1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "wasm-lower"
38 
39 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
40     const TargetMachine &TM, const WebAssemblySubtarget &STI)
41     : TargetLowering(TM), Subtarget(&STI) {
42   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
43 
44   // Booleans always contain 0 or 1.
45   setBooleanContents(ZeroOrOneBooleanContent);
46   // Except in SIMD vectors
47   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
48   // We don't know the microarchitecture here, so just reduce register pressure.
49   setSchedulingPreference(Sched::RegPressure);
50   // Tell ISel that we have a stack pointer.
51   setStackPointerRegisterToSaveRestore(
52       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
53   // Set up the register classes.
54   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
55   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
56   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
57   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
58   if (Subtarget->hasSIMD128()) {
59     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
60     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
61     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
62     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
63   }
64   if (Subtarget->hasUnimplementedSIMD128()) {
65     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
67   }
68   // Compute derived properties from the register classes.
69   computeRegisterProperties(Subtarget->getRegisterInfo());
70 
71   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
72   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
73   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
74   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
75   setOperationAction(ISD::BRIND, MVT::Other, Custom);
76 
77   // Take the default expansion for va_arg, va_copy, and va_end. There is no
78   // default action for va_start, so we do that custom.
79   setOperationAction(ISD::VASTART, MVT::Other, Custom);
80   setOperationAction(ISD::VAARG, MVT::Other, Expand);
81   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
82   setOperationAction(ISD::VAEND, MVT::Other, Expand);
83 
84   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
85     // Don't expand the floating-point types to constant pools.
86     setOperationAction(ISD::ConstantFP, T, Legal);
87     // Expand floating-point comparisons.
88     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
89                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
90       setCondCodeAction(CC, T, Expand);
91     // Expand floating-point library function operators.
92     for (auto Op :
93          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
94       setOperationAction(Op, T, Expand);
95     // Note supported floating-point library function operators that otherwise
96     // default to expand.
97     for (auto Op :
98          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
99       setOperationAction(Op, T, Legal);
100     // Support minimum and maximum, which otherwise default to expand.
101     setOperationAction(ISD::FMINIMUM, T, Legal);
102     setOperationAction(ISD::FMAXIMUM, T, Legal);
103     // WebAssembly currently has no builtin f16 support.
104     setOperationAction(ISD::FP16_TO_FP, T, Expand);
105     setOperationAction(ISD::FP_TO_FP16, T, Expand);
106     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
107     setTruncStoreAction(T, MVT::f16, Expand);
108   }
109 
110   // Expand unavailable integer operations.
111   for (auto Op :
112        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
113         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
114         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
115     for (auto T : {MVT::i32, MVT::i64})
116       setOperationAction(Op, T, Expand);
117     if (Subtarget->hasSIMD128())
118       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
119         setOperationAction(Op, T, Expand);
120     if (Subtarget->hasUnimplementedSIMD128())
121       setOperationAction(Op, MVT::v2i64, Expand);
122   }
123 
124   // SIMD-specific configuration
125   if (Subtarget->hasSIMD128()) {
126     // Support saturating add for i8x16 and i16x8
127     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
128       for (auto T : {MVT::v16i8, MVT::v8i16})
129         setOperationAction(Op, T, Legal);
130 
131     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
132     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
133       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
134     if (Subtarget->hasUnimplementedSIMD128())
135       for (auto T : {MVT::v2i64, MVT::v2f64})
136         setOperationAction(ISD::BUILD_VECTOR, T, Custom);
137 
138     // We have custom shuffle lowering to expose the shuffle mask
139     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
140       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
141     if (Subtarget->hasUnimplementedSIMD128())
142       for (auto T: {MVT::v2i64, MVT::v2f64})
143         setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
144 
145     // Custom lowering since wasm shifts must have a scalar shift amount
146     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
147       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
148         setOperationAction(Op, T, Custom);
149       if (Subtarget->hasUnimplementedSIMD128())
150         setOperationAction(Op, MVT::v2i64, Custom);
151     }
152 
153     // Custom lower lane accesses to expand out variable indices
154     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
155       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
156         setOperationAction(Op, T, Custom);
157       if (Subtarget->hasUnimplementedSIMD128())
158         for (auto T : {MVT::v2i64, MVT::v2f64})
159           setOperationAction(Op, T, Custom);
160     }
161 
162     // There is no i64x2.mul instruction
163     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
164 
165     // There are no vector select instructions
166     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
167       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
168         setOperationAction(Op, T, Expand);
169       if (Subtarget->hasUnimplementedSIMD128())
170         for (auto T : {MVT::v2i64, MVT::v2f64})
171           setOperationAction(Op, T, Expand);
172     }
173 
174     // Expand integer operations supported for scalars but not SIMD
175     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
176                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
177       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
178         setOperationAction(Op, T, Expand);
179       if (Subtarget->hasUnimplementedSIMD128())
180         setOperationAction(Op, MVT::v2i64, Expand);
181     }
182 
183     // Expand float operations supported for scalars but not SIMD
184     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
185                     ISD::FCOPYSIGN}) {
186       setOperationAction(Op, MVT::v4f32, Expand);
187       if (Subtarget->hasUnimplementedSIMD128())
188         setOperationAction(Op, MVT::v2f64, Expand);
189     }
190 
191     // Expand additional SIMD ops that V8 hasn't implemented yet
192     if (!Subtarget->hasUnimplementedSIMD128()) {
193       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
194       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
195     }
196   }
197 
198   // As a special case, these operators use the type to mean the type to
199   // sign-extend from.
200   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
201   if (!Subtarget->hasSignExt()) {
202     // Sign extends are legal only when extending a vector extract
203     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
204     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
205       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
206   }
207   for (auto T : MVT::integer_vector_valuetypes())
208     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
209 
210   // Dynamic stack allocation: use the default expansion.
211   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
212   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
213   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
214 
215   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
216   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
217 
218   // Expand these forms; we pattern-match the forms that we can handle in isel.
219   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
220     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
221       setOperationAction(Op, T, Expand);
222 
223   // We have custom switch handling.
224   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
225 
226   // WebAssembly doesn't have:
227   //  - Floating-point extending loads.
228   //  - Floating-point truncating stores.
229   //  - i1 extending loads.
230   //  - extending/truncating SIMD loads/stores
231   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
232   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
233   for (auto T : MVT::integer_valuetypes())
234     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
235       setLoadExtAction(Ext, T, MVT::i1, Promote);
236   if (Subtarget->hasSIMD128()) {
237     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
238                    MVT::v2f64}) {
239       for (auto MemT : MVT::vector_valuetypes()) {
240         if (MVT(T) != MemT) {
241           setTruncStoreAction(T, MemT, Expand);
242           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
243             setLoadExtAction(Ext, T, MemT, Expand);
244         }
245       }
246     }
247   }
248 
249   // Don't do anything clever with build_pairs
250   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
251 
252   // Trap lowers to wasm unreachable
253   setOperationAction(ISD::TRAP, MVT::Other, Legal);
254 
255   // Exception handling intrinsics
256   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
257   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
258 
259   setMaxAtomicSizeInBitsSupported(64);
260 
261   if (Subtarget->hasBulkMemory()) {
262     // Use memory.copy and friends over multiple loads and stores
263     MaxStoresPerMemcpy = 1;
264     MaxStoresPerMemcpyOptSize = 1;
265     MaxStoresPerMemmove = 1;
266     MaxStoresPerMemmoveOptSize = 1;
267     MaxStoresPerMemset = 1;
268     MaxStoresPerMemsetOptSize = 1;
269   }
270 
271   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
272   // consistent with the f64 and f128 names.
273   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
274   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
275 
276   // Always convert switches to br_tables unless there is only one case, which
277   // is equivalent to a simple branch. This reduces code size for wasm, and we
278   // defer possible jump table optimizations to the VM.
279   setMinimumJumpTableEntries(2);
280 }
281 
282 TargetLowering::AtomicExpansionKind
283 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
284   // We have wasm instructions for these
285   switch (AI->getOperation()) {
286   case AtomicRMWInst::Add:
287   case AtomicRMWInst::Sub:
288   case AtomicRMWInst::And:
289   case AtomicRMWInst::Or:
290   case AtomicRMWInst::Xor:
291   case AtomicRMWInst::Xchg:
292     return AtomicExpansionKind::None;
293   default:
294     break;
295   }
296   return AtomicExpansionKind::CmpXChg;
297 }
298 
299 FastISel *WebAssemblyTargetLowering::createFastISel(
300     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
301   return WebAssembly::createFastISel(FuncInfo, LibInfo);
302 }
303 
304 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
305                                                       EVT VT) const {
306   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
307   if (BitWidth > 1 && BitWidth < 8)
308     BitWidth = 8;
309 
310   if (BitWidth > 64) {
311     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
312     // the count to be an i32.
313     BitWidth = 32;
314     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
315            "32-bit shift counts ought to be enough for anyone");
316   }
317 
318   MVT Result = MVT::getIntegerVT(BitWidth);
319   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
320          "Unable to represent scalar shift amount type");
321   return Result;
322 }
323 
324 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
325 // undefined result on invalid/overflow, to the WebAssembly opcode, which
326 // traps on invalid/overflow.
327 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
328                                        MachineBasicBlock *BB,
329                                        const TargetInstrInfo &TII,
330                                        bool IsUnsigned, bool Int64,
331                                        bool Float64, unsigned LoweredOpcode) {
332   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
333 
334   unsigned OutReg = MI.getOperand(0).getReg();
335   unsigned InReg = MI.getOperand(1).getReg();
336 
337   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
338   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
339   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
340   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
341   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
342   unsigned Eqz = WebAssembly::EQZ_I32;
343   unsigned And = WebAssembly::AND_I32;
344   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
345   int64_t Substitute = IsUnsigned ? 0 : Limit;
346   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
347   auto &Context = BB->getParent()->getFunction().getContext();
348   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
349 
350   const BasicBlock *LLVMBB = BB->getBasicBlock();
351   MachineFunction *F = BB->getParent();
352   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
353   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
354   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
355 
356   MachineFunction::iterator It = ++BB->getIterator();
357   F->insert(It, FalseMBB);
358   F->insert(It, TrueMBB);
359   F->insert(It, DoneMBB);
360 
361   // Transfer the remainder of BB and its successor edges to DoneMBB.
362   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
363   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
364 
365   BB->addSuccessor(TrueMBB);
366   BB->addSuccessor(FalseMBB);
367   TrueMBB->addSuccessor(DoneMBB);
368   FalseMBB->addSuccessor(DoneMBB);
369 
370   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
371   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
372   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
373   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
374   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
375   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
376   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
377 
378   MI.eraseFromParent();
379   // For signed numbers, we can do a single comparison to determine whether
380   // fabs(x) is within range.
381   if (IsUnsigned) {
382     Tmp0 = InReg;
383   } else {
384     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
385   }
386   BuildMI(BB, DL, TII.get(FConst), Tmp1)
387       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
388   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
389 
390   // For unsigned numbers, we have to do a separate comparison with zero.
391   if (IsUnsigned) {
392     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
393     unsigned SecondCmpReg =
394         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
395     unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
396     BuildMI(BB, DL, TII.get(FConst), Tmp1)
397         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
398     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
399     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
400     CmpReg = AndReg;
401   }
402 
403   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
404 
405   // Create the CFG diamond to select between doing the conversion or using
406   // the substitute value.
407   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
408   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
409   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
410   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
411   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
412       .addReg(FalseReg)
413       .addMBB(FalseMBB)
414       .addReg(TrueReg)
415       .addMBB(TrueMBB);
416 
417   return DoneMBB;
418 }
419 
420 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
421     MachineInstr &MI, MachineBasicBlock *BB) const {
422   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
423   DebugLoc DL = MI.getDebugLoc();
424 
425   switch (MI.getOpcode()) {
426   default:
427     llvm_unreachable("Unexpected instr type to insert");
428   case WebAssembly::FP_TO_SINT_I32_F32:
429     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
430                         WebAssembly::I32_TRUNC_S_F32);
431   case WebAssembly::FP_TO_UINT_I32_F32:
432     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
433                         WebAssembly::I32_TRUNC_U_F32);
434   case WebAssembly::FP_TO_SINT_I64_F32:
435     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
436                         WebAssembly::I64_TRUNC_S_F32);
437   case WebAssembly::FP_TO_UINT_I64_F32:
438     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
439                         WebAssembly::I64_TRUNC_U_F32);
440   case WebAssembly::FP_TO_SINT_I32_F64:
441     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
442                         WebAssembly::I32_TRUNC_S_F64);
443   case WebAssembly::FP_TO_UINT_I32_F64:
444     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
445                         WebAssembly::I32_TRUNC_U_F64);
446   case WebAssembly::FP_TO_SINT_I64_F64:
447     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
448                         WebAssembly::I64_TRUNC_S_F64);
449   case WebAssembly::FP_TO_UINT_I64_F64:
450     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
451                         WebAssembly::I64_TRUNC_U_F64);
452     llvm_unreachable("Unexpected instruction to emit with custom inserter");
453   }
454 }
455 
456 const char *
457 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
458   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
459   case WebAssemblyISD::FIRST_NUMBER:
460     break;
461 #define HANDLE_NODETYPE(NODE)                                                  \
462   case WebAssemblyISD::NODE:                                                   \
463     return "WebAssemblyISD::" #NODE;
464 #include "WebAssemblyISD.def"
465 #undef HANDLE_NODETYPE
466   }
467   return nullptr;
468 }
469 
470 std::pair<unsigned, const TargetRegisterClass *>
471 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
472     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
473   // First, see if this is a constraint that directly corresponds to a
474   // WebAssembly register class.
475   if (Constraint.size() == 1) {
476     switch (Constraint[0]) {
477     case 'r':
478       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
479       if (Subtarget->hasSIMD128() && VT.isVector()) {
480         if (VT.getSizeInBits() == 128)
481           return std::make_pair(0U, &WebAssembly::V128RegClass);
482       }
483       if (VT.isInteger() && !VT.isVector()) {
484         if (VT.getSizeInBits() <= 32)
485           return std::make_pair(0U, &WebAssembly::I32RegClass);
486         if (VT.getSizeInBits() <= 64)
487           return std::make_pair(0U, &WebAssembly::I64RegClass);
488       }
489       break;
490     default:
491       break;
492     }
493   }
494 
495   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
496 }
497 
498 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
499   // Assume ctz is a relatively cheap operation.
500   return true;
501 }
502 
503 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
504   // Assume clz is a relatively cheap operation.
505   return true;
506 }
507 
508 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
509                                                       const AddrMode &AM,
510                                                       Type *Ty, unsigned AS,
511                                                       Instruction *I) const {
512   // WebAssembly offsets are added as unsigned without wrapping. The
513   // isLegalAddressingMode gives us no way to determine if wrapping could be
514   // happening, so we approximate this by accepting only non-negative offsets.
515   if (AM.BaseOffs < 0)
516     return false;
517 
518   // WebAssembly has no scale register operands.
519   if (AM.Scale != 0)
520     return false;
521 
522   // Everything else is legal.
523   return true;
524 }
525 
526 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
527     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const {
528   // WebAssembly supports unaligned accesses, though it should be declared
529   // with the p2align attribute on loads and stores which do so, and there
530   // may be a performance impact. We tell LLVM they're "fast" because
531   // for the kinds of things that LLVM uses this for (merging adjacent stores
532   // of constants, etc.), WebAssembly implementations will either want the
533   // unaligned access or they'll split anyway.
534   if (Fast)
535     *Fast = true;
536   return true;
537 }
538 
539 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
540                                               AttributeList Attr) const {
541   // The current thinking is that wasm engines will perform this optimization,
542   // so we can save on code size.
543   return true;
544 }
545 
546 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
547                                                   LLVMContext &C,
548                                                   EVT VT) const {
549   if (VT.isVector())
550     return VT.changeVectorElementTypeToInteger();
551 
552   return TargetLowering::getSetCCResultType(DL, C, VT);
553 }
554 
555 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
556                                                    const CallInst &I,
557                                                    MachineFunction &MF,
558                                                    unsigned Intrinsic) const {
559   switch (Intrinsic) {
560   case Intrinsic::wasm_atomic_notify:
561     Info.opc = ISD::INTRINSIC_W_CHAIN;
562     Info.memVT = MVT::i32;
563     Info.ptrVal = I.getArgOperand(0);
564     Info.offset = 0;
565     Info.align = 4;
566     // atomic.notify instruction does not really load the memory specified with
567     // this argument, but MachineMemOperand should either be load or store, so
568     // we set this to a load.
569     // FIXME Volatile isn't really correct, but currently all LLVM atomic
570     // instructions are treated as volatiles in the backend, so we should be
571     // consistent. The same applies for wasm_atomic_wait intrinsics too.
572     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
573     return true;
574   case Intrinsic::wasm_atomic_wait_i32:
575     Info.opc = ISD::INTRINSIC_W_CHAIN;
576     Info.memVT = MVT::i32;
577     Info.ptrVal = I.getArgOperand(0);
578     Info.offset = 0;
579     Info.align = 4;
580     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
581     return true;
582   case Intrinsic::wasm_atomic_wait_i64:
583     Info.opc = ISD::INTRINSIC_W_CHAIN;
584     Info.memVT = MVT::i64;
585     Info.ptrVal = I.getArgOperand(0);
586     Info.offset = 0;
587     Info.align = 8;
588     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
589     return true;
590   default:
591     return false;
592   }
593 }
594 
595 //===----------------------------------------------------------------------===//
596 // WebAssembly Lowering private implementation.
597 //===----------------------------------------------------------------------===//
598 
599 //===----------------------------------------------------------------------===//
600 // Lowering Code
601 //===----------------------------------------------------------------------===//
602 
603 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
604   MachineFunction &MF = DAG.getMachineFunction();
605   DAG.getContext()->diagnose(
606       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
607 }
608 
609 // Test whether the given calling convention is supported.
610 static bool callingConvSupported(CallingConv::ID CallConv) {
611   // We currently support the language-independent target-independent
612   // conventions. We don't yet have a way to annotate calls with properties like
613   // "cold", and we don't have any call-clobbered registers, so these are mostly
614   // all handled the same.
615   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
616          CallConv == CallingConv::Cold ||
617          CallConv == CallingConv::PreserveMost ||
618          CallConv == CallingConv::PreserveAll ||
619          CallConv == CallingConv::CXX_FAST_TLS;
620 }
621 
622 SDValue
623 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
624                                      SmallVectorImpl<SDValue> &InVals) const {
625   SelectionDAG &DAG = CLI.DAG;
626   SDLoc DL = CLI.DL;
627   SDValue Chain = CLI.Chain;
628   SDValue Callee = CLI.Callee;
629   MachineFunction &MF = DAG.getMachineFunction();
630   auto Layout = MF.getDataLayout();
631 
632   CallingConv::ID CallConv = CLI.CallConv;
633   if (!callingConvSupported(CallConv))
634     fail(DL, DAG,
635          "WebAssembly doesn't support language-specific or target-specific "
636          "calling conventions yet");
637   if (CLI.IsPatchPoint)
638     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
639 
640   // WebAssembly doesn't currently support explicit tail calls. If they are
641   // required, fail. Otherwise, just disable them.
642   if ((CallConv == CallingConv::Fast && CLI.IsTailCall &&
643        MF.getTarget().Options.GuaranteedTailCallOpt) ||
644       (CLI.CS && CLI.CS.isMustTailCall()))
645     fail(DL, DAG, "WebAssembly doesn't support tail call yet");
646   CLI.IsTailCall = false;
647 
648   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
649   if (Ins.size() > 1)
650     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
651 
652   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
653   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
654   unsigned NumFixedArgs = 0;
655   for (unsigned I = 0; I < Outs.size(); ++I) {
656     const ISD::OutputArg &Out = Outs[I];
657     SDValue &OutVal = OutVals[I];
658     if (Out.Flags.isNest())
659       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
660     if (Out.Flags.isInAlloca())
661       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
662     if (Out.Flags.isInConsecutiveRegs())
663       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
664     if (Out.Flags.isInConsecutiveRegsLast())
665       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
666     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
667       auto &MFI = MF.getFrameInfo();
668       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
669                                      Out.Flags.getByValAlign(),
670                                      /*isSS=*/false);
671       SDValue SizeNode =
672           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
673       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
674       Chain = DAG.getMemcpy(
675           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
676           /*isVolatile*/ false, /*AlwaysInline=*/false,
677           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
678       OutVal = FINode;
679     }
680     // Count the number of fixed args *after* legalization.
681     NumFixedArgs += Out.IsFixed;
682   }
683 
684   bool IsVarArg = CLI.IsVarArg;
685   auto PtrVT = getPointerTy(Layout);
686 
687   // Analyze operands of the call, assigning locations to each operand.
688   SmallVector<CCValAssign, 16> ArgLocs;
689   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
690 
691   if (IsVarArg) {
692     // Outgoing non-fixed arguments are placed in a buffer. First
693     // compute their offsets and the total amount of buffer space needed.
694     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
695       const ISD::OutputArg &Out = Outs[I];
696       SDValue &Arg = OutVals[I];
697       EVT VT = Arg.getValueType();
698       assert(VT != MVT::iPTR && "Legalized args should be concrete");
699       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
700       unsigned Align = std::max(Out.Flags.getOrigAlign(),
701                                 Layout.getABITypeAlignment(Ty));
702       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
703                                              Align);
704       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
705                                         Offset, VT.getSimpleVT(),
706                                         CCValAssign::Full));
707     }
708   }
709 
710   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
711 
712   SDValue FINode;
713   if (IsVarArg && NumBytes) {
714     // For non-fixed arguments, next emit stores to store the argument values
715     // to the stack buffer at the offsets computed above.
716     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
717                                                  Layout.getStackAlignment(),
718                                                  /*isSS=*/false);
719     unsigned ValNo = 0;
720     SmallVector<SDValue, 8> Chains;
721     for (SDValue Arg :
722          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
723       assert(ArgLocs[ValNo].getValNo() == ValNo &&
724              "ArgLocs should remain in order and only hold varargs args");
725       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
726       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
727       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
728                                 DAG.getConstant(Offset, DL, PtrVT));
729       Chains.push_back(
730           DAG.getStore(Chain, DL, Arg, Add,
731                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
732     }
733     if (!Chains.empty())
734       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
735   } else if (IsVarArg) {
736     FINode = DAG.getIntPtrConstant(0, DL);
737   }
738 
739   if (Callee->getOpcode() == ISD::GlobalAddress) {
740     // If the callee is a GlobalAddress node (quite common, every direct call
741     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
742     // doesn't at MO_GOT which is not needed for direct calls.
743     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
744     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
745                                         getPointerTy(DAG.getDataLayout()),
746                                         GA->getOffset());
747     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
748                          getPointerTy(DAG.getDataLayout()), Callee);
749   }
750 
751   // Compute the operands for the CALLn node.
752   SmallVector<SDValue, 16> Ops;
753   Ops.push_back(Chain);
754   Ops.push_back(Callee);
755 
756   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
757   // isn't reliable.
758   Ops.append(OutVals.begin(),
759              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
760   // Add a pointer to the vararg buffer.
761   if (IsVarArg)
762     Ops.push_back(FINode);
763 
764   SmallVector<EVT, 8> InTys;
765   for (const auto &In : Ins) {
766     assert(!In.Flags.isByVal() && "byval is not valid for return values");
767     assert(!In.Flags.isNest() && "nest is not valid for return values");
768     if (In.Flags.isInAlloca())
769       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
770     if (In.Flags.isInConsecutiveRegs())
771       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
772     if (In.Flags.isInConsecutiveRegsLast())
773       fail(DL, DAG,
774            "WebAssembly hasn't implemented cons regs last return values");
775     // Ignore In.getOrigAlign() because all our arguments are passed in
776     // registers.
777     InTys.push_back(In.VT);
778   }
779   InTys.push_back(MVT::Other);
780   SDVTList InTyList = DAG.getVTList(InTys);
781   SDValue Res =
782       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
783                   DL, InTyList, Ops);
784   if (Ins.empty()) {
785     Chain = Res;
786   } else {
787     InVals.push_back(Res);
788     Chain = Res.getValue(1);
789   }
790 
791   return Chain;
792 }
793 
794 bool WebAssemblyTargetLowering::CanLowerReturn(
795     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
796     const SmallVectorImpl<ISD::OutputArg> &Outs,
797     LLVMContext & /*Context*/) const {
798   // WebAssembly can't currently handle returning tuples.
799   return Outs.size() <= 1;
800 }
801 
802 SDValue WebAssemblyTargetLowering::LowerReturn(
803     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
804     const SmallVectorImpl<ISD::OutputArg> &Outs,
805     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
806     SelectionDAG &DAG) const {
807   assert(Outs.size() <= 1 && "WebAssembly can only return up to one value");
808   if (!callingConvSupported(CallConv))
809     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
810 
811   SmallVector<SDValue, 4> RetOps(1, Chain);
812   RetOps.append(OutVals.begin(), OutVals.end());
813   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
814 
815   // Record the number and types of the return values.
816   for (const ISD::OutputArg &Out : Outs) {
817     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
818     assert(!Out.Flags.isNest() && "nest is not valid for return values");
819     assert(Out.IsFixed && "non-fixed return value is not valid");
820     if (Out.Flags.isInAlloca())
821       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
822     if (Out.Flags.isInConsecutiveRegs())
823       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
824     if (Out.Flags.isInConsecutiveRegsLast())
825       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
826   }
827 
828   return Chain;
829 }
830 
831 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
832     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
833     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
834     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
835   if (!callingConvSupported(CallConv))
836     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
837 
838   MachineFunction &MF = DAG.getMachineFunction();
839   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
840 
841   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
842   // of the incoming values before they're represented by virtual registers.
843   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
844 
845   for (const ISD::InputArg &In : Ins) {
846     if (In.Flags.isInAlloca())
847       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
848     if (In.Flags.isNest())
849       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
850     if (In.Flags.isInConsecutiveRegs())
851       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
852     if (In.Flags.isInConsecutiveRegsLast())
853       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
854     // Ignore In.getOrigAlign() because all our arguments are passed in
855     // registers.
856     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
857                                            DAG.getTargetConstant(InVals.size(),
858                                                                  DL, MVT::i32))
859                              : DAG.getUNDEF(In.VT));
860 
861     // Record the number and types of arguments.
862     MFI->addParam(In.VT);
863   }
864 
865   // Varargs are copied into a buffer allocated by the caller, and a pointer to
866   // the buffer is passed as an argument.
867   if (IsVarArg) {
868     MVT PtrVT = getPointerTy(MF.getDataLayout());
869     unsigned VarargVreg =
870         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
871     MFI->setVarargBufferVreg(VarargVreg);
872     Chain = DAG.getCopyToReg(
873         Chain, DL, VarargVreg,
874         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
875                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
876     MFI->addParam(PtrVT);
877   }
878 
879   // Record the number and types of arguments and results.
880   SmallVector<MVT, 4> Params;
881   SmallVector<MVT, 4> Results;
882   computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
883                       DAG.getTarget(), Params, Results);
884   for (MVT VT : Results)
885     MFI->addResult(VT);
886   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
887   // the param logic here with ComputeSignatureVTs
888   assert(MFI->getParams().size() == Params.size() &&
889          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
890                     Params.begin()));
891 
892   return Chain;
893 }
894 
895 //===----------------------------------------------------------------------===//
896 //  Custom lowering hooks.
897 //===----------------------------------------------------------------------===//
898 
899 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
900                                                   SelectionDAG &DAG) const {
901   SDLoc DL(Op);
902   switch (Op.getOpcode()) {
903   default:
904     llvm_unreachable("unimplemented operation lowering");
905     return SDValue();
906   case ISD::FrameIndex:
907     return LowerFrameIndex(Op, DAG);
908   case ISD::GlobalAddress:
909     return LowerGlobalAddress(Op, DAG);
910   case ISD::ExternalSymbol:
911     return LowerExternalSymbol(Op, DAG);
912   case ISD::JumpTable:
913     return LowerJumpTable(Op, DAG);
914   case ISD::BR_JT:
915     return LowerBR_JT(Op, DAG);
916   case ISD::VASTART:
917     return LowerVASTART(Op, DAG);
918   case ISD::BlockAddress:
919   case ISD::BRIND:
920     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
921     return SDValue();
922   case ISD::RETURNADDR: // Probably nothing meaningful can be returned here.
923     fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address");
924     return SDValue();
925   case ISD::FRAMEADDR:
926     return LowerFRAMEADDR(Op, DAG);
927   case ISD::CopyToReg:
928     return LowerCopyToReg(Op, DAG);
929   case ISD::EXTRACT_VECTOR_ELT:
930   case ISD::INSERT_VECTOR_ELT:
931     return LowerAccessVectorElement(Op, DAG);
932   case ISD::INTRINSIC_VOID:
933   case ISD::INTRINSIC_WO_CHAIN:
934   case ISD::INTRINSIC_W_CHAIN:
935     return LowerIntrinsic(Op, DAG);
936   case ISD::SIGN_EXTEND_INREG:
937     return LowerSIGN_EXTEND_INREG(Op, DAG);
938   case ISD::BUILD_VECTOR:
939     return LowerBUILD_VECTOR(Op, DAG);
940   case ISD::VECTOR_SHUFFLE:
941     return LowerVECTOR_SHUFFLE(Op, DAG);
942   case ISD::SHL:
943   case ISD::SRA:
944   case ISD::SRL:
945     return LowerShift(Op, DAG);
946   }
947 }
948 
949 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
950                                                   SelectionDAG &DAG) const {
951   SDValue Src = Op.getOperand(2);
952   if (isa<FrameIndexSDNode>(Src.getNode())) {
953     // CopyToReg nodes don't support FrameIndex operands. Other targets select
954     // the FI to some LEA-like instruction, but since we don't have that, we
955     // need to insert some kind of instruction that can take an FI operand and
956     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
957     // local.copy between Op and its FI operand.
958     SDValue Chain = Op.getOperand(0);
959     SDLoc DL(Op);
960     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
961     EVT VT = Src.getValueType();
962     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
963                                                    : WebAssembly::COPY_I64,
964                                     DL, VT, Src),
965                  0);
966     return Op.getNode()->getNumValues() == 1
967                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
968                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
969                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
970                                                            : SDValue());
971   }
972   return SDValue();
973 }
974 
975 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
976                                                    SelectionDAG &DAG) const {
977   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
978   return DAG.getTargetFrameIndex(FI, Op.getValueType());
979 }
980 
981 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
982                                                   SelectionDAG &DAG) const {
983   // Non-zero depths are not supported by WebAssembly currently. Use the
984   // legalizer's default expansion, which is to return 0 (what this function is
985   // documented to do).
986   if (Op.getConstantOperandVal(0) > 0)
987     return SDValue();
988 
989   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
990   EVT VT = Op.getValueType();
991   unsigned FP =
992       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
993   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
994 }
995 
996 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
997                                                       SelectionDAG &DAG) const {
998   SDLoc DL(Op);
999   const auto *GA = cast<GlobalAddressSDNode>(Op);
1000   EVT VT = Op.getValueType();
1001   assert(GA->getTargetFlags() == 0 &&
1002          "Unexpected target flags on generic GlobalAddressSDNode");
1003   if (GA->getAddressSpace() != 0)
1004     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1005 
1006   unsigned OperandFlags = 0;
1007   if (isPositionIndependent()) {
1008     const GlobalValue *GV = GA->getGlobal();
1009     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1010       MachineFunction &MF = DAG.getMachineFunction();
1011       MVT PtrVT = getPointerTy(MF.getDataLayout());
1012       const char *BaseName;
1013       if (GV->getValueType()->isFunctionTy()) {
1014         BaseName = MF.createExternalSymbolName("__table_base");
1015         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1016       }
1017       else {
1018         BaseName = MF.createExternalSymbolName("__memory_base");
1019         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1020       }
1021       SDValue BaseAddr =
1022           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1023                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1024 
1025       SDValue SymAddr = DAG.getNode(
1026           WebAssemblyISD::WrapperPIC, DL, VT,
1027           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1028                                      OperandFlags));
1029 
1030       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1031     } else {
1032       OperandFlags = WebAssemblyII::MO_GOT;
1033     }
1034   }
1035 
1036   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1037                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1038                                                 GA->getOffset(), OperandFlags));
1039 }
1040 
1041 SDValue
1042 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1043                                                SelectionDAG &DAG) const {
1044   SDLoc DL(Op);
1045   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1046   EVT VT = Op.getValueType();
1047   assert(ES->getTargetFlags() == 0 &&
1048          "Unexpected target flags on generic ExternalSymbolSDNode");
1049   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1050                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1051 }
1052 
1053 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1054                                                   SelectionDAG &DAG) const {
1055   // There's no need for a Wrapper node because we always incorporate a jump
1056   // table operand into a BR_TABLE instruction, rather than ever
1057   // materializing it in a register.
1058   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1059   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1060                                 JT->getTargetFlags());
1061 }
1062 
1063 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1064                                               SelectionDAG &DAG) const {
1065   SDLoc DL(Op);
1066   SDValue Chain = Op.getOperand(0);
1067   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1068   SDValue Index = Op.getOperand(2);
1069   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1070 
1071   SmallVector<SDValue, 8> Ops;
1072   Ops.push_back(Chain);
1073   Ops.push_back(Index);
1074 
1075   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1076   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1077 
1078   // Add an operand for each case.
1079   for (auto MBB : MBBs)
1080     Ops.push_back(DAG.getBasicBlock(MBB));
1081 
1082   // TODO: For now, we just pick something arbitrary for a default case for now.
1083   // We really want to sniff out the guard and put in the real default case (and
1084   // delete the guard).
1085   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1086 
1087   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1088 }
1089 
1090 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1091                                                 SelectionDAG &DAG) const {
1092   SDLoc DL(Op);
1093   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1094 
1095   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1096   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1097 
1098   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1099                                     MFI->getVarargBufferVreg(), PtrVT);
1100   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1101                       MachinePointerInfo(SV), 0);
1102 }
1103 
1104 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1105                                                   SelectionDAG &DAG) const {
1106   MachineFunction &MF = DAG.getMachineFunction();
1107   unsigned IntNo;
1108   switch (Op.getOpcode()) {
1109   case ISD::INTRINSIC_VOID:
1110   case ISD::INTRINSIC_W_CHAIN:
1111     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1112     break;
1113   case ISD::INTRINSIC_WO_CHAIN:
1114     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1115     break;
1116   default:
1117     llvm_unreachable("Invalid intrinsic");
1118   }
1119   SDLoc DL(Op);
1120 
1121   switch (IntNo) {
1122   default:
1123     return SDValue(); // Don't custom lower most intrinsics.
1124 
1125   case Intrinsic::wasm_lsda: {
1126     EVT VT = Op.getValueType();
1127     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1128     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1129     auto &Context = MF.getMMI().getContext();
1130     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1131                                             Twine(MF.getFunctionNumber()));
1132     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1133                        DAG.getMCSymbol(S, PtrVT));
1134   }
1135 
1136   case Intrinsic::wasm_throw: {
1137     // We only support C++ exceptions for now
1138     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1139     if (Tag != CPP_EXCEPTION)
1140       llvm_unreachable("Invalid tag!");
1141     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1142     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1143     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1144     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1145                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
1146     return DAG.getNode(WebAssemblyISD::THROW, DL,
1147                        MVT::Other, // outchain type
1148                        {
1149                            Op.getOperand(0), // inchain
1150                            SymNode,          // exception symbol
1151                            Op.getOperand(3)  // thrown value
1152                        });
1153   }
1154   }
1155 }
1156 
1157 SDValue
1158 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1159                                                   SelectionDAG &DAG) const {
1160   // If sign extension operations are disabled, allow sext_inreg only if operand
1161   // is a vector extract. SIMD does not depend on sign extension operations, but
1162   // allowing sext_inreg in this context lets us have simple patterns to select
1163   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1164   // simpler in this file, but would necessitate large and brittle patterns to
1165   // undo the expansion and select extract_lane_s instructions.
1166   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1167   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT)
1168     return Op;
1169   // Otherwise expand
1170   return SDValue();
1171 }
1172 
1173 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1174                                                      SelectionDAG &DAG) const {
1175   SDLoc DL(Op);
1176   const EVT VecT = Op.getValueType();
1177   const EVT LaneT = Op.getOperand(0).getValueType();
1178   const size_t Lanes = Op.getNumOperands();
1179   auto IsConstant = [](const SDValue &V) {
1180     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1181   };
1182 
1183   // Find the most common operand, which is approximately the best to splat
1184   using Entry = std::pair<SDValue, size_t>;
1185   SmallVector<Entry, 16> ValueCounts;
1186   size_t NumConst = 0, NumDynamic = 0;
1187   for (const SDValue &Lane : Op->op_values()) {
1188     if (Lane.isUndef()) {
1189       continue;
1190     } else if (IsConstant(Lane)) {
1191       NumConst++;
1192     } else {
1193       NumDynamic++;
1194     }
1195     auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(),
1196                                 [&Lane](Entry A) { return A.first == Lane; });
1197     if (CountIt == ValueCounts.end()) {
1198       ValueCounts.emplace_back(Lane, 1);
1199     } else {
1200       CountIt->second++;
1201     }
1202   }
1203   auto CommonIt =
1204       std::max_element(ValueCounts.begin(), ValueCounts.end(),
1205                        [](Entry A, Entry B) { return A.second < B.second; });
1206   assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector");
1207   SDValue SplatValue = CommonIt->first;
1208   size_t NumCommon = CommonIt->second;
1209 
1210   // If v128.const is available, consider using it instead of a splat
1211   if (Subtarget->hasUnimplementedSIMD128()) {
1212     // {i32,i64,f32,f64}.const opcode, and value
1213     const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes);
1214     // SIMD prefix and opcode
1215     const size_t SplatBytes = 2;
1216     const size_t SplatConstBytes = SplatBytes + ConstBytes;
1217     // SIMD prefix, opcode, and lane index
1218     const size_t ReplaceBytes = 3;
1219     const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes;
1220     // SIMD prefix, v128.const opcode, and 128-bit value
1221     const size_t VecConstBytes = 18;
1222     // Initial v128.const and a replace_lane for each non-const operand
1223     const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes;
1224     // Initial splat and all necessary replace_lanes
1225     const size_t SplatInitBytes =
1226         IsConstant(SplatValue)
1227             // Initial constant splat
1228             ? (SplatConstBytes +
1229                // Constant replace_lanes
1230                (NumConst - NumCommon) * ReplaceConstBytes +
1231                // Dynamic replace_lanes
1232                (NumDynamic * ReplaceBytes))
1233             // Initial dynamic splat
1234             : (SplatBytes +
1235                // Constant replace_lanes
1236                (NumConst * ReplaceConstBytes) +
1237                // Dynamic replace_lanes
1238                (NumDynamic - NumCommon) * ReplaceBytes);
1239     if (ConstInitBytes < SplatInitBytes) {
1240       // Create build_vector that will lower to initial v128.const
1241       SmallVector<SDValue, 16> ConstLanes;
1242       for (const SDValue &Lane : Op->op_values()) {
1243         if (IsConstant(Lane)) {
1244           ConstLanes.push_back(Lane);
1245         } else if (LaneT.isFloatingPoint()) {
1246           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1247         } else {
1248           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1249         }
1250       }
1251       SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1252       // Add replace_lane instructions for non-const lanes
1253       for (size_t I = 0; I < Lanes; ++I) {
1254         const SDValue &Lane = Op->getOperand(I);
1255         if (!Lane.isUndef() && !IsConstant(Lane))
1256           Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1257                                DAG.getConstant(I, DL, MVT::i32));
1258       }
1259       return Result;
1260     }
1261   }
1262   // Use a splat for the initial vector
1263   SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1264   // Add replace_lane instructions for other values
1265   for (size_t I = 0; I < Lanes; ++I) {
1266     const SDValue &Lane = Op->getOperand(I);
1267     if (Lane != SplatValue)
1268       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1269                            DAG.getConstant(I, DL, MVT::i32));
1270   }
1271   return Result;
1272 }
1273 
1274 SDValue
1275 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1276                                                SelectionDAG &DAG) const {
1277   SDLoc DL(Op);
1278   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1279   MVT VecType = Op.getOperand(0).getSimpleValueType();
1280   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1281   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1282 
1283   // Space for two vector args and sixteen mask indices
1284   SDValue Ops[18];
1285   size_t OpIdx = 0;
1286   Ops[OpIdx++] = Op.getOperand(0);
1287   Ops[OpIdx++] = Op.getOperand(1);
1288 
1289   // Expand mask indices to byte indices and materialize them as operands
1290   for (int M : Mask) {
1291     for (size_t J = 0; J < LaneBytes; ++J) {
1292       // Lower undefs (represented by -1 in mask) to zero
1293       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1294       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1295     }
1296   }
1297 
1298   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1299 }
1300 
1301 SDValue
1302 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1303                                                     SelectionDAG &DAG) const {
1304   // Allow constant lane indices, expand variable lane indices
1305   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1306   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1307     return Op;
1308   else
1309     // Perform default expansion
1310     return SDValue();
1311 }
1312 
1313 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1314   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1315   // 32-bit and 64-bit unrolled shifts will have proper semantics
1316   if (LaneT.bitsGE(MVT::i32))
1317     return DAG.UnrollVectorOp(Op.getNode());
1318   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1319   SDLoc DL(Op);
1320   SDValue ShiftVal = Op.getOperand(1);
1321   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1322   SDValue MaskedShiftVal = DAG.getNode(
1323       ISD::AND,                    // mask opcode
1324       DL, ShiftVal.getValueType(), // masked value type
1325       ShiftVal,                    // original shift value operand
1326       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1327   );
1328 
1329   return DAG.UnrollVectorOp(
1330       DAG.getNode(Op.getOpcode(),        // original shift opcode
1331                   DL, Op.getValueType(), // original return type
1332                   Op.getOperand(0),      // original vector operand,
1333                   MaskedShiftVal         // new masked shift value operand
1334                   )
1335           .getNode());
1336 }
1337 
1338 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1339                                               SelectionDAG &DAG) const {
1340   SDLoc DL(Op);
1341 
1342   // Only manually lower vector shifts
1343   assert(Op.getSimpleValueType().isVector());
1344 
1345   // Expand all vector shifts until V8 fixes its implementation
1346   // TODO: remove this once V8 is fixed
1347   if (!Subtarget->hasUnimplementedSIMD128())
1348     return unrollVectorShift(Op, DAG);
1349 
1350   // Unroll non-splat vector shifts
1351   BuildVectorSDNode *ShiftVec;
1352   SDValue SplatVal;
1353   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1354       !(SplatVal = ShiftVec->getSplatValue()))
1355     return unrollVectorShift(Op, DAG);
1356 
1357   // All splats except i64x2 const splats are handled by patterns
1358   auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1359   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1360     return Op;
1361 
1362   // i64x2 const splats are custom lowered to avoid unnecessary wraps
1363   unsigned Opcode;
1364   switch (Op.getOpcode()) {
1365   case ISD::SHL:
1366     Opcode = WebAssemblyISD::VEC_SHL;
1367     break;
1368   case ISD::SRA:
1369     Opcode = WebAssemblyISD::VEC_SHR_S;
1370     break;
1371   case ISD::SRL:
1372     Opcode = WebAssemblyISD::VEC_SHR_U;
1373     break;
1374   default:
1375     llvm_unreachable("unexpected opcode");
1376   }
1377   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1378   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1379                      DAG.getConstant(Shift, DL, MVT::i32));
1380 }
1381 
1382 //===----------------------------------------------------------------------===//
1383 //                          WebAssembly Optimization Hooks
1384 //===----------------------------------------------------------------------===//
1385