1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "WebAssemblyUtilities.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 73 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 74 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 75 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 76 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 77 setOperationAction(ISD::BRIND, MVT::Other, Custom); 78 79 // Take the default expansion for va_arg, va_copy, and va_end. There is no 80 // default action for va_start, so we do that custom. 81 setOperationAction(ISD::VASTART, MVT::Other, Custom); 82 setOperationAction(ISD::VAARG, MVT::Other, Expand); 83 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 84 setOperationAction(ISD::VAEND, MVT::Other, Expand); 85 86 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 87 // Don't expand the floating-point types to constant pools. 88 setOperationAction(ISD::ConstantFP, T, Legal); 89 // Expand floating-point comparisons. 90 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 91 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 92 setCondCodeAction(CC, T, Expand); 93 // Expand floating-point library function operators. 94 for (auto Op : 95 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 96 setOperationAction(Op, T, Expand); 97 // Note supported floating-point library function operators that otherwise 98 // default to expand. 99 for (auto Op : 100 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 101 setOperationAction(Op, T, Legal); 102 // Support minimum and maximum, which otherwise default to expand. 103 setOperationAction(ISD::FMINIMUM, T, Legal); 104 setOperationAction(ISD::FMAXIMUM, T, Legal); 105 // WebAssembly currently has no builtin f16 support. 106 setOperationAction(ISD::FP16_TO_FP, T, Expand); 107 setOperationAction(ISD::FP_TO_FP16, T, Expand); 108 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 109 setTruncStoreAction(T, MVT::f16, Expand); 110 } 111 112 // Expand unavailable integer operations. 113 for (auto Op : 114 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 115 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 116 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 117 for (auto T : {MVT::i32, MVT::i64}) 118 setOperationAction(Op, T, Expand); 119 if (Subtarget->hasSIMD128()) 120 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 121 setOperationAction(Op, T, Expand); 122 } 123 124 // SIMD-specific configuration 125 if (Subtarget->hasSIMD128()) { 126 // Hoist bitcasts out of shuffles 127 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 128 129 // Combine extends of extract_subvectors into widening ops 130 setTargetDAGCombine(ISD::SIGN_EXTEND); 131 setTargetDAGCombine(ISD::ZERO_EXTEND); 132 133 // Support saturating add for i8x16 and i16x8 134 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 135 for (auto T : {MVT::v16i8, MVT::v8i16}) 136 setOperationAction(Op, T, Legal); 137 138 // Support integer abs 139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 140 setOperationAction(ISD::ABS, T, Legal); 141 142 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 143 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 144 MVT::v2f64}) 145 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 146 147 // We have custom shuffle lowering to expose the shuffle mask 148 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 149 MVT::v2f64}) 150 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 151 152 // Custom lowering since wasm shifts must have a scalar shift amount 153 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 154 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 155 setOperationAction(Op, T, Custom); 156 157 // Custom lower lane accesses to expand out variable indices 158 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 159 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 160 MVT::v2f64}) 161 setOperationAction(Op, T, Custom); 162 163 // There is no i8x16.mul instruction 164 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 165 166 // There is no vector conditional select instruction 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 168 MVT::v2f64}) 169 setOperationAction(ISD::SELECT_CC, T, Expand); 170 171 // Expand integer operations supported for scalars but not SIMD 172 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 173 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 174 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 175 setOperationAction(Op, T, Expand); 176 177 // But we do have integer min and max operations 178 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 179 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 180 setOperationAction(Op, T, Legal); 181 182 // Expand float operations supported for scalars but not SIMD 183 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 184 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 185 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 186 for (auto T : {MVT::v4f32, MVT::v2f64}) 187 setOperationAction(Op, T, Expand); 188 189 // Unsigned comparison operations are unavailable for i64x2 vectors. 190 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 191 setCondCodeAction(CC, MVT::v2i64, Custom); 192 193 // 64x2 conversions are not in the spec 194 for (auto Op : 195 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 196 for (auto T : {MVT::v2i64, MVT::v2f64}) 197 setOperationAction(Op, T, Expand); 198 } 199 200 // As a special case, these operators use the type to mean the type to 201 // sign-extend from. 202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 203 if (!Subtarget->hasSignExt()) { 204 // Sign extends are legal only when extending a vector extract 205 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 206 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 207 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 208 } 209 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 210 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 211 212 // Dynamic stack allocation: use the default expansion. 213 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 214 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 215 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 216 217 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 218 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 219 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 220 221 // Expand these forms; we pattern-match the forms that we can handle in isel. 222 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 223 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 224 setOperationAction(Op, T, Expand); 225 226 // We have custom switch handling. 227 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 228 229 // WebAssembly doesn't have: 230 // - Floating-point extending loads. 231 // - Floating-point truncating stores. 232 // - i1 extending loads. 233 // - truncating SIMD stores and most extending loads 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 235 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 236 for (auto T : MVT::integer_valuetypes()) 237 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 238 setLoadExtAction(Ext, T, MVT::i1, Promote); 239 if (Subtarget->hasSIMD128()) { 240 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 241 MVT::v2f64}) { 242 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 243 if (MVT(T) != MemT) { 244 setTruncStoreAction(T, MemT, Expand); 245 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 246 setLoadExtAction(Ext, T, MemT, Expand); 247 } 248 } 249 } 250 // But some vector extending loads are legal 251 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 252 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 253 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 254 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 255 } 256 // And some truncating stores are legal as well 257 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 258 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 259 } 260 261 // Don't do anything clever with build_pairs 262 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 263 264 // Trap lowers to wasm unreachable 265 setOperationAction(ISD::TRAP, MVT::Other, Legal); 266 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 267 268 // Exception handling intrinsics 269 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 270 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 271 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 272 273 setMaxAtomicSizeInBitsSupported(64); 274 275 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 276 // consistent with the f64 and f128 names. 277 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 278 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 279 280 // Define the emscripten name for return address helper. 281 // TODO: when implementing other Wasm backends, make this generic or only do 282 // this on emscripten depending on what they end up doing. 283 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 284 285 // Always convert switches to br_tables unless there is only one case, which 286 // is equivalent to a simple branch. This reduces code size for wasm, and we 287 // defer possible jump table optimizations to the VM. 288 setMinimumJumpTableEntries(2); 289 } 290 291 TargetLowering::AtomicExpansionKind 292 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 293 // We have wasm instructions for these 294 switch (AI->getOperation()) { 295 case AtomicRMWInst::Add: 296 case AtomicRMWInst::Sub: 297 case AtomicRMWInst::And: 298 case AtomicRMWInst::Or: 299 case AtomicRMWInst::Xor: 300 case AtomicRMWInst::Xchg: 301 return AtomicExpansionKind::None; 302 default: 303 break; 304 } 305 return AtomicExpansionKind::CmpXChg; 306 } 307 308 FastISel *WebAssemblyTargetLowering::createFastISel( 309 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 310 return WebAssembly::createFastISel(FuncInfo, LibInfo); 311 } 312 313 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 314 EVT VT) const { 315 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 316 if (BitWidth > 1 && BitWidth < 8) 317 BitWidth = 8; 318 319 if (BitWidth > 64) { 320 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 321 // the count to be an i32. 322 BitWidth = 32; 323 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 324 "32-bit shift counts ought to be enough for anyone"); 325 } 326 327 MVT Result = MVT::getIntegerVT(BitWidth); 328 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 329 "Unable to represent scalar shift amount type"); 330 return Result; 331 } 332 333 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 334 // undefined result on invalid/overflow, to the WebAssembly opcode, which 335 // traps on invalid/overflow. 336 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 337 MachineBasicBlock *BB, 338 const TargetInstrInfo &TII, 339 bool IsUnsigned, bool Int64, 340 bool Float64, unsigned LoweredOpcode) { 341 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 342 343 Register OutReg = MI.getOperand(0).getReg(); 344 Register InReg = MI.getOperand(1).getReg(); 345 346 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 347 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 348 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 349 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 350 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 351 unsigned Eqz = WebAssembly::EQZ_I32; 352 unsigned And = WebAssembly::AND_I32; 353 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 354 int64_t Substitute = IsUnsigned ? 0 : Limit; 355 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 356 auto &Context = BB->getParent()->getFunction().getContext(); 357 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 358 359 const BasicBlock *LLVMBB = BB->getBasicBlock(); 360 MachineFunction *F = BB->getParent(); 361 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 362 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 363 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 364 365 MachineFunction::iterator It = ++BB->getIterator(); 366 F->insert(It, FalseMBB); 367 F->insert(It, TrueMBB); 368 F->insert(It, DoneMBB); 369 370 // Transfer the remainder of BB and its successor edges to DoneMBB. 371 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 372 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 373 374 BB->addSuccessor(TrueMBB); 375 BB->addSuccessor(FalseMBB); 376 TrueMBB->addSuccessor(DoneMBB); 377 FalseMBB->addSuccessor(DoneMBB); 378 379 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 380 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 381 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 382 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 383 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 384 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 385 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 386 387 MI.eraseFromParent(); 388 // For signed numbers, we can do a single comparison to determine whether 389 // fabs(x) is within range. 390 if (IsUnsigned) { 391 Tmp0 = InReg; 392 } else { 393 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 394 } 395 BuildMI(BB, DL, TII.get(FConst), Tmp1) 396 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 397 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 398 399 // For unsigned numbers, we have to do a separate comparison with zero. 400 if (IsUnsigned) { 401 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 402 Register SecondCmpReg = 403 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 404 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 405 BuildMI(BB, DL, TII.get(FConst), Tmp1) 406 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 407 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 408 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 409 CmpReg = AndReg; 410 } 411 412 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 413 414 // Create the CFG diamond to select between doing the conversion or using 415 // the substitute value. 416 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 417 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 418 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 419 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 420 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 421 .addReg(FalseReg) 422 .addMBB(FalseMBB) 423 .addReg(TrueReg) 424 .addMBB(TrueMBB); 425 426 return DoneMBB; 427 } 428 429 static MachineBasicBlock * 430 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 431 const WebAssemblySubtarget *Subtarget, 432 const TargetInstrInfo &TII) { 433 MachineInstr &CallParams = *CallResults.getPrevNode(); 434 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 435 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 436 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 437 438 bool IsIndirect = CallParams.getOperand(0).isReg(); 439 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 440 441 unsigned CallOp; 442 if (IsIndirect && IsRetCall) { 443 CallOp = WebAssembly::RET_CALL_INDIRECT; 444 } else if (IsIndirect) { 445 CallOp = WebAssembly::CALL_INDIRECT; 446 } else if (IsRetCall) { 447 CallOp = WebAssembly::RET_CALL; 448 } else { 449 CallOp = WebAssembly::CALL; 450 } 451 452 MachineFunction &MF = *BB->getParent(); 453 const MCInstrDesc &MCID = TII.get(CallOp); 454 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 455 456 // See if we must truncate the function pointer. 457 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 458 // as 64-bit for uniformity with other pointer types. 459 // See also: WebAssemblyFastISel::selectCall 460 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 461 Register Reg32 = 462 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 463 auto &FnPtr = CallParams.getOperand(0); 464 BuildMI(*BB, CallResults.getIterator(), DL, 465 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 466 .addReg(FnPtr.getReg()); 467 FnPtr.setReg(Reg32); 468 } 469 470 // Move the function pointer to the end of the arguments for indirect calls 471 if (IsIndirect) { 472 auto FnPtr = CallParams.getOperand(0); 473 CallParams.RemoveOperand(0); 474 CallParams.addOperand(FnPtr); 475 } 476 477 for (auto Def : CallResults.defs()) 478 MIB.add(Def); 479 480 if (IsIndirect) { 481 // Placeholder for the type index. 482 MIB.addImm(0); 483 // The table into which this call_indirect indexes. 484 MCSymbolWasm *Table = 485 WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget); 486 if (Subtarget->hasReferenceTypes()) { 487 MIB.addSym(Table); 488 } else { 489 // For the MVP there is at most one table whose number is 0, but we can't 490 // write a table symbol or issue relocations. Instead we just ensure the 491 // table is live and write a zero. 492 Table->setNoStrip(); 493 MIB.addImm(0); 494 } 495 } 496 497 for (auto Use : CallParams.uses()) 498 MIB.add(Use); 499 500 BB->insert(CallResults.getIterator(), MIB); 501 CallParams.eraseFromParent(); 502 CallResults.eraseFromParent(); 503 504 return BB; 505 } 506 507 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 508 MachineInstr &MI, MachineBasicBlock *BB) const { 509 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 510 DebugLoc DL = MI.getDebugLoc(); 511 512 switch (MI.getOpcode()) { 513 default: 514 llvm_unreachable("Unexpected instr type to insert"); 515 case WebAssembly::FP_TO_SINT_I32_F32: 516 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 517 WebAssembly::I32_TRUNC_S_F32); 518 case WebAssembly::FP_TO_UINT_I32_F32: 519 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 520 WebAssembly::I32_TRUNC_U_F32); 521 case WebAssembly::FP_TO_SINT_I64_F32: 522 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 523 WebAssembly::I64_TRUNC_S_F32); 524 case WebAssembly::FP_TO_UINT_I64_F32: 525 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 526 WebAssembly::I64_TRUNC_U_F32); 527 case WebAssembly::FP_TO_SINT_I32_F64: 528 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 529 WebAssembly::I32_TRUNC_S_F64); 530 case WebAssembly::FP_TO_UINT_I32_F64: 531 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 532 WebAssembly::I32_TRUNC_U_F64); 533 case WebAssembly::FP_TO_SINT_I64_F64: 534 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 535 WebAssembly::I64_TRUNC_S_F64); 536 case WebAssembly::FP_TO_UINT_I64_F64: 537 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 538 WebAssembly::I64_TRUNC_U_F64); 539 case WebAssembly::CALL_RESULTS: 540 case WebAssembly::RET_CALL_RESULTS: 541 return LowerCallResults(MI, DL, BB, Subtarget, TII); 542 } 543 } 544 545 const char * 546 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 547 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 548 case WebAssemblyISD::FIRST_NUMBER: 549 case WebAssemblyISD::FIRST_MEM_OPCODE: 550 break; 551 #define HANDLE_NODETYPE(NODE) \ 552 case WebAssemblyISD::NODE: \ 553 return "WebAssemblyISD::" #NODE; 554 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 555 #include "WebAssemblyISD.def" 556 #undef HANDLE_MEM_NODETYPE 557 #undef HANDLE_NODETYPE 558 } 559 return nullptr; 560 } 561 562 std::pair<unsigned, const TargetRegisterClass *> 563 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 564 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 565 // First, see if this is a constraint that directly corresponds to a 566 // WebAssembly register class. 567 if (Constraint.size() == 1) { 568 switch (Constraint[0]) { 569 case 'r': 570 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 571 if (Subtarget->hasSIMD128() && VT.isVector()) { 572 if (VT.getSizeInBits() == 128) 573 return std::make_pair(0U, &WebAssembly::V128RegClass); 574 } 575 if (VT.isInteger() && !VT.isVector()) { 576 if (VT.getSizeInBits() <= 32) 577 return std::make_pair(0U, &WebAssembly::I32RegClass); 578 if (VT.getSizeInBits() <= 64) 579 return std::make_pair(0U, &WebAssembly::I64RegClass); 580 } 581 if (VT.isFloatingPoint() && !VT.isVector()) { 582 switch (VT.getSizeInBits()) { 583 case 32: 584 return std::make_pair(0U, &WebAssembly::F32RegClass); 585 case 64: 586 return std::make_pair(0U, &WebAssembly::F64RegClass); 587 default: 588 break; 589 } 590 } 591 break; 592 default: 593 break; 594 } 595 } 596 597 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 598 } 599 600 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 601 // Assume ctz is a relatively cheap operation. 602 return true; 603 } 604 605 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 606 // Assume clz is a relatively cheap operation. 607 return true; 608 } 609 610 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 611 const AddrMode &AM, 612 Type *Ty, unsigned AS, 613 Instruction *I) const { 614 // WebAssembly offsets are added as unsigned without wrapping. The 615 // isLegalAddressingMode gives us no way to determine if wrapping could be 616 // happening, so we approximate this by accepting only non-negative offsets. 617 if (AM.BaseOffs < 0) 618 return false; 619 620 // WebAssembly has no scale register operands. 621 if (AM.Scale != 0) 622 return false; 623 624 // Everything else is legal. 625 return true; 626 } 627 628 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 629 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 630 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 631 // WebAssembly supports unaligned accesses, though it should be declared 632 // with the p2align attribute on loads and stores which do so, and there 633 // may be a performance impact. We tell LLVM they're "fast" because 634 // for the kinds of things that LLVM uses this for (merging adjacent stores 635 // of constants, etc.), WebAssembly implementations will either want the 636 // unaligned access or they'll split anyway. 637 if (Fast) 638 *Fast = true; 639 return true; 640 } 641 642 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 643 AttributeList Attr) const { 644 // The current thinking is that wasm engines will perform this optimization, 645 // so we can save on code size. 646 return true; 647 } 648 649 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 650 EVT ExtT = ExtVal.getValueType(); 651 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 652 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 653 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 654 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 655 } 656 657 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 658 LLVMContext &C, 659 EVT VT) const { 660 if (VT.isVector()) 661 return VT.changeVectorElementTypeToInteger(); 662 663 // So far, all branch instructions in Wasm take an I32 condition. 664 // The default TargetLowering::getSetCCResultType returns the pointer size, 665 // which would be useful to reduce instruction counts when testing 666 // against 64-bit pointers/values if at some point Wasm supports that. 667 return EVT::getIntegerVT(C, 32); 668 } 669 670 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 671 const CallInst &I, 672 MachineFunction &MF, 673 unsigned Intrinsic) const { 674 switch (Intrinsic) { 675 case Intrinsic::wasm_memory_atomic_notify: 676 Info.opc = ISD::INTRINSIC_W_CHAIN; 677 Info.memVT = MVT::i32; 678 Info.ptrVal = I.getArgOperand(0); 679 Info.offset = 0; 680 Info.align = Align(4); 681 // atomic.notify instruction does not really load the memory specified with 682 // this argument, but MachineMemOperand should either be load or store, so 683 // we set this to a load. 684 // FIXME Volatile isn't really correct, but currently all LLVM atomic 685 // instructions are treated as volatiles in the backend, so we should be 686 // consistent. The same applies for wasm_atomic_wait intrinsics too. 687 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 688 return true; 689 case Intrinsic::wasm_memory_atomic_wait32: 690 Info.opc = ISD::INTRINSIC_W_CHAIN; 691 Info.memVT = MVT::i32; 692 Info.ptrVal = I.getArgOperand(0); 693 Info.offset = 0; 694 Info.align = Align(4); 695 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 696 return true; 697 case Intrinsic::wasm_memory_atomic_wait64: 698 Info.opc = ISD::INTRINSIC_W_CHAIN; 699 Info.memVT = MVT::i64; 700 Info.ptrVal = I.getArgOperand(0); 701 Info.offset = 0; 702 Info.align = Align(8); 703 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 704 return true; 705 case Intrinsic::wasm_load32_zero: 706 case Intrinsic::wasm_load64_zero: 707 Info.opc = ISD::INTRINSIC_W_CHAIN; 708 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 709 Info.ptrVal = I.getArgOperand(0); 710 Info.offset = 0; 711 Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8); 712 Info.flags = MachineMemOperand::MOLoad; 713 return true; 714 case Intrinsic::wasm_load8_lane: 715 case Intrinsic::wasm_load16_lane: 716 case Intrinsic::wasm_load32_lane: 717 case Intrinsic::wasm_load64_lane: 718 case Intrinsic::wasm_store8_lane: 719 case Intrinsic::wasm_store16_lane: 720 case Intrinsic::wasm_store32_lane: 721 case Intrinsic::wasm_store64_lane: { 722 MVT MemVT; 723 Align MemAlign; 724 switch (Intrinsic) { 725 case Intrinsic::wasm_load8_lane: 726 case Intrinsic::wasm_store8_lane: 727 MemVT = MVT::i8; 728 MemAlign = Align(1); 729 break; 730 case Intrinsic::wasm_load16_lane: 731 case Intrinsic::wasm_store16_lane: 732 MemVT = MVT::i16; 733 MemAlign = Align(2); 734 break; 735 case Intrinsic::wasm_load32_lane: 736 case Intrinsic::wasm_store32_lane: 737 MemVT = MVT::i32; 738 MemAlign = Align(4); 739 break; 740 case Intrinsic::wasm_load64_lane: 741 case Intrinsic::wasm_store64_lane: 742 MemVT = MVT::i64; 743 MemAlign = Align(8); 744 break; 745 default: 746 llvm_unreachable("unexpected intrinsic"); 747 } 748 if (Intrinsic == Intrinsic::wasm_load8_lane || 749 Intrinsic == Intrinsic::wasm_load16_lane || 750 Intrinsic == Intrinsic::wasm_load32_lane || 751 Intrinsic == Intrinsic::wasm_load64_lane) { 752 Info.opc = ISD::INTRINSIC_W_CHAIN; 753 Info.flags = MachineMemOperand::MOLoad; 754 } else { 755 Info.opc = ISD::INTRINSIC_VOID; 756 Info.flags = MachineMemOperand::MOStore; 757 } 758 Info.ptrVal = I.getArgOperand(0); 759 Info.memVT = MemVT; 760 Info.offset = 0; 761 Info.align = MemAlign; 762 return true; 763 } 764 default: 765 return false; 766 } 767 } 768 769 //===----------------------------------------------------------------------===// 770 // WebAssembly Lowering private implementation. 771 //===----------------------------------------------------------------------===// 772 773 //===----------------------------------------------------------------------===// 774 // Lowering Code 775 //===----------------------------------------------------------------------===// 776 777 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 778 MachineFunction &MF = DAG.getMachineFunction(); 779 DAG.getContext()->diagnose( 780 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 781 } 782 783 // Test whether the given calling convention is supported. 784 static bool callingConvSupported(CallingConv::ID CallConv) { 785 // We currently support the language-independent target-independent 786 // conventions. We don't yet have a way to annotate calls with properties like 787 // "cold", and we don't have any call-clobbered registers, so these are mostly 788 // all handled the same. 789 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 790 CallConv == CallingConv::Cold || 791 CallConv == CallingConv::PreserveMost || 792 CallConv == CallingConv::PreserveAll || 793 CallConv == CallingConv::CXX_FAST_TLS || 794 CallConv == CallingConv::WASM_EmscriptenInvoke || 795 CallConv == CallingConv::Swift; 796 } 797 798 SDValue 799 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 800 SmallVectorImpl<SDValue> &InVals) const { 801 SelectionDAG &DAG = CLI.DAG; 802 SDLoc DL = CLI.DL; 803 SDValue Chain = CLI.Chain; 804 SDValue Callee = CLI.Callee; 805 MachineFunction &MF = DAG.getMachineFunction(); 806 auto Layout = MF.getDataLayout(); 807 808 CallingConv::ID CallConv = CLI.CallConv; 809 if (!callingConvSupported(CallConv)) 810 fail(DL, DAG, 811 "WebAssembly doesn't support language-specific or target-specific " 812 "calling conventions yet"); 813 if (CLI.IsPatchPoint) 814 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 815 816 if (CLI.IsTailCall) { 817 auto NoTail = [&](const char *Msg) { 818 if (CLI.CB && CLI.CB->isMustTailCall()) 819 fail(DL, DAG, Msg); 820 CLI.IsTailCall = false; 821 }; 822 823 if (!Subtarget->hasTailCall()) 824 NoTail("WebAssembly 'tail-call' feature not enabled"); 825 826 // Varargs calls cannot be tail calls because the buffer is on the stack 827 if (CLI.IsVarArg) 828 NoTail("WebAssembly does not support varargs tail calls"); 829 830 // Do not tail call unless caller and callee return types match 831 const Function &F = MF.getFunction(); 832 const TargetMachine &TM = getTargetMachine(); 833 Type *RetTy = F.getReturnType(); 834 SmallVector<MVT, 4> CallerRetTys; 835 SmallVector<MVT, 4> CalleeRetTys; 836 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 837 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 838 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 839 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 840 CalleeRetTys.begin()); 841 if (!TypesMatch) 842 NoTail("WebAssembly tail call requires caller and callee return types to " 843 "match"); 844 845 // If pointers to local stack values are passed, we cannot tail call 846 if (CLI.CB) { 847 for (auto &Arg : CLI.CB->args()) { 848 Value *Val = Arg.get(); 849 // Trace the value back through pointer operations 850 while (true) { 851 Value *Src = Val->stripPointerCastsAndAliases(); 852 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 853 Src = GEP->getPointerOperand(); 854 if (Val == Src) 855 break; 856 Val = Src; 857 } 858 if (isa<AllocaInst>(Val)) { 859 NoTail( 860 "WebAssembly does not support tail calling with stack arguments"); 861 break; 862 } 863 } 864 } 865 } 866 867 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 868 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 869 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 870 871 // The generic code may have added an sret argument. If we're lowering an 872 // invoke function, the ABI requires that the function pointer be the first 873 // argument, so we may have to swap the arguments. 874 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 875 Outs[0].Flags.isSRet()) { 876 std::swap(Outs[0], Outs[1]); 877 std::swap(OutVals[0], OutVals[1]); 878 } 879 880 bool HasSwiftSelfArg = false; 881 bool HasSwiftErrorArg = false; 882 unsigned NumFixedArgs = 0; 883 for (unsigned I = 0; I < Outs.size(); ++I) { 884 const ISD::OutputArg &Out = Outs[I]; 885 SDValue &OutVal = OutVals[I]; 886 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 887 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 888 if (Out.Flags.isNest()) 889 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 890 if (Out.Flags.isInAlloca()) 891 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 892 if (Out.Flags.isInConsecutiveRegs()) 893 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 894 if (Out.Flags.isInConsecutiveRegsLast()) 895 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 896 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 897 auto &MFI = MF.getFrameInfo(); 898 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 899 Out.Flags.getNonZeroByValAlign(), 900 /*isSS=*/false); 901 SDValue SizeNode = 902 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 903 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 904 Chain = DAG.getMemcpy( 905 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 906 /*isVolatile*/ false, /*AlwaysInline=*/false, 907 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 908 OutVal = FINode; 909 } 910 // Count the number of fixed args *after* legalization. 911 NumFixedArgs += Out.IsFixed; 912 } 913 914 bool IsVarArg = CLI.IsVarArg; 915 auto PtrVT = getPointerTy(Layout); 916 917 // For swiftcc, emit additional swiftself and swifterror arguments 918 // if there aren't. These additional arguments are also added for callee 919 // signature They are necessary to match callee and caller signature for 920 // indirect call. 921 if (CallConv == CallingConv::Swift) { 922 if (!HasSwiftSelfArg) { 923 NumFixedArgs++; 924 ISD::OutputArg Arg; 925 Arg.Flags.setSwiftSelf(); 926 CLI.Outs.push_back(Arg); 927 SDValue ArgVal = DAG.getUNDEF(PtrVT); 928 CLI.OutVals.push_back(ArgVal); 929 } 930 if (!HasSwiftErrorArg) { 931 NumFixedArgs++; 932 ISD::OutputArg Arg; 933 Arg.Flags.setSwiftError(); 934 CLI.Outs.push_back(Arg); 935 SDValue ArgVal = DAG.getUNDEF(PtrVT); 936 CLI.OutVals.push_back(ArgVal); 937 } 938 } 939 940 // Analyze operands of the call, assigning locations to each operand. 941 SmallVector<CCValAssign, 16> ArgLocs; 942 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 943 944 if (IsVarArg) { 945 // Outgoing non-fixed arguments are placed in a buffer. First 946 // compute their offsets and the total amount of buffer space needed. 947 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 948 const ISD::OutputArg &Out = Outs[I]; 949 SDValue &Arg = OutVals[I]; 950 EVT VT = Arg.getValueType(); 951 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 952 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 953 Align Alignment = 954 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 955 unsigned Offset = 956 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 957 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 958 Offset, VT.getSimpleVT(), 959 CCValAssign::Full)); 960 } 961 } 962 963 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 964 965 SDValue FINode; 966 if (IsVarArg && NumBytes) { 967 // For non-fixed arguments, next emit stores to store the argument values 968 // to the stack buffer at the offsets computed above. 969 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 970 Layout.getStackAlignment(), 971 /*isSS=*/false); 972 unsigned ValNo = 0; 973 SmallVector<SDValue, 8> Chains; 974 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 975 assert(ArgLocs[ValNo].getValNo() == ValNo && 976 "ArgLocs should remain in order and only hold varargs args"); 977 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 978 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 979 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 980 DAG.getConstant(Offset, DL, PtrVT)); 981 Chains.push_back( 982 DAG.getStore(Chain, DL, Arg, Add, 983 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 984 } 985 if (!Chains.empty()) 986 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 987 } else if (IsVarArg) { 988 FINode = DAG.getIntPtrConstant(0, DL); 989 } 990 991 if (Callee->getOpcode() == ISD::GlobalAddress) { 992 // If the callee is a GlobalAddress node (quite common, every direct call 993 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 994 // doesn't at MO_GOT which is not needed for direct calls. 995 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 996 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 997 getPointerTy(DAG.getDataLayout()), 998 GA->getOffset()); 999 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1000 getPointerTy(DAG.getDataLayout()), Callee); 1001 } 1002 1003 // Compute the operands for the CALLn node. 1004 SmallVector<SDValue, 16> Ops; 1005 Ops.push_back(Chain); 1006 Ops.push_back(Callee); 1007 1008 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1009 // isn't reliable. 1010 Ops.append(OutVals.begin(), 1011 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1012 // Add a pointer to the vararg buffer. 1013 if (IsVarArg) 1014 Ops.push_back(FINode); 1015 1016 SmallVector<EVT, 8> InTys; 1017 for (const auto &In : Ins) { 1018 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1019 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1020 if (In.Flags.isInAlloca()) 1021 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1022 if (In.Flags.isInConsecutiveRegs()) 1023 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1024 if (In.Flags.isInConsecutiveRegsLast()) 1025 fail(DL, DAG, 1026 "WebAssembly hasn't implemented cons regs last return values"); 1027 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1028 // registers. 1029 InTys.push_back(In.VT); 1030 } 1031 1032 if (CLI.IsTailCall) { 1033 // ret_calls do not return values to the current frame 1034 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1035 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1036 } 1037 1038 InTys.push_back(MVT::Other); 1039 SDVTList InTyList = DAG.getVTList(InTys); 1040 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1041 1042 for (size_t I = 0; I < Ins.size(); ++I) 1043 InVals.push_back(Res.getValue(I)); 1044 1045 // Return the chain 1046 return Res.getValue(Ins.size()); 1047 } 1048 1049 bool WebAssemblyTargetLowering::CanLowerReturn( 1050 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1051 const SmallVectorImpl<ISD::OutputArg> &Outs, 1052 LLVMContext & /*Context*/) const { 1053 // WebAssembly can only handle returning tuples with multivalue enabled 1054 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1055 } 1056 1057 SDValue WebAssemblyTargetLowering::LowerReturn( 1058 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1059 const SmallVectorImpl<ISD::OutputArg> &Outs, 1060 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1061 SelectionDAG &DAG) const { 1062 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1063 "MVP WebAssembly can only return up to one value"); 1064 if (!callingConvSupported(CallConv)) 1065 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1066 1067 SmallVector<SDValue, 4> RetOps(1, Chain); 1068 RetOps.append(OutVals.begin(), OutVals.end()); 1069 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1070 1071 // Record the number and types of the return values. 1072 for (const ISD::OutputArg &Out : Outs) { 1073 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1074 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1075 assert(Out.IsFixed && "non-fixed return value is not valid"); 1076 if (Out.Flags.isInAlloca()) 1077 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1078 if (Out.Flags.isInConsecutiveRegs()) 1079 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1080 if (Out.Flags.isInConsecutiveRegsLast()) 1081 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1082 } 1083 1084 return Chain; 1085 } 1086 1087 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1088 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1089 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1090 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1091 if (!callingConvSupported(CallConv)) 1092 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1093 1094 MachineFunction &MF = DAG.getMachineFunction(); 1095 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1096 1097 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1098 // of the incoming values before they're represented by virtual registers. 1099 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1100 1101 bool HasSwiftErrorArg = false; 1102 bool HasSwiftSelfArg = false; 1103 for (const ISD::InputArg &In : Ins) { 1104 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1105 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1106 if (In.Flags.isInAlloca()) 1107 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1108 if (In.Flags.isNest()) 1109 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1110 if (In.Flags.isInConsecutiveRegs()) 1111 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1112 if (In.Flags.isInConsecutiveRegsLast()) 1113 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1114 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1115 // registers. 1116 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1117 DAG.getTargetConstant(InVals.size(), 1118 DL, MVT::i32)) 1119 : DAG.getUNDEF(In.VT)); 1120 1121 // Record the number and types of arguments. 1122 MFI->addParam(In.VT); 1123 } 1124 1125 // For swiftcc, emit additional swiftself and swifterror arguments 1126 // if there aren't. These additional arguments are also added for callee 1127 // signature They are necessary to match callee and caller signature for 1128 // indirect call. 1129 auto PtrVT = getPointerTy(MF.getDataLayout()); 1130 if (CallConv == CallingConv::Swift) { 1131 if (!HasSwiftSelfArg) { 1132 MFI->addParam(PtrVT); 1133 } 1134 if (!HasSwiftErrorArg) { 1135 MFI->addParam(PtrVT); 1136 } 1137 } 1138 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1139 // the buffer is passed as an argument. 1140 if (IsVarArg) { 1141 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1142 Register VarargVreg = 1143 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1144 MFI->setVarargBufferVreg(VarargVreg); 1145 Chain = DAG.getCopyToReg( 1146 Chain, DL, VarargVreg, 1147 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1148 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1149 MFI->addParam(PtrVT); 1150 } 1151 1152 // Record the number and types of arguments and results. 1153 SmallVector<MVT, 4> Params; 1154 SmallVector<MVT, 4> Results; 1155 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1156 MF.getFunction(), DAG.getTarget(), Params, Results); 1157 for (MVT VT : Results) 1158 MFI->addResult(VT); 1159 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1160 // the param logic here with ComputeSignatureVTs 1161 assert(MFI->getParams().size() == Params.size() && 1162 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1163 Params.begin())); 1164 1165 return Chain; 1166 } 1167 1168 void WebAssemblyTargetLowering::ReplaceNodeResults( 1169 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1170 switch (N->getOpcode()) { 1171 case ISD::SIGN_EXTEND_INREG: 1172 // Do not add any results, signifying that N should not be custom lowered 1173 // after all. This happens because simd128 turns on custom lowering for 1174 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1175 // illegal type. 1176 break; 1177 default: 1178 llvm_unreachable( 1179 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1180 } 1181 } 1182 1183 //===----------------------------------------------------------------------===// 1184 // Custom lowering hooks. 1185 //===----------------------------------------------------------------------===// 1186 1187 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1188 SelectionDAG &DAG) const { 1189 SDLoc DL(Op); 1190 switch (Op.getOpcode()) { 1191 default: 1192 llvm_unreachable("unimplemented operation lowering"); 1193 return SDValue(); 1194 case ISD::FrameIndex: 1195 return LowerFrameIndex(Op, DAG); 1196 case ISD::GlobalAddress: 1197 return LowerGlobalAddress(Op, DAG); 1198 case ISD::GlobalTLSAddress: 1199 return LowerGlobalTLSAddress(Op, DAG); 1200 case ISD::ExternalSymbol: 1201 return LowerExternalSymbol(Op, DAG); 1202 case ISD::JumpTable: 1203 return LowerJumpTable(Op, DAG); 1204 case ISD::BR_JT: 1205 return LowerBR_JT(Op, DAG); 1206 case ISD::VASTART: 1207 return LowerVASTART(Op, DAG); 1208 case ISD::BlockAddress: 1209 case ISD::BRIND: 1210 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1211 return SDValue(); 1212 case ISD::RETURNADDR: 1213 return LowerRETURNADDR(Op, DAG); 1214 case ISD::FRAMEADDR: 1215 return LowerFRAMEADDR(Op, DAG); 1216 case ISD::CopyToReg: 1217 return LowerCopyToReg(Op, DAG); 1218 case ISD::EXTRACT_VECTOR_ELT: 1219 case ISD::INSERT_VECTOR_ELT: 1220 return LowerAccessVectorElement(Op, DAG); 1221 case ISD::INTRINSIC_VOID: 1222 case ISD::INTRINSIC_WO_CHAIN: 1223 case ISD::INTRINSIC_W_CHAIN: 1224 return LowerIntrinsic(Op, DAG); 1225 case ISD::SIGN_EXTEND_INREG: 1226 return LowerSIGN_EXTEND_INREG(Op, DAG); 1227 case ISD::BUILD_VECTOR: 1228 return LowerBUILD_VECTOR(Op, DAG); 1229 case ISD::VECTOR_SHUFFLE: 1230 return LowerVECTOR_SHUFFLE(Op, DAG); 1231 case ISD::SETCC: 1232 return LowerSETCC(Op, DAG); 1233 case ISD::SHL: 1234 case ISD::SRA: 1235 case ISD::SRL: 1236 return LowerShift(Op, DAG); 1237 } 1238 } 1239 1240 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1241 SelectionDAG &DAG) const { 1242 SDValue Src = Op.getOperand(2); 1243 if (isa<FrameIndexSDNode>(Src.getNode())) { 1244 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1245 // the FI to some LEA-like instruction, but since we don't have that, we 1246 // need to insert some kind of instruction that can take an FI operand and 1247 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1248 // local.copy between Op and its FI operand. 1249 SDValue Chain = Op.getOperand(0); 1250 SDLoc DL(Op); 1251 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1252 EVT VT = Src.getValueType(); 1253 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1254 : WebAssembly::COPY_I64, 1255 DL, VT, Src), 1256 0); 1257 return Op.getNode()->getNumValues() == 1 1258 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1259 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1260 Op.getNumOperands() == 4 ? Op.getOperand(3) 1261 : SDValue()); 1262 } 1263 return SDValue(); 1264 } 1265 1266 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1267 SelectionDAG &DAG) const { 1268 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1269 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1270 } 1271 1272 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1273 SelectionDAG &DAG) const { 1274 SDLoc DL(Op); 1275 1276 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1277 fail(DL, DAG, 1278 "Non-Emscripten WebAssembly hasn't implemented " 1279 "__builtin_return_address"); 1280 return SDValue(); 1281 } 1282 1283 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1284 return SDValue(); 1285 1286 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1287 MakeLibCallOptions CallOptions; 1288 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1289 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1290 .first; 1291 } 1292 1293 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1294 SelectionDAG &DAG) const { 1295 // Non-zero depths are not supported by WebAssembly currently. Use the 1296 // legalizer's default expansion, which is to return 0 (what this function is 1297 // documented to do). 1298 if (Op.getConstantOperandVal(0) > 0) 1299 return SDValue(); 1300 1301 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1302 EVT VT = Op.getValueType(); 1303 Register FP = 1304 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1305 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1306 } 1307 1308 SDValue 1309 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1310 SelectionDAG &DAG) const { 1311 SDLoc DL(Op); 1312 const auto *GA = cast<GlobalAddressSDNode>(Op); 1313 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1314 1315 MachineFunction &MF = DAG.getMachineFunction(); 1316 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1317 report_fatal_error("cannot use thread-local storage without bulk memory", 1318 false); 1319 1320 const GlobalValue *GV = GA->getGlobal(); 1321 1322 // Currently Emscripten does not support dynamic linking with threads. 1323 // Therefore, if we have thread-local storage, only the local-exec model 1324 // is possible. 1325 // TODO: remove this and implement proper TLS models once Emscripten 1326 // supports dynamic linking with threads. 1327 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1328 !Subtarget->getTargetTriple().isOSEmscripten()) { 1329 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1330 "non-Emscripten OSes: variable " + 1331 GV->getName(), 1332 false); 1333 } 1334 1335 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1336 : WebAssembly::GLOBAL_GET_I32; 1337 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1338 1339 SDValue BaseAddr( 1340 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1341 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1342 0); 1343 1344 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1345 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1346 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1347 1348 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1349 } 1350 1351 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1352 SelectionDAG &DAG) const { 1353 SDLoc DL(Op); 1354 const auto *GA = cast<GlobalAddressSDNode>(Op); 1355 EVT VT = Op.getValueType(); 1356 assert(GA->getTargetFlags() == 0 && 1357 "Unexpected target flags on generic GlobalAddressSDNode"); 1358 if (GA->getAddressSpace() != 0) 1359 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1360 1361 unsigned OperandFlags = 0; 1362 if (isPositionIndependent()) { 1363 const GlobalValue *GV = GA->getGlobal(); 1364 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1365 MachineFunction &MF = DAG.getMachineFunction(); 1366 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1367 const char *BaseName; 1368 if (GV->getValueType()->isFunctionTy()) { 1369 BaseName = MF.createExternalSymbolName("__table_base"); 1370 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1371 } 1372 else { 1373 BaseName = MF.createExternalSymbolName("__memory_base"); 1374 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1375 } 1376 SDValue BaseAddr = 1377 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1378 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1379 1380 SDValue SymAddr = DAG.getNode( 1381 WebAssemblyISD::WrapperPIC, DL, VT, 1382 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1383 OperandFlags)); 1384 1385 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1386 } else { 1387 OperandFlags = WebAssemblyII::MO_GOT; 1388 } 1389 } 1390 1391 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1392 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1393 GA->getOffset(), OperandFlags)); 1394 } 1395 1396 SDValue 1397 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1398 SelectionDAG &DAG) const { 1399 SDLoc DL(Op); 1400 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1401 EVT VT = Op.getValueType(); 1402 assert(ES->getTargetFlags() == 0 && 1403 "Unexpected target flags on generic ExternalSymbolSDNode"); 1404 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1405 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1406 } 1407 1408 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1409 SelectionDAG &DAG) const { 1410 // There's no need for a Wrapper node because we always incorporate a jump 1411 // table operand into a BR_TABLE instruction, rather than ever 1412 // materializing it in a register. 1413 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1414 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1415 JT->getTargetFlags()); 1416 } 1417 1418 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1419 SelectionDAG &DAG) const { 1420 SDLoc DL(Op); 1421 SDValue Chain = Op.getOperand(0); 1422 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1423 SDValue Index = Op.getOperand(2); 1424 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1425 1426 SmallVector<SDValue, 8> Ops; 1427 Ops.push_back(Chain); 1428 Ops.push_back(Index); 1429 1430 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1431 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1432 1433 // Add an operand for each case. 1434 for (auto MBB : MBBs) 1435 Ops.push_back(DAG.getBasicBlock(MBB)); 1436 1437 // Add the first MBB as a dummy default target for now. This will be replaced 1438 // with the proper default target (and the preceding range check eliminated) 1439 // if possible by WebAssemblyFixBrTableDefaults. 1440 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1441 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1442 } 1443 1444 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1445 SelectionDAG &DAG) const { 1446 SDLoc DL(Op); 1447 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1448 1449 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1450 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1451 1452 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1453 MFI->getVarargBufferVreg(), PtrVT); 1454 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1455 MachinePointerInfo(SV)); 1456 } 1457 1458 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1459 SelectionDAG &DAG) { 1460 // We only support C++ exceptions for now 1461 int Tag = 1462 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1463 if (Tag != WebAssembly::CPP_EXCEPTION) 1464 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1465 auto &MF = DAG.getMachineFunction(); 1466 const auto &TLI = DAG.getTargetLoweringInfo(); 1467 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1468 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1469 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1470 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1471 } 1472 1473 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1474 SelectionDAG &DAG) const { 1475 MachineFunction &MF = DAG.getMachineFunction(); 1476 unsigned IntNo; 1477 switch (Op.getOpcode()) { 1478 case ISD::INTRINSIC_VOID: 1479 case ISD::INTRINSIC_W_CHAIN: 1480 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1481 break; 1482 case ISD::INTRINSIC_WO_CHAIN: 1483 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1484 break; 1485 default: 1486 llvm_unreachable("Invalid intrinsic"); 1487 } 1488 SDLoc DL(Op); 1489 1490 switch (IntNo) { 1491 default: 1492 return SDValue(); // Don't custom lower most intrinsics. 1493 1494 case Intrinsic::wasm_lsda: { 1495 EVT VT = Op.getValueType(); 1496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1497 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1498 auto &Context = MF.getMMI().getContext(); 1499 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1500 Twine(MF.getFunctionNumber())); 1501 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1502 DAG.getMCSymbol(S, PtrVT)); 1503 } 1504 1505 case Intrinsic::wasm_throw: { 1506 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1507 return DAG.getNode(WebAssemblyISD::THROW, DL, 1508 MVT::Other, // outchain type 1509 { 1510 Op.getOperand(0), // inchain 1511 SymNode, // exception symbol 1512 Op.getOperand(3) // thrown value 1513 }); 1514 } 1515 1516 case Intrinsic::wasm_catch: { 1517 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1518 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1519 { 1520 MVT::i32, // outchain type 1521 MVT::Other // return value 1522 }, 1523 { 1524 Op.getOperand(0), // inchain 1525 SymNode // exception symbol 1526 }); 1527 } 1528 1529 case Intrinsic::wasm_shuffle: { 1530 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1531 SDValue Ops[18]; 1532 size_t OpIdx = 0; 1533 Ops[OpIdx++] = Op.getOperand(1); 1534 Ops[OpIdx++] = Op.getOperand(2); 1535 while (OpIdx < 18) { 1536 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1537 if (MaskIdx.isUndef() || 1538 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1539 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1540 } else { 1541 Ops[OpIdx++] = MaskIdx; 1542 } 1543 } 1544 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1545 } 1546 } 1547 } 1548 1549 SDValue 1550 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1551 SelectionDAG &DAG) const { 1552 SDLoc DL(Op); 1553 // If sign extension operations are disabled, allow sext_inreg only if operand 1554 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1555 // extension operations, but allowing sext_inreg in this context lets us have 1556 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1557 // everywhere would be simpler in this file, but would necessitate large and 1558 // brittle patterns to undo the expansion and select extract_lane_s 1559 // instructions. 1560 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1561 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1562 return SDValue(); 1563 1564 const SDValue &Extract = Op.getOperand(0); 1565 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1566 if (VecT.getVectorElementType().getSizeInBits() > 32) 1567 return SDValue(); 1568 MVT ExtractedLaneT = 1569 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1570 MVT ExtractedVecT = 1571 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1572 if (ExtractedVecT == VecT) 1573 return Op; 1574 1575 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1576 const SDNode *Index = Extract.getOperand(1).getNode(); 1577 if (!isa<ConstantSDNode>(Index)) 1578 return SDValue(); 1579 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1580 unsigned Scale = 1581 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1582 assert(Scale > 1); 1583 SDValue NewIndex = 1584 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1585 SDValue NewExtract = DAG.getNode( 1586 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1587 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1588 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1589 Op.getOperand(1)); 1590 } 1591 1592 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1593 SelectionDAG &DAG) const { 1594 SDLoc DL(Op); 1595 const EVT VecT = Op.getValueType(); 1596 const EVT LaneT = Op.getOperand(0).getValueType(); 1597 const size_t Lanes = Op.getNumOperands(); 1598 bool CanSwizzle = VecT == MVT::v16i8; 1599 1600 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1601 // possible number of lanes at once followed by a sequence of replace_lane 1602 // instructions to individually initialize any remaining lanes. 1603 1604 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1605 // swizzled lanes should be given greater weight. 1606 1607 // TODO: Investigate looping rather than always extracting/replacing specific 1608 // lanes to fill gaps. 1609 1610 auto IsConstant = [](const SDValue &V) { 1611 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1612 }; 1613 1614 // Returns the source vector and index vector pair if they exist. Checks for: 1615 // (extract_vector_elt 1616 // $src, 1617 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1618 // ) 1619 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1620 auto Bail = std::make_pair(SDValue(), SDValue()); 1621 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1622 return Bail; 1623 const SDValue &SwizzleSrc = Lane->getOperand(0); 1624 const SDValue &IndexExt = Lane->getOperand(1); 1625 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1626 return Bail; 1627 const SDValue &Index = IndexExt->getOperand(0); 1628 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1629 return Bail; 1630 const SDValue &SwizzleIndices = Index->getOperand(0); 1631 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1632 SwizzleIndices.getValueType() != MVT::v16i8 || 1633 Index->getOperand(1)->getOpcode() != ISD::Constant || 1634 Index->getConstantOperandVal(1) != I) 1635 return Bail; 1636 return std::make_pair(SwizzleSrc, SwizzleIndices); 1637 }; 1638 1639 // If the lane is extracted from another vector at a constant index, return 1640 // that vector. The source vector must not have more lanes than the dest 1641 // because the shufflevector indices are in terms of the destination lanes and 1642 // would not be able to address the smaller individual source lanes. 1643 auto GetShuffleSrc = [&](const SDValue &Lane) { 1644 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1645 return SDValue(); 1646 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1647 return SDValue(); 1648 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1649 VecT.getVectorNumElements()) 1650 return SDValue(); 1651 return Lane->getOperand(0); 1652 }; 1653 1654 using ValueEntry = std::pair<SDValue, size_t>; 1655 SmallVector<ValueEntry, 16> SplatValueCounts; 1656 1657 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1658 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1659 1660 using ShuffleEntry = std::pair<SDValue, size_t>; 1661 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1662 1663 auto AddCount = [](auto &Counts, const auto &Val) { 1664 auto CountIt = 1665 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1666 if (CountIt == Counts.end()) { 1667 Counts.emplace_back(Val, 1); 1668 } else { 1669 CountIt->second++; 1670 } 1671 }; 1672 1673 auto GetMostCommon = [](auto &Counts) { 1674 auto CommonIt = 1675 std::max_element(Counts.begin(), Counts.end(), 1676 [](auto A, auto B) { return A.second < B.second; }); 1677 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1678 return *CommonIt; 1679 }; 1680 1681 size_t NumConstantLanes = 0; 1682 1683 // Count eligible lanes for each type of vector creation op 1684 for (size_t I = 0; I < Lanes; ++I) { 1685 const SDValue &Lane = Op->getOperand(I); 1686 if (Lane.isUndef()) 1687 continue; 1688 1689 AddCount(SplatValueCounts, Lane); 1690 1691 if (IsConstant(Lane)) 1692 NumConstantLanes++; 1693 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1694 AddCount(ShuffleCounts, ShuffleSrc); 1695 if (CanSwizzle) { 1696 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1697 if (SwizzleSrcs.first) 1698 AddCount(SwizzleCounts, SwizzleSrcs); 1699 } 1700 } 1701 1702 SDValue SplatValue; 1703 size_t NumSplatLanes; 1704 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1705 1706 SDValue SwizzleSrc; 1707 SDValue SwizzleIndices; 1708 size_t NumSwizzleLanes = 0; 1709 if (SwizzleCounts.size()) 1710 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1711 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1712 1713 // Shuffles can draw from up to two vectors, so find the two most common 1714 // sources. 1715 SDValue ShuffleSrc1, ShuffleSrc2; 1716 size_t NumShuffleLanes = 0; 1717 if (ShuffleCounts.size()) { 1718 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1719 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1720 ShuffleCounts.end(), 1721 [&](const auto &Pair) { 1722 return Pair.first == ShuffleSrc1; 1723 }), 1724 ShuffleCounts.end()); 1725 } 1726 if (ShuffleCounts.size()) { 1727 size_t AdditionalShuffleLanes; 1728 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 1729 GetMostCommon(ShuffleCounts); 1730 NumShuffleLanes += AdditionalShuffleLanes; 1731 } 1732 1733 // Predicate returning true if the lane is properly initialized by the 1734 // original instruction 1735 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1736 SDValue Result; 1737 // Prefer swizzles over shuffles over vector consts over splats 1738 if (NumSwizzleLanes >= NumShuffleLanes && 1739 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 1740 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1741 SwizzleIndices); 1742 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1743 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1744 return Swizzled == GetSwizzleSrcs(I, Lane); 1745 }; 1746 } else if (NumShuffleLanes >= NumConstantLanes && 1747 NumShuffleLanes >= NumSplatLanes) { 1748 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 1749 size_t DestLaneCount = VecT.getVectorNumElements(); 1750 size_t Scale1 = 1; 1751 size_t Scale2 = 1; 1752 SDValue Src1 = ShuffleSrc1; 1753 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 1754 if (Src1.getValueType() != VecT) { 1755 size_t LaneSize = 1756 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1757 assert(LaneSize > DestLaneSize); 1758 Scale1 = LaneSize / DestLaneSize; 1759 Src1 = DAG.getBitcast(VecT, Src1); 1760 } 1761 if (Src2.getValueType() != VecT) { 1762 size_t LaneSize = 1763 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1764 assert(LaneSize > DestLaneSize); 1765 Scale2 = LaneSize / DestLaneSize; 1766 Src2 = DAG.getBitcast(VecT, Src2); 1767 } 1768 1769 int Mask[16]; 1770 assert(DestLaneCount <= 16); 1771 for (size_t I = 0; I < DestLaneCount; ++I) { 1772 const SDValue &Lane = Op->getOperand(I); 1773 SDValue Src = GetShuffleSrc(Lane); 1774 if (Src == ShuffleSrc1) { 1775 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 1776 } else if (Src && Src == ShuffleSrc2) { 1777 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 1778 } else { 1779 Mask[I] = -1; 1780 } 1781 } 1782 ArrayRef<int> MaskRef(Mask, DestLaneCount); 1783 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 1784 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 1785 auto Src = GetShuffleSrc(Lane); 1786 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 1787 }; 1788 } else if (NumConstantLanes >= NumSplatLanes) { 1789 SmallVector<SDValue, 16> ConstLanes; 1790 for (const SDValue &Lane : Op->op_values()) { 1791 if (IsConstant(Lane)) { 1792 ConstLanes.push_back(Lane); 1793 } else if (LaneT.isFloatingPoint()) { 1794 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1795 } else { 1796 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1797 } 1798 } 1799 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1800 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1801 return IsConstant(Lane); 1802 }; 1803 } else { 1804 // Use a splat, but possibly a load_splat 1805 LoadSDNode *SplattedLoad; 1806 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1807 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1808 Result = DAG.getMemIntrinsicNode( 1809 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1810 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1811 SplattedLoad->getOffset()}, 1812 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1813 } else { 1814 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1815 } 1816 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1817 return Lane == SplatValue; 1818 }; 1819 } 1820 1821 assert(Result); 1822 assert(IsLaneConstructed); 1823 1824 // Add replace_lane instructions for any unhandled values 1825 for (size_t I = 0; I < Lanes; ++I) { 1826 const SDValue &Lane = Op->getOperand(I); 1827 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1828 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1829 DAG.getConstant(I, DL, MVT::i32)); 1830 } 1831 1832 return Result; 1833 } 1834 1835 SDValue 1836 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1837 SelectionDAG &DAG) const { 1838 SDLoc DL(Op); 1839 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1840 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1841 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1842 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1843 1844 // Space for two vector args and sixteen mask indices 1845 SDValue Ops[18]; 1846 size_t OpIdx = 0; 1847 Ops[OpIdx++] = Op.getOperand(0); 1848 Ops[OpIdx++] = Op.getOperand(1); 1849 1850 // Expand mask indices to byte indices and materialize them as operands 1851 for (int M : Mask) { 1852 for (size_t J = 0; J < LaneBytes; ++J) { 1853 // Lower undefs (represented by -1 in mask) to zero 1854 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1855 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1856 } 1857 } 1858 1859 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1860 } 1861 1862 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1863 SelectionDAG &DAG) const { 1864 SDLoc DL(Op); 1865 // The legalizer does not know how to expand the unsupported comparison modes 1866 // of i64x2 vectors, so we manually unroll them here. 1867 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1868 SmallVector<SDValue, 2> LHS, RHS; 1869 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1870 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1871 const SDValue &CC = Op->getOperand(2); 1872 auto MakeLane = [&](unsigned I) { 1873 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1874 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1875 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1876 }; 1877 return DAG.getBuildVector(Op->getValueType(0), DL, 1878 {MakeLane(0), MakeLane(1)}); 1879 } 1880 1881 SDValue 1882 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1883 SelectionDAG &DAG) const { 1884 // Allow constant lane indices, expand variable lane indices 1885 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1886 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1887 return Op; 1888 else 1889 // Perform default expansion 1890 return SDValue(); 1891 } 1892 1893 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1894 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1895 // 32-bit and 64-bit unrolled shifts will have proper semantics 1896 if (LaneT.bitsGE(MVT::i32)) 1897 return DAG.UnrollVectorOp(Op.getNode()); 1898 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1899 SDLoc DL(Op); 1900 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1901 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1902 unsigned ShiftOpcode = Op.getOpcode(); 1903 SmallVector<SDValue, 16> ShiftedElements; 1904 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1905 SmallVector<SDValue, 16> ShiftElements; 1906 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1907 SmallVector<SDValue, 16> UnrolledOps; 1908 for (size_t i = 0; i < NumLanes; ++i) { 1909 SDValue MaskedShiftValue = 1910 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1911 SDValue ShiftedValue = ShiftedElements[i]; 1912 if (ShiftOpcode == ISD::SRA) 1913 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1914 ShiftedValue, DAG.getValueType(LaneT)); 1915 UnrolledOps.push_back( 1916 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1917 } 1918 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1919 } 1920 1921 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1922 SelectionDAG &DAG) const { 1923 SDLoc DL(Op); 1924 1925 // Only manually lower vector shifts 1926 assert(Op.getSimpleValueType().isVector()); 1927 1928 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1929 if (!ShiftVal) 1930 return unrollVectorShift(Op, DAG); 1931 1932 // Use anyext because none of the high bits can affect the shift 1933 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1934 1935 unsigned Opcode; 1936 switch (Op.getOpcode()) { 1937 case ISD::SHL: 1938 Opcode = WebAssemblyISD::VEC_SHL; 1939 break; 1940 case ISD::SRA: 1941 Opcode = WebAssemblyISD::VEC_SHR_S; 1942 break; 1943 case ISD::SRL: 1944 Opcode = WebAssemblyISD::VEC_SHR_U; 1945 break; 1946 default: 1947 llvm_unreachable("unexpected opcode"); 1948 } 1949 1950 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1951 } 1952 1953 //===----------------------------------------------------------------------===// 1954 // Custom DAG combine hooks 1955 //===----------------------------------------------------------------------===// 1956 static SDValue 1957 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1958 auto &DAG = DCI.DAG; 1959 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1960 1961 // Hoist vector bitcasts that don't change the number of lanes out of unary 1962 // shuffles, where they are less likely to get in the way of other combines. 1963 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1964 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1965 SDValue Bitcast = N->getOperand(0); 1966 if (Bitcast.getOpcode() != ISD::BITCAST) 1967 return SDValue(); 1968 if (!N->getOperand(1).isUndef()) 1969 return SDValue(); 1970 SDValue CastOp = Bitcast.getOperand(0); 1971 MVT SrcType = CastOp.getSimpleValueType(); 1972 MVT DstType = Bitcast.getSimpleValueType(); 1973 if (!SrcType.is128BitVector() || 1974 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1975 return SDValue(); 1976 SDValue NewShuffle = DAG.getVectorShuffle( 1977 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1978 return DAG.getBitcast(DstType, NewShuffle); 1979 } 1980 1981 static SDValue 1982 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1983 auto &DAG = DCI.DAG; 1984 assert(N->getOpcode() == ISD::SIGN_EXTEND || 1985 N->getOpcode() == ISD::ZERO_EXTEND); 1986 1987 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 1988 // possible before the extract_subvector can be expanded. 1989 auto Extract = N->getOperand(0); 1990 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 1991 return SDValue(); 1992 auto Source = Extract.getOperand(0); 1993 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 1994 if (IndexNode == nullptr) 1995 return SDValue(); 1996 auto Index = IndexNode->getZExtValue(); 1997 1998 // Only v8i8 and v4i16 extracts can be widened, and only if the extracted 1999 // subvector is the low or high half of its source. 2000 EVT ResVT = N->getValueType(0); 2001 if (ResVT == MVT::v8i16) { 2002 if (Extract.getValueType() != MVT::v8i8 || 2003 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2004 return SDValue(); 2005 } else if (ResVT == MVT::v4i32) { 2006 if (Extract.getValueType() != MVT::v4i16 || 2007 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2008 return SDValue(); 2009 } else { 2010 return SDValue(); 2011 } 2012 2013 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2014 bool IsLow = Index == 0; 2015 2016 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2017 : WebAssemblyISD::EXTEND_HIGH_S) 2018 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2019 : WebAssemblyISD::EXTEND_HIGH_U); 2020 2021 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2022 } 2023 2024 SDValue 2025 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2026 DAGCombinerInfo &DCI) const { 2027 switch (N->getOpcode()) { 2028 default: 2029 return SDValue(); 2030 case ISD::VECTOR_SHUFFLE: 2031 return performVECTOR_SHUFFLECombine(N, DCI); 2032 case ISD::SIGN_EXTEND: 2033 case ISD::ZERO_EXTEND: 2034 return performVectorExtendCombine(N, DCI); 2035 } 2036 } 2037