1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "wasm-lower"
38 
39 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
40     const TargetMachine &TM, const WebAssemblySubtarget &STI)
41     : TargetLowering(TM), Subtarget(&STI) {
42   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
43 
44   // Booleans always contain 0 or 1.
45   setBooleanContents(ZeroOrOneBooleanContent);
46   // Except in SIMD vectors
47   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
48   // We don't know the microarchitecture here, so just reduce register pressure.
49   setSchedulingPreference(Sched::RegPressure);
50   // Tell ISel that we have a stack pointer.
51   setStackPointerRegisterToSaveRestore(
52       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
53   // Set up the register classes.
54   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
55   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
56   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
57   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
58   if (Subtarget->hasSIMD128()) {
59     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
60     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
61     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
62     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
63   }
64   if (Subtarget->hasUnimplementedSIMD128()) {
65     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
67   }
68   // Compute derived properties from the register classes.
69   computeRegisterProperties(Subtarget->getRegisterInfo());
70 
71   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
72   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
73   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
74   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
75   setOperationAction(ISD::BRIND, MVT::Other, Custom);
76 
77   // Take the default expansion for va_arg, va_copy, and va_end. There is no
78   // default action for va_start, so we do that custom.
79   setOperationAction(ISD::VASTART, MVT::Other, Custom);
80   setOperationAction(ISD::VAARG, MVT::Other, Expand);
81   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
82   setOperationAction(ISD::VAEND, MVT::Other, Expand);
83 
84   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
85     // Don't expand the floating-point types to constant pools.
86     setOperationAction(ISD::ConstantFP, T, Legal);
87     // Expand floating-point comparisons.
88     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
89                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
90       setCondCodeAction(CC, T, Expand);
91     // Expand floating-point library function operators.
92     for (auto Op :
93          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
94       setOperationAction(Op, T, Expand);
95     // Note supported floating-point library function operators that otherwise
96     // default to expand.
97     for (auto Op :
98          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
99       setOperationAction(Op, T, Legal);
100     // Support minimum and maximum, which otherwise default to expand.
101     setOperationAction(ISD::FMINIMUM, T, Legal);
102     setOperationAction(ISD::FMAXIMUM, T, Legal);
103     // WebAssembly currently has no builtin f16 support.
104     setOperationAction(ISD::FP16_TO_FP, T, Expand);
105     setOperationAction(ISD::FP_TO_FP16, T, Expand);
106     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
107     setTruncStoreAction(T, MVT::f16, Expand);
108   }
109 
110   // Expand unavailable integer operations.
111   for (auto Op :
112        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
113         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
114         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
115     for (auto T : {MVT::i32, MVT::i64})
116       setOperationAction(Op, T, Expand);
117     if (Subtarget->hasSIMD128())
118       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
119         setOperationAction(Op, T, Expand);
120     if (Subtarget->hasUnimplementedSIMD128())
121       setOperationAction(Op, MVT::v2i64, Expand);
122   }
123 
124   // SIMD-specific configuration
125   if (Subtarget->hasSIMD128()) {
126     // Support saturating add for i8x16 and i16x8
127     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
128       for (auto T : {MVT::v16i8, MVT::v8i16})
129         setOperationAction(Op, T, Legal);
130 
131     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
132     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
133       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
134     if (Subtarget->hasUnimplementedSIMD128())
135       for (auto T : {MVT::v2i64, MVT::v2f64})
136         setOperationAction(ISD::BUILD_VECTOR, T, Custom);
137 
138     // We have custom shuffle lowering to expose the shuffle mask
139     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
140       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
141     if (Subtarget->hasUnimplementedSIMD128())
142       for (auto T: {MVT::v2i64, MVT::v2f64})
143         setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
144 
145     // Custom lowering since wasm shifts must have a scalar shift amount
146     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
147       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
148         setOperationAction(Op, T, Custom);
149       if (Subtarget->hasUnimplementedSIMD128())
150         setOperationAction(Op, MVT::v2i64, Custom);
151     }
152 
153     // Custom lower lane accesses to expand out variable indices
154     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
155       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
156         setOperationAction(Op, T, Custom);
157       if (Subtarget->hasUnimplementedSIMD128())
158         for (auto T : {MVT::v2i64, MVT::v2f64})
159           setOperationAction(Op, T, Custom);
160     }
161 
162     // There is no i64x2.mul instruction
163     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
164 
165     // There are no vector select instructions
166     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
167       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
168         setOperationAction(Op, T, Expand);
169       if (Subtarget->hasUnimplementedSIMD128())
170         for (auto T : {MVT::v2i64, MVT::v2f64})
171           setOperationAction(Op, T, Expand);
172     }
173 
174     // Expand integer operations supported for scalars but not SIMD
175     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
176                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
177       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
178         setOperationAction(Op, T, Expand);
179       if (Subtarget->hasUnimplementedSIMD128())
180         setOperationAction(Op, MVT::v2i64, Expand);
181     }
182 
183     // Expand float operations supported for scalars but not SIMD
184     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
185                     ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
186                     ISD::FEXP, ISD::FEXP2, ISD::FRINT}) {
187       setOperationAction(Op, MVT::v4f32, Expand);
188       if (Subtarget->hasUnimplementedSIMD128())
189         setOperationAction(Op, MVT::v2f64, Expand);
190     }
191 
192     // Expand additional SIMD ops that V8 hasn't implemented yet
193     if (!Subtarget->hasUnimplementedSIMD128()) {
194       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
195       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
196     }
197   }
198 
199   // As a special case, these operators use the type to mean the type to
200   // sign-extend from.
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
202   if (!Subtarget->hasSignExt()) {
203     // Sign extends are legal only when extending a vector extract
204     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
205     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
206       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
207   }
208   for (auto T : MVT::integer_vector_valuetypes())
209     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
210 
211   // Dynamic stack allocation: use the default expansion.
212   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
213   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
214   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
215 
216   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
217   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
218 
219   // Expand these forms; we pattern-match the forms that we can handle in isel.
220   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
221     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
222       setOperationAction(Op, T, Expand);
223 
224   // We have custom switch handling.
225   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
226 
227   // WebAssembly doesn't have:
228   //  - Floating-point extending loads.
229   //  - Floating-point truncating stores.
230   //  - i1 extending loads.
231   //  - extending/truncating SIMD loads/stores
232   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
233   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
234   for (auto T : MVT::integer_valuetypes())
235     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
236       setLoadExtAction(Ext, T, MVT::i1, Promote);
237   if (Subtarget->hasSIMD128()) {
238     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
239                    MVT::v2f64}) {
240       for (auto MemT : MVT::vector_valuetypes()) {
241         if (MVT(T) != MemT) {
242           setTruncStoreAction(T, MemT, Expand);
243           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
244             setLoadExtAction(Ext, T, MemT, Expand);
245         }
246       }
247     }
248   }
249 
250   // Don't do anything clever with build_pairs
251   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
252 
253   // Trap lowers to wasm unreachable
254   setOperationAction(ISD::TRAP, MVT::Other, Legal);
255 
256   // Exception handling intrinsics
257   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
258   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
259 
260   setMaxAtomicSizeInBitsSupported(64);
261 
262   if (Subtarget->hasBulkMemory()) {
263     // Use memory.copy and friends over multiple loads and stores
264     MaxStoresPerMemcpy = 1;
265     MaxStoresPerMemcpyOptSize = 1;
266     MaxStoresPerMemmove = 1;
267     MaxStoresPerMemmoveOptSize = 1;
268     MaxStoresPerMemset = 1;
269     MaxStoresPerMemsetOptSize = 1;
270   }
271 
272   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
273   // consistent with the f64 and f128 names.
274   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
275   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
276 
277   // Define the emscripten name for return address helper.
278   // TODO: when implementing other WASM backends, make this generic or only do
279   // this on emscripten depending on what they end up doing.
280   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
281 
282   // Always convert switches to br_tables unless there is only one case, which
283   // is equivalent to a simple branch. This reduces code size for wasm, and we
284   // defer possible jump table optimizations to the VM.
285   setMinimumJumpTableEntries(2);
286 }
287 
288 TargetLowering::AtomicExpansionKind
289 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
290   // We have wasm instructions for these
291   switch (AI->getOperation()) {
292   case AtomicRMWInst::Add:
293   case AtomicRMWInst::Sub:
294   case AtomicRMWInst::And:
295   case AtomicRMWInst::Or:
296   case AtomicRMWInst::Xor:
297   case AtomicRMWInst::Xchg:
298     return AtomicExpansionKind::None;
299   default:
300     break;
301   }
302   return AtomicExpansionKind::CmpXChg;
303 }
304 
305 FastISel *WebAssemblyTargetLowering::createFastISel(
306     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
307   return WebAssembly::createFastISel(FuncInfo, LibInfo);
308 }
309 
310 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
311                                                       EVT VT) const {
312   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
313   if (BitWidth > 1 && BitWidth < 8)
314     BitWidth = 8;
315 
316   if (BitWidth > 64) {
317     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
318     // the count to be an i32.
319     BitWidth = 32;
320     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
321            "32-bit shift counts ought to be enough for anyone");
322   }
323 
324   MVT Result = MVT::getIntegerVT(BitWidth);
325   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
326          "Unable to represent scalar shift amount type");
327   return Result;
328 }
329 
330 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
331 // undefined result on invalid/overflow, to the WebAssembly opcode, which
332 // traps on invalid/overflow.
333 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
334                                        MachineBasicBlock *BB,
335                                        const TargetInstrInfo &TII,
336                                        bool IsUnsigned, bool Int64,
337                                        bool Float64, unsigned LoweredOpcode) {
338   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
339 
340   unsigned OutReg = MI.getOperand(0).getReg();
341   unsigned InReg = MI.getOperand(1).getReg();
342 
343   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
344   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
345   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
346   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
347   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
348   unsigned Eqz = WebAssembly::EQZ_I32;
349   unsigned And = WebAssembly::AND_I32;
350   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
351   int64_t Substitute = IsUnsigned ? 0 : Limit;
352   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
353   auto &Context = BB->getParent()->getFunction().getContext();
354   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
355 
356   const BasicBlock *LLVMBB = BB->getBasicBlock();
357   MachineFunction *F = BB->getParent();
358   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
359   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
360   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
361 
362   MachineFunction::iterator It = ++BB->getIterator();
363   F->insert(It, FalseMBB);
364   F->insert(It, TrueMBB);
365   F->insert(It, DoneMBB);
366 
367   // Transfer the remainder of BB and its successor edges to DoneMBB.
368   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
369   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
370 
371   BB->addSuccessor(TrueMBB);
372   BB->addSuccessor(FalseMBB);
373   TrueMBB->addSuccessor(DoneMBB);
374   FalseMBB->addSuccessor(DoneMBB);
375 
376   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
377   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
378   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
379   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
380   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
381   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
382   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
383 
384   MI.eraseFromParent();
385   // For signed numbers, we can do a single comparison to determine whether
386   // fabs(x) is within range.
387   if (IsUnsigned) {
388     Tmp0 = InReg;
389   } else {
390     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
391   }
392   BuildMI(BB, DL, TII.get(FConst), Tmp1)
393       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
394   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
395 
396   // For unsigned numbers, we have to do a separate comparison with zero.
397   if (IsUnsigned) {
398     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
399     unsigned SecondCmpReg =
400         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
401     unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
402     BuildMI(BB, DL, TII.get(FConst), Tmp1)
403         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
404     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
405     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
406     CmpReg = AndReg;
407   }
408 
409   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
410 
411   // Create the CFG diamond to select between doing the conversion or using
412   // the substitute value.
413   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
414   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
415   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
416   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
417   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
418       .addReg(FalseReg)
419       .addMBB(FalseMBB)
420       .addReg(TrueReg)
421       .addMBB(TrueMBB);
422 
423   return DoneMBB;
424 }
425 
426 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
427     MachineInstr &MI, MachineBasicBlock *BB) const {
428   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
429   DebugLoc DL = MI.getDebugLoc();
430 
431   switch (MI.getOpcode()) {
432   default:
433     llvm_unreachable("Unexpected instr type to insert");
434   case WebAssembly::FP_TO_SINT_I32_F32:
435     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
436                         WebAssembly::I32_TRUNC_S_F32);
437   case WebAssembly::FP_TO_UINT_I32_F32:
438     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
439                         WebAssembly::I32_TRUNC_U_F32);
440   case WebAssembly::FP_TO_SINT_I64_F32:
441     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
442                         WebAssembly::I64_TRUNC_S_F32);
443   case WebAssembly::FP_TO_UINT_I64_F32:
444     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
445                         WebAssembly::I64_TRUNC_U_F32);
446   case WebAssembly::FP_TO_SINT_I32_F64:
447     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
448                         WebAssembly::I32_TRUNC_S_F64);
449   case WebAssembly::FP_TO_UINT_I32_F64:
450     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
451                         WebAssembly::I32_TRUNC_U_F64);
452   case WebAssembly::FP_TO_SINT_I64_F64:
453     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
454                         WebAssembly::I64_TRUNC_S_F64);
455   case WebAssembly::FP_TO_UINT_I64_F64:
456     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
457                         WebAssembly::I64_TRUNC_U_F64);
458     llvm_unreachable("Unexpected instruction to emit with custom inserter");
459   }
460 }
461 
462 const char *
463 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
464   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
465   case WebAssemblyISD::FIRST_NUMBER:
466     break;
467 #define HANDLE_NODETYPE(NODE)                                                  \
468   case WebAssemblyISD::NODE:                                                   \
469     return "WebAssemblyISD::" #NODE;
470 #include "WebAssemblyISD.def"
471 #undef HANDLE_NODETYPE
472   }
473   return nullptr;
474 }
475 
476 std::pair<unsigned, const TargetRegisterClass *>
477 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
478     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
479   // First, see if this is a constraint that directly corresponds to a
480   // WebAssembly register class.
481   if (Constraint.size() == 1) {
482     switch (Constraint[0]) {
483     case 'r':
484       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
485       if (Subtarget->hasSIMD128() && VT.isVector()) {
486         if (VT.getSizeInBits() == 128)
487           return std::make_pair(0U, &WebAssembly::V128RegClass);
488       }
489       if (VT.isInteger() && !VT.isVector()) {
490         if (VT.getSizeInBits() <= 32)
491           return std::make_pair(0U, &WebAssembly::I32RegClass);
492         if (VT.getSizeInBits() <= 64)
493           return std::make_pair(0U, &WebAssembly::I64RegClass);
494       }
495       break;
496     default:
497       break;
498     }
499   }
500 
501   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
502 }
503 
504 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
505   // Assume ctz is a relatively cheap operation.
506   return true;
507 }
508 
509 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
510   // Assume clz is a relatively cheap operation.
511   return true;
512 }
513 
514 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
515                                                       const AddrMode &AM,
516                                                       Type *Ty, unsigned AS,
517                                                       Instruction *I) const {
518   // WebAssembly offsets are added as unsigned without wrapping. The
519   // isLegalAddressingMode gives us no way to determine if wrapping could be
520   // happening, so we approximate this by accepting only non-negative offsets.
521   if (AM.BaseOffs < 0)
522     return false;
523 
524   // WebAssembly has no scale register operands.
525   if (AM.Scale != 0)
526     return false;
527 
528   // Everything else is legal.
529   return true;
530 }
531 
532 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
533     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
534     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
535   // WebAssembly supports unaligned accesses, though it should be declared
536   // with the p2align attribute on loads and stores which do so, and there
537   // may be a performance impact. We tell LLVM they're "fast" because
538   // for the kinds of things that LLVM uses this for (merging adjacent stores
539   // of constants, etc.), WebAssembly implementations will either want the
540   // unaligned access or they'll split anyway.
541   if (Fast)
542     *Fast = true;
543   return true;
544 }
545 
546 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
547                                               AttributeList Attr) const {
548   // The current thinking is that wasm engines will perform this optimization,
549   // so we can save on code size.
550   return true;
551 }
552 
553 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
554                                                   LLVMContext &C,
555                                                   EVT VT) const {
556   if (VT.isVector())
557     return VT.changeVectorElementTypeToInteger();
558 
559   return TargetLowering::getSetCCResultType(DL, C, VT);
560 }
561 
562 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
563                                                    const CallInst &I,
564                                                    MachineFunction &MF,
565                                                    unsigned Intrinsic) const {
566   switch (Intrinsic) {
567   case Intrinsic::wasm_atomic_notify:
568     Info.opc = ISD::INTRINSIC_W_CHAIN;
569     Info.memVT = MVT::i32;
570     Info.ptrVal = I.getArgOperand(0);
571     Info.offset = 0;
572     Info.align = 4;
573     // atomic.notify instruction does not really load the memory specified with
574     // this argument, but MachineMemOperand should either be load or store, so
575     // we set this to a load.
576     // FIXME Volatile isn't really correct, but currently all LLVM atomic
577     // instructions are treated as volatiles in the backend, so we should be
578     // consistent. The same applies for wasm_atomic_wait intrinsics too.
579     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
580     return true;
581   case Intrinsic::wasm_atomic_wait_i32:
582     Info.opc = ISD::INTRINSIC_W_CHAIN;
583     Info.memVT = MVT::i32;
584     Info.ptrVal = I.getArgOperand(0);
585     Info.offset = 0;
586     Info.align = 4;
587     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
588     return true;
589   case Intrinsic::wasm_atomic_wait_i64:
590     Info.opc = ISD::INTRINSIC_W_CHAIN;
591     Info.memVT = MVT::i64;
592     Info.ptrVal = I.getArgOperand(0);
593     Info.offset = 0;
594     Info.align = 8;
595     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
596     return true;
597   default:
598     return false;
599   }
600 }
601 
602 //===----------------------------------------------------------------------===//
603 // WebAssembly Lowering private implementation.
604 //===----------------------------------------------------------------------===//
605 
606 //===----------------------------------------------------------------------===//
607 // Lowering Code
608 //===----------------------------------------------------------------------===//
609 
610 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
611   MachineFunction &MF = DAG.getMachineFunction();
612   DAG.getContext()->diagnose(
613       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
614 }
615 
616 // Test whether the given calling convention is supported.
617 static bool callingConvSupported(CallingConv::ID CallConv) {
618   // We currently support the language-independent target-independent
619   // conventions. We don't yet have a way to annotate calls with properties like
620   // "cold", and we don't have any call-clobbered registers, so these are mostly
621   // all handled the same.
622   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
623          CallConv == CallingConv::Cold ||
624          CallConv == CallingConv::PreserveMost ||
625          CallConv == CallingConv::PreserveAll ||
626          CallConv == CallingConv::CXX_FAST_TLS;
627 }
628 
629 SDValue
630 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
631                                      SmallVectorImpl<SDValue> &InVals) const {
632   SelectionDAG &DAG = CLI.DAG;
633   SDLoc DL = CLI.DL;
634   SDValue Chain = CLI.Chain;
635   SDValue Callee = CLI.Callee;
636   MachineFunction &MF = DAG.getMachineFunction();
637   auto Layout = MF.getDataLayout();
638 
639   CallingConv::ID CallConv = CLI.CallConv;
640   if (!callingConvSupported(CallConv))
641     fail(DL, DAG,
642          "WebAssembly doesn't support language-specific or target-specific "
643          "calling conventions yet");
644   if (CLI.IsPatchPoint)
645     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
646 
647   // WebAssembly doesn't currently support explicit tail calls. If they are
648   // required, fail. Otherwise, just disable them.
649   if ((CallConv == CallingConv::Fast && CLI.IsTailCall &&
650        MF.getTarget().Options.GuaranteedTailCallOpt) ||
651       (CLI.CS && CLI.CS.isMustTailCall()))
652     fail(DL, DAG, "WebAssembly doesn't support tail call yet");
653   CLI.IsTailCall = false;
654 
655   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
656   if (Ins.size() > 1)
657     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
658 
659   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
660   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
661   unsigned NumFixedArgs = 0;
662   for (unsigned I = 0; I < Outs.size(); ++I) {
663     const ISD::OutputArg &Out = Outs[I];
664     SDValue &OutVal = OutVals[I];
665     if (Out.Flags.isNest())
666       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
667     if (Out.Flags.isInAlloca())
668       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
669     if (Out.Flags.isInConsecutiveRegs())
670       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
671     if (Out.Flags.isInConsecutiveRegsLast())
672       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
673     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
674       auto &MFI = MF.getFrameInfo();
675       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
676                                      Out.Flags.getByValAlign(),
677                                      /*isSS=*/false);
678       SDValue SizeNode =
679           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
680       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
681       Chain = DAG.getMemcpy(
682           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
683           /*isVolatile*/ false, /*AlwaysInline=*/false,
684           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
685       OutVal = FINode;
686     }
687     // Count the number of fixed args *after* legalization.
688     NumFixedArgs += Out.IsFixed;
689   }
690 
691   bool IsVarArg = CLI.IsVarArg;
692   auto PtrVT = getPointerTy(Layout);
693 
694   // Analyze operands of the call, assigning locations to each operand.
695   SmallVector<CCValAssign, 16> ArgLocs;
696   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
697 
698   if (IsVarArg) {
699     // Outgoing non-fixed arguments are placed in a buffer. First
700     // compute their offsets and the total amount of buffer space needed.
701     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
702       const ISD::OutputArg &Out = Outs[I];
703       SDValue &Arg = OutVals[I];
704       EVT VT = Arg.getValueType();
705       assert(VT != MVT::iPTR && "Legalized args should be concrete");
706       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
707       unsigned Align = std::max(Out.Flags.getOrigAlign(),
708                                 Layout.getABITypeAlignment(Ty));
709       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
710                                              Align);
711       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
712                                         Offset, VT.getSimpleVT(),
713                                         CCValAssign::Full));
714     }
715   }
716 
717   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
718 
719   SDValue FINode;
720   if (IsVarArg && NumBytes) {
721     // For non-fixed arguments, next emit stores to store the argument values
722     // to the stack buffer at the offsets computed above.
723     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
724                                                  Layout.getStackAlignment(),
725                                                  /*isSS=*/false);
726     unsigned ValNo = 0;
727     SmallVector<SDValue, 8> Chains;
728     for (SDValue Arg :
729          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
730       assert(ArgLocs[ValNo].getValNo() == ValNo &&
731              "ArgLocs should remain in order and only hold varargs args");
732       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
733       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
734       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
735                                 DAG.getConstant(Offset, DL, PtrVT));
736       Chains.push_back(
737           DAG.getStore(Chain, DL, Arg, Add,
738                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
739     }
740     if (!Chains.empty())
741       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
742   } else if (IsVarArg) {
743     FINode = DAG.getIntPtrConstant(0, DL);
744   }
745 
746   if (Callee->getOpcode() == ISD::GlobalAddress) {
747     // If the callee is a GlobalAddress node (quite common, every direct call
748     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
749     // doesn't at MO_GOT which is not needed for direct calls.
750     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
751     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
752                                         getPointerTy(DAG.getDataLayout()),
753                                         GA->getOffset());
754     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
755                          getPointerTy(DAG.getDataLayout()), Callee);
756   }
757 
758   // Compute the operands for the CALLn node.
759   SmallVector<SDValue, 16> Ops;
760   Ops.push_back(Chain);
761   Ops.push_back(Callee);
762 
763   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
764   // isn't reliable.
765   Ops.append(OutVals.begin(),
766              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
767   // Add a pointer to the vararg buffer.
768   if (IsVarArg)
769     Ops.push_back(FINode);
770 
771   SmallVector<EVT, 8> InTys;
772   for (const auto &In : Ins) {
773     assert(!In.Flags.isByVal() && "byval is not valid for return values");
774     assert(!In.Flags.isNest() && "nest is not valid for return values");
775     if (In.Flags.isInAlloca())
776       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
777     if (In.Flags.isInConsecutiveRegs())
778       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
779     if (In.Flags.isInConsecutiveRegsLast())
780       fail(DL, DAG,
781            "WebAssembly hasn't implemented cons regs last return values");
782     // Ignore In.getOrigAlign() because all our arguments are passed in
783     // registers.
784     InTys.push_back(In.VT);
785   }
786   InTys.push_back(MVT::Other);
787   SDVTList InTyList = DAG.getVTList(InTys);
788   SDValue Res =
789       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
790                   DL, InTyList, Ops);
791   if (Ins.empty()) {
792     Chain = Res;
793   } else {
794     InVals.push_back(Res);
795     Chain = Res.getValue(1);
796   }
797 
798   return Chain;
799 }
800 
801 bool WebAssemblyTargetLowering::CanLowerReturn(
802     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
803     const SmallVectorImpl<ISD::OutputArg> &Outs,
804     LLVMContext & /*Context*/) const {
805   // WebAssembly can't currently handle returning tuples.
806   return Outs.size() <= 1;
807 }
808 
809 SDValue WebAssemblyTargetLowering::LowerReturn(
810     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
811     const SmallVectorImpl<ISD::OutputArg> &Outs,
812     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
813     SelectionDAG &DAG) const {
814   assert(Outs.size() <= 1 && "WebAssembly can only return up to one value");
815   if (!callingConvSupported(CallConv))
816     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
817 
818   SmallVector<SDValue, 4> RetOps(1, Chain);
819   RetOps.append(OutVals.begin(), OutVals.end());
820   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
821 
822   // Record the number and types of the return values.
823   for (const ISD::OutputArg &Out : Outs) {
824     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
825     assert(!Out.Flags.isNest() && "nest is not valid for return values");
826     assert(Out.IsFixed && "non-fixed return value is not valid");
827     if (Out.Flags.isInAlloca())
828       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
829     if (Out.Flags.isInConsecutiveRegs())
830       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
831     if (Out.Flags.isInConsecutiveRegsLast())
832       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
833   }
834 
835   return Chain;
836 }
837 
838 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
839     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
840     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
841     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
842   if (!callingConvSupported(CallConv))
843     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
844 
845   MachineFunction &MF = DAG.getMachineFunction();
846   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
847 
848   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
849   // of the incoming values before they're represented by virtual registers.
850   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
851 
852   for (const ISD::InputArg &In : Ins) {
853     if (In.Flags.isInAlloca())
854       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
855     if (In.Flags.isNest())
856       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
857     if (In.Flags.isInConsecutiveRegs())
858       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
859     if (In.Flags.isInConsecutiveRegsLast())
860       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
861     // Ignore In.getOrigAlign() because all our arguments are passed in
862     // registers.
863     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
864                                            DAG.getTargetConstant(InVals.size(),
865                                                                  DL, MVT::i32))
866                              : DAG.getUNDEF(In.VT));
867 
868     // Record the number and types of arguments.
869     MFI->addParam(In.VT);
870   }
871 
872   // Varargs are copied into a buffer allocated by the caller, and a pointer to
873   // the buffer is passed as an argument.
874   if (IsVarArg) {
875     MVT PtrVT = getPointerTy(MF.getDataLayout());
876     unsigned VarargVreg =
877         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
878     MFI->setVarargBufferVreg(VarargVreg);
879     Chain = DAG.getCopyToReg(
880         Chain, DL, VarargVreg,
881         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
882                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
883     MFI->addParam(PtrVT);
884   }
885 
886   // Record the number and types of arguments and results.
887   SmallVector<MVT, 4> Params;
888   SmallVector<MVT, 4> Results;
889   computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
890                       DAG.getTarget(), Params, Results);
891   for (MVT VT : Results)
892     MFI->addResult(VT);
893   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
894   // the param logic here with ComputeSignatureVTs
895   assert(MFI->getParams().size() == Params.size() &&
896          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
897                     Params.begin()));
898 
899   return Chain;
900 }
901 
902 void WebAssemblyTargetLowering::ReplaceNodeResults(
903     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
904   switch (N->getOpcode()) {
905   case ISD::SIGN_EXTEND_INREG:
906     // Do not add any results, signifying that N should not be custom lowered
907     // after all. This happens because simd128 turns on custom lowering for
908     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
909     // illegal type.
910     break;
911   default:
912     llvm_unreachable(
913         "ReplaceNodeResults not implemented for this op for WebAssembly!");
914   }
915 }
916 
917 //===----------------------------------------------------------------------===//
918 //  Custom lowering hooks.
919 //===----------------------------------------------------------------------===//
920 
921 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
922                                                   SelectionDAG &DAG) const {
923   SDLoc DL(Op);
924   switch (Op.getOpcode()) {
925   default:
926     llvm_unreachable("unimplemented operation lowering");
927     return SDValue();
928   case ISD::FrameIndex:
929     return LowerFrameIndex(Op, DAG);
930   case ISD::GlobalAddress:
931     return LowerGlobalAddress(Op, DAG);
932   case ISD::ExternalSymbol:
933     return LowerExternalSymbol(Op, DAG);
934   case ISD::JumpTable:
935     return LowerJumpTable(Op, DAG);
936   case ISD::BR_JT:
937     return LowerBR_JT(Op, DAG);
938   case ISD::VASTART:
939     return LowerVASTART(Op, DAG);
940   case ISD::BlockAddress:
941   case ISD::BRIND:
942     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
943     return SDValue();
944   case ISD::RETURNADDR:
945     return LowerRETURNADDR(Op, DAG);
946   case ISD::FRAMEADDR:
947     return LowerFRAMEADDR(Op, DAG);
948   case ISD::CopyToReg:
949     return LowerCopyToReg(Op, DAG);
950   case ISD::EXTRACT_VECTOR_ELT:
951   case ISD::INSERT_VECTOR_ELT:
952     return LowerAccessVectorElement(Op, DAG);
953   case ISD::INTRINSIC_VOID:
954   case ISD::INTRINSIC_WO_CHAIN:
955   case ISD::INTRINSIC_W_CHAIN:
956     return LowerIntrinsic(Op, DAG);
957   case ISD::SIGN_EXTEND_INREG:
958     return LowerSIGN_EXTEND_INREG(Op, DAG);
959   case ISD::BUILD_VECTOR:
960     return LowerBUILD_VECTOR(Op, DAG);
961   case ISD::VECTOR_SHUFFLE:
962     return LowerVECTOR_SHUFFLE(Op, DAG);
963   case ISD::SHL:
964   case ISD::SRA:
965   case ISD::SRL:
966     return LowerShift(Op, DAG);
967   }
968 }
969 
970 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
971                                                   SelectionDAG &DAG) const {
972   SDValue Src = Op.getOperand(2);
973   if (isa<FrameIndexSDNode>(Src.getNode())) {
974     // CopyToReg nodes don't support FrameIndex operands. Other targets select
975     // the FI to some LEA-like instruction, but since we don't have that, we
976     // need to insert some kind of instruction that can take an FI operand and
977     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
978     // local.copy between Op and its FI operand.
979     SDValue Chain = Op.getOperand(0);
980     SDLoc DL(Op);
981     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
982     EVT VT = Src.getValueType();
983     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
984                                                    : WebAssembly::COPY_I64,
985                                     DL, VT, Src),
986                  0);
987     return Op.getNode()->getNumValues() == 1
988                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
989                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
990                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
991                                                            : SDValue());
992   }
993   return SDValue();
994 }
995 
996 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
997                                                    SelectionDAG &DAG) const {
998   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
999   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1000 }
1001 
1002 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1003                                                    SelectionDAG &DAG) const {
1004   SDLoc DL(Op);
1005 
1006   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1007     fail(DL, DAG,
1008          "Non-Emscripten WebAssembly hasn't implemented "
1009          "__builtin_return_address");
1010     return SDValue();
1011   }
1012 
1013   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1014     return SDValue();
1015 
1016   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1017   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1018                      {DAG.getConstant(Depth, DL, MVT::i32)}, false, DL)
1019       .first;
1020 }
1021 
1022 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1023                                                   SelectionDAG &DAG) const {
1024   // Non-zero depths are not supported by WebAssembly currently. Use the
1025   // legalizer's default expansion, which is to return 0 (what this function is
1026   // documented to do).
1027   if (Op.getConstantOperandVal(0) > 0)
1028     return SDValue();
1029 
1030   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1031   EVT VT = Op.getValueType();
1032   unsigned FP =
1033       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1034   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1035 }
1036 
1037 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1038                                                       SelectionDAG &DAG) const {
1039   SDLoc DL(Op);
1040   const auto *GA = cast<GlobalAddressSDNode>(Op);
1041   EVT VT = Op.getValueType();
1042   assert(GA->getTargetFlags() == 0 &&
1043          "Unexpected target flags on generic GlobalAddressSDNode");
1044   if (GA->getAddressSpace() != 0)
1045     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1046 
1047   unsigned OperandFlags = 0;
1048   if (isPositionIndependent()) {
1049     const GlobalValue *GV = GA->getGlobal();
1050     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1051       MachineFunction &MF = DAG.getMachineFunction();
1052       MVT PtrVT = getPointerTy(MF.getDataLayout());
1053       const char *BaseName;
1054       if (GV->getValueType()->isFunctionTy()) {
1055         BaseName = MF.createExternalSymbolName("__table_base");
1056         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1057       }
1058       else {
1059         BaseName = MF.createExternalSymbolName("__memory_base");
1060         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1061       }
1062       SDValue BaseAddr =
1063           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1064                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1065 
1066       SDValue SymAddr = DAG.getNode(
1067           WebAssemblyISD::WrapperPIC, DL, VT,
1068           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1069                                      OperandFlags));
1070 
1071       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1072     } else {
1073       OperandFlags = WebAssemblyII::MO_GOT;
1074     }
1075   }
1076 
1077   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1078                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1079                                                 GA->getOffset(), OperandFlags));
1080 }
1081 
1082 SDValue
1083 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1084                                                SelectionDAG &DAG) const {
1085   SDLoc DL(Op);
1086   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1087   EVT VT = Op.getValueType();
1088   assert(ES->getTargetFlags() == 0 &&
1089          "Unexpected target flags on generic ExternalSymbolSDNode");
1090   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1091                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1092 }
1093 
1094 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1095                                                   SelectionDAG &DAG) const {
1096   // There's no need for a Wrapper node because we always incorporate a jump
1097   // table operand into a BR_TABLE instruction, rather than ever
1098   // materializing it in a register.
1099   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1100   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1101                                 JT->getTargetFlags());
1102 }
1103 
1104 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1105                                               SelectionDAG &DAG) const {
1106   SDLoc DL(Op);
1107   SDValue Chain = Op.getOperand(0);
1108   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1109   SDValue Index = Op.getOperand(2);
1110   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1111 
1112   SmallVector<SDValue, 8> Ops;
1113   Ops.push_back(Chain);
1114   Ops.push_back(Index);
1115 
1116   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1117   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1118 
1119   // Add an operand for each case.
1120   for (auto MBB : MBBs)
1121     Ops.push_back(DAG.getBasicBlock(MBB));
1122 
1123   // TODO: For now, we just pick something arbitrary for a default case for now.
1124   // We really want to sniff out the guard and put in the real default case (and
1125   // delete the guard).
1126   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1127 
1128   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1129 }
1130 
1131 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1132                                                 SelectionDAG &DAG) const {
1133   SDLoc DL(Op);
1134   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1135 
1136   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1137   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1138 
1139   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1140                                     MFI->getVarargBufferVreg(), PtrVT);
1141   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1142                       MachinePointerInfo(SV), 0);
1143 }
1144 
1145 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1146                                                   SelectionDAG &DAG) const {
1147   MachineFunction &MF = DAG.getMachineFunction();
1148   unsigned IntNo;
1149   switch (Op.getOpcode()) {
1150   case ISD::INTRINSIC_VOID:
1151   case ISD::INTRINSIC_W_CHAIN:
1152     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1153     break;
1154   case ISD::INTRINSIC_WO_CHAIN:
1155     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1156     break;
1157   default:
1158     llvm_unreachable("Invalid intrinsic");
1159   }
1160   SDLoc DL(Op);
1161 
1162   switch (IntNo) {
1163   default:
1164     return SDValue(); // Don't custom lower most intrinsics.
1165 
1166   case Intrinsic::wasm_lsda: {
1167     EVT VT = Op.getValueType();
1168     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1169     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1170     auto &Context = MF.getMMI().getContext();
1171     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1172                                             Twine(MF.getFunctionNumber()));
1173     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1174                        DAG.getMCSymbol(S, PtrVT));
1175   }
1176 
1177   case Intrinsic::wasm_throw: {
1178     // We only support C++ exceptions for now
1179     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1180     if (Tag != CPP_EXCEPTION)
1181       llvm_unreachable("Invalid tag!");
1182     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1183     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1184     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1185     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1186                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
1187     return DAG.getNode(WebAssemblyISD::THROW, DL,
1188                        MVT::Other, // outchain type
1189                        {
1190                            Op.getOperand(0), // inchain
1191                            SymNode,          // exception symbol
1192                            Op.getOperand(3)  // thrown value
1193                        });
1194   }
1195   }
1196 }
1197 
1198 SDValue
1199 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1200                                                   SelectionDAG &DAG) const {
1201   SDLoc DL(Op);
1202   // If sign extension operations are disabled, allow sext_inreg only if operand
1203   // is a vector extract. SIMD does not depend on sign extension operations, but
1204   // allowing sext_inreg in this context lets us have simple patterns to select
1205   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1206   // simpler in this file, but would necessitate large and brittle patterns to
1207   // undo the expansion and select extract_lane_s instructions.
1208   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1209   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1210     const SDValue &Extract = Op.getOperand(0);
1211     MVT VecT = Extract.getOperand(0).getSimpleValueType();
1212     MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode())
1213                              ->getVT()
1214                              .getSimpleVT();
1215     MVT ExtractedVecT =
1216         MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1217     if (ExtractedVecT == VecT)
1218       return Op;
1219     // Bitcast vector to appropriate type to ensure ISel pattern coverage
1220     const SDValue &Index = Extract.getOperand(1);
1221     unsigned IndexVal =
1222         static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue();
1223     unsigned Scale =
1224         ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1225     assert(Scale > 1);
1226     SDValue NewIndex =
1227         DAG.getConstant(IndexVal * Scale, DL, Index.getValueType());
1228     SDValue NewExtract = DAG.getNode(
1229         ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1230         DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1231     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(),
1232                        NewExtract, Op.getOperand(1));
1233   }
1234   // Otherwise expand
1235   return SDValue();
1236 }
1237 
1238 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1239                                                      SelectionDAG &DAG) const {
1240   SDLoc DL(Op);
1241   const EVT VecT = Op.getValueType();
1242   const EVT LaneT = Op.getOperand(0).getValueType();
1243   const size_t Lanes = Op.getNumOperands();
1244   auto IsConstant = [](const SDValue &V) {
1245     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1246   };
1247 
1248   // Find the most common operand, which is approximately the best to splat
1249   using Entry = std::pair<SDValue, size_t>;
1250   SmallVector<Entry, 16> ValueCounts;
1251   size_t NumConst = 0, NumDynamic = 0;
1252   for (const SDValue &Lane : Op->op_values()) {
1253     if (Lane.isUndef()) {
1254       continue;
1255     } else if (IsConstant(Lane)) {
1256       NumConst++;
1257     } else {
1258       NumDynamic++;
1259     }
1260     auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(),
1261                                 [&Lane](Entry A) { return A.first == Lane; });
1262     if (CountIt == ValueCounts.end()) {
1263       ValueCounts.emplace_back(Lane, 1);
1264     } else {
1265       CountIt->second++;
1266     }
1267   }
1268   auto CommonIt =
1269       std::max_element(ValueCounts.begin(), ValueCounts.end(),
1270                        [](Entry A, Entry B) { return A.second < B.second; });
1271   assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector");
1272   SDValue SplatValue = CommonIt->first;
1273   size_t NumCommon = CommonIt->second;
1274 
1275   // If v128.const is available, consider using it instead of a splat
1276   if (Subtarget->hasUnimplementedSIMD128()) {
1277     // {i32,i64,f32,f64}.const opcode, and value
1278     const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes);
1279     // SIMD prefix and opcode
1280     const size_t SplatBytes = 2;
1281     const size_t SplatConstBytes = SplatBytes + ConstBytes;
1282     // SIMD prefix, opcode, and lane index
1283     const size_t ReplaceBytes = 3;
1284     const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes;
1285     // SIMD prefix, v128.const opcode, and 128-bit value
1286     const size_t VecConstBytes = 18;
1287     // Initial v128.const and a replace_lane for each non-const operand
1288     const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes;
1289     // Initial splat and all necessary replace_lanes
1290     const size_t SplatInitBytes =
1291         IsConstant(SplatValue)
1292             // Initial constant splat
1293             ? (SplatConstBytes +
1294                // Constant replace_lanes
1295                (NumConst - NumCommon) * ReplaceConstBytes +
1296                // Dynamic replace_lanes
1297                (NumDynamic * ReplaceBytes))
1298             // Initial dynamic splat
1299             : (SplatBytes +
1300                // Constant replace_lanes
1301                (NumConst * ReplaceConstBytes) +
1302                // Dynamic replace_lanes
1303                (NumDynamic - NumCommon) * ReplaceBytes);
1304     if (ConstInitBytes < SplatInitBytes) {
1305       // Create build_vector that will lower to initial v128.const
1306       SmallVector<SDValue, 16> ConstLanes;
1307       for (const SDValue &Lane : Op->op_values()) {
1308         if (IsConstant(Lane)) {
1309           ConstLanes.push_back(Lane);
1310         } else if (LaneT.isFloatingPoint()) {
1311           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1312         } else {
1313           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1314         }
1315       }
1316       SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1317       // Add replace_lane instructions for non-const lanes
1318       for (size_t I = 0; I < Lanes; ++I) {
1319         const SDValue &Lane = Op->getOperand(I);
1320         if (!Lane.isUndef() && !IsConstant(Lane))
1321           Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1322                                DAG.getConstant(I, DL, MVT::i32));
1323       }
1324       return Result;
1325     }
1326   }
1327   // Use a splat for the initial vector
1328   SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1329   // Add replace_lane instructions for other values
1330   for (size_t I = 0; I < Lanes; ++I) {
1331     const SDValue &Lane = Op->getOperand(I);
1332     if (Lane != SplatValue)
1333       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1334                            DAG.getConstant(I, DL, MVT::i32));
1335   }
1336   return Result;
1337 }
1338 
1339 SDValue
1340 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1341                                                SelectionDAG &DAG) const {
1342   SDLoc DL(Op);
1343   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1344   MVT VecType = Op.getOperand(0).getSimpleValueType();
1345   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1346   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1347 
1348   // Space for two vector args and sixteen mask indices
1349   SDValue Ops[18];
1350   size_t OpIdx = 0;
1351   Ops[OpIdx++] = Op.getOperand(0);
1352   Ops[OpIdx++] = Op.getOperand(1);
1353 
1354   // Expand mask indices to byte indices and materialize them as operands
1355   for (int M : Mask) {
1356     for (size_t J = 0; J < LaneBytes; ++J) {
1357       // Lower undefs (represented by -1 in mask) to zero
1358       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1359       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1360     }
1361   }
1362 
1363   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1364 }
1365 
1366 SDValue
1367 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1368                                                     SelectionDAG &DAG) const {
1369   // Allow constant lane indices, expand variable lane indices
1370   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1371   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1372     return Op;
1373   else
1374     // Perform default expansion
1375     return SDValue();
1376 }
1377 
1378 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1379   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1380   // 32-bit and 64-bit unrolled shifts will have proper semantics
1381   if (LaneT.bitsGE(MVT::i32))
1382     return DAG.UnrollVectorOp(Op.getNode());
1383   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1384   SDLoc DL(Op);
1385   SDValue ShiftVal = Op.getOperand(1);
1386   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1387   SDValue MaskedShiftVal = DAG.getNode(
1388       ISD::AND,                    // mask opcode
1389       DL, ShiftVal.getValueType(), // masked value type
1390       ShiftVal,                    // original shift value operand
1391       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1392   );
1393 
1394   return DAG.UnrollVectorOp(
1395       DAG.getNode(Op.getOpcode(),        // original shift opcode
1396                   DL, Op.getValueType(), // original return type
1397                   Op.getOperand(0),      // original vector operand,
1398                   MaskedShiftVal         // new masked shift value operand
1399                   )
1400           .getNode());
1401 }
1402 
1403 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1404                                               SelectionDAG &DAG) const {
1405   SDLoc DL(Op);
1406 
1407   // Only manually lower vector shifts
1408   assert(Op.getSimpleValueType().isVector());
1409 
1410   // Expand all vector shifts until V8 fixes its implementation
1411   // TODO: remove this once V8 is fixed
1412   if (!Subtarget->hasUnimplementedSIMD128())
1413     return unrollVectorShift(Op, DAG);
1414 
1415   // Unroll non-splat vector shifts
1416   BuildVectorSDNode *ShiftVec;
1417   SDValue SplatVal;
1418   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1419       !(SplatVal = ShiftVec->getSplatValue()))
1420     return unrollVectorShift(Op, DAG);
1421 
1422   // All splats except i64x2 const splats are handled by patterns
1423   auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1424   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1425     return Op;
1426 
1427   // i64x2 const splats are custom lowered to avoid unnecessary wraps
1428   unsigned Opcode;
1429   switch (Op.getOpcode()) {
1430   case ISD::SHL:
1431     Opcode = WebAssemblyISD::VEC_SHL;
1432     break;
1433   case ISD::SRA:
1434     Opcode = WebAssemblyISD::VEC_SHR_S;
1435     break;
1436   case ISD::SRL:
1437     Opcode = WebAssemblyISD::VEC_SHR_U;
1438     break;
1439   default:
1440     llvm_unreachable("unexpected opcode");
1441   }
1442   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1443   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1444                      DAG.getConstant(Shift, DL, MVT::i32));
1445 }
1446 
1447 //===----------------------------------------------------------------------===//
1448 //                          WebAssembly Optimization Hooks
1449 //===----------------------------------------------------------------------===//
1450