offsets and the total amount of buffer space needed. 836 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 837 const ISD::OutputArg &Out = Outs[I]; 838 SDValue &Arg = OutVals[I]; 839 EVT VT = Arg.getValueType(); 840 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 841 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 842 unsigned Align = std::max(Out.Flags.getOrigAlign(), 843 Layout.getABITypeAlignment(Ty)); 844 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 845 Align); 846 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 847 Offset, VT.getSimpleVT(), 848 CCValAssign::Full)); 849 } 850 } 851 852 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 853 854 SDValue FINode; 855 if (IsVarArg && NumBytes) { 856 // For non-fixed arguments, next emit stores to store the argument values 857 // to the stack buffer at the offsets computed above. 858 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 859 Layout.getStackAlignment(), 860 /*isSS=*/false); 861 unsigned ValNo = 0; 862 SmallVector<SDValue, 8> Chains; 863 for (SDValue Arg : 864 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 865 assert(ArgLocs[ValNo].getValNo() == ValNo && 866 "ArgLocs should remain in order and only hold varargs args"); 867 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 868 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 869 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 870 DAG.getConstant(Offset, DL, PtrVT)); 871 Chains.push_back( 872 DAG.getStore(Chain, DL, Arg, Add, 873 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 874 } 875 if (!Chains.empty()) 876 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 877 } else if (IsVarArg) { 878 FINode = DAG.getIntPtrConstant(0, DL); 879 } 880 881 if (Callee->getOpcode() == ISD::GlobalAddress) { 882 // If the callee is a GlobalAddress node (quite common, every direct call 883 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 884 // doesn't at MO_GOT which is not needed for direct calls. 885 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 886 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 887 getPointerTy(DAG.getDataLayout()), 888 GA->getOffset()); 889 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 890 getPointerTy(DAG.getDataLayout()), Callee); 891 } 892 893 // Compute the operands for the CALLn node. 894 SmallVector<SDValue, 16> Ops; 895 Ops.push_back(Chain); 896 Ops.push_back(Callee); 897 898 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 899 // isn't reliable. 900 Ops.append(OutVals.begin(), 901 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 902 // Add a pointer to the vararg buffer. 903 if (IsVarArg) 904 Ops.push_back(FINode); 905 906 SmallVector<EVT, 8> InTys; 907 for (const auto &In : Ins) { 908 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 909 assert(!In.Flags.isNest() && "nest is not valid for return values"); 910 if (In.Flags.isInAlloca()) 911 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 912 if (In.Flags.isInConsecutiveRegs()) 913 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 914 if (In.Flags.isInConsecutiveRegsLast()) 915 fail(DL, DAG, 916 "WebAssembly hasn't implemented cons regs last return values"); 917 // Ignore In.getOrigAlign() because all our arguments are passed in 918 // registers. 919 InTys.push_back(In.VT); 920 } 921 922 if (CLI.IsTailCall) { 923 // ret_calls do not return values to the current frame 924 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 925 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 926 } 927 928 InTys.push_back(MVT::Other); 929 SDVTList InTyList = DAG.getVTList(InTys); 930 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 931 932 for (size_t I = 0; I < Ins.size(); ++I) 933 InVals.push_back(Res.getValue(I)); 934 935 // Return the chain 936 return Res.getValue(Ins.size()); 937 } 938 939 bool WebAssemblyTargetLowering::CanLowerReturn( 940 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 941 const SmallVectorImpl<ISD::OutputArg> &Outs, 942 LLVMContext & /*Context*/) const { 943 // WebAssembly can only handle returning tuples with multivalue enabled 944 return Subtarget->hasMultivalue() || Outs.size() <= 1; 945 } 946 947 SDValue WebAssemblyTargetLowering::LowerReturn( 948 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 949 const SmallVectorImpl<ISD::OutputArg> &Outs, 950 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 951 SelectionDAG &DAG) const { 952 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 953 "MVP WebAssembly can only return up to one value"); 954 if (!callingConvSupported(CallConv)) 955 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 956 957 SmallVector<SDValue, 4> RetOps(1, Chain); 958 RetOps.append(OutVals.begin(), OutVals.end()); 959 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 960 961 // Record the number and types of the return values. 962 for (const ISD::OutputArg &Out : Outs) { 963 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 964 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 965 assert(Out.IsFixed && "non-fixed return value is not valid"); 966 if (Out.Flags.isInAlloca()) 967 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 968 if (Out.Flags.isInConsecutiveRegs()) 969 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 970 if (Out.Flags.isInConsecutiveRegsLast()) 971 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 972 } 973 974 return Chain; 975 } 976 977 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 978 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 979 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 980 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 981 if (!callingConvSupported(CallConv)) 982 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 983 984 MachineFunction &MF = DAG.getMachineFunction(); 985 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 986 987 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 988 // of the incoming values before they're represented by virtual registers. 989 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 990 991 bool HasSwiftErrorArg = false; 992 bool HasSwiftSelfArg = false; 993 for (const ISD::InputArg &In : Ins) { 994 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 995 HasSwiftErrorArg |= In.Flags.isSwiftError(); 996 if (In.Flags.isInAlloca()) 997 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 998 if (In.Flags.isNest()) 999 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1000 if (In.Flags.isInConsecutiveRegs()) 1001 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1002 if (In.Flags.isInConsecutiveRegsLast()) 1003 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1004 // Ignore In.getOrigAlign() because all our arguments are passed in 1005 // registers. 1006 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1007 DAG.getTargetConstant(InVals.size(), 1008 DL, MVT::i32)) 1009 : DAG.getUNDEF(In.VT)); 1010 1011 // Record the number and types of arguments. 1012 MFI->addParam(In.VT); 1013 } 1014 1015 // For swiftcc, emit additional swiftself and swifterror arguments 1016 // if there aren't. These additional arguments are also added for callee 1017 // signature They are necessary to match callee and caller signature for 1018 // indirect call. 1019 auto PtrVT = getPointerTy(MF.getDataLayout()); 1020 if (CallConv == CallingConv::Swift) { 1021 if (!HasSwiftSelfArg) { 1022 MFI->addParam(PtrVT); 1023 } 1024 if (!HasSwiftErrorArg) { 1025 MFI->addParam(PtrVT); 1026 } 1027 } 1028 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1029 // the buffer is passed as an argument. 1030 if (IsVarArg) { 1031 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1032 Register VarargVreg = 1033 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1034 MFI->setVarargBufferVreg(VarargVreg); 1035 Chain = DAG.getCopyToReg( 1036 Chain, DL, VarargVreg, 1037 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1038 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1039 MFI->addParam(PtrVT); 1040 } 1041 1042 // Record the number and types of arguments and results. 1043 SmallVector<MVT, 4> Params; 1044 SmallVector<MVT, 4> Results; 1045 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1046 MF.getFunction(), DAG.getTarget(), Params, Results); 1047 for (MVT VT : Results) 1048 MFI->addResult(VT); 1049 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1050 // the param logic here with ComputeSignatureVTs 1051 assert(MFI->getParams().size() == Params.size() && 1052 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1053 Params.begin())); 1054 1055 return Chain; 1056 } 1057 1058 void WebAssemblyTargetLowering::ReplaceNodeResults( 1059 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1060 switch (N->getOpcode()) { 1061 case ISD::SIGN_EXTEND_INREG: 1062 // Do not add any results, signifying that N should not be custom lowered 1063 // after all. This happens because simd128 turns on custom lowering for 1064 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1065 // illegal type. 1066 break; 1067 default: 1068 llvm_unreachable( 1069 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1070 } 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // Custom lowering hooks. 1075 //===----------------------------------------------------------------------===// 1076 1077 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1078 SelectionDAG &DAG) const { 1079 SDLoc DL(Op); 1080 switch (Op.getOpcode()) { 1081 default: 1082 llvm_unreachable("unimplemented operation lowering"); 1083 return SDValue(); 1084 case ISD::FrameIndex: 1085 return LowerFrameIndex(Op, DAG); 1086 case ISD::GlobalAddress: 1087 return LowerGlobalAddress(Op, DAG); 1088 case ISD::ExternalSymbol: 1089 return LowerExternalSymbol(Op, DAG); 1090 case ISD::JumpTable: 1091 return LowerJumpTable(Op, DAG); 1092 case ISD::BR_JT: 1093 return LowerBR_JT(Op, DAG); 1094 case ISD::VASTART: 1095 return LowerVASTART(Op, DAG); 1096 case ISD::BlockAddress: 1097 case ISD::BRIND: 1098 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1099 return SDValue(); 1100 case ISD::RETURNADDR: 1101 return LowerRETURNADDR(Op, DAG); 1102 case ISD::FRAMEADDR: 1103 return LowerFRAMEADDR(Op, DAG); 1104 case ISD::CopyToReg: 1105 return LowerCopyToReg(Op, DAG); 1106 case ISD::EXTRACT_VECTOR_ELT: 1107 case ISD::INSERT_VECTOR_ELT: 1108 return LowerAccessVectorElement(Op, DAG); 1109 case ISD::INTRINSIC_VOID: 1110 case ISD::INTRINSIC_WO_CHAIN: 1111 case ISD::INTRINSIC_W_CHAIN: 1112 return LowerIntrinsic(Op, DAG); 1113 case ISD::SIGN_EXTEND_INREG: 1114 return LowerSIGN_EXTEND_INREG(Op, DAG); 1115 case ISD::BUILD_VECTOR: 1116 return LowerBUILD_VECTOR(Op, DAG); 1117 case ISD::VECTOR_SHUFFLE: 1118 return LowerVECTOR_SHUFFLE(Op, DAG); 1119 case ISD::SETCC: 1120 return LowerSETCC(Op, DAG); 1121 case ISD::SHL: 1122 case ISD::SRA: 1123 case ISD::SRL: 1124 return LowerShift(Op, DAG); 1125 } 1126 } 1127 1128 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1129 SelectionDAG &DAG) const { 1130 SDValue Src = Op.getOperand(2); 1131 if (isa<FrameIndexSDNode>(Src.getNode())) { 1132 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1133 // the FI to some LEA-like instruction, but since we don't have that, we 1134 // need to insert some kind of instruction that can take an FI operand and 1135 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1136 // local.copy between Op and its FI operand. 1137 SDValue Chain = Op.getOperand(0); 1138 SDLoc DL(Op); 1139 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1140 EVT VT = Src.getValueType(); 1141 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1142 : WebAssembly::COPY_I64, 1143 DL, VT, Src), 1144 0); 1145 return Op.getNode()->getNumValues() == 1 1146 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1147 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1148 Op.getNumOperands() == 4 ? Op.getOperand(3) 1149 : SDValue()); 1150 } 1151 return SDValue(); 1152 } 1153 1154 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1155 SelectionDAG &DAG) const { 1156 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1157 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1158 } 1159 1160 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1161 SelectionDAG &DAG) const { 1162 SDLoc DL(Op); 1163 1164 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1165 fail(DL, DAG, 1166 "Non-Emscripten WebAssembly hasn't implemented " 1167 "__builtin_return_address"); 1168 return SDValue(); 1169 } 1170 1171 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1172 return SDValue(); 1173 1174 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1175 MakeLibCallOptions CallOptions; 1176 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1177 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1178 .first; 1179 } 1180 1181 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1182 SelectionDAG &DAG) const { 1183 // Non-zero depths are not supported by WebAssembly currently. Use the 1184 // legalizer's default expansion, which is to return 0 (what this function is 1185 // documented to do). 1186 if (Op.getConstantOperandVal(0) > 0) 1187 return SDValue(); 1188 1189 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1190 EVT VT = Op.getValueType(); 1191 Register FP = 1192 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1193 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1194 } 1195 1196 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1197 SelectionDAG &DAG) const { 1198 SDLoc DL(Op); 1199 const auto *GA = cast<GlobalAddressSDNode>(Op); 1200 EVT VT = Op.getValueType(); 1201 assert(GA->getTargetFlags() == 0 && 1202 "Unexpected target flags on generic GlobalAddressSDNode"); 1203 if (GA->getAddressSpace() != 0) 1204 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1205 1206 unsigned OperandFlags = 0; 1207 if (isPositionIndependent()) { 1208 const GlobalValue *GV = GA->getGlobal(); 1209 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1210 MachineFunction &MF = DAG.getMachineFunction(); 1211 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1212 const char *BaseName; 1213 if (GV->getValueType()->isFunctionTy()) { 1214 BaseName = MF.createExternalSymbolName("__table_base"); 1215 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1216 } 1217 else { 1218 BaseName = MF.createExternalSymbolName("__memory_base"); 1219 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1220 } 1221 SDValue BaseAddr = 1222 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1223 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1224 1225 SDValue SymAddr = DAG.getNode( 1226 WebAssemblyISD::WrapperPIC, DL, VT, 1227 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1228 OperandFlags)); 1229 1230 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1231 } else { 1232 OperandFlags = WebAssemblyII::MO_GOT; 1233 } 1234 } 1235 1236 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1237 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1238 GA->getOffset(), OperandFlags)); 1239 } 1240 1241 SDValue 1242 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1243 SelectionDAG &DAG) const { 1244 SDLoc DL(Op); 1245 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1246 EVT VT = Op.getValueType(); 1247 assert(ES->getTargetFlags() == 0 && 1248 "Unexpected target flags on generic ExternalSymbolSDNode"); 1249 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1250 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1251 } 1252 1253 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1254 SelectionDAG &DAG) const { 1255 // There's no need for a Wrapper node because we always incorporate a jump 1256 // table operand into a BR_TABLE instruction, rather than ever 1257 // materializing it in a register. 1258 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1259 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1260 JT->getTargetFlags()); 1261 } 1262 1263 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1264 SelectionDAG &DAG) const { 1265 SDLoc DL(Op); 1266 SDValue Chain = Op.getOperand(0); 1267 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1268 SDValue Index = Op.getOperand(2); 1269 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1270 1271 SmallVector<SDValue, 8> Ops; 1272 Ops.push_back(Chain); 1273 Ops.push_back(Index); 1274 1275 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1276 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1277 1278 // Add an operand for each case. 1279 for (auto MBB : MBBs) 1280 Ops.push_back(DAG.getBasicBlock(MBB)); 1281 1282 // TODO: For now, we just pick something arbitrary for a default case for now. 1283 // We really want to sniff out the guard and put in the real default case (and 1284 // delete the guard). 1285 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1286 1287 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1288 } 1289 1290 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1291 SelectionDAG &DAG) const { 1292 SDLoc DL(Op); 1293 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1294 1295 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1296 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1297 1298 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1299 MFI->getVarargBufferVreg(), PtrVT); 1300 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1301 MachinePointerInfo(SV), 0); 1302 } 1303 1304 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1305 SelectionDAG &DAG) const { 1306 MachineFunction &MF = DAG.getMachineFunction(); 1307 unsigned IntNo; 1308 switch (Op.getOpcode()) { 1309 case ISD::INTRINSIC_VOID: 1310 case ISD::INTRINSIC_W_CHAIN: 1311 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1312 break; 1313 case ISD::INTRINSIC_WO_CHAIN: 1314 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1315 break; 1316 default: 1317 llvm_unreachable("Invalid intrinsic"); 1318 } 1319 SDLoc DL(Op); 1320 1321 switch (IntNo) { 1322 default: 1323 return SDValue(); // Don't custom lower most intrinsics. 1324 1325 case Intrinsic::wasm_lsda: { 1326 EVT VT = Op.getValueType(); 1327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1328 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1329 auto &Context = MF.getMMI().getContext(); 1330 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1331 Twine(MF.getFunctionNumber())); 1332 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1333 DAG.getMCSymbol(S, PtrVT)); 1334 } 1335 1336 case Intrinsic::wasm_throw: { 1337 // We only support C++ exceptions for now 1338 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1339 if (Tag != CPP_EXCEPTION) 1340 llvm_unreachable("Invalid tag!"); 1341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1342 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1343 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1344 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1345 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1346 return DAG.getNode(WebAssemblyISD::THROW, DL, 1347 MVT::Other, // outchain type 1348 { 1349 Op.getOperand(0), // inchain 1350 SymNode, // exception symbol 1351 Op.getOperand(3) // thrown value 1352 }); 1353 } 1354 1355 case Intrinsic::wasm_shuffle: { 1356 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1357 SDValue Ops[18]; 1358 size_t OpIdx = 0; 1359 Ops[OpIdx++] = Op.getOperand(1); 1360 Ops[OpIdx++] = Op.getOperand(2); 1361 while (OpIdx < 18) { 1362 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1363 if (MaskIdx.isUndef() || 1364 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1365 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1366 } else { 1367 Ops[OpIdx++] = MaskIdx; 1368 } 1369 } 1370 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1371 } 1372 } 1373 } 1374 1375 SDValue 1376 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1377 SelectionDAG &DAG) const { 1378 SDLoc DL(Op); 1379 // If sign extension operations are disabled, allow sext_inreg only if operand 1380 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1381 // extension operations, but allowing sext_inreg in this context lets us have 1382 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1383 // everywhere would be simpler in this file, but would necessitate large and 1384 // brittle patterns to undo the expansion and select extract_lane_s 1385 // instructions. 1386 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1387 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1388 return SDValue(); 1389 1390 const SDValue &Extract = Op.getOperand(0); 1391 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1392 if (VecT.getVectorElementType().getSizeInBits() > 32) 1393 return SDValue(); 1394 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1395 ->getVT() 1396 .getSimpleVT(); 1397 MVT ExtractedVecT = 1398 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1399 if (ExtractedVecT == VecT) 1400 return Op; 1401 1402 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1403 const SDValue &Index = Extract.getOperand(1); 1404 unsigned IndexVal = 1405 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1406 unsigned Scale = 1407 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1408 assert(Scale > 1); 1409 SDValue NewIndex = 1410 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1411 SDValue NewExtract = DAG.getNode( 1412 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1413 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1414 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1415 Op.getOperand(1)); 1416 } 1417 1418 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1419 SelectionDAG &DAG) const { 1420 SDLoc DL(Op); 1421 const EVT VecT = Op.getValueType(); 1422 const EVT LaneT = Op.getOperand(0).getValueType(); 1423 const size_t Lanes = Op.getNumOperands(); 1424 bool CanSwizzle = VecT == MVT::v16i8; 1425 1426 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1427 // possible number of lanes at once followed by a sequence of replace_lane 1428 // instructions to individually initialize any remaining lanes. 1429 1430 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1431 // swizzled lanes should be given greater weight. 1432 1433 // TODO: Investigate building vectors by shuffling together vectors built by 1434 // separately specialized means. 1435 1436 auto IsConstant = [](const SDValue &V) { 1437 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1438 }; 1439 1440 // Returns the source vector and index vector pair if they exist. Checks for: 1441 // (extract_vector_elt 1442 // $src, 1443 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1444 // ) 1445 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1446 auto Bail = std::make_pair(SDValue(), SDValue()); 1447 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1448 return Bail; 1449 const SDValue &SwizzleSrc = Lane->getOperand(0); 1450 const SDValue &IndexExt = Lane->getOperand(1); 1451 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1452 return Bail; 1453 const SDValue &Index = IndexExt->getOperand(0); 1454 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1455 return Bail; 1456 const SDValue &SwizzleIndices = Index->getOperand(0); 1457 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1458 SwizzleIndices.getValueType() != MVT::v16i8 || 1459 Index->getOperand(1)->getOpcode() != ISD::Constant || 1460 Index->getConstantOperandVal(1) != I) 1461 return Bail; 1462 return std::make_pair(SwizzleSrc, SwizzleIndices); 1463 }; 1464 1465 using ValueEntry = std::pair<SDValue, size_t>; 1466 SmallVector<ValueEntry, 16> SplatValueCounts; 1467 1468 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1469 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1470 1471 auto AddCount = [](auto &Counts, const auto &Val) { 1472 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1473 [&Val](auto E) { return E.first == Val; }); 1474 if (CountIt == Counts.end()) { 1475 Counts.emplace_back(Val, 1); 1476 } else { 1477 CountIt->second++; 1478 } 1479 }; 1480 1481 auto GetMostCommon = [](auto &Counts) { 1482 auto CommonIt = 1483 std::max_element(Counts.begin(), Counts.end(), 1484 [](auto A, auto B) { return A.second < B.second; }); 1485 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1486 return *CommonIt; 1487 }; 1488 1489 size_t NumConstantLanes = 0; 1490 1491 // Count eligible lanes for each type of vector creation op 1492 for (size_t I = 0; I < Lanes; ++I) { 1493 const SDValue &Lane = Op->getOperand(I); 1494 if (Lane.isUndef()) 1495 continue; 1496 1497 AddCount(SplatValueCounts, Lane); 1498 1499 if (IsConstant(Lane)) { 1500 NumConstantLanes++; 1501 } else if (CanSwizzle) { 1502 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1503 if (SwizzleSrcs.first) 1504 AddCount(SwizzleCounts, SwizzleSrcs); 1505 } 1506 } 1507 1508 SDValue SplatValue; 1509 size_t NumSplatLanes; 1510 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1511 1512 SDValue SwizzleSrc; 1513 SDValue SwizzleIndices; 1514 size_t NumSwizzleLanes = 0; 1515 if (SwizzleCounts.size()) 1516 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1517 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1518 1519 // Predicate returning true if the lane is properly initialized by the 1520 // original instruction 1521 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1522 SDValue Result; 1523 // Prefer swizzles over vector consts over splats 1524 if (NumSwizzleLanes >= NumSplatLanes && 1525 (!Subtarget->hasUnimplementedSIMD128() || 1526 NumSwizzleLanes >= NumConstantLanes)) { 1527 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1528 SwizzleIndices); 1529 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1530 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1531 return Swizzled == GetSwizzleSrcs(I, Lane); 1532 }; 1533 } else if (NumConstantLanes >= NumSplatLanes && 1534 Subtarget->hasUnimplementedSIMD128()) { 1535 SmallVector<SDValue, 16> ConstLanes; 1536 for (const SDValue &Lane : Op->op_values()) { 1537 if (IsConstant(Lane)) { 1538 ConstLanes.push_back(Lane); 1539 } else if (LaneT.isFloatingPoint()) { 1540 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1541 } else { 1542 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1543 } 1544 } 1545 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1546 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1547 return IsConstant(Lane); 1548 }; 1549 } 1550 if (!Result) { 1551 // Use a splat, but possibly a load_splat 1552 LoadSDNode *SplattedLoad; 1553 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1554 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1555 Result = DAG.getMemIntrinsicNode( 1556 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1557 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1558 SplattedLoad->getOffset()}, 1559 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1560 } else { 1561 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1562 } 1563 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1564 return Lane == SplatValue; 1565 }; 1566 } 1567 1568 // Add replace_lane instructions for any unhandled values 1569 for (size_t I = 0; I < Lanes; ++I) { 1570 const SDValue &Lane = Op->getOperand(I); 1571 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1572 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1573 DAG.getConstant(I, DL, MVT::i32)); 1574 } 1575 1576 return Result; 1577 } 1578 1579 SDValue 1580 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1581 SelectionDAG &DAG) const { 1582 SDLoc DL(Op); 1583 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1584 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1585 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1586 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1587 1588 // Space for two vector args and sixteen mask indices 1589 SDValue Ops[18]; 1590 size_t OpIdx = 0; 1591 Ops[OpIdx++] = Op.getOperand(0); 1592 Ops[OpIdx++] = Op.getOperand(1); 1593 1594 // Expand mask indices to byte indices and materialize them as operands 1595 for (int M : Mask) { 1596 for (size_t J = 0; J < LaneBytes; ++J) { 1597 // Lower undefs (represented by -1 in mask) to zero 1598 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1599 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1600 } 1601 } 1602 1603 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1604 } 1605 1606 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1607 SelectionDAG &DAG) const { 1608 SDLoc DL(Op); 1609 // The legalizer does not know how to expand the comparison modes of i64x2 1610 // vectors because no comparison modes are supported. We could solve this by 1611 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1612 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1613 // comparisons here. 1614 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1615 SmallVector<SDValue, 2> LHS, RHS; 1616 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1617 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1618 const SDValue &CC = Op->getOperand(2); 1619 auto MakeLane = [&](unsigned I) { 1620 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1621 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1622 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1623 }; 1624 return DAG.getBuildVector(Op->getValueType(0), DL, 1625 {MakeLane(0), MakeLane(1)}); 1626 } 1627 1628 SDValue 1629 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1630 SelectionDAG &DAG) const { 1631 // Allow constant lane indices, expand variable lane indices 1632 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1633 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1634 return Op; 1635 else 1636 // Perform default expansion 1637 return SDValue(); 1638 } 1639 1640 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1641 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1642 // 32-bit and 64-bit unrolled shifts will have proper semantics 1643 if (LaneT.bitsGE(MVT::i32)) 1644 return DAG.UnrollVectorOp(Op.getNode()); 1645 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1646 SDLoc DL(Op); 1647 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1648 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1649 unsigned ShiftOpcode = Op.getOpcode(); 1650 SmallVector<SDValue, 16> ShiftedElements; 1651 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1652 SmallVector<SDValue, 16> ShiftElements; 1653 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1654 SmallVector<SDValue, 16> UnrolledOps; 1655 for (size_t i = 0; i < NumLanes; ++i) { 1656 SDValue MaskedShiftValue = 1657 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1658 SDValue ShiftedValue = ShiftedElements[i]; 1659 if (ShiftOpcode == ISD::SRA) 1660 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1661 ShiftedValue, DAG.getValueType(LaneT)); 1662 UnrolledOps.push_back( 1663 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1664 } 1665 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1666 } 1667 1668 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1669 SelectionDAG &DAG) const { 1670 SDLoc DL(Op); 1671 1672 // Only manually lower vector shifts 1673 assert(Op.getSimpleValueType().isVector()); 1674 1675 // Unroll non-splat vector shifts 1676 BuildVectorSDNode *ShiftVec; 1677 SDValue SplatVal; 1678 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1679 !(SplatVal = ShiftVec->getSplatValue())) 1680 return unrollVectorShift(Op, DAG); 1681 1682 // All splats except i64x2 const splats are handled by patterns 1683 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1684 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1685 return Op; 1686 1687 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1688 unsigned Opcode; 1689 switch (Op.getOpcode()) { 1690 case ISD::SHL: 1691 Opcode = WebAssemblyISD::VEC_SHL; 1692 break; 1693 case ISD::SRA: 1694 Opcode = WebAssemblyISD::VEC_SHR_S; 1695 break; 1696 case ISD::SRL: 1697 Opcode = WebAssemblyISD::VEC_SHR_U; 1698 break; 1699 default: 1700 llvm_unreachable("unexpected opcode"); 1701 } 1702 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1703 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1704 DAG.getConstant(Shift, DL, MVT::i32)); 1705 } 1706 1707 //===----------------------------------------------------------------------===// 1708 // Custom DAG combine hooks 1709 //===----------------------------------------------------------------------===// 1710 static SDValue 1711 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1712 auto &DAG = DCI.DAG; 1713 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1714 1715 // Hoist vector bitcasts that don't change the number of lanes out of unary 1716 // shuffles, where they are less likely to get in the way of other combines. 1717 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1718 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1719 SDValue Bitcast = N->getOperand(0); 1720 if (Bitcast.getOpcode() != ISD::BITCAST) 1721 return SDValue(); 1722 if (!N->getOperand(1).isUndef()) 1723 return SDValue(); 1724 SDValue CastOp = Bitcast.getOperand(0); 1725 MVT SrcType = CastOp.getSimpleValueType(); 1726 MVT DstType = Bitcast.getSimpleValueType(); 1727 if (!SrcType.is128BitVector() || 1728 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1729 return SDValue(); 1730 SDValue NewShuffle = DAG.getVectorShuffle( 1731 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1732 return DAG.getBitcast(DstType, NewShuffle); 1733 } 1734 1735 SDValue 1736 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 1737 DAGCombinerInfo &DCI) const { 1738 switch (N->getOpcode()) { 1739 default: 1740 return SDValue(); 1741 case ISD::VECTOR_SHUFFLE: 1742 return performVECTOR_SHUFFLECombine(N, DCI); 1743 } 1744 } 1745