1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // We don't know the microarchitecture here, so just reduce register pressure. 49 setSchedulingPreference(Sched::RegPressure); 50 // Tell ISel that we have a stack pointer. 51 setStackPointerRegisterToSaveRestore( 52 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 53 // Set up the register classes. 54 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 55 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 56 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 57 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 58 if (Subtarget->hasSIMD128()) { 59 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 60 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 63 } 64 if (Subtarget->hasUnimplementedSIMD128()) { 65 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 67 } 68 // Compute derived properties from the register classes. 69 computeRegisterProperties(Subtarget->getRegisterInfo()); 70 71 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 72 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 73 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 74 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 75 setOperationAction(ISD::BRIND, MVT::Other, Custom); 76 77 // Take the default expansion for va_arg, va_copy, and va_end. There is no 78 // default action for va_start, so we do that custom. 79 setOperationAction(ISD::VASTART, MVT::Other, Custom); 80 setOperationAction(ISD::VAARG, MVT::Other, Expand); 81 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 82 setOperationAction(ISD::VAEND, MVT::Other, Expand); 83 84 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 85 // Don't expand the floating-point types to constant pools. 86 setOperationAction(ISD::ConstantFP, T, Legal); 87 // Expand floating-point comparisons. 88 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 89 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 90 setCondCodeAction(CC, T, Expand); 91 // Expand floating-point library function operators. 92 for (auto Op : 93 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 94 setOperationAction(Op, T, Expand); 95 // Note supported floating-point library function operators that otherwise 96 // default to expand. 97 for (auto Op : 98 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 99 setOperationAction(Op, T, Legal); 100 // Support minimum and maximum, which otherwise default to expand. 101 setOperationAction(ISD::FMINIMUM, T, Legal); 102 setOperationAction(ISD::FMAXIMUM, T, Legal); 103 // WebAssembly currently has no builtin f16 support. 104 setOperationAction(ISD::FP16_TO_FP, T, Expand); 105 setOperationAction(ISD::FP_TO_FP16, T, Expand); 106 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 107 setTruncStoreAction(T, MVT::f16, Expand); 108 } 109 110 // Expand unavailable integer operations. 111 for (auto Op : 112 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 113 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 114 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 115 for (auto T : {MVT::i32, MVT::i64}) 116 setOperationAction(Op, T, Expand); 117 if (Subtarget->hasSIMD128()) 118 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasUnimplementedSIMD128()) 121 setOperationAction(Op, MVT::v2i64, Expand); 122 } 123 124 // SIMD-specific configuration 125 if (Subtarget->hasSIMD128()) { 126 // Support saturating add for i8x16 and i16x8 127 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 128 for (auto T : {MVT::v16i8, MVT::v8i16}) 129 setOperationAction(Op, T, Legal); 130 131 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 132 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 133 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 134 if (Subtarget->hasUnimplementedSIMD128()) 135 for (auto T : {MVT::v2i64, MVT::v2f64}) 136 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 137 138 // We have custom shuffle lowering to expose the shuffle mask 139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 140 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 141 if (Subtarget->hasUnimplementedSIMD128()) 142 for (auto T: {MVT::v2i64, MVT::v2f64}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 145 // Custom lowering since wasm shifts must have a scalar shift amount 146 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 148 setOperationAction(Op, T, Custom); 149 if (Subtarget->hasUnimplementedSIMD128()) 150 setOperationAction(Op, MVT::v2i64, Custom); 151 } 152 153 // Custom lower lane accesses to expand out variable indices 154 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 155 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 156 setOperationAction(Op, T, Custom); 157 if (Subtarget->hasUnimplementedSIMD128()) 158 for (auto T : {MVT::v2i64, MVT::v2f64}) 159 setOperationAction(Op, T, Custom); 160 } 161 162 // There is no i64x2.mul instruction 163 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 164 165 // There are no vector select instructions 166 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 168 setOperationAction(Op, T, Expand); 169 if (Subtarget->hasUnimplementedSIMD128()) 170 for (auto T : {MVT::v2i64, MVT::v2f64}) 171 setOperationAction(Op, T, Expand); 172 } 173 174 // Expand integer operations supported for scalars but not SIMD 175 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 176 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 177 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 178 setOperationAction(Op, T, Expand); 179 if (Subtarget->hasUnimplementedSIMD128()) 180 setOperationAction(Op, MVT::v2i64, Expand); 181 } 182 183 // Expand float operations supported for scalars but not SIMD 184 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 185 ISD::FCOPYSIGN}) { 186 setOperationAction(Op, MVT::v4f32, Expand); 187 if (Subtarget->hasUnimplementedSIMD128()) 188 setOperationAction(Op, MVT::v2f64, Expand); 189 } 190 191 // Expand additional SIMD ops that V8 hasn't implemented yet 192 if (!Subtarget->hasUnimplementedSIMD128()) { 193 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 194 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 195 } 196 } 197 198 // As a special case, these operators use the type to mean the type to 199 // sign-extend from. 200 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 201 if (!Subtarget->hasSignExt()) { 202 // Sign extends are legal only when extending a vector extract 203 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 204 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 205 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 206 } 207 for (auto T : MVT::integer_vector_valuetypes()) 208 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 209 210 // Dynamic stack allocation: use the default expansion. 211 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 212 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 213 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 214 215 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 216 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 217 218 // Expand these forms; we pattern-match the forms that we can handle in isel. 219 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 220 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 221 setOperationAction(Op, T, Expand); 222 223 // We have custom switch handling. 224 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 225 226 // WebAssembly doesn't have: 227 // - Floating-point extending loads. 228 // - Floating-point truncating stores. 229 // - i1 extending loads. 230 // - extending/truncating SIMD loads/stores 231 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 232 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 233 for (auto T : MVT::integer_valuetypes()) 234 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 235 setLoadExtAction(Ext, T, MVT::i1, Promote); 236 if (Subtarget->hasSIMD128()) { 237 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 238 MVT::v2f64}) { 239 for (auto MemT : MVT::vector_valuetypes()) { 240 if (MVT(T) != MemT) { 241 setTruncStoreAction(T, MemT, Expand); 242 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 243 setLoadExtAction(Ext, T, MemT, Expand); 244 } 245 } 246 } 247 } 248 249 // Don't do anything clever with build_pairs 250 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 251 252 // Trap lowers to wasm unreachable 253 setOperationAction(ISD::TRAP, MVT::Other, Legal); 254 255 // Exception handling intrinsics 256 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 257 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 258 259 setMaxAtomicSizeInBitsSupported(64); 260 261 if (Subtarget->hasBulkMemory()) { 262 // Use memory.copy and friends over multiple loads and stores 263 MaxStoresPerMemcpy = 1; 264 MaxStoresPerMemcpyOptSize = 1; 265 MaxStoresPerMemmove = 1; 266 MaxStoresPerMemmoveOptSize = 1; 267 MaxStoresPerMemset = 1; 268 MaxStoresPerMemsetOptSize = 1; 269 } 270 271 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 272 // consistent with the f64 and f128 names. 273 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 274 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 275 276 // Always convert switches to br_tables unless there is only one case, which 277 // is equivalent to a simple branch. This reduces code size for wasm, and we 278 // defer possible jump table optimizations to the VM. 279 setMinimumJumpTableEntries(2); 280 } 281 282 TargetLowering::AtomicExpansionKind 283 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 284 // We have wasm instructions for these 285 switch (AI->getOperation()) { 286 case AtomicRMWInst::Add: 287 case AtomicRMWInst::Sub: 288 case AtomicRMWInst::And: 289 case AtomicRMWInst::Or: 290 case AtomicRMWInst::Xor: 291 case AtomicRMWInst::Xchg: 292 return AtomicExpansionKind::None; 293 default: 294 break; 295 } 296 return AtomicExpansionKind::CmpXChg; 297 } 298 299 FastISel *WebAssemblyTargetLowering::createFastISel( 300 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 301 return WebAssembly::createFastISel(FuncInfo, LibInfo); 302 } 303 304 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 305 EVT VT) const { 306 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 307 if (BitWidth > 1 && BitWidth < 8) 308 BitWidth = 8; 309 310 if (BitWidth > 64) { 311 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 312 // the count to be an i32. 313 BitWidth = 32; 314 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 315 "32-bit shift counts ought to be enough for anyone"); 316 } 317 318 MVT Result = MVT::getIntegerVT(BitWidth); 319 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 320 "Unable to represent scalar shift amount type"); 321 return Result; 322 } 323 324 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 325 // undefined result on invalid/overflow, to the WebAssembly opcode, which 326 // traps on invalid/overflow. 327 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 328 MachineBasicBlock *BB, 329 const TargetInstrInfo &TII, 330 bool IsUnsigned, bool Int64, 331 bool Float64, unsigned LoweredOpcode) { 332 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 333 334 unsigned OutReg = MI.getOperand(0).getReg(); 335 unsigned InReg = MI.getOperand(1).getReg(); 336 337 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 338 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 339 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 340 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 341 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 342 unsigned Eqz = WebAssembly::EQZ_I32; 343 unsigned And = WebAssembly::AND_I32; 344 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 345 int64_t Substitute = IsUnsigned ? 0 : Limit; 346 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 347 auto &Context = BB->getParent()->getFunction().getContext(); 348 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 349 350 const BasicBlock *LLVMBB = BB->getBasicBlock(); 351 MachineFunction *F = BB->getParent(); 352 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 353 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 354 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 355 356 MachineFunction::iterator It = ++BB->getIterator(); 357 F->insert(It, FalseMBB); 358 F->insert(It, TrueMBB); 359 F->insert(It, DoneMBB); 360 361 // Transfer the remainder of BB and its successor edges to DoneMBB. 362 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 363 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 364 365 BB->addSuccessor(TrueMBB); 366 BB->addSuccessor(FalseMBB); 367 TrueMBB->addSuccessor(DoneMBB); 368 FalseMBB->addSuccessor(DoneMBB); 369 370 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 371 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 372 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 373 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 374 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 375 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 376 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 377 378 MI.eraseFromParent(); 379 // For signed numbers, we can do a single comparison to determine whether 380 // fabs(x) is within range. 381 if (IsUnsigned) { 382 Tmp0 = InReg; 383 } else { 384 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 385 } 386 BuildMI(BB, DL, TII.get(FConst), Tmp1) 387 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 388 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 389 390 // For unsigned numbers, we have to do a separate comparison with zero. 391 if (IsUnsigned) { 392 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 393 unsigned SecondCmpReg = 394 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 395 unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 396 BuildMI(BB, DL, TII.get(FConst), Tmp1) 397 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 398 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 399 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 400 CmpReg = AndReg; 401 } 402 403 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 404 405 // Create the CFG diamond to select between doing the conversion or using 406 // the substitute value. 407 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 408 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 409 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 410 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 411 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 412 .addReg(FalseReg) 413 .addMBB(FalseMBB) 414 .addReg(TrueReg) 415 .addMBB(TrueMBB); 416 417 return DoneMBB; 418 } 419 420 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 421 MachineInstr &MI, MachineBasicBlock *BB) const { 422 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 423 DebugLoc DL = MI.getDebugLoc(); 424 425 switch (MI.getOpcode()) { 426 default: 427 llvm_unreachable("Unexpected instr type to insert"); 428 case WebAssembly::FP_TO_SINT_I32_F32: 429 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 430 WebAssembly::I32_TRUNC_S_F32); 431 case WebAssembly::FP_TO_UINT_I32_F32: 432 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 433 WebAssembly::I32_TRUNC_U_F32); 434 case WebAssembly::FP_TO_SINT_I64_F32: 435 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 436 WebAssembly::I64_TRUNC_S_F32); 437 case WebAssembly::FP_TO_UINT_I64_F32: 438 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 439 WebAssembly::I64_TRUNC_U_F32); 440 case WebAssembly::FP_TO_SINT_I32_F64: 441 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 442 WebAssembly::I32_TRUNC_S_F64); 443 case WebAssembly::FP_TO_UINT_I32_F64: 444 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 445 WebAssembly::I32_TRUNC_U_F64); 446 case WebAssembly::FP_TO_SINT_I64_F64: 447 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 448 WebAssembly::I64_TRUNC_S_F64); 449 case WebAssembly::FP_TO_UINT_I64_F64: 450 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 451 WebAssembly::I64_TRUNC_U_F64); 452 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 453 } 454 } 455 456 const char * 457 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 458 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 459 case WebAssemblyISD::FIRST_NUMBER: 460 break; 461 #define HANDLE_NODETYPE(NODE) \ 462 case WebAssemblyISD::NODE: \ 463 return "WebAssemblyISD::" #NODE; 464 #include "WebAssemblyISD.def" 465 #undef HANDLE_NODETYPE 466 } 467 return nullptr; 468 } 469 470 std::pair<unsigned, const TargetRegisterClass *> 471 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 472 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 473 // First, see if this is a constraint that directly corresponds to a 474 // WebAssembly register class. 475 if (Constraint.size() == 1) { 476 switch (Constraint[0]) { 477 case 'r': 478 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 479 if (Subtarget->hasSIMD128() && VT.isVector()) { 480 if (VT.getSizeInBits() == 128) 481 return std::make_pair(0U, &WebAssembly::V128RegClass); 482 } 483 if (VT.isInteger() && !VT.isVector()) { 484 if (VT.getSizeInBits() <= 32) 485 return std::make_pair(0U, &WebAssembly::I32RegClass); 486 if (VT.getSizeInBits() <= 64) 487 return std::make_pair(0U, &WebAssembly::I64RegClass); 488 } 489 break; 490 default: 491 break; 492 } 493 } 494 495 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 496 } 497 498 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 499 // Assume ctz is a relatively cheap operation. 500 return true; 501 } 502 503 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 504 // Assume clz is a relatively cheap operation. 505 return true; 506 } 507 508 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 509 const AddrMode &AM, 510 Type *Ty, unsigned AS, 511 Instruction *I) const { 512 // WebAssembly offsets are added as unsigned without wrapping. The 513 // isLegalAddressingMode gives us no way to determine if wrapping could be 514 // happening, so we approximate this by accepting only non-negative offsets. 515 if (AM.BaseOffs < 0) 516 return false; 517 518 // WebAssembly has no scale register operands. 519 if (AM.Scale != 0) 520 return false; 521 522 // Everything else is legal. 523 return true; 524 } 525 526 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 527 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const { 528 // WebAssembly supports unaligned accesses, though it should be declared 529 // with the p2align attribute on loads and stores which do so, and there 530 // may be a performance impact. We tell LLVM they're "fast" because 531 // for the kinds of things that LLVM uses this for (merging adjacent stores 532 // of constants, etc.), WebAssembly implementations will either want the 533 // unaligned access or they'll split anyway. 534 if (Fast) 535 *Fast = true; 536 return true; 537 } 538 539 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 540 AttributeList Attr) const { 541 // The current thinking is that wasm engines will perform this optimization, 542 // so we can save on code size. 543 return true; 544 } 545 546 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 547 LLVMContext &C, 548 EVT VT) const { 549 if (VT.isVector()) 550 return VT.changeVectorElementTypeToInteger(); 551 552 return TargetLowering::getSetCCResultType(DL, C, VT); 553 } 554 555 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 556 const CallInst &I, 557 MachineFunction &MF, 558 unsigned Intrinsic) const { 559 switch (Intrinsic) { 560 case Intrinsic::wasm_atomic_notify: 561 Info.opc = ISD::INTRINSIC_W_CHAIN; 562 Info.memVT = MVT::i32; 563 Info.ptrVal = I.getArgOperand(0); 564 Info.offset = 0; 565 Info.align = 4; 566 // atomic.notify instruction does not really load the memory specified with 567 // this argument, but MachineMemOperand should either be load or store, so 568 // we set this to a load. 569 // FIXME Volatile isn't really correct, but currently all LLVM atomic 570 // instructions are treated as volatiles in the backend, so we should be 571 // consistent. The same applies for wasm_atomic_wait intrinsics too. 572 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 573 return true; 574 case Intrinsic::wasm_atomic_wait_i32: 575 Info.opc = ISD::INTRINSIC_W_CHAIN; 576 Info.memVT = MVT::i32; 577 Info.ptrVal = I.getArgOperand(0); 578 Info.offset = 0; 579 Info.align = 4; 580 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 581 return true; 582 case Intrinsic::wasm_atomic_wait_i64: 583 Info.opc = ISD::INTRINSIC_W_CHAIN; 584 Info.memVT = MVT::i64; 585 Info.ptrVal = I.getArgOperand(0); 586 Info.offset = 0; 587 Info.align = 8; 588 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 589 return true; 590 default: 591 return false; 592 } 593 } 594 595 //===----------------------------------------------------------------------===// 596 // WebAssembly Lowering private implementation. 597 //===----------------------------------------------------------------------===// 598 599 //===----------------------------------------------------------------------===// 600 // Lowering Code 601 //===----------------------------------------------------------------------===// 602 603 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 604 MachineFunction &MF = DAG.getMachineFunction(); 605 DAG.getContext()->diagnose( 606 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 607 } 608 609 // Test whether the given calling convention is supported. 610 static bool callingConvSupported(CallingConv::ID CallConv) { 611 // We currently support the language-independent target-independent 612 // conventions. We don't yet have a way to annotate calls with properties like 613 // "cold", and we don't have any call-clobbered registers, so these are mostly 614 // all handled the same. 615 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 616 CallConv == CallingConv::Cold || 617 CallConv == CallingConv::PreserveMost || 618 CallConv == CallingConv::PreserveAll || 619 CallConv == CallingConv::CXX_FAST_TLS; 620 } 621 622 SDValue 623 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 624 SmallVectorImpl<SDValue> &InVals) const { 625 SelectionDAG &DAG = CLI.DAG; 626 SDLoc DL = CLI.DL; 627 SDValue Chain = CLI.Chain; 628 SDValue Callee = CLI.Callee; 629 MachineFunction &MF = DAG.getMachineFunction(); 630 auto Layout = MF.getDataLayout(); 631 632 CallingConv::ID CallConv = CLI.CallConv; 633 if (!callingConvSupported(CallConv)) 634 fail(DL, DAG, 635 "WebAssembly doesn't support language-specific or target-specific " 636 "calling conventions yet"); 637 if (CLI.IsPatchPoint) 638 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 639 640 // WebAssembly doesn't currently support explicit tail calls. If they are 641 // required, fail. Otherwise, just disable them. 642 if ((CallConv == CallingConv::Fast && CLI.IsTailCall && 643 MF.getTarget().Options.GuaranteedTailCallOpt) || 644 (CLI.CS && CLI.CS.isMustTailCall())) 645 fail(DL, DAG, "WebAssembly doesn't support tail call yet"); 646 CLI.IsTailCall = false; 647 648 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 649 if (Ins.size() > 1) 650 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 651 652 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 653 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 654 unsigned NumFixedArgs = 0; 655 for (unsigned I = 0; I < Outs.size(); ++I) { 656 const ISD::OutputArg &Out = Outs[I]; 657 SDValue &OutVal = OutVals[I]; 658 if (Out.Flags.isNest()) 659 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 660 if (Out.Flags.isInAlloca()) 661 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 662 if (Out.Flags.isInConsecutiveRegs()) 663 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 664 if (Out.Flags.isInConsecutiveRegsLast()) 665 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 666 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 667 auto &MFI = MF.getFrameInfo(); 668 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 669 Out.Flags.getByValAlign(), 670 /*isSS=*/false); 671 SDValue SizeNode = 672 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 673 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 674 Chain = DAG.getMemcpy( 675 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 676 /*isVolatile*/ false, /*AlwaysInline=*/false, 677 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 678 OutVal = FINode; 679 } 680 // Count the number of fixed args *after* legalization. 681 NumFixedArgs += Out.IsFixed; 682 } 683 684 bool IsVarArg = CLI.IsVarArg; 685 auto PtrVT = getPointerTy(Layout); 686 687 // Analyze operands of the call, assigning locations to each operand. 688 SmallVector<CCValAssign, 16> ArgLocs; 689 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 690 691 if (IsVarArg) { 692 // Outgoing non-fixed arguments are placed in a buffer. First 693 // compute their offsets and the total amount of buffer space needed. 694 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 695 const ISD::OutputArg &Out = Outs[I]; 696 SDValue &Arg = OutVals[I]; 697 EVT VT = Arg.getValueType(); 698 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 699 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 700 unsigned Align = std::max(Out.Flags.getOrigAlign(), 701 Layout.getABITypeAlignment(Ty)); 702 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 703 Align); 704 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 705 Offset, VT.getSimpleVT(), 706 CCValAssign::Full)); 707 } 708 } 709 710 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 711 712 SDValue FINode; 713 if (IsVarArg && NumBytes) { 714 // For non-fixed arguments, next emit stores to store the argument values 715 // to the stack buffer at the offsets computed above. 716 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 717 Layout.getStackAlignment(), 718 /*isSS=*/false); 719 unsigned ValNo = 0; 720 SmallVector<SDValue, 8> Chains; 721 for (SDValue Arg : 722 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 723 assert(ArgLocs[ValNo].getValNo() == ValNo && 724 "ArgLocs should remain in order and only hold varargs args"); 725 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 726 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 727 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 728 DAG.getConstant(Offset, DL, PtrVT)); 729 Chains.push_back( 730 DAG.getStore(Chain, DL, Arg, Add, 731 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 732 } 733 if (!Chains.empty()) 734 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 735 } else if (IsVarArg) { 736 FINode = DAG.getIntPtrConstant(0, DL); 737 } 738 739 if (Callee->getOpcode() == ISD::GlobalAddress) { 740 // If the callee is a GlobalAddress node (quite common, every direct call 741 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 742 // doesn't at MO_GOT which is not needed for direct calls. 743 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 744 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 745 getPointerTy(DAG.getDataLayout()), 746 GA->getOffset()); 747 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 748 getPointerTy(DAG.getDataLayout()), Callee); 749 } 750 751 // Compute the operands for the CALLn node. 752 SmallVector<SDValue, 16> Ops; 753 Ops.push_back(Chain); 754 Ops.push_back(Callee); 755 756 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 757 // isn't reliable. 758 Ops.append(OutVals.begin(), 759 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 760 // Add a pointer to the vararg buffer. 761 if (IsVarArg) 762 Ops.push_back(FINode); 763 764 SmallVector<EVT, 8> InTys; 765 for (const auto &In : Ins) { 766 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 767 assert(!In.Flags.isNest() && "nest is not valid for return values"); 768 if (In.Flags.isInAlloca()) 769 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 770 if (In.Flags.isInConsecutiveRegs()) 771 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 772 if (In.Flags.isInConsecutiveRegsLast()) 773 fail(DL, DAG, 774 "WebAssembly hasn't implemented cons regs last return values"); 775 // Ignore In.getOrigAlign() because all our arguments are passed in 776 // registers. 777 InTys.push_back(In.VT); 778 } 779 InTys.push_back(MVT::Other); 780 SDVTList InTyList = DAG.getVTList(InTys); 781 SDValue Res = 782 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 783 DL, InTyList, Ops); 784 if (Ins.empty()) { 785 Chain = Res; 786 } else { 787 InVals.push_back(Res); 788 Chain = Res.getValue(1); 789 } 790 791 return Chain; 792 } 793 794 bool WebAssemblyTargetLowering::CanLowerReturn( 795 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 796 const SmallVectorImpl<ISD::OutputArg> &Outs, 797 LLVMContext & /*Context*/) const { 798 // WebAssembly can't currently handle returning tuples. 799 return Outs.size() <= 1; 800 } 801 802 SDValue WebAssemblyTargetLowering::LowerReturn( 803 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 804 const SmallVectorImpl<ISD::OutputArg> &Outs, 805 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 806 SelectionDAG &DAG) const { 807 assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); 808 if (!callingConvSupported(CallConv)) 809 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 810 811 SmallVector<SDValue, 4> RetOps(1, Chain); 812 RetOps.append(OutVals.begin(), OutVals.end()); 813 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 814 815 // Record the number and types of the return values. 816 for (const ISD::OutputArg &Out : Outs) { 817 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 818 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 819 assert(Out.IsFixed && "non-fixed return value is not valid"); 820 if (Out.Flags.isInAlloca()) 821 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 822 if (Out.Flags.isInConsecutiveRegs()) 823 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 824 if (Out.Flags.isInConsecutiveRegsLast()) 825 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 826 } 827 828 return Chain; 829 } 830 831 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 832 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 833 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 834 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 835 if (!callingConvSupported(CallConv)) 836 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 837 838 MachineFunction &MF = DAG.getMachineFunction(); 839 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 840 841 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 842 // of the incoming values before they're represented by virtual registers. 843 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 844 845 for (const ISD::InputArg &In : Ins) { 846 if (In.Flags.isInAlloca()) 847 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 848 if (In.Flags.isNest()) 849 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 850 if (In.Flags.isInConsecutiveRegs()) 851 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 852 if (In.Flags.isInConsecutiveRegsLast()) 853 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 854 // Ignore In.getOrigAlign() because all our arguments are passed in 855 // registers. 856 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 857 DAG.getTargetConstant(InVals.size(), 858 DL, MVT::i32)) 859 : DAG.getUNDEF(In.VT)); 860 861 // Record the number and types of arguments. 862 MFI->addParam(In.VT); 863 } 864 865 // Varargs are copied into a buffer allocated by the caller, and a pointer to 866 // the buffer is passed as an argument. 867 if (IsVarArg) { 868 MVT PtrVT = getPointerTy(MF.getDataLayout()); 869 unsigned VarargVreg = 870 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 871 MFI->setVarargBufferVreg(VarargVreg); 872 Chain = DAG.getCopyToReg( 873 Chain, DL, VarargVreg, 874 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 875 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 876 MFI->addParam(PtrVT); 877 } 878 879 // Record the number and types of arguments and results. 880 SmallVector<MVT, 4> Params; 881 SmallVector<MVT, 4> Results; 882 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 883 DAG.getTarget(), Params, Results); 884 for (MVT VT : Results) 885 MFI->addResult(VT); 886 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 887 // the param logic here with ComputeSignatureVTs 888 assert(MFI->getParams().size() == Params.size() && 889 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 890 Params.begin())); 891 892 return Chain; 893 } 894 895 //===----------------------------------------------------------------------===// 896 // Custom lowering hooks. 897 //===----------------------------------------------------------------------===// 898 899 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 900 SelectionDAG &DAG) const { 901 SDLoc DL(Op); 902 switch (Op.getOpcode()) { 903 default: 904 llvm_unreachable("unimplemented operation lowering"); 905 return SDValue(); 906 case ISD::FrameIndex: 907 return LowerFrameIndex(Op, DAG); 908 case ISD::GlobalAddress: 909 return LowerGlobalAddress(Op, DAG); 910 case ISD::ExternalSymbol: 911 return LowerExternalSymbol(Op, DAG); 912 case ISD::JumpTable: 913 return LowerJumpTable(Op, DAG); 914 case ISD::BR_JT: 915 return LowerBR_JT(Op, DAG); 916 case ISD::VASTART: 917 return LowerVASTART(Op, DAG); 918 case ISD::BlockAddress: 919 case ISD::BRIND: 920 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 921 return SDValue(); 922 case ISD::RETURNADDR: // Probably nothing meaningful can be returned here. 923 fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address"); 924 return SDValue(); 925 case ISD::FRAMEADDR: 926 return LowerFRAMEADDR(Op, DAG); 927 case ISD::CopyToReg: 928 return LowerCopyToReg(Op, DAG); 929 case ISD::EXTRACT_VECTOR_ELT: 930 case ISD::INSERT_VECTOR_ELT: 931 return LowerAccessVectorElement(Op, DAG); 932 case ISD::INTRINSIC_VOID: 933 case ISD::INTRINSIC_WO_CHAIN: 934 case ISD::INTRINSIC_W_CHAIN: 935 return LowerIntrinsic(Op, DAG); 936 case ISD::SIGN_EXTEND_INREG: 937 return LowerSIGN_EXTEND_INREG(Op, DAG); 938 case ISD::BUILD_VECTOR: 939 return LowerBUILD_VECTOR(Op, DAG); 940 case ISD::VECTOR_SHUFFLE: 941 return LowerVECTOR_SHUFFLE(Op, DAG); 942 case ISD::SHL: 943 case ISD::SRA: 944 case ISD::SRL: 945 return LowerShift(Op, DAG); 946 } 947 } 948 949 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 950 SelectionDAG &DAG) const { 951 SDValue Src = Op.getOperand(2); 952 if (isa<FrameIndexSDNode>(Src.getNode())) { 953 // CopyToReg nodes don't support FrameIndex operands. Other targets select 954 // the FI to some LEA-like instruction, but since we don't have that, we 955 // need to insert some kind of instruction that can take an FI operand and 956 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 957 // local.copy between Op and its FI operand. 958 SDValue Chain = Op.getOperand(0); 959 SDLoc DL(Op); 960 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 961 EVT VT = Src.getValueType(); 962 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 963 : WebAssembly::COPY_I64, 964 DL, VT, Src), 965 0); 966 return Op.getNode()->getNumValues() == 1 967 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 968 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 969 Op.getNumOperands() == 4 ? Op.getOperand(3) 970 : SDValue()); 971 } 972 return SDValue(); 973 } 974 975 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 976 SelectionDAG &DAG) const { 977 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 978 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 979 } 980 981 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 982 SelectionDAG &DAG) const { 983 // Non-zero depths are not supported by WebAssembly currently. Use the 984 // legalizer's default expansion, which is to return 0 (what this function is 985 // documented to do). 986 if (Op.getConstantOperandVal(0) > 0) 987 return SDValue(); 988 989 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 990 EVT VT = Op.getValueType(); 991 unsigned FP = 992 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 993 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 994 } 995 996 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 997 SelectionDAG &DAG) const { 998 SDLoc DL(Op); 999 const auto *GA = cast<GlobalAddressSDNode>(Op); 1000 EVT VT = Op.getValueType(); 1001 assert(GA->getTargetFlags() == 0 && 1002 "Unexpected target flags on generic GlobalAddressSDNode"); 1003 if (GA->getAddressSpace() != 0) 1004 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1005 1006 unsigned OperandFlags = 0; 1007 if (isPositionIndependent()) { 1008 const GlobalValue *GV = GA->getGlobal(); 1009 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1010 MachineFunction &MF = DAG.getMachineFunction(); 1011 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1012 const char *BaseName; 1013 if (GV->getValueType()->isFunctionTy()) { 1014 BaseName = MF.createExternalSymbolName("__table_base"); 1015 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1016 } 1017 else { 1018 BaseName = MF.createExternalSymbolName("__memory_base"); 1019 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1020 } 1021 SDValue BaseAddr = 1022 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1023 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1024 1025 SDValue SymAddr = DAG.getNode( 1026 WebAssemblyISD::WrapperPIC, DL, VT, 1027 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1028 OperandFlags)); 1029 1030 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1031 } else { 1032 OperandFlags = WebAssemblyII::MO_GOT; 1033 } 1034 } 1035 1036 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1037 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1038 GA->getOffset(), OperandFlags)); 1039 } 1040 1041 SDValue 1042 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1043 SelectionDAG &DAG) const { 1044 SDLoc DL(Op); 1045 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1046 EVT VT = Op.getValueType(); 1047 assert(ES->getTargetFlags() == 0 && 1048 "Unexpected target flags on generic ExternalSymbolSDNode"); 1049 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1050 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1051 } 1052 1053 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1054 SelectionDAG &DAG) const { 1055 // There's no need for a Wrapper node because we always incorporate a jump 1056 // table operand into a BR_TABLE instruction, rather than ever 1057 // materializing it in a register. 1058 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1059 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1060 JT->getTargetFlags()); 1061 } 1062 1063 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1064 SelectionDAG &DAG) const { 1065 SDLoc DL(Op); 1066 SDValue Chain = Op.getOperand(0); 1067 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1068 SDValue Index = Op.getOperand(2); 1069 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1070 1071 SmallVector<SDValue, 8> Ops; 1072 Ops.push_back(Chain); 1073 Ops.push_back(Index); 1074 1075 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1076 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1077 1078 // Add an operand for each case. 1079 for (auto MBB : MBBs) 1080 Ops.push_back(DAG.getBasicBlock(MBB)); 1081 1082 // TODO: For now, we just pick something arbitrary for a default case for now. 1083 // We really want to sniff out the guard and put in the real default case (and 1084 // delete the guard). 1085 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1086 1087 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1088 } 1089 1090 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1091 SelectionDAG &DAG) const { 1092 SDLoc DL(Op); 1093 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1094 1095 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1096 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1097 1098 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1099 MFI->getVarargBufferVreg(), PtrVT); 1100 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1101 MachinePointerInfo(SV), 0); 1102 } 1103 1104 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1105 SelectionDAG &DAG) const { 1106 MachineFunction &MF = DAG.getMachineFunction(); 1107 unsigned IntNo; 1108 switch (Op.getOpcode()) { 1109 case ISD::INTRINSIC_VOID: 1110 case ISD::INTRINSIC_W_CHAIN: 1111 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1112 break; 1113 case ISD::INTRINSIC_WO_CHAIN: 1114 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1115 break; 1116 default: 1117 llvm_unreachable("Invalid intrinsic"); 1118 } 1119 SDLoc DL(Op); 1120 1121 switch (IntNo) { 1122 default: 1123 return SDValue(); // Don't custom lower most intrinsics. 1124 1125 case Intrinsic::wasm_lsda: { 1126 EVT VT = Op.getValueType(); 1127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1128 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1129 auto &Context = MF.getMMI().getContext(); 1130 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1131 Twine(MF.getFunctionNumber())); 1132 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1133 DAG.getMCSymbol(S, PtrVT)); 1134 } 1135 1136 case Intrinsic::wasm_throw: { 1137 // We only support C++ exceptions for now 1138 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1139 if (Tag != CPP_EXCEPTION) 1140 llvm_unreachable("Invalid tag!"); 1141 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1142 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1143 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1144 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1145 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1146 return DAG.getNode(WebAssemblyISD::THROW, DL, 1147 MVT::Other, // outchain type 1148 { 1149 Op.getOperand(0), // inchain 1150 SymNode, // exception symbol 1151 Op.getOperand(3) // thrown value 1152 }); 1153 } 1154 } 1155 } 1156 1157 SDValue 1158 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1159 SelectionDAG &DAG) const { 1160 // If sign extension operations are disabled, allow sext_inreg only if operand 1161 // is a vector extract. SIMD does not depend on sign extension operations, but 1162 // allowing sext_inreg in this context lets us have simple patterns to select 1163 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1164 // simpler in this file, but would necessitate large and brittle patterns to 1165 // undo the expansion and select extract_lane_s instructions. 1166 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1167 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) 1168 return Op; 1169 // Otherwise expand 1170 return SDValue(); 1171 } 1172 1173 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1174 SelectionDAG &DAG) const { 1175 SDLoc DL(Op); 1176 const EVT VecT = Op.getValueType(); 1177 const EVT LaneT = Op.getOperand(0).getValueType(); 1178 const size_t Lanes = Op.getNumOperands(); 1179 auto IsConstant = [](const SDValue &V) { 1180 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1181 }; 1182 1183 // Find the most common operand, which is approximately the best to splat 1184 using Entry = std::pair<SDValue, size_t>; 1185 SmallVector<Entry, 16> ValueCounts; 1186 size_t NumConst = 0, NumDynamic = 0; 1187 for (const SDValue &Lane : Op->op_values()) { 1188 if (Lane.isUndef()) { 1189 continue; 1190 } else if (IsConstant(Lane)) { 1191 NumConst++; 1192 } else { 1193 NumDynamic++; 1194 } 1195 auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(), 1196 [&Lane](Entry A) { return A.first == Lane; }); 1197 if (CountIt == ValueCounts.end()) { 1198 ValueCounts.emplace_back(Lane, 1); 1199 } else { 1200 CountIt->second++; 1201 } 1202 } 1203 auto CommonIt = 1204 std::max_element(ValueCounts.begin(), ValueCounts.end(), 1205 [](Entry A, Entry B) { return A.second < B.second; }); 1206 assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector"); 1207 SDValue SplatValue = CommonIt->first; 1208 size_t NumCommon = CommonIt->second; 1209 1210 // If v128.const is available, consider using it instead of a splat 1211 if (Subtarget->hasUnimplementedSIMD128()) { 1212 // {i32,i64,f32,f64}.const opcode, and value 1213 const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes); 1214 // SIMD prefix and opcode 1215 const size_t SplatBytes = 2; 1216 const size_t SplatConstBytes = SplatBytes + ConstBytes; 1217 // SIMD prefix, opcode, and lane index 1218 const size_t ReplaceBytes = 3; 1219 const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes; 1220 // SIMD prefix, v128.const opcode, and 128-bit value 1221 const size_t VecConstBytes = 18; 1222 // Initial v128.const and a replace_lane for each non-const operand 1223 const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes; 1224 // Initial splat and all necessary replace_lanes 1225 const size_t SplatInitBytes = 1226 IsConstant(SplatValue) 1227 // Initial constant splat 1228 ? (SplatConstBytes + 1229 // Constant replace_lanes 1230 (NumConst - NumCommon) * ReplaceConstBytes + 1231 // Dynamic replace_lanes 1232 (NumDynamic * ReplaceBytes)) 1233 // Initial dynamic splat 1234 : (SplatBytes + 1235 // Constant replace_lanes 1236 (NumConst * ReplaceConstBytes) + 1237 // Dynamic replace_lanes 1238 (NumDynamic - NumCommon) * ReplaceBytes); 1239 if (ConstInitBytes < SplatInitBytes) { 1240 // Create build_vector that will lower to initial v128.const 1241 SmallVector<SDValue, 16> ConstLanes; 1242 for (const SDValue &Lane : Op->op_values()) { 1243 if (IsConstant(Lane)) { 1244 ConstLanes.push_back(Lane); 1245 } else if (LaneT.isFloatingPoint()) { 1246 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1247 } else { 1248 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1249 } 1250 } 1251 SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1252 // Add replace_lane instructions for non-const lanes 1253 for (size_t I = 0; I < Lanes; ++I) { 1254 const SDValue &Lane = Op->getOperand(I); 1255 if (!Lane.isUndef() && !IsConstant(Lane)) 1256 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1257 DAG.getConstant(I, DL, MVT::i32)); 1258 } 1259 return Result; 1260 } 1261 } 1262 // Use a splat for the initial vector 1263 SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1264 // Add replace_lane instructions for other values 1265 for (size_t I = 0; I < Lanes; ++I) { 1266 const SDValue &Lane = Op->getOperand(I); 1267 if (Lane != SplatValue) 1268 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1269 DAG.getConstant(I, DL, MVT::i32)); 1270 } 1271 return Result; 1272 } 1273 1274 SDValue 1275 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1276 SelectionDAG &DAG) const { 1277 SDLoc DL(Op); 1278 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1279 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1280 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1281 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1282 1283 // Space for two vector args and sixteen mask indices 1284 SDValue Ops[18]; 1285 size_t OpIdx = 0; 1286 Ops[OpIdx++] = Op.getOperand(0); 1287 Ops[OpIdx++] = Op.getOperand(1); 1288 1289 // Expand mask indices to byte indices and materialize them as operands 1290 for (int M : Mask) { 1291 for (size_t J = 0; J < LaneBytes; ++J) { 1292 // Lower undefs (represented by -1 in mask) to zero 1293 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1294 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1295 } 1296 } 1297 1298 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1299 } 1300 1301 SDValue 1302 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1303 SelectionDAG &DAG) const { 1304 // Allow constant lane indices, expand variable lane indices 1305 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1306 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1307 return Op; 1308 else 1309 // Perform default expansion 1310 return SDValue(); 1311 } 1312 1313 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1314 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1315 // 32-bit and 64-bit unrolled shifts will have proper semantics 1316 if (LaneT.bitsGE(MVT::i32)) 1317 return DAG.UnrollVectorOp(Op.getNode()); 1318 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1319 SDLoc DL(Op); 1320 SDValue ShiftVal = Op.getOperand(1); 1321 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1322 SDValue MaskedShiftVal = DAG.getNode( 1323 ISD::AND, // mask opcode 1324 DL, ShiftVal.getValueType(), // masked value type 1325 ShiftVal, // original shift value operand 1326 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1327 ); 1328 1329 return DAG.UnrollVectorOp( 1330 DAG.getNode(Op.getOpcode(), // original shift opcode 1331 DL, Op.getValueType(), // original return type 1332 Op.getOperand(0), // original vector operand, 1333 MaskedShiftVal // new masked shift value operand 1334 ) 1335 .getNode()); 1336 } 1337 1338 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1339 SelectionDAG &DAG) const { 1340 SDLoc DL(Op); 1341 1342 // Only manually lower vector shifts 1343 assert(Op.getSimpleValueType().isVector()); 1344 1345 // Expand all vector shifts until V8 fixes its implementation 1346 // TODO: remove this once V8 is fixed 1347 if (!Subtarget->hasUnimplementedSIMD128()) 1348 return unrollVectorShift(Op, DAG); 1349 1350 // Unroll non-splat vector shifts 1351 BuildVectorSDNode *ShiftVec; 1352 SDValue SplatVal; 1353 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1354 !(SplatVal = ShiftVec->getSplatValue())) 1355 return unrollVectorShift(Op, DAG); 1356 1357 // All splats except i64x2 const splats are handled by patterns 1358 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1359 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1360 return Op; 1361 1362 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1363 unsigned Opcode; 1364 switch (Op.getOpcode()) { 1365 case ISD::SHL: 1366 Opcode = WebAssemblyISD::VEC_SHL; 1367 break; 1368 case ISD::SRA: 1369 Opcode = WebAssemblyISD::VEC_SHR_S; 1370 break; 1371 case ISD::SRL: 1372 Opcode = WebAssemblyISD::VEC_SHR_U; 1373 break; 1374 default: 1375 llvm_unreachable("unexpected opcode"); 1376 } 1377 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1378 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1379 DAG.getConstant(Shift, DL, MVT::i32)); 1380 } 1381 1382 //===----------------------------------------------------------------------===// 1383 // WebAssembly Optimization Hooks 1384 //===----------------------------------------------------------------------===// 1385