1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyUtilities.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/SelectionDAGNodes.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 // Transform loads and stores to pointers in address space 1 to loads and 73 // stores to WebAssembly global variables, outside linear memory. 74 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 75 setOperationAction(ISD::LOAD, T, Custom); 76 setOperationAction(ISD::STORE, T, Custom); 77 } 78 if (Subtarget->hasSIMD128()) { 79 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 80 MVT::v2f64}) { 81 setOperationAction(ISD::LOAD, T, Custom); 82 setOperationAction(ISD::STORE, T, Custom); 83 } 84 } 85 86 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 87 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 88 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 89 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 90 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 91 setOperationAction(ISD::BRIND, MVT::Other, Custom); 92 93 // Take the default expansion for va_arg, va_copy, and va_end. There is no 94 // default action for va_start, so we do that custom. 95 setOperationAction(ISD::VASTART, MVT::Other, Custom); 96 setOperationAction(ISD::VAARG, MVT::Other, Expand); 97 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 98 setOperationAction(ISD::VAEND, MVT::Other, Expand); 99 100 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 101 // Don't expand the floating-point types to constant pools. 102 setOperationAction(ISD::ConstantFP, T, Legal); 103 // Expand floating-point comparisons. 104 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 105 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 106 setCondCodeAction(CC, T, Expand); 107 // Expand floating-point library function operators. 108 for (auto Op : 109 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 110 setOperationAction(Op, T, Expand); 111 // Note supported floating-point library function operators that otherwise 112 // default to expand. 113 for (auto Op : 114 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 115 setOperationAction(Op, T, Legal); 116 // Support minimum and maximum, which otherwise default to expand. 117 setOperationAction(ISD::FMINIMUM, T, Legal); 118 setOperationAction(ISD::FMAXIMUM, T, Legal); 119 // WebAssembly currently has no builtin f16 support. 120 setOperationAction(ISD::FP16_TO_FP, T, Expand); 121 setOperationAction(ISD::FP_TO_FP16, T, Expand); 122 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 123 setTruncStoreAction(T, MVT::f16, Expand); 124 } 125 126 // Expand unavailable integer operations. 127 for (auto Op : 128 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 129 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 130 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 131 for (auto T : {MVT::i32, MVT::i64}) 132 setOperationAction(Op, T, Expand); 133 if (Subtarget->hasSIMD128()) 134 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 135 setOperationAction(Op, T, Expand); 136 } 137 138 if (Subtarget->hasNontrappingFPToInt()) 139 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 140 for (auto T : {MVT::i32, MVT::i64}) 141 setOperationAction(Op, T, Custom); 142 143 // SIMD-specific configuration 144 if (Subtarget->hasSIMD128()) { 145 // Hoist bitcasts out of shuffles 146 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 147 148 // Combine extends of extract_subvectors into widening ops 149 setTargetDAGCombine(ISD::SIGN_EXTEND); 150 setTargetDAGCombine(ISD::ZERO_EXTEND); 151 152 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 153 // conversions ops 154 setTargetDAGCombine(ISD::SINT_TO_FP); 155 setTargetDAGCombine(ISD::UINT_TO_FP); 156 setTargetDAGCombine(ISD::FP_EXTEND); 157 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 158 159 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 160 // into conversion ops 161 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 162 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 163 setTargetDAGCombine(ISD::FP_ROUND); 164 setTargetDAGCombine(ISD::CONCAT_VECTORS); 165 166 // Support saturating add for i8x16 and i16x8 167 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 168 for (auto T : {MVT::v16i8, MVT::v8i16}) 169 setOperationAction(Op, T, Legal); 170 171 // Support integer abs 172 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 173 setOperationAction(ISD::ABS, T, Legal); 174 175 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 176 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 177 MVT::v2f64}) 178 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 179 180 // We have custom shuffle lowering to expose the shuffle mask 181 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 182 MVT::v2f64}) 183 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 184 185 // Custom lowering since wasm shifts must have a scalar shift amount 186 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 188 setOperationAction(Op, T, Custom); 189 190 // Custom lower lane accesses to expand out variable indices 191 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 192 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 193 MVT::v2f64}) 194 setOperationAction(Op, T, Custom); 195 196 // There is no i8x16.mul instruction 197 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 198 199 // There is no vector conditional select instruction 200 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 201 MVT::v2f64}) 202 setOperationAction(ISD::SELECT_CC, T, Expand); 203 204 // Expand integer operations supported for scalars but not SIMD 205 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 206 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 207 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 208 setOperationAction(Op, T, Expand); 209 210 // But we do have integer min and max operations 211 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 212 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 213 setOperationAction(Op, T, Legal); 214 215 // Expand float operations supported for scalars but not SIMD 216 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 217 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 218 for (auto T : {MVT::v4f32, MVT::v2f64}) 219 setOperationAction(Op, T, Expand); 220 221 // Unsigned comparison operations are unavailable for i64x2 vectors. 222 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 223 setCondCodeAction(CC, MVT::v2i64, Custom); 224 225 // 64x2 conversions are not in the spec 226 for (auto Op : 227 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 228 for (auto T : {MVT::v2i64, MVT::v2f64}) 229 setOperationAction(Op, T, Expand); 230 231 // But saturating fp_to_int converstions are 232 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 233 setOperationAction(Op, MVT::v4i32, Custom); 234 } 235 236 // As a special case, these operators use the type to mean the type to 237 // sign-extend from. 238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 239 if (!Subtarget->hasSignExt()) { 240 // Sign extends are legal only when extending a vector extract 241 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 242 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 243 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 244 } 245 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 246 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 247 248 // Dynamic stack allocation: use the default expansion. 249 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 250 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 251 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 252 253 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 254 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 255 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 256 257 // Expand these forms; we pattern-match the forms that we can handle in isel. 258 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 259 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 260 setOperationAction(Op, T, Expand); 261 262 // We have custom switch handling. 263 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 264 265 // WebAssembly doesn't have: 266 // - Floating-point extending loads. 267 // - Floating-point truncating stores. 268 // - i1 extending loads. 269 // - truncating SIMD stores and most extending loads 270 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 271 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 272 for (auto T : MVT::integer_valuetypes()) 273 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 274 setLoadExtAction(Ext, T, MVT::i1, Promote); 275 if (Subtarget->hasSIMD128()) { 276 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 277 MVT::v2f64}) { 278 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 279 if (MVT(T) != MemT) { 280 setTruncStoreAction(T, MemT, Expand); 281 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 282 setLoadExtAction(Ext, T, MemT, Expand); 283 } 284 } 285 } 286 // But some vector extending loads are legal 287 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 288 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 289 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 290 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 291 } 292 // And some truncating stores are legal as well 293 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 294 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 295 } 296 297 // Don't do anything clever with build_pairs 298 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 299 300 // Trap lowers to wasm unreachable 301 setOperationAction(ISD::TRAP, MVT::Other, Legal); 302 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 303 304 // Exception handling intrinsics 305 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 306 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 307 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 308 309 setMaxAtomicSizeInBitsSupported(64); 310 311 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 312 // consistent with the f64 and f128 names. 313 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 314 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 315 316 // Define the emscripten name for return address helper. 317 // TODO: when implementing other Wasm backends, make this generic or only do 318 // this on emscripten depending on what they end up doing. 319 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 320 321 // Always convert switches to br_tables unless there is only one case, which 322 // is equivalent to a simple branch. This reduces code size for wasm, and we 323 // defer possible jump table optimizations to the VM. 324 setMinimumJumpTableEntries(2); 325 } 326 327 TargetLowering::AtomicExpansionKind 328 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 329 // We have wasm instructions for these 330 switch (AI->getOperation()) { 331 case AtomicRMWInst::Add: 332 case AtomicRMWInst::Sub: 333 case AtomicRMWInst::And: 334 case AtomicRMWInst::Or: 335 case AtomicRMWInst::Xor: 336 case AtomicRMWInst::Xchg: 337 return AtomicExpansionKind::None; 338 default: 339 break; 340 } 341 return AtomicExpansionKind::CmpXChg; 342 } 343 344 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 345 // Implementation copied from X86TargetLowering. 346 unsigned Opc = VecOp.getOpcode(); 347 348 // Assume target opcodes can't be scalarized. 349 // TODO - do we have any exceptions? 350 if (Opc >= ISD::BUILTIN_OP_END) 351 return false; 352 353 // If the vector op is not supported, try to convert to scalar. 354 EVT VecVT = VecOp.getValueType(); 355 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 356 return true; 357 358 // If the vector op is supported, but the scalar op is not, the transform may 359 // not be worthwhile. 360 EVT ScalarVT = VecVT.getScalarType(); 361 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 362 } 363 364 FastISel *WebAssemblyTargetLowering::createFastISel( 365 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 366 return WebAssembly::createFastISel(FuncInfo, LibInfo); 367 } 368 369 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 370 EVT VT) const { 371 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 372 if (BitWidth > 1 && BitWidth < 8) 373 BitWidth = 8; 374 375 if (BitWidth > 64) { 376 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 377 // the count to be an i32. 378 BitWidth = 32; 379 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 380 "32-bit shift counts ought to be enough for anyone"); 381 } 382 383 MVT Result = MVT::getIntegerVT(BitWidth); 384 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 385 "Unable to represent scalar shift amount type"); 386 return Result; 387 } 388 389 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 390 // undefined result on invalid/overflow, to the WebAssembly opcode, which 391 // traps on invalid/overflow. 392 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 393 MachineBasicBlock *BB, 394 const TargetInstrInfo &TII, 395 bool IsUnsigned, bool Int64, 396 bool Float64, unsigned LoweredOpcode) { 397 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 398 399 Register OutReg = MI.getOperand(0).getReg(); 400 Register InReg = MI.getOperand(1).getReg(); 401 402 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 403 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 404 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 405 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 406 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 407 unsigned Eqz = WebAssembly::EQZ_I32; 408 unsigned And = WebAssembly::AND_I32; 409 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 410 int64_t Substitute = IsUnsigned ? 0 : Limit; 411 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 412 auto &Context = BB->getParent()->getFunction().getContext(); 413 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 414 415 const BasicBlock *LLVMBB = BB->getBasicBlock(); 416 MachineFunction *F = BB->getParent(); 417 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 418 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 419 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 420 421 MachineFunction::iterator It = ++BB->getIterator(); 422 F->insert(It, FalseMBB); 423 F->insert(It, TrueMBB); 424 F->insert(It, DoneMBB); 425 426 // Transfer the remainder of BB and its successor edges to DoneMBB. 427 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 428 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 429 430 BB->addSuccessor(TrueMBB); 431 BB->addSuccessor(FalseMBB); 432 TrueMBB->addSuccessor(DoneMBB); 433 FalseMBB->addSuccessor(DoneMBB); 434 435 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 436 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 437 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 438 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 439 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 440 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 441 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 442 443 MI.eraseFromParent(); 444 // For signed numbers, we can do a single comparison to determine whether 445 // fabs(x) is within range. 446 if (IsUnsigned) { 447 Tmp0 = InReg; 448 } else { 449 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 450 } 451 BuildMI(BB, DL, TII.get(FConst), Tmp1) 452 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 453 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 454 455 // For unsigned numbers, we have to do a separate comparison with zero. 456 if (IsUnsigned) { 457 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 458 Register SecondCmpReg = 459 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 460 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 461 BuildMI(BB, DL, TII.get(FConst), Tmp1) 462 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 463 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 464 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 465 CmpReg = AndReg; 466 } 467 468 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 469 470 // Create the CFG diamond to select between doing the conversion or using 471 // the substitute value. 472 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 473 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 474 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 475 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 476 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 477 .addReg(FalseReg) 478 .addMBB(FalseMBB) 479 .addReg(TrueReg) 480 .addMBB(TrueMBB); 481 482 return DoneMBB; 483 } 484 485 static MachineBasicBlock * 486 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 487 const WebAssemblySubtarget *Subtarget, 488 const TargetInstrInfo &TII) { 489 MachineInstr &CallParams = *CallResults.getPrevNode(); 490 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 491 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 492 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 493 494 bool IsIndirect = CallParams.getOperand(0).isReg(); 495 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 496 497 unsigned CallOp; 498 if (IsIndirect && IsRetCall) { 499 CallOp = WebAssembly::RET_CALL_INDIRECT; 500 } else if (IsIndirect) { 501 CallOp = WebAssembly::CALL_INDIRECT; 502 } else if (IsRetCall) { 503 CallOp = WebAssembly::RET_CALL; 504 } else { 505 CallOp = WebAssembly::CALL; 506 } 507 508 MachineFunction &MF = *BB->getParent(); 509 const MCInstrDesc &MCID = TII.get(CallOp); 510 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 511 512 // See if we must truncate the function pointer. 513 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 514 // as 64-bit for uniformity with other pointer types. 515 // See also: WebAssemblyFastISel::selectCall 516 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 517 Register Reg32 = 518 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 519 auto &FnPtr = CallParams.getOperand(0); 520 BuildMI(*BB, CallResults.getIterator(), DL, 521 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 522 .addReg(FnPtr.getReg()); 523 FnPtr.setReg(Reg32); 524 } 525 526 // Move the function pointer to the end of the arguments for indirect calls 527 if (IsIndirect) { 528 auto FnPtr = CallParams.getOperand(0); 529 CallParams.RemoveOperand(0); 530 CallParams.addOperand(FnPtr); 531 } 532 533 for (auto Def : CallResults.defs()) 534 MIB.add(Def); 535 536 if (IsIndirect) { 537 // Placeholder for the type index. 538 MIB.addImm(0); 539 // The table into which this call_indirect indexes. 540 MCSymbolWasm *Table = 541 WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget); 542 if (Subtarget->hasReferenceTypes()) { 543 MIB.addSym(Table); 544 } else { 545 // For the MVP there is at most one table whose number is 0, but we can't 546 // write a table symbol or issue relocations. Instead we just ensure the 547 // table is live and write a zero. 548 Table->setNoStrip(); 549 MIB.addImm(0); 550 } 551 } 552 553 for (auto Use : CallParams.uses()) 554 MIB.add(Use); 555 556 BB->insert(CallResults.getIterator(), MIB); 557 CallParams.eraseFromParent(); 558 CallResults.eraseFromParent(); 559 560 return BB; 561 } 562 563 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 564 MachineInstr &MI, MachineBasicBlock *BB) const { 565 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 566 DebugLoc DL = MI.getDebugLoc(); 567 568 switch (MI.getOpcode()) { 569 default: 570 llvm_unreachable("Unexpected instr type to insert"); 571 case WebAssembly::FP_TO_SINT_I32_F32: 572 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 573 WebAssembly::I32_TRUNC_S_F32); 574 case WebAssembly::FP_TO_UINT_I32_F32: 575 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 576 WebAssembly::I32_TRUNC_U_F32); 577 case WebAssembly::FP_TO_SINT_I64_F32: 578 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 579 WebAssembly::I64_TRUNC_S_F32); 580 case WebAssembly::FP_TO_UINT_I64_F32: 581 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 582 WebAssembly::I64_TRUNC_U_F32); 583 case WebAssembly::FP_TO_SINT_I32_F64: 584 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 585 WebAssembly::I32_TRUNC_S_F64); 586 case WebAssembly::FP_TO_UINT_I32_F64: 587 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 588 WebAssembly::I32_TRUNC_U_F64); 589 case WebAssembly::FP_TO_SINT_I64_F64: 590 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 591 WebAssembly::I64_TRUNC_S_F64); 592 case WebAssembly::FP_TO_UINT_I64_F64: 593 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 594 WebAssembly::I64_TRUNC_U_F64); 595 case WebAssembly::CALL_RESULTS: 596 case WebAssembly::RET_CALL_RESULTS: 597 return LowerCallResults(MI, DL, BB, Subtarget, TII); 598 } 599 } 600 601 const char * 602 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 603 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 604 case WebAssemblyISD::FIRST_NUMBER: 605 case WebAssemblyISD::FIRST_MEM_OPCODE: 606 break; 607 #define HANDLE_NODETYPE(NODE) \ 608 case WebAssemblyISD::NODE: \ 609 return "WebAssemblyISD::" #NODE; 610 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 611 #include "WebAssemblyISD.def" 612 #undef HANDLE_MEM_NODETYPE 613 #undef HANDLE_NODETYPE 614 } 615 return nullptr; 616 } 617 618 std::pair<unsigned, const TargetRegisterClass *> 619 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 620 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 621 // First, see if this is a constraint that directly corresponds to a 622 // WebAssembly register class. 623 if (Constraint.size() == 1) { 624 switch (Constraint[0]) { 625 case 'r': 626 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 627 if (Subtarget->hasSIMD128() && VT.isVector()) { 628 if (VT.getSizeInBits() == 128) 629 return std::make_pair(0U, &WebAssembly::V128RegClass); 630 } 631 if (VT.isInteger() && !VT.isVector()) { 632 if (VT.getSizeInBits() <= 32) 633 return std::make_pair(0U, &WebAssembly::I32RegClass); 634 if (VT.getSizeInBits() <= 64) 635 return std::make_pair(0U, &WebAssembly::I64RegClass); 636 } 637 if (VT.isFloatingPoint() && !VT.isVector()) { 638 switch (VT.getSizeInBits()) { 639 case 32: 640 return std::make_pair(0U, &WebAssembly::F32RegClass); 641 case 64: 642 return std::make_pair(0U, &WebAssembly::F64RegClass); 643 default: 644 break; 645 } 646 } 647 break; 648 default: 649 break; 650 } 651 } 652 653 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 654 } 655 656 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 657 // Assume ctz is a relatively cheap operation. 658 return true; 659 } 660 661 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 662 // Assume clz is a relatively cheap operation. 663 return true; 664 } 665 666 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 667 const AddrMode &AM, 668 Type *Ty, unsigned AS, 669 Instruction *I) const { 670 // WebAssembly offsets are added as unsigned without wrapping. The 671 // isLegalAddressingMode gives us no way to determine if wrapping could be 672 // happening, so we approximate this by accepting only non-negative offsets. 673 if (AM.BaseOffs < 0) 674 return false; 675 676 // WebAssembly has no scale register operands. 677 if (AM.Scale != 0) 678 return false; 679 680 // Everything else is legal. 681 return true; 682 } 683 684 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 685 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 686 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 687 // WebAssembly supports unaligned accesses, though it should be declared 688 // with the p2align attribute on loads and stores which do so, and there 689 // may be a performance impact. We tell LLVM they're "fast" because 690 // for the kinds of things that LLVM uses this for (merging adjacent stores 691 // of constants, etc.), WebAssembly implementations will either want the 692 // unaligned access or they'll split anyway. 693 if (Fast) 694 *Fast = true; 695 return true; 696 } 697 698 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 699 AttributeList Attr) const { 700 // The current thinking is that wasm engines will perform this optimization, 701 // so we can save on code size. 702 return true; 703 } 704 705 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 706 EVT ExtT = ExtVal.getValueType(); 707 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 708 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 709 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 710 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 711 } 712 713 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 714 LLVMContext &C, 715 EVT VT) const { 716 if (VT.isVector()) 717 return VT.changeVectorElementTypeToInteger(); 718 719 // So far, all branch instructions in Wasm take an I32 condition. 720 // The default TargetLowering::getSetCCResultType returns the pointer size, 721 // which would be useful to reduce instruction counts when testing 722 // against 64-bit pointers/values if at some point Wasm supports that. 723 return EVT::getIntegerVT(C, 32); 724 } 725 726 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 727 const CallInst &I, 728 MachineFunction &MF, 729 unsigned Intrinsic) const { 730 switch (Intrinsic) { 731 case Intrinsic::wasm_memory_atomic_notify: 732 Info.opc = ISD::INTRINSIC_W_CHAIN; 733 Info.memVT = MVT::i32; 734 Info.ptrVal = I.getArgOperand(0); 735 Info.offset = 0; 736 Info.align = Align(4); 737 // atomic.notify instruction does not really load the memory specified with 738 // this argument, but MachineMemOperand should either be load or store, so 739 // we set this to a load. 740 // FIXME Volatile isn't really correct, but currently all LLVM atomic 741 // instructions are treated as volatiles in the backend, so we should be 742 // consistent. The same applies for wasm_atomic_wait intrinsics too. 743 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 744 return true; 745 case Intrinsic::wasm_memory_atomic_wait32: 746 Info.opc = ISD::INTRINSIC_W_CHAIN; 747 Info.memVT = MVT::i32; 748 Info.ptrVal = I.getArgOperand(0); 749 Info.offset = 0; 750 Info.align = Align(4); 751 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 752 return true; 753 case Intrinsic::wasm_memory_atomic_wait64: 754 Info.opc = ISD::INTRINSIC_W_CHAIN; 755 Info.memVT = MVT::i64; 756 Info.ptrVal = I.getArgOperand(0); 757 Info.offset = 0; 758 Info.align = Align(8); 759 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 760 return true; 761 case Intrinsic::wasm_load32_zero: 762 case Intrinsic::wasm_load64_zero: 763 Info.opc = ISD::INTRINSIC_W_CHAIN; 764 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 765 Info.ptrVal = I.getArgOperand(0); 766 Info.offset = 0; 767 Info.align = Align(1); 768 Info.flags = MachineMemOperand::MOLoad; 769 return true; 770 case Intrinsic::wasm_load8_lane: 771 case Intrinsic::wasm_load16_lane: 772 case Intrinsic::wasm_load32_lane: 773 case Intrinsic::wasm_load64_lane: 774 case Intrinsic::wasm_store8_lane: 775 case Intrinsic::wasm_store16_lane: 776 case Intrinsic::wasm_store32_lane: 777 case Intrinsic::wasm_store64_lane: { 778 MVT MemVT; 779 switch (Intrinsic) { 780 case Intrinsic::wasm_load8_lane: 781 case Intrinsic::wasm_store8_lane: 782 MemVT = MVT::i8; 783 break; 784 case Intrinsic::wasm_load16_lane: 785 case Intrinsic::wasm_store16_lane: 786 MemVT = MVT::i16; 787 break; 788 case Intrinsic::wasm_load32_lane: 789 case Intrinsic::wasm_store32_lane: 790 MemVT = MVT::i32; 791 break; 792 case Intrinsic::wasm_load64_lane: 793 case Intrinsic::wasm_store64_lane: 794 MemVT = MVT::i64; 795 break; 796 default: 797 llvm_unreachable("unexpected intrinsic"); 798 } 799 if (Intrinsic == Intrinsic::wasm_load8_lane || 800 Intrinsic == Intrinsic::wasm_load16_lane || 801 Intrinsic == Intrinsic::wasm_load32_lane || 802 Intrinsic == Intrinsic::wasm_load64_lane) { 803 Info.opc = ISD::INTRINSIC_W_CHAIN; 804 Info.flags = MachineMemOperand::MOLoad; 805 } else { 806 Info.opc = ISD::INTRINSIC_VOID; 807 Info.flags = MachineMemOperand::MOStore; 808 } 809 Info.ptrVal = I.getArgOperand(0); 810 Info.memVT = MemVT; 811 Info.offset = 0; 812 Info.align = Align(1); 813 return true; 814 } 815 default: 816 return false; 817 } 818 } 819 820 //===----------------------------------------------------------------------===// 821 // WebAssembly Lowering private implementation. 822 //===----------------------------------------------------------------------===// 823 824 //===----------------------------------------------------------------------===// 825 // Lowering Code 826 //===----------------------------------------------------------------------===// 827 828 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 829 MachineFunction &MF = DAG.getMachineFunction(); 830 DAG.getContext()->diagnose( 831 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 832 } 833 834 // Test whether the given calling convention is supported. 835 static bool callingConvSupported(CallingConv::ID CallConv) { 836 // We currently support the language-independent target-independent 837 // conventions. We don't yet have a way to annotate calls with properties like 838 // "cold", and we don't have any call-clobbered registers, so these are mostly 839 // all handled the same. 840 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 841 CallConv == CallingConv::Cold || 842 CallConv == CallingConv::PreserveMost || 843 CallConv == CallingConv::PreserveAll || 844 CallConv == CallingConv::CXX_FAST_TLS || 845 CallConv == CallingConv::WASM_EmscriptenInvoke || 846 CallConv == CallingConv::Swift; 847 } 848 849 SDValue 850 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 851 SmallVectorImpl<SDValue> &InVals) const { 852 SelectionDAG &DAG = CLI.DAG; 853 SDLoc DL = CLI.DL; 854 SDValue Chain = CLI.Chain; 855 SDValue Callee = CLI.Callee; 856 MachineFunction &MF = DAG.getMachineFunction(); 857 auto Layout = MF.getDataLayout(); 858 859 CallingConv::ID CallConv = CLI.CallConv; 860 if (!callingConvSupported(CallConv)) 861 fail(DL, DAG, 862 "WebAssembly doesn't support language-specific or target-specific " 863 "calling conventions yet"); 864 if (CLI.IsPatchPoint) 865 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 866 867 if (CLI.IsTailCall) { 868 auto NoTail = [&](const char *Msg) { 869 if (CLI.CB && CLI.CB->isMustTailCall()) 870 fail(DL, DAG, Msg); 871 CLI.IsTailCall = false; 872 }; 873 874 if (!Subtarget->hasTailCall()) 875 NoTail("WebAssembly 'tail-call' feature not enabled"); 876 877 // Varargs calls cannot be tail calls because the buffer is on the stack 878 if (CLI.IsVarArg) 879 NoTail("WebAssembly does not support varargs tail calls"); 880 881 // Do not tail call unless caller and callee return types match 882 const Function &F = MF.getFunction(); 883 const TargetMachine &TM = getTargetMachine(); 884 Type *RetTy = F.getReturnType(); 885 SmallVector<MVT, 4> CallerRetTys; 886 SmallVector<MVT, 4> CalleeRetTys; 887 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 888 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 889 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 890 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 891 CalleeRetTys.begin()); 892 if (!TypesMatch) 893 NoTail("WebAssembly tail call requires caller and callee return types to " 894 "match"); 895 896 // If pointers to local stack values are passed, we cannot tail call 897 if (CLI.CB) { 898 for (auto &Arg : CLI.CB->args()) { 899 Value *Val = Arg.get(); 900 // Trace the value back through pointer operations 901 while (true) { 902 Value *Src = Val->stripPointerCastsAndAliases(); 903 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 904 Src = GEP->getPointerOperand(); 905 if (Val == Src) 906 break; 907 Val = Src; 908 } 909 if (isa<AllocaInst>(Val)) { 910 NoTail( 911 "WebAssembly does not support tail calling with stack arguments"); 912 break; 913 } 914 } 915 } 916 } 917 918 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 919 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 920 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 921 922 // The generic code may have added an sret argument. If we're lowering an 923 // invoke function, the ABI requires that the function pointer be the first 924 // argument, so we may have to swap the arguments. 925 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 926 Outs[0].Flags.isSRet()) { 927 std::swap(Outs[0], Outs[1]); 928 std::swap(OutVals[0], OutVals[1]); 929 } 930 931 bool HasSwiftSelfArg = false; 932 bool HasSwiftErrorArg = false; 933 unsigned NumFixedArgs = 0; 934 for (unsigned I = 0; I < Outs.size(); ++I) { 935 const ISD::OutputArg &Out = Outs[I]; 936 SDValue &OutVal = OutVals[I]; 937 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 938 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 939 if (Out.Flags.isNest()) 940 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 941 if (Out.Flags.isInAlloca()) 942 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 943 if (Out.Flags.isInConsecutiveRegs()) 944 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 945 if (Out.Flags.isInConsecutiveRegsLast()) 946 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 947 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 948 auto &MFI = MF.getFrameInfo(); 949 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 950 Out.Flags.getNonZeroByValAlign(), 951 /*isSS=*/false); 952 SDValue SizeNode = 953 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 954 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 955 Chain = DAG.getMemcpy( 956 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 957 /*isVolatile*/ false, /*AlwaysInline=*/false, 958 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 959 OutVal = FINode; 960 } 961 // Count the number of fixed args *after* legalization. 962 NumFixedArgs += Out.IsFixed; 963 } 964 965 bool IsVarArg = CLI.IsVarArg; 966 auto PtrVT = getPointerTy(Layout); 967 968 // For swiftcc, emit additional swiftself and swifterror arguments 969 // if there aren't. These additional arguments are also added for callee 970 // signature They are necessary to match callee and caller signature for 971 // indirect call. 972 if (CallConv == CallingConv::Swift) { 973 if (!HasSwiftSelfArg) { 974 NumFixedArgs++; 975 ISD::OutputArg Arg; 976 Arg.Flags.setSwiftSelf(); 977 CLI.Outs.push_back(Arg); 978 SDValue ArgVal = DAG.getUNDEF(PtrVT); 979 CLI.OutVals.push_back(ArgVal); 980 } 981 if (!HasSwiftErrorArg) { 982 NumFixedArgs++; 983 ISD::OutputArg Arg; 984 Arg.Flags.setSwiftError(); 985 CLI.Outs.push_back(Arg); 986 SDValue ArgVal = DAG.getUNDEF(PtrVT); 987 CLI.OutVals.push_back(ArgVal); 988 } 989 } 990 991 // Analyze operands of the call, assigning locations to each operand. 992 SmallVector<CCValAssign, 16> ArgLocs; 993 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 994 995 if (IsVarArg) { 996 // Outgoing non-fixed arguments are placed in a buffer. First 997 // compute their offsets and the total amount of buffer space needed. 998 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 999 const ISD::OutputArg &Out = Outs[I]; 1000 SDValue &Arg = OutVals[I]; 1001 EVT VT = Arg.getValueType(); 1002 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1003 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1004 Align Alignment = 1005 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1006 unsigned Offset = 1007 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1008 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1009 Offset, VT.getSimpleVT(), 1010 CCValAssign::Full)); 1011 } 1012 } 1013 1014 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1015 1016 SDValue FINode; 1017 if (IsVarArg && NumBytes) { 1018 // For non-fixed arguments, next emit stores to store the argument values 1019 // to the stack buffer at the offsets computed above. 1020 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1021 Layout.getStackAlignment(), 1022 /*isSS=*/false); 1023 unsigned ValNo = 0; 1024 SmallVector<SDValue, 8> Chains; 1025 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1026 assert(ArgLocs[ValNo].getValNo() == ValNo && 1027 "ArgLocs should remain in order and only hold varargs args"); 1028 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1029 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1030 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1031 DAG.getConstant(Offset, DL, PtrVT)); 1032 Chains.push_back( 1033 DAG.getStore(Chain, DL, Arg, Add, 1034 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1035 } 1036 if (!Chains.empty()) 1037 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1038 } else if (IsVarArg) { 1039 FINode = DAG.getIntPtrConstant(0, DL); 1040 } 1041 1042 if (Callee->getOpcode() == ISD::GlobalAddress) { 1043 // If the callee is a GlobalAddress node (quite common, every direct call 1044 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1045 // doesn't at MO_GOT which is not needed for direct calls. 1046 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1047 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1048 getPointerTy(DAG.getDataLayout()), 1049 GA->getOffset()); 1050 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1051 getPointerTy(DAG.getDataLayout()), Callee); 1052 } 1053 1054 // Compute the operands for the CALLn node. 1055 SmallVector<SDValue, 16> Ops; 1056 Ops.push_back(Chain); 1057 Ops.push_back(Callee); 1058 1059 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1060 // isn't reliable. 1061 Ops.append(OutVals.begin(), 1062 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1063 // Add a pointer to the vararg buffer. 1064 if (IsVarArg) 1065 Ops.push_back(FINode); 1066 1067 SmallVector<EVT, 8> InTys; 1068 for (const auto &In : Ins) { 1069 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1070 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1071 if (In.Flags.isInAlloca()) 1072 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1073 if (In.Flags.isInConsecutiveRegs()) 1074 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1075 if (In.Flags.isInConsecutiveRegsLast()) 1076 fail(DL, DAG, 1077 "WebAssembly hasn't implemented cons regs last return values"); 1078 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1079 // registers. 1080 InTys.push_back(In.VT); 1081 } 1082 1083 if (CLI.IsTailCall) { 1084 // ret_calls do not return values to the current frame 1085 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1086 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1087 } 1088 1089 InTys.push_back(MVT::Other); 1090 SDVTList InTyList = DAG.getVTList(InTys); 1091 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1092 1093 for (size_t I = 0; I < Ins.size(); ++I) 1094 InVals.push_back(Res.getValue(I)); 1095 1096 // Return the chain 1097 return Res.getValue(Ins.size()); 1098 } 1099 1100 bool WebAssemblyTargetLowering::CanLowerReturn( 1101 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1102 const SmallVectorImpl<ISD::OutputArg> &Outs, 1103 LLVMContext & /*Context*/) const { 1104 // WebAssembly can only handle returning tuples with multivalue enabled 1105 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1106 } 1107 1108 SDValue WebAssemblyTargetLowering::LowerReturn( 1109 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1110 const SmallVectorImpl<ISD::OutputArg> &Outs, 1111 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1112 SelectionDAG &DAG) const { 1113 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1114 "MVP WebAssembly can only return up to one value"); 1115 if (!callingConvSupported(CallConv)) 1116 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1117 1118 SmallVector<SDValue, 4> RetOps(1, Chain); 1119 RetOps.append(OutVals.begin(), OutVals.end()); 1120 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1121 1122 // Record the number and types of the return values. 1123 for (const ISD::OutputArg &Out : Outs) { 1124 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1125 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1126 assert(Out.IsFixed && "non-fixed return value is not valid"); 1127 if (Out.Flags.isInAlloca()) 1128 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1129 if (Out.Flags.isInConsecutiveRegs()) 1130 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1131 if (Out.Flags.isInConsecutiveRegsLast()) 1132 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1133 } 1134 1135 return Chain; 1136 } 1137 1138 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1139 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1140 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1141 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1142 if (!callingConvSupported(CallConv)) 1143 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1144 1145 MachineFunction &MF = DAG.getMachineFunction(); 1146 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1147 1148 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1149 // of the incoming values before they're represented by virtual registers. 1150 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1151 1152 bool HasSwiftErrorArg = false; 1153 bool HasSwiftSelfArg = false; 1154 for (const ISD::InputArg &In : Ins) { 1155 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1156 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1157 if (In.Flags.isInAlloca()) 1158 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1159 if (In.Flags.isNest()) 1160 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1161 if (In.Flags.isInConsecutiveRegs()) 1162 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1163 if (In.Flags.isInConsecutiveRegsLast()) 1164 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1165 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1166 // registers. 1167 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1168 DAG.getTargetConstant(InVals.size(), 1169 DL, MVT::i32)) 1170 : DAG.getUNDEF(In.VT)); 1171 1172 // Record the number and types of arguments. 1173 MFI->addParam(In.VT); 1174 } 1175 1176 // For swiftcc, emit additional swiftself and swifterror arguments 1177 // if there aren't. These additional arguments are also added for callee 1178 // signature They are necessary to match callee and caller signature for 1179 // indirect call. 1180 auto PtrVT = getPointerTy(MF.getDataLayout()); 1181 if (CallConv == CallingConv::Swift) { 1182 if (!HasSwiftSelfArg) { 1183 MFI->addParam(PtrVT); 1184 } 1185 if (!HasSwiftErrorArg) { 1186 MFI->addParam(PtrVT); 1187 } 1188 } 1189 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1190 // the buffer is passed as an argument. 1191 if (IsVarArg) { 1192 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1193 Register VarargVreg = 1194 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1195 MFI->setVarargBufferVreg(VarargVreg); 1196 Chain = DAG.getCopyToReg( 1197 Chain, DL, VarargVreg, 1198 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1199 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1200 MFI->addParam(PtrVT); 1201 } 1202 1203 // Record the number and types of arguments and results. 1204 SmallVector<MVT, 4> Params; 1205 SmallVector<MVT, 4> Results; 1206 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1207 MF.getFunction(), DAG.getTarget(), Params, Results); 1208 for (MVT VT : Results) 1209 MFI->addResult(VT); 1210 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1211 // the param logic here with ComputeSignatureVTs 1212 assert(MFI->getParams().size() == Params.size() && 1213 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1214 Params.begin())); 1215 1216 return Chain; 1217 } 1218 1219 void WebAssemblyTargetLowering::ReplaceNodeResults( 1220 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1221 switch (N->getOpcode()) { 1222 case ISD::SIGN_EXTEND_INREG: 1223 // Do not add any results, signifying that N should not be custom lowered 1224 // after all. This happens because simd128 turns on custom lowering for 1225 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1226 // illegal type. 1227 break; 1228 default: 1229 llvm_unreachable( 1230 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1231 } 1232 } 1233 1234 //===----------------------------------------------------------------------===// 1235 // Custom lowering hooks. 1236 //===----------------------------------------------------------------------===// 1237 1238 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1239 SelectionDAG &DAG) const { 1240 SDLoc DL(Op); 1241 switch (Op.getOpcode()) { 1242 default: 1243 llvm_unreachable("unimplemented operation lowering"); 1244 return SDValue(); 1245 case ISD::FrameIndex: 1246 return LowerFrameIndex(Op, DAG); 1247 case ISD::GlobalAddress: 1248 return LowerGlobalAddress(Op, DAG); 1249 case ISD::GlobalTLSAddress: 1250 return LowerGlobalTLSAddress(Op, DAG); 1251 case ISD::ExternalSymbol: 1252 return LowerExternalSymbol(Op, DAG); 1253 case ISD::JumpTable: 1254 return LowerJumpTable(Op, DAG); 1255 case ISD::BR_JT: 1256 return LowerBR_JT(Op, DAG); 1257 case ISD::VASTART: 1258 return LowerVASTART(Op, DAG); 1259 case ISD::BlockAddress: 1260 case ISD::BRIND: 1261 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1262 return SDValue(); 1263 case ISD::RETURNADDR: 1264 return LowerRETURNADDR(Op, DAG); 1265 case ISD::FRAMEADDR: 1266 return LowerFRAMEADDR(Op, DAG); 1267 case ISD::CopyToReg: 1268 return LowerCopyToReg(Op, DAG); 1269 case ISD::EXTRACT_VECTOR_ELT: 1270 case ISD::INSERT_VECTOR_ELT: 1271 return LowerAccessVectorElement(Op, DAG); 1272 case ISD::INTRINSIC_VOID: 1273 case ISD::INTRINSIC_WO_CHAIN: 1274 case ISD::INTRINSIC_W_CHAIN: 1275 return LowerIntrinsic(Op, DAG); 1276 case ISD::SIGN_EXTEND_INREG: 1277 return LowerSIGN_EXTEND_INREG(Op, DAG); 1278 case ISD::BUILD_VECTOR: 1279 return LowerBUILD_VECTOR(Op, DAG); 1280 case ISD::VECTOR_SHUFFLE: 1281 return LowerVECTOR_SHUFFLE(Op, DAG); 1282 case ISD::SETCC: 1283 return LowerSETCC(Op, DAG); 1284 case ISD::SHL: 1285 case ISD::SRA: 1286 case ISD::SRL: 1287 return LowerShift(Op, DAG); 1288 case ISD::FP_TO_SINT_SAT: 1289 case ISD::FP_TO_UINT_SAT: 1290 return LowerFP_TO_INT_SAT(Op, DAG); 1291 case ISD::LOAD: 1292 return LowerLoad(Op, DAG); 1293 case ISD::STORE: 1294 return LowerStore(Op, DAG); 1295 } 1296 } 1297 1298 static bool IsWebAssemblyGlobal(SDValue Op) { 1299 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1300 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1301 1302 return false; 1303 } 1304 1305 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1306 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1307 if (!FI) 1308 return None; 1309 1310 auto &MF = DAG.getMachineFunction(); 1311 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1312 } 1313 1314 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1315 SelectionDAG &DAG) const { 1316 SDLoc DL(Op); 1317 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1318 const SDValue &Value = SN->getValue(); 1319 const SDValue &Base = SN->getBasePtr(); 1320 const SDValue &Offset = SN->getOffset(); 1321 1322 if (IsWebAssemblyGlobal(Base)) { 1323 if (!Offset->isUndef()) 1324 report_fatal_error("unexpected offset when storing to webassembly global", 1325 false); 1326 1327 SDVTList Tys = DAG.getVTList(MVT::Other); 1328 SDValue Ops[] = {SN->getChain(), Value, Base}; 1329 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1330 SN->getMemoryVT(), SN->getMemOperand()); 1331 } 1332 1333 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1334 if (!Offset->isUndef()) 1335 report_fatal_error("unexpected offset when storing to webassembly local", 1336 false); 1337 1338 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1339 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1340 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1341 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1342 } 1343 1344 return Op; 1345 } 1346 1347 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1348 SelectionDAG &DAG) const { 1349 SDLoc DL(Op); 1350 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1351 const SDValue &Base = LN->getBasePtr(); 1352 const SDValue &Offset = LN->getOffset(); 1353 1354 if (IsWebAssemblyGlobal(Base)) { 1355 if (!Offset->isUndef()) 1356 report_fatal_error( 1357 "unexpected offset when loading from webassembly global", false); 1358 1359 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1360 SDValue Ops[] = {LN->getChain(), Base}; 1361 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1362 LN->getMemoryVT(), LN->getMemOperand()); 1363 } 1364 1365 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1366 if (!Offset->isUndef()) 1367 report_fatal_error( 1368 "unexpected offset when loading from webassembly local", false); 1369 1370 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1371 EVT LocalVT = LN->getValueType(0); 1372 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1373 {LN->getChain(), Idx}); 1374 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1375 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1376 return Result; 1377 } 1378 1379 return Op; 1380 } 1381 1382 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1383 SelectionDAG &DAG) const { 1384 SDValue Src = Op.getOperand(2); 1385 if (isa<FrameIndexSDNode>(Src.getNode())) { 1386 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1387 // the FI to some LEA-like instruction, but since we don't have that, we 1388 // need to insert some kind of instruction that can take an FI operand and 1389 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1390 // local.copy between Op and its FI operand. 1391 SDValue Chain = Op.getOperand(0); 1392 SDLoc DL(Op); 1393 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1394 EVT VT = Src.getValueType(); 1395 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1396 : WebAssembly::COPY_I64, 1397 DL, VT, Src), 1398 0); 1399 return Op.getNode()->getNumValues() == 1 1400 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1401 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1402 Op.getNumOperands() == 4 ? Op.getOperand(3) 1403 : SDValue()); 1404 } 1405 return SDValue(); 1406 } 1407 1408 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1409 SelectionDAG &DAG) const { 1410 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1411 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1412 } 1413 1414 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1415 SelectionDAG &DAG) const { 1416 SDLoc DL(Op); 1417 1418 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1419 fail(DL, DAG, 1420 "Non-Emscripten WebAssembly hasn't implemented " 1421 "__builtin_return_address"); 1422 return SDValue(); 1423 } 1424 1425 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1426 return SDValue(); 1427 1428 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1429 MakeLibCallOptions CallOptions; 1430 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1431 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1432 .first; 1433 } 1434 1435 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1436 SelectionDAG &DAG) const { 1437 // Non-zero depths are not supported by WebAssembly currently. Use the 1438 // legalizer's default expansion, which is to return 0 (what this function is 1439 // documented to do). 1440 if (Op.getConstantOperandVal(0) > 0) 1441 return SDValue(); 1442 1443 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1444 EVT VT = Op.getValueType(); 1445 Register FP = 1446 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1447 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1448 } 1449 1450 SDValue 1451 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1452 SelectionDAG &DAG) const { 1453 SDLoc DL(Op); 1454 const auto *GA = cast<GlobalAddressSDNode>(Op); 1455 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1456 1457 MachineFunction &MF = DAG.getMachineFunction(); 1458 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1459 report_fatal_error("cannot use thread-local storage without bulk memory", 1460 false); 1461 1462 const GlobalValue *GV = GA->getGlobal(); 1463 1464 // Currently Emscripten does not support dynamic linking with threads. 1465 // Therefore, if we have thread-local storage, only the local-exec model 1466 // is possible. 1467 // TODO: remove this and implement proper TLS models once Emscripten 1468 // supports dynamic linking with threads. 1469 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1470 !Subtarget->getTargetTriple().isOSEmscripten()) { 1471 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1472 "non-Emscripten OSes: variable " + 1473 GV->getName(), 1474 false); 1475 } 1476 1477 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1478 : WebAssembly::GLOBAL_GET_I32; 1479 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1480 1481 SDValue BaseAddr( 1482 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1483 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1484 0); 1485 1486 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1487 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1488 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1489 1490 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1491 } 1492 1493 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1494 SelectionDAG &DAG) const { 1495 SDLoc DL(Op); 1496 const auto *GA = cast<GlobalAddressSDNode>(Op); 1497 EVT VT = Op.getValueType(); 1498 assert(GA->getTargetFlags() == 0 && 1499 "Unexpected target flags on generic GlobalAddressSDNode"); 1500 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1501 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1502 1503 unsigned OperandFlags = 0; 1504 if (isPositionIndependent()) { 1505 const GlobalValue *GV = GA->getGlobal(); 1506 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1507 MachineFunction &MF = DAG.getMachineFunction(); 1508 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1509 const char *BaseName; 1510 if (GV->getValueType()->isFunctionTy()) { 1511 BaseName = MF.createExternalSymbolName("__table_base"); 1512 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1513 } 1514 else { 1515 BaseName = MF.createExternalSymbolName("__memory_base"); 1516 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1517 } 1518 SDValue BaseAddr = 1519 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1520 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1521 1522 SDValue SymAddr = DAG.getNode( 1523 WebAssemblyISD::WrapperPIC, DL, VT, 1524 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1525 OperandFlags)); 1526 1527 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1528 } else { 1529 OperandFlags = WebAssemblyII::MO_GOT; 1530 } 1531 } 1532 1533 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1534 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1535 GA->getOffset(), OperandFlags)); 1536 } 1537 1538 SDValue 1539 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1540 SelectionDAG &DAG) const { 1541 SDLoc DL(Op); 1542 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1543 EVT VT = Op.getValueType(); 1544 assert(ES->getTargetFlags() == 0 && 1545 "Unexpected target flags on generic ExternalSymbolSDNode"); 1546 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1547 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1548 } 1549 1550 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1551 SelectionDAG &DAG) const { 1552 // There's no need for a Wrapper node because we always incorporate a jump 1553 // table operand into a BR_TABLE instruction, rather than ever 1554 // materializing it in a register. 1555 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1556 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1557 JT->getTargetFlags()); 1558 } 1559 1560 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1561 SelectionDAG &DAG) const { 1562 SDLoc DL(Op); 1563 SDValue Chain = Op.getOperand(0); 1564 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1565 SDValue Index = Op.getOperand(2); 1566 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1567 1568 SmallVector<SDValue, 8> Ops; 1569 Ops.push_back(Chain); 1570 Ops.push_back(Index); 1571 1572 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1573 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1574 1575 // Add an operand for each case. 1576 for (auto MBB : MBBs) 1577 Ops.push_back(DAG.getBasicBlock(MBB)); 1578 1579 // Add the first MBB as a dummy default target for now. This will be replaced 1580 // with the proper default target (and the preceding range check eliminated) 1581 // if possible by WebAssemblyFixBrTableDefaults. 1582 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1583 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1584 } 1585 1586 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1587 SelectionDAG &DAG) const { 1588 SDLoc DL(Op); 1589 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1590 1591 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1592 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1593 1594 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1595 MFI->getVarargBufferVreg(), PtrVT); 1596 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1597 MachinePointerInfo(SV)); 1598 } 1599 1600 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1601 SelectionDAG &DAG) { 1602 // We only support C++ exceptions for now 1603 int Tag = 1604 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1605 if (Tag != WebAssembly::CPP_EXCEPTION) 1606 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1607 auto &MF = DAG.getMachineFunction(); 1608 const auto &TLI = DAG.getTargetLoweringInfo(); 1609 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1610 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1611 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1612 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1613 } 1614 1615 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1616 SelectionDAG &DAG) const { 1617 MachineFunction &MF = DAG.getMachineFunction(); 1618 unsigned IntNo; 1619 switch (Op.getOpcode()) { 1620 case ISD::INTRINSIC_VOID: 1621 case ISD::INTRINSIC_W_CHAIN: 1622 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1623 break; 1624 case ISD::INTRINSIC_WO_CHAIN: 1625 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1626 break; 1627 default: 1628 llvm_unreachable("Invalid intrinsic"); 1629 } 1630 SDLoc DL(Op); 1631 1632 switch (IntNo) { 1633 default: 1634 return SDValue(); // Don't custom lower most intrinsics. 1635 1636 case Intrinsic::wasm_lsda: { 1637 EVT VT = Op.getValueType(); 1638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1639 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1640 auto &Context = MF.getMMI().getContext(); 1641 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1642 Twine(MF.getFunctionNumber())); 1643 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1644 DAG.getMCSymbol(S, PtrVT)); 1645 } 1646 1647 case Intrinsic::wasm_throw: { 1648 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1649 return DAG.getNode(WebAssemblyISD::THROW, DL, 1650 MVT::Other, // outchain type 1651 { 1652 Op.getOperand(0), // inchain 1653 SymNode, // exception symbol 1654 Op.getOperand(3) // thrown value 1655 }); 1656 } 1657 1658 case Intrinsic::wasm_catch: { 1659 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1660 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1661 { 1662 MVT::i32, // outchain type 1663 MVT::Other // return value 1664 }, 1665 { 1666 Op.getOperand(0), // inchain 1667 SymNode // exception symbol 1668 }); 1669 } 1670 1671 case Intrinsic::wasm_shuffle: { 1672 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1673 SDValue Ops[18]; 1674 size_t OpIdx = 0; 1675 Ops[OpIdx++] = Op.getOperand(1); 1676 Ops[OpIdx++] = Op.getOperand(2); 1677 while (OpIdx < 18) { 1678 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1679 if (MaskIdx.isUndef() || 1680 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1681 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1682 } else { 1683 Ops[OpIdx++] = MaskIdx; 1684 } 1685 } 1686 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1687 } 1688 } 1689 } 1690 1691 SDValue 1692 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1693 SelectionDAG &DAG) const { 1694 SDLoc DL(Op); 1695 // If sign extension operations are disabled, allow sext_inreg only if operand 1696 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1697 // extension operations, but allowing sext_inreg in this context lets us have 1698 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1699 // everywhere would be simpler in this file, but would necessitate large and 1700 // brittle patterns to undo the expansion and select extract_lane_s 1701 // instructions. 1702 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1703 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1704 return SDValue(); 1705 1706 const SDValue &Extract = Op.getOperand(0); 1707 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1708 if (VecT.getVectorElementType().getSizeInBits() > 32) 1709 return SDValue(); 1710 MVT ExtractedLaneT = 1711 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1712 MVT ExtractedVecT = 1713 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1714 if (ExtractedVecT == VecT) 1715 return Op; 1716 1717 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1718 const SDNode *Index = Extract.getOperand(1).getNode(); 1719 if (!isa<ConstantSDNode>(Index)) 1720 return SDValue(); 1721 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1722 unsigned Scale = 1723 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1724 assert(Scale > 1); 1725 SDValue NewIndex = 1726 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1727 SDValue NewExtract = DAG.getNode( 1728 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1729 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1730 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1731 Op.getOperand(1)); 1732 } 1733 1734 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1735 SelectionDAG &DAG) const { 1736 SDLoc DL(Op); 1737 const EVT VecT = Op.getValueType(); 1738 const EVT LaneT = Op.getOperand(0).getValueType(); 1739 const size_t Lanes = Op.getNumOperands(); 1740 bool CanSwizzle = VecT == MVT::v16i8; 1741 1742 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1743 // possible number of lanes at once followed by a sequence of replace_lane 1744 // instructions to individually initialize any remaining lanes. 1745 1746 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1747 // swizzled lanes should be given greater weight. 1748 1749 // TODO: Investigate looping rather than always extracting/replacing specific 1750 // lanes to fill gaps. 1751 1752 auto IsConstant = [](const SDValue &V) { 1753 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1754 }; 1755 1756 // Returns the source vector and index vector pair if they exist. Checks for: 1757 // (extract_vector_elt 1758 // $src, 1759 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1760 // ) 1761 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1762 auto Bail = std::make_pair(SDValue(), SDValue()); 1763 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1764 return Bail; 1765 const SDValue &SwizzleSrc = Lane->getOperand(0); 1766 const SDValue &IndexExt = Lane->getOperand(1); 1767 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1768 return Bail; 1769 const SDValue &Index = IndexExt->getOperand(0); 1770 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1771 return Bail; 1772 const SDValue &SwizzleIndices = Index->getOperand(0); 1773 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1774 SwizzleIndices.getValueType() != MVT::v16i8 || 1775 Index->getOperand(1)->getOpcode() != ISD::Constant || 1776 Index->getConstantOperandVal(1) != I) 1777 return Bail; 1778 return std::make_pair(SwizzleSrc, SwizzleIndices); 1779 }; 1780 1781 // If the lane is extracted from another vector at a constant index, return 1782 // that vector. The source vector must not have more lanes than the dest 1783 // because the shufflevector indices are in terms of the destination lanes and 1784 // would not be able to address the smaller individual source lanes. 1785 auto GetShuffleSrc = [&](const SDValue &Lane) { 1786 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1787 return SDValue(); 1788 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1789 return SDValue(); 1790 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1791 VecT.getVectorNumElements()) 1792 return SDValue(); 1793 return Lane->getOperand(0); 1794 }; 1795 1796 using ValueEntry = std::pair<SDValue, size_t>; 1797 SmallVector<ValueEntry, 16> SplatValueCounts; 1798 1799 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1800 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1801 1802 using ShuffleEntry = std::pair<SDValue, size_t>; 1803 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1804 1805 auto AddCount = [](auto &Counts, const auto &Val) { 1806 auto CountIt = 1807 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1808 if (CountIt == Counts.end()) { 1809 Counts.emplace_back(Val, 1); 1810 } else { 1811 CountIt->second++; 1812 } 1813 }; 1814 1815 auto GetMostCommon = [](auto &Counts) { 1816 auto CommonIt = 1817 std::max_element(Counts.begin(), Counts.end(), 1818 [](auto A, auto B) { return A.second < B.second; }); 1819 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1820 return *CommonIt; 1821 }; 1822 1823 size_t NumConstantLanes = 0; 1824 1825 // Count eligible lanes for each type of vector creation op 1826 for (size_t I = 0; I < Lanes; ++I) { 1827 const SDValue &Lane = Op->getOperand(I); 1828 if (Lane.isUndef()) 1829 continue; 1830 1831 AddCount(SplatValueCounts, Lane); 1832 1833 if (IsConstant(Lane)) 1834 NumConstantLanes++; 1835 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1836 AddCount(ShuffleCounts, ShuffleSrc); 1837 if (CanSwizzle) { 1838 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1839 if (SwizzleSrcs.first) 1840 AddCount(SwizzleCounts, SwizzleSrcs); 1841 } 1842 } 1843 1844 SDValue SplatValue; 1845 size_t NumSplatLanes; 1846 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1847 1848 SDValue SwizzleSrc; 1849 SDValue SwizzleIndices; 1850 size_t NumSwizzleLanes = 0; 1851 if (SwizzleCounts.size()) 1852 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1853 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1854 1855 // Shuffles can draw from up to two vectors, so find the two most common 1856 // sources. 1857 SDValue ShuffleSrc1, ShuffleSrc2; 1858 size_t NumShuffleLanes = 0; 1859 if (ShuffleCounts.size()) { 1860 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1861 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1862 ShuffleCounts.end(), 1863 [&](const auto &Pair) { 1864 return Pair.first == ShuffleSrc1; 1865 }), 1866 ShuffleCounts.end()); 1867 } 1868 if (ShuffleCounts.size()) { 1869 size_t AdditionalShuffleLanes; 1870 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 1871 GetMostCommon(ShuffleCounts); 1872 NumShuffleLanes += AdditionalShuffleLanes; 1873 } 1874 1875 // Predicate returning true if the lane is properly initialized by the 1876 // original instruction 1877 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1878 SDValue Result; 1879 // Prefer swizzles over shuffles over vector consts over splats 1880 if (NumSwizzleLanes >= NumShuffleLanes && 1881 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 1882 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1883 SwizzleIndices); 1884 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1885 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1886 return Swizzled == GetSwizzleSrcs(I, Lane); 1887 }; 1888 } else if (NumShuffleLanes >= NumConstantLanes && 1889 NumShuffleLanes >= NumSplatLanes) { 1890 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 1891 size_t DestLaneCount = VecT.getVectorNumElements(); 1892 size_t Scale1 = 1; 1893 size_t Scale2 = 1; 1894 SDValue Src1 = ShuffleSrc1; 1895 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 1896 if (Src1.getValueType() != VecT) { 1897 size_t LaneSize = 1898 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1899 assert(LaneSize > DestLaneSize); 1900 Scale1 = LaneSize / DestLaneSize; 1901 Src1 = DAG.getBitcast(VecT, Src1); 1902 } 1903 if (Src2.getValueType() != VecT) { 1904 size_t LaneSize = 1905 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1906 assert(LaneSize > DestLaneSize); 1907 Scale2 = LaneSize / DestLaneSize; 1908 Src2 = DAG.getBitcast(VecT, Src2); 1909 } 1910 1911 int Mask[16]; 1912 assert(DestLaneCount <= 16); 1913 for (size_t I = 0; I < DestLaneCount; ++I) { 1914 const SDValue &Lane = Op->getOperand(I); 1915 SDValue Src = GetShuffleSrc(Lane); 1916 if (Src == ShuffleSrc1) { 1917 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 1918 } else if (Src && Src == ShuffleSrc2) { 1919 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 1920 } else { 1921 Mask[I] = -1; 1922 } 1923 } 1924 ArrayRef<int> MaskRef(Mask, DestLaneCount); 1925 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 1926 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 1927 auto Src = GetShuffleSrc(Lane); 1928 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 1929 }; 1930 } else if (NumConstantLanes >= NumSplatLanes) { 1931 SmallVector<SDValue, 16> ConstLanes; 1932 for (const SDValue &Lane : Op->op_values()) { 1933 if (IsConstant(Lane)) { 1934 ConstLanes.push_back(Lane); 1935 } else if (LaneT.isFloatingPoint()) { 1936 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1937 } else { 1938 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1939 } 1940 } 1941 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1942 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1943 return IsConstant(Lane); 1944 }; 1945 } else { 1946 // Use a splat, but possibly a load_splat 1947 LoadSDNode *SplattedLoad; 1948 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1949 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1950 Result = DAG.getMemIntrinsicNode( 1951 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1952 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1953 SplattedLoad->getOffset()}, 1954 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1955 } else { 1956 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1957 } 1958 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1959 return Lane == SplatValue; 1960 }; 1961 } 1962 1963 assert(Result); 1964 assert(IsLaneConstructed); 1965 1966 // Add replace_lane instructions for any unhandled values 1967 for (size_t I = 0; I < Lanes; ++I) { 1968 const SDValue &Lane = Op->getOperand(I); 1969 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1970 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1971 DAG.getConstant(I, DL, MVT::i32)); 1972 } 1973 1974 return Result; 1975 } 1976 1977 SDValue 1978 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1979 SelectionDAG &DAG) const { 1980 SDLoc DL(Op); 1981 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1982 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1983 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1984 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1985 1986 // Space for two vector args and sixteen mask indices 1987 SDValue Ops[18]; 1988 size_t OpIdx = 0; 1989 Ops[OpIdx++] = Op.getOperand(0); 1990 Ops[OpIdx++] = Op.getOperand(1); 1991 1992 // Expand mask indices to byte indices and materialize them as operands 1993 for (int M : Mask) { 1994 for (size_t J = 0; J < LaneBytes; ++J) { 1995 // Lower undefs (represented by -1 in mask) to zero 1996 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1997 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1998 } 1999 } 2000 2001 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2002 } 2003 2004 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2005 SelectionDAG &DAG) const { 2006 SDLoc DL(Op); 2007 // The legalizer does not know how to expand the unsupported comparison modes 2008 // of i64x2 vectors, so we manually unroll them here. 2009 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2010 SmallVector<SDValue, 2> LHS, RHS; 2011 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2012 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2013 const SDValue &CC = Op->getOperand(2); 2014 auto MakeLane = [&](unsigned I) { 2015 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2016 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2017 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2018 }; 2019 return DAG.getBuildVector(Op->getValueType(0), DL, 2020 {MakeLane(0), MakeLane(1)}); 2021 } 2022 2023 SDValue 2024 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2025 SelectionDAG &DAG) const { 2026 // Allow constant lane indices, expand variable lane indices 2027 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2028 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2029 return Op; 2030 else 2031 // Perform default expansion 2032 return SDValue(); 2033 } 2034 2035 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2036 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2037 // 32-bit and 64-bit unrolled shifts will have proper semantics 2038 if (LaneT.bitsGE(MVT::i32)) 2039 return DAG.UnrollVectorOp(Op.getNode()); 2040 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2041 SDLoc DL(Op); 2042 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2043 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2044 unsigned ShiftOpcode = Op.getOpcode(); 2045 SmallVector<SDValue, 16> ShiftedElements; 2046 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2047 SmallVector<SDValue, 16> ShiftElements; 2048 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2049 SmallVector<SDValue, 16> UnrolledOps; 2050 for (size_t i = 0; i < NumLanes; ++i) { 2051 SDValue MaskedShiftValue = 2052 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2053 SDValue ShiftedValue = ShiftedElements[i]; 2054 if (ShiftOpcode == ISD::SRA) 2055 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2056 ShiftedValue, DAG.getValueType(LaneT)); 2057 UnrolledOps.push_back( 2058 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2059 } 2060 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2061 } 2062 2063 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2064 SelectionDAG &DAG) const { 2065 SDLoc DL(Op); 2066 2067 // Only manually lower vector shifts 2068 assert(Op.getSimpleValueType().isVector()); 2069 2070 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2071 if (!ShiftVal) 2072 return unrollVectorShift(Op, DAG); 2073 2074 // Use anyext because none of the high bits can affect the shift 2075 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2076 2077 unsigned Opcode; 2078 switch (Op.getOpcode()) { 2079 case ISD::SHL: 2080 Opcode = WebAssemblyISD::VEC_SHL; 2081 break; 2082 case ISD::SRA: 2083 Opcode = WebAssemblyISD::VEC_SHR_S; 2084 break; 2085 case ISD::SRL: 2086 Opcode = WebAssemblyISD::VEC_SHR_U; 2087 break; 2088 default: 2089 llvm_unreachable("unexpected opcode"); 2090 } 2091 2092 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2093 } 2094 2095 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2096 SelectionDAG &DAG) const { 2097 SDLoc DL(Op); 2098 EVT ResT = Op.getValueType(); 2099 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2100 2101 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2102 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2103 return Op; 2104 2105 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2106 return Op; 2107 2108 return SDValue(); 2109 } 2110 2111 //===----------------------------------------------------------------------===// 2112 // Custom DAG combine hooks 2113 //===----------------------------------------------------------------------===// 2114 static SDValue 2115 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2116 auto &DAG = DCI.DAG; 2117 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2118 2119 // Hoist vector bitcasts that don't change the number of lanes out of unary 2120 // shuffles, where they are less likely to get in the way of other combines. 2121 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2122 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2123 SDValue Bitcast = N->getOperand(0); 2124 if (Bitcast.getOpcode() != ISD::BITCAST) 2125 return SDValue(); 2126 if (!N->getOperand(1).isUndef()) 2127 return SDValue(); 2128 SDValue CastOp = Bitcast.getOperand(0); 2129 MVT SrcType = CastOp.getSimpleValueType(); 2130 MVT DstType = Bitcast.getSimpleValueType(); 2131 if (!SrcType.is128BitVector() || 2132 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2133 return SDValue(); 2134 SDValue NewShuffle = DAG.getVectorShuffle( 2135 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2136 return DAG.getBitcast(DstType, NewShuffle); 2137 } 2138 2139 static SDValue 2140 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2141 auto &DAG = DCI.DAG; 2142 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2143 N->getOpcode() == ISD::ZERO_EXTEND); 2144 2145 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2146 // possible before the extract_subvector can be expanded. 2147 auto Extract = N->getOperand(0); 2148 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2149 return SDValue(); 2150 auto Source = Extract.getOperand(0); 2151 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2152 if (IndexNode == nullptr) 2153 return SDValue(); 2154 auto Index = IndexNode->getZExtValue(); 2155 2156 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2157 // extracted subvector is the low or high half of its source. 2158 EVT ResVT = N->getValueType(0); 2159 if (ResVT == MVT::v8i16) { 2160 if (Extract.getValueType() != MVT::v8i8 || 2161 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2162 return SDValue(); 2163 } else if (ResVT == MVT::v4i32) { 2164 if (Extract.getValueType() != MVT::v4i16 || 2165 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2166 return SDValue(); 2167 } else if (ResVT == MVT::v2i64) { 2168 if (Extract.getValueType() != MVT::v2i32 || 2169 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2170 return SDValue(); 2171 } else { 2172 return SDValue(); 2173 } 2174 2175 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2176 bool IsLow = Index == 0; 2177 2178 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2179 : WebAssemblyISD::EXTEND_HIGH_S) 2180 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2181 : WebAssemblyISD::EXTEND_HIGH_U); 2182 2183 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2184 } 2185 2186 static SDValue 2187 performVectorConvertLowCombine(SDNode *N, 2188 TargetLowering::DAGCombinerInfo &DCI) { 2189 auto &DAG = DCI.DAG; 2190 2191 EVT ResVT = N->getValueType(0); 2192 if (ResVT != MVT::v2f64) 2193 return SDValue(); 2194 2195 auto GetWasmConversionOp = [](unsigned Op) { 2196 switch (Op) { 2197 case ISD::SINT_TO_FP: 2198 return WebAssemblyISD::CONVERT_LOW_S; 2199 case ISD::UINT_TO_FP: 2200 return WebAssemblyISD::CONVERT_LOW_U; 2201 case ISD::FP_EXTEND: 2202 return WebAssemblyISD::PROMOTE_LOW; 2203 } 2204 llvm_unreachable("unexpected op"); 2205 }; 2206 2207 if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) { 2208 // Combine this: 2209 // 2210 // (v2f64 (extract_subvector 2211 // (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0)) 2212 // 2213 // into (f64x2.convert_low_i32x4_{s,u} $x). 2214 // 2215 // Or this: 2216 // 2217 // (v2f64 (extract_subvector 2218 // (v4f64 (fp_extend (v4f32 $x))), 0)) 2219 // 2220 // into (f64x2.promote_low_f32x4 $x). 2221 auto Conversion = N->getOperand(0); 2222 auto ConversionOp = Conversion.getOpcode(); 2223 MVT ExpectedSourceType; 2224 switch (ConversionOp) { 2225 case ISD::SINT_TO_FP: 2226 case ISD::UINT_TO_FP: 2227 ExpectedSourceType = MVT::v4i32; 2228 break; 2229 case ISD::FP_EXTEND: 2230 ExpectedSourceType = MVT::v4f32; 2231 break; 2232 default: 2233 return SDValue(); 2234 } 2235 2236 if (Conversion.getValueType() != MVT::v4f64) 2237 return SDValue(); 2238 2239 auto Source = Conversion.getOperand(0); 2240 if (Source.getValueType() != ExpectedSourceType) 2241 return SDValue(); 2242 2243 auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2244 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2245 return SDValue(); 2246 2247 auto Op = GetWasmConversionOp(ConversionOp); 2248 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2249 } 2250 2251 // Combine this: 2252 // 2253 // (v2f64 ({s,u}int_to_fp 2254 // (v2i32 (extract_subvector (v4i32 $x), 0)))) 2255 // 2256 // into (f64x2.convert_low_i32x4_{s,u} $x). 2257 // 2258 // Or this: 2259 // 2260 // (v2f64 (fp_extend 2261 // (v2f32 (extract_subvector (v4f32 $x), 0)))) 2262 // 2263 // into (f64x2.promote_low_f32x4 $x). 2264 auto ConversionOp = N->getOpcode(); 2265 MVT ExpectedExtractType; 2266 MVT ExpectedSourceType; 2267 switch (ConversionOp) { 2268 case ISD::SINT_TO_FP: 2269 case ISD::UINT_TO_FP: 2270 ExpectedExtractType = MVT::v2i32; 2271 ExpectedSourceType = MVT::v4i32; 2272 break; 2273 case ISD::FP_EXTEND: 2274 ExpectedExtractType = MVT::v2f32; 2275 ExpectedSourceType = MVT::v4f32; 2276 break; 2277 default: 2278 llvm_unreachable("unexpected opcode"); 2279 } 2280 2281 auto Extract = N->getOperand(0); 2282 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2283 return SDValue(); 2284 2285 if (Extract.getValueType() != ExpectedExtractType) 2286 return SDValue(); 2287 2288 auto Source = Extract.getOperand(0); 2289 if (Source.getValueType() != ExpectedSourceType) 2290 return SDValue(); 2291 2292 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2293 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2294 return SDValue(); 2295 2296 unsigned Op = GetWasmConversionOp(ConversionOp); 2297 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2298 } 2299 2300 static SDValue 2301 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2302 auto &DAG = DCI.DAG; 2303 2304 auto GetWasmConversionOp = [](unsigned Op) { 2305 switch (Op) { 2306 case ISD::FP_TO_SINT_SAT: 2307 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2308 case ISD::FP_TO_UINT_SAT: 2309 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2310 case ISD::FP_ROUND: 2311 return WebAssemblyISD::DEMOTE_ZERO; 2312 } 2313 llvm_unreachable("unexpected op"); 2314 }; 2315 2316 auto IsZeroSplat = [](SDValue SplatVal) { 2317 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2318 APInt SplatValue, SplatUndef; 2319 unsigned SplatBitSize; 2320 bool HasAnyUndefs; 2321 return Splat && 2322 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2323 HasAnyUndefs) && 2324 SplatValue == 0; 2325 }; 2326 2327 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2328 // Combine this: 2329 // 2330 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2331 // 2332 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2333 // 2334 // Or this: 2335 // 2336 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2337 // 2338 // into (f32x4.demote_zero_f64x2 $x). 2339 EVT ResVT; 2340 EVT ExpectedConversionType; 2341 auto Conversion = N->getOperand(0); 2342 auto ConversionOp = Conversion.getOpcode(); 2343 switch (ConversionOp) { 2344 case ISD::FP_TO_SINT_SAT: 2345 case ISD::FP_TO_UINT_SAT: 2346 ResVT = MVT::v4i32; 2347 ExpectedConversionType = MVT::v2i32; 2348 break; 2349 case ISD::FP_ROUND: 2350 ResVT = MVT::v4f32; 2351 ExpectedConversionType = MVT::v2f32; 2352 break; 2353 default: 2354 return SDValue(); 2355 } 2356 2357 if (N->getValueType(0) != ResVT) 2358 return SDValue(); 2359 2360 if (Conversion.getValueType() != ExpectedConversionType) 2361 return SDValue(); 2362 2363 auto Source = Conversion.getOperand(0); 2364 if (Source.getValueType() != MVT::v2f64) 2365 return SDValue(); 2366 2367 if (!IsZeroSplat(N->getOperand(1)) || 2368 N->getOperand(1).getValueType() != ExpectedConversionType) 2369 return SDValue(); 2370 2371 unsigned Op = GetWasmConversionOp(ConversionOp); 2372 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2373 } 2374 2375 // Combine this: 2376 // 2377 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2378 // 2379 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2380 // 2381 // Or this: 2382 // 2383 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2384 // 2385 // into (f32x4.demote_zero_f64x2 $x). 2386 EVT ResVT; 2387 auto ConversionOp = N->getOpcode(); 2388 switch (ConversionOp) { 2389 case ISD::FP_TO_SINT_SAT: 2390 case ISD::FP_TO_UINT_SAT: 2391 ResVT = MVT::v4i32; 2392 break; 2393 case ISD::FP_ROUND: 2394 ResVT = MVT::v4f32; 2395 break; 2396 default: 2397 llvm_unreachable("unexpected op"); 2398 } 2399 2400 if (N->getValueType(0) != ResVT) 2401 return SDValue(); 2402 2403 auto Concat = N->getOperand(0); 2404 if (Concat.getValueType() != MVT::v4f64) 2405 return SDValue(); 2406 2407 auto Source = Concat.getOperand(0); 2408 if (Source.getValueType() != MVT::v2f64) 2409 return SDValue(); 2410 2411 if (!IsZeroSplat(Concat.getOperand(1)) || 2412 Concat.getOperand(1).getValueType() != MVT::v2f64) 2413 return SDValue(); 2414 2415 unsigned Op = GetWasmConversionOp(ConversionOp); 2416 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2417 } 2418 2419 SDValue 2420 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2421 DAGCombinerInfo &DCI) const { 2422 switch (N->getOpcode()) { 2423 default: 2424 return SDValue(); 2425 case ISD::VECTOR_SHUFFLE: 2426 return performVECTOR_SHUFFLECombine(N, DCI); 2427 case ISD::SIGN_EXTEND: 2428 case ISD::ZERO_EXTEND: 2429 return performVectorExtendCombine(N, DCI); 2430 case ISD::SINT_TO_FP: 2431 case ISD::UINT_TO_FP: 2432 case ISD::FP_EXTEND: 2433 case ISD::EXTRACT_SUBVECTOR: 2434 return performVectorConvertLowCombine(N, DCI); 2435 case ISD::FP_TO_SINT_SAT: 2436 case ISD::FP_TO_UINT_SAT: 2437 case ISD::FP_ROUND: 2438 case ISD::CONCAT_VECTORS: 2439 return performVectorTruncZeroCombine(N, DCI); 2440 } 2441 } 2442