1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "WebAssemblyUtilities.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsWebAssembly.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetOptions.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "wasm-lower"
41 
42 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
43     const TargetMachine &TM, const WebAssemblySubtarget &STI)
44     : TargetLowering(TM), Subtarget(&STI) {
45   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
46 
47   // Booleans always contain 0 or 1.
48   setBooleanContents(ZeroOrOneBooleanContent);
49   // Except in SIMD vectors
50   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
51   // We don't know the microarchitecture here, so just reduce register pressure.
52   setSchedulingPreference(Sched::RegPressure);
53   // Tell ISel that we have a stack pointer.
54   setStackPointerRegisterToSaveRestore(
55       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
56   // Set up the register classes.
57   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
58   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
59   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
60   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
61   if (Subtarget->hasSIMD128()) {
62     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
68   }
69   // Compute derived properties from the register classes.
70   computeRegisterProperties(Subtarget->getRegisterInfo());
71 
72   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
73   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
74   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
75   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
76   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
77   setOperationAction(ISD::BRIND, MVT::Other, Custom);
78 
79   // Take the default expansion for va_arg, va_copy, and va_end. There is no
80   // default action for va_start, so we do that custom.
81   setOperationAction(ISD::VASTART, MVT::Other, Custom);
82   setOperationAction(ISD::VAARG, MVT::Other, Expand);
83   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
84   setOperationAction(ISD::VAEND, MVT::Other, Expand);
85 
86   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
87     // Don't expand the floating-point types to constant pools.
88     setOperationAction(ISD::ConstantFP, T, Legal);
89     // Expand floating-point comparisons.
90     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
91                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
92       setCondCodeAction(CC, T, Expand);
93     // Expand floating-point library function operators.
94     for (auto Op :
95          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
96       setOperationAction(Op, T, Expand);
97     // Note supported floating-point library function operators that otherwise
98     // default to expand.
99     for (auto Op :
100          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
101       setOperationAction(Op, T, Legal);
102     // Support minimum and maximum, which otherwise default to expand.
103     setOperationAction(ISD::FMINIMUM, T, Legal);
104     setOperationAction(ISD::FMAXIMUM, T, Legal);
105     // WebAssembly currently has no builtin f16 support.
106     setOperationAction(ISD::FP16_TO_FP, T, Expand);
107     setOperationAction(ISD::FP_TO_FP16, T, Expand);
108     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
109     setTruncStoreAction(T, MVT::f16, Expand);
110   }
111 
112   // Expand unavailable integer operations.
113   for (auto Op :
114        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
115         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
116         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
117     for (auto T : {MVT::i32, MVT::i64})
118       setOperationAction(Op, T, Expand);
119     if (Subtarget->hasSIMD128())
120       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
121         setOperationAction(Op, T, Expand);
122   }
123 
124   // SIMD-specific configuration
125   if (Subtarget->hasSIMD128()) {
126     // Hoist bitcasts out of shuffles
127     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
128 
129     // Combine extends of extract_subvectors into widening ops
130     setTargetDAGCombine(ISD::SIGN_EXTEND);
131     setTargetDAGCombine(ISD::ZERO_EXTEND);
132 
133     // Support saturating add for i8x16 and i16x8
134     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
135       for (auto T : {MVT::v16i8, MVT::v8i16})
136         setOperationAction(Op, T, Legal);
137 
138     // Support integer abs
139     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
140       setOperationAction(ISD::ABS, T, Legal);
141 
142     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
143     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
144                    MVT::v2f64})
145       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
146 
147     // We have custom shuffle lowering to expose the shuffle mask
148     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
149                    MVT::v2f64})
150       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
151 
152     // Custom lowering since wasm shifts must have a scalar shift amount
153     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
154       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
155         setOperationAction(Op, T, Custom);
156 
157     // Custom lower lane accesses to expand out variable indices
158     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
159       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
160                      MVT::v2f64})
161         setOperationAction(Op, T, Custom);
162 
163     // There is no i8x16.mul instruction
164     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
165 
166     // There is no vector conditional select instruction
167     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
168                    MVT::v2f64})
169       setOperationAction(ISD::SELECT_CC, T, Expand);
170 
171     // Expand integer operations supported for scalars but not SIMD
172     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
173                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
174       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
175         setOperationAction(Op, T, Expand);
176 
177     // But we do have integer min and max operations
178     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
179       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
180         setOperationAction(Op, T, Legal);
181 
182     // Expand float operations supported for scalars but not SIMD
183     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
184                     ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
185                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
186       for (auto T : {MVT::v4f32, MVT::v2f64})
187         setOperationAction(Op, T, Expand);
188 
189     // Expand operations not supported for i64x2 vectors
190     for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC)
191       setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom);
192 
193     // 64x2 conversions are not in the spec
194     for (auto Op :
195          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
196       for (auto T : {MVT::v2i64, MVT::v2f64})
197         setOperationAction(Op, T, Expand);
198   }
199 
200   // As a special case, these operators use the type to mean the type to
201   // sign-extend from.
202   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
203   if (!Subtarget->hasSignExt()) {
204     // Sign extends are legal only when extending a vector extract
205     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
206     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
207       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
208   }
209   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
210     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
211 
212   // Dynamic stack allocation: use the default expansion.
213   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
214   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
215   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
216 
217   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
218   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
219   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
220 
221   // Expand these forms; we pattern-match the forms that we can handle in isel.
222   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
223     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
224       setOperationAction(Op, T, Expand);
225 
226   // We have custom switch handling.
227   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
228 
229   // WebAssembly doesn't have:
230   //  - Floating-point extending loads.
231   //  - Floating-point truncating stores.
232   //  - i1 extending loads.
233   //  - truncating SIMD stores and most extending loads
234   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
235   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
236   for (auto T : MVT::integer_valuetypes())
237     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
238       setLoadExtAction(Ext, T, MVT::i1, Promote);
239   if (Subtarget->hasSIMD128()) {
240     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
241                    MVT::v2f64}) {
242       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
243         if (MVT(T) != MemT) {
244           setTruncStoreAction(T, MemT, Expand);
245           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
246             setLoadExtAction(Ext, T, MemT, Expand);
247         }
248       }
249     }
250     // But some vector extending loads are legal
251     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
252       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
253       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
254       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
255     }
256     // And some truncating stores are legal as well
257     setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
258     setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
259   }
260 
261   // Don't do anything clever with build_pairs
262   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
263 
264   // Trap lowers to wasm unreachable
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
267 
268   // Exception handling intrinsics
269   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
270   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
271   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
272 
273   setMaxAtomicSizeInBitsSupported(64);
274 
275   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
276   // consistent with the f64 and f128 names.
277   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
278   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
279 
280   // Define the emscripten name for return address helper.
281   // TODO: when implementing other Wasm backends, make this generic or only do
282   // this on emscripten depending on what they end up doing.
283   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
284 
285   // Always convert switches to br_tables unless there is only one case, which
286   // is equivalent to a simple branch. This reduces code size for wasm, and we
287   // defer possible jump table optimizations to the VM.
288   setMinimumJumpTableEntries(2);
289 }
290 
291 TargetLowering::AtomicExpansionKind
292 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
293   // We have wasm instructions for these
294   switch (AI->getOperation()) {
295   case AtomicRMWInst::Add:
296   case AtomicRMWInst::Sub:
297   case AtomicRMWInst::And:
298   case AtomicRMWInst::Or:
299   case AtomicRMWInst::Xor:
300   case AtomicRMWInst::Xchg:
301     return AtomicExpansionKind::None;
302   default:
303     break;
304   }
305   return AtomicExpansionKind::CmpXChg;
306 }
307 
308 FastISel *WebAssemblyTargetLowering::createFastISel(
309     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
310   return WebAssembly::createFastISel(FuncInfo, LibInfo);
311 }
312 
313 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
314                                                       EVT VT) const {
315   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
316   if (BitWidth > 1 && BitWidth < 8)
317     BitWidth = 8;
318 
319   if (BitWidth > 64) {
320     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
321     // the count to be an i32.
322     BitWidth = 32;
323     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
324            "32-bit shift counts ought to be enough for anyone");
325   }
326 
327   MVT Result = MVT::getIntegerVT(BitWidth);
328   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
329          "Unable to represent scalar shift amount type");
330   return Result;
331 }
332 
333 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
334 // undefined result on invalid/overflow, to the WebAssembly opcode, which
335 // traps on invalid/overflow.
336 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
337                                        MachineBasicBlock *BB,
338                                        const TargetInstrInfo &TII,
339                                        bool IsUnsigned, bool Int64,
340                                        bool Float64, unsigned LoweredOpcode) {
341   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
342 
343   Register OutReg = MI.getOperand(0).getReg();
344   Register InReg = MI.getOperand(1).getReg();
345 
346   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
347   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
348   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
349   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
350   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
351   unsigned Eqz = WebAssembly::EQZ_I32;
352   unsigned And = WebAssembly::AND_I32;
353   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
354   int64_t Substitute = IsUnsigned ? 0 : Limit;
355   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
356   auto &Context = BB->getParent()->getFunction().getContext();
357   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
358 
359   const BasicBlock *LLVMBB = BB->getBasicBlock();
360   MachineFunction *F = BB->getParent();
361   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
362   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
363   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
364 
365   MachineFunction::iterator It = ++BB->getIterator();
366   F->insert(It, FalseMBB);
367   F->insert(It, TrueMBB);
368   F->insert(It, DoneMBB);
369 
370   // Transfer the remainder of BB and its successor edges to DoneMBB.
371   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
372   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
373 
374   BB->addSuccessor(TrueMBB);
375   BB->addSuccessor(FalseMBB);
376   TrueMBB->addSuccessor(DoneMBB);
377   FalseMBB->addSuccessor(DoneMBB);
378 
379   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
380   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
381   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
382   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
383   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
384   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
385   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
386 
387   MI.eraseFromParent();
388   // For signed numbers, we can do a single comparison to determine whether
389   // fabs(x) is within range.
390   if (IsUnsigned) {
391     Tmp0 = InReg;
392   } else {
393     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
394   }
395   BuildMI(BB, DL, TII.get(FConst), Tmp1)
396       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
397   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
398 
399   // For unsigned numbers, we have to do a separate comparison with zero.
400   if (IsUnsigned) {
401     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
402     Register SecondCmpReg =
403         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
404     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
405     BuildMI(BB, DL, TII.get(FConst), Tmp1)
406         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
407     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
408     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
409     CmpReg = AndReg;
410   }
411 
412   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
413 
414   // Create the CFG diamond to select between doing the conversion or using
415   // the substitute value.
416   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
417   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
418   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
419   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
420   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
421       .addReg(FalseReg)
422       .addMBB(FalseMBB)
423       .addReg(TrueReg)
424       .addMBB(TrueMBB);
425 
426   return DoneMBB;
427 }
428 
429 static MachineBasicBlock *
430 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
431                  const WebAssemblySubtarget *Subtarget,
432                  const TargetInstrInfo &TII) {
433   MachineInstr &CallParams = *CallResults.getPrevNode();
434   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
435   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
436          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
437 
438   bool IsIndirect = CallParams.getOperand(0).isReg();
439   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
440 
441   unsigned CallOp;
442   if (IsIndirect && IsRetCall) {
443     CallOp = WebAssembly::RET_CALL_INDIRECT;
444   } else if (IsIndirect) {
445     CallOp = WebAssembly::CALL_INDIRECT;
446   } else if (IsRetCall) {
447     CallOp = WebAssembly::RET_CALL;
448   } else {
449     CallOp = WebAssembly::CALL;
450   }
451 
452   MachineFunction &MF = *BB->getParent();
453   const MCInstrDesc &MCID = TII.get(CallOp);
454   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
455 
456   // See if we must truncate the function pointer.
457   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
458   // as 64-bit for uniformity with other pointer types.
459   // See also: WebAssemblyFastISel::selectCall
460   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
461     Register Reg32 =
462         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
463     auto &FnPtr = CallParams.getOperand(0);
464     BuildMI(*BB, CallResults.getIterator(), DL,
465             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
466         .addReg(FnPtr.getReg());
467     FnPtr.setReg(Reg32);
468   }
469 
470   // Move the function pointer to the end of the arguments for indirect calls
471   if (IsIndirect) {
472     auto FnPtr = CallParams.getOperand(0);
473     CallParams.RemoveOperand(0);
474     CallParams.addOperand(FnPtr);
475   }
476 
477   for (auto Def : CallResults.defs())
478     MIB.add(Def);
479 
480   if (IsIndirect) {
481     // Placeholder for the type index.
482     MIB.addImm(0);
483     // The table into which this call_indirect indexes.
484     MCSymbolWasm *Table =
485         WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget);
486     if (Subtarget->hasReferenceTypes()) {
487       MIB.addSym(Table);
488     } else {
489       // For the MVP there is at most one table whose number is 0, but we can't
490       // write a table symbol or issue relocations.  Instead we just ensure the
491       // table is live and write a zero.
492       Table->setNoStrip();
493       MIB.addImm(0);
494     }
495   }
496 
497   for (auto Use : CallParams.uses())
498     MIB.add(Use);
499 
500   BB->insert(CallResults.getIterator(), MIB);
501   CallParams.eraseFromParent();
502   CallResults.eraseFromParent();
503 
504   return BB;
505 }
506 
507 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
508     MachineInstr &MI, MachineBasicBlock *BB) const {
509   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
510   DebugLoc DL = MI.getDebugLoc();
511 
512   switch (MI.getOpcode()) {
513   default:
514     llvm_unreachable("Unexpected instr type to insert");
515   case WebAssembly::FP_TO_SINT_I32_F32:
516     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
517                         WebAssembly::I32_TRUNC_S_F32);
518   case WebAssembly::FP_TO_UINT_I32_F32:
519     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
520                         WebAssembly::I32_TRUNC_U_F32);
521   case WebAssembly::FP_TO_SINT_I64_F32:
522     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
523                         WebAssembly::I64_TRUNC_S_F32);
524   case WebAssembly::FP_TO_UINT_I64_F32:
525     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
526                         WebAssembly::I64_TRUNC_U_F32);
527   case WebAssembly::FP_TO_SINT_I32_F64:
528     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
529                         WebAssembly::I32_TRUNC_S_F64);
530   case WebAssembly::FP_TO_UINT_I32_F64:
531     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
532                         WebAssembly::I32_TRUNC_U_F64);
533   case WebAssembly::FP_TO_SINT_I64_F64:
534     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
535                         WebAssembly::I64_TRUNC_S_F64);
536   case WebAssembly::FP_TO_UINT_I64_F64:
537     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
538                         WebAssembly::I64_TRUNC_U_F64);
539   case WebAssembly::CALL_RESULTS:
540   case WebAssembly::RET_CALL_RESULTS:
541     return LowerCallResults(MI, DL, BB, Subtarget, TII);
542   }
543 }
544 
545 const char *
546 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
547   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
548   case WebAssemblyISD::FIRST_NUMBER:
549   case WebAssemblyISD::FIRST_MEM_OPCODE:
550     break;
551 #define HANDLE_NODETYPE(NODE)                                                  \
552   case WebAssemblyISD::NODE:                                                   \
553     return "WebAssemblyISD::" #NODE;
554 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
555 #include "WebAssemblyISD.def"
556 #undef HANDLE_MEM_NODETYPE
557 #undef HANDLE_NODETYPE
558   }
559   return nullptr;
560 }
561 
562 std::pair<unsigned, const TargetRegisterClass *>
563 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
564     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
565   // First, see if this is a constraint that directly corresponds to a
566   // WebAssembly register class.
567   if (Constraint.size() == 1) {
568     switch (Constraint[0]) {
569     case 'r':
570       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
571       if (Subtarget->hasSIMD128() && VT.isVector()) {
572         if (VT.getSizeInBits() == 128)
573           return std::make_pair(0U, &WebAssembly::V128RegClass);
574       }
575       if (VT.isInteger() && !VT.isVector()) {
576         if (VT.getSizeInBits() <= 32)
577           return std::make_pair(0U, &WebAssembly::I32RegClass);
578         if (VT.getSizeInBits() <= 64)
579           return std::make_pair(0U, &WebAssembly::I64RegClass);
580       }
581       if (VT.isFloatingPoint() && !VT.isVector()) {
582         switch (VT.getSizeInBits()) {
583         case 32:
584           return std::make_pair(0U, &WebAssembly::F32RegClass);
585         case 64:
586           return std::make_pair(0U, &WebAssembly::F64RegClass);
587         default:
588           break;
589         }
590       }
591       break;
592     default:
593       break;
594     }
595   }
596 
597   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
598 }
599 
600 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
601   // Assume ctz is a relatively cheap operation.
602   return true;
603 }
604 
605 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
606   // Assume clz is a relatively cheap operation.
607   return true;
608 }
609 
610 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
611                                                       const AddrMode &AM,
612                                                       Type *Ty, unsigned AS,
613                                                       Instruction *I) const {
614   // WebAssembly offsets are added as unsigned without wrapping. The
615   // isLegalAddressingMode gives us no way to determine if wrapping could be
616   // happening, so we approximate this by accepting only non-negative offsets.
617   if (AM.BaseOffs < 0)
618     return false;
619 
620   // WebAssembly has no scale register operands.
621   if (AM.Scale != 0)
622     return false;
623 
624   // Everything else is legal.
625   return true;
626 }
627 
628 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
629     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
630     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
631   // WebAssembly supports unaligned accesses, though it should be declared
632   // with the p2align attribute on loads and stores which do so, and there
633   // may be a performance impact. We tell LLVM they're "fast" because
634   // for the kinds of things that LLVM uses this for (merging adjacent stores
635   // of constants, etc.), WebAssembly implementations will either want the
636   // unaligned access or they'll split anyway.
637   if (Fast)
638     *Fast = true;
639   return true;
640 }
641 
642 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
643                                               AttributeList Attr) const {
644   // The current thinking is that wasm engines will perform this optimization,
645   // so we can save on code size.
646   return true;
647 }
648 
649 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
650   EVT ExtT = ExtVal.getValueType();
651   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
652   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
653          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
654          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
655 }
656 
657 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
658                                                   LLVMContext &C,
659                                                   EVT VT) const {
660   if (VT.isVector())
661     return VT.changeVectorElementTypeToInteger();
662 
663   // So far, all branch instructions in Wasm take an I32 condition.
664   // The default TargetLowering::getSetCCResultType returns the pointer size,
665   // which would be useful to reduce instruction counts when testing
666   // against 64-bit pointers/values if at some point Wasm supports that.
667   return EVT::getIntegerVT(C, 32);
668 }
669 
670 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
671                                                    const CallInst &I,
672                                                    MachineFunction &MF,
673                                                    unsigned Intrinsic) const {
674   switch (Intrinsic) {
675   case Intrinsic::wasm_memory_atomic_notify:
676     Info.opc = ISD::INTRINSIC_W_CHAIN;
677     Info.memVT = MVT::i32;
678     Info.ptrVal = I.getArgOperand(0);
679     Info.offset = 0;
680     Info.align = Align(4);
681     // atomic.notify instruction does not really load the memory specified with
682     // this argument, but MachineMemOperand should either be load or store, so
683     // we set this to a load.
684     // FIXME Volatile isn't really correct, but currently all LLVM atomic
685     // instructions are treated as volatiles in the backend, so we should be
686     // consistent. The same applies for wasm_atomic_wait intrinsics too.
687     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
688     return true;
689   case Intrinsic::wasm_memory_atomic_wait32:
690     Info.opc = ISD::INTRINSIC_W_CHAIN;
691     Info.memVT = MVT::i32;
692     Info.ptrVal = I.getArgOperand(0);
693     Info.offset = 0;
694     Info.align = Align(4);
695     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
696     return true;
697   case Intrinsic::wasm_memory_atomic_wait64:
698     Info.opc = ISD::INTRINSIC_W_CHAIN;
699     Info.memVT = MVT::i64;
700     Info.ptrVal = I.getArgOperand(0);
701     Info.offset = 0;
702     Info.align = Align(8);
703     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
704     return true;
705   case Intrinsic::wasm_load32_zero:
706   case Intrinsic::wasm_load64_zero:
707     Info.opc = ISD::INTRINSIC_W_CHAIN;
708     Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64;
709     Info.ptrVal = I.getArgOperand(0);
710     Info.offset = 0;
711     Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8);
712     Info.flags = MachineMemOperand::MOLoad;
713     return true;
714   case Intrinsic::wasm_load8_lane:
715   case Intrinsic::wasm_load16_lane:
716   case Intrinsic::wasm_load32_lane:
717   case Intrinsic::wasm_load64_lane:
718   case Intrinsic::wasm_store8_lane:
719   case Intrinsic::wasm_store16_lane:
720   case Intrinsic::wasm_store32_lane:
721   case Intrinsic::wasm_store64_lane: {
722     MVT MemVT;
723     Align MemAlign;
724     switch (Intrinsic) {
725     case Intrinsic::wasm_load8_lane:
726     case Intrinsic::wasm_store8_lane:
727       MemVT = MVT::i8;
728       MemAlign = Align(1);
729       break;
730     case Intrinsic::wasm_load16_lane:
731     case Intrinsic::wasm_store16_lane:
732       MemVT = MVT::i16;
733       MemAlign = Align(2);
734       break;
735     case Intrinsic::wasm_load32_lane:
736     case Intrinsic::wasm_store32_lane:
737       MemVT = MVT::i32;
738       MemAlign = Align(4);
739       break;
740     case Intrinsic::wasm_load64_lane:
741     case Intrinsic::wasm_store64_lane:
742       MemVT = MVT::i64;
743       MemAlign = Align(8);
744       break;
745     default:
746       llvm_unreachable("unexpected intrinsic");
747     }
748     if (Intrinsic == Intrinsic::wasm_load8_lane ||
749         Intrinsic == Intrinsic::wasm_load16_lane ||
750         Intrinsic == Intrinsic::wasm_load32_lane ||
751         Intrinsic == Intrinsic::wasm_load64_lane) {
752       Info.opc = ISD::INTRINSIC_W_CHAIN;
753       Info.flags = MachineMemOperand::MOLoad;
754     } else {
755       Info.opc = ISD::INTRINSIC_VOID;
756       Info.flags = MachineMemOperand::MOStore;
757     }
758     Info.ptrVal = I.getArgOperand(0);
759     Info.memVT = MemVT;
760     Info.offset = 0;
761     Info.align = MemAlign;
762     return true;
763   }
764   case Intrinsic::wasm_prefetch_t:
765   case Intrinsic::wasm_prefetch_nt: {
766     Info.opc = ISD::INTRINSIC_VOID;
767     Info.memVT = MVT::i8;
768     Info.ptrVal = I.getArgOperand(0);
769     Info.offset = 0;
770     Info.align = Align(1);
771     Info.flags = MachineMemOperand::MOLoad;
772     return true;
773   }
774   default:
775     return false;
776   }
777 }
778 
779 //===----------------------------------------------------------------------===//
780 // WebAssembly Lowering private implementation.
781 //===----------------------------------------------------------------------===//
782 
783 //===----------------------------------------------------------------------===//
784 // Lowering Code
785 //===----------------------------------------------------------------------===//
786 
787 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
788   MachineFunction &MF = DAG.getMachineFunction();
789   DAG.getContext()->diagnose(
790       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
791 }
792 
793 // Test whether the given calling convention is supported.
794 static bool callingConvSupported(CallingConv::ID CallConv) {
795   // We currently support the language-independent target-independent
796   // conventions. We don't yet have a way to annotate calls with properties like
797   // "cold", and we don't have any call-clobbered registers, so these are mostly
798   // all handled the same.
799   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
800          CallConv == CallingConv::Cold ||
801          CallConv == CallingConv::PreserveMost ||
802          CallConv == CallingConv::PreserveAll ||
803          CallConv == CallingConv::CXX_FAST_TLS ||
804          CallConv == CallingConv::WASM_EmscriptenInvoke ||
805          CallConv == CallingConv::Swift;
806 }
807 
808 SDValue
809 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
810                                      SmallVectorImpl<SDValue> &InVals) const {
811   SelectionDAG &DAG = CLI.DAG;
812   SDLoc DL = CLI.DL;
813   SDValue Chain = CLI.Chain;
814   SDValue Callee = CLI.Callee;
815   MachineFunction &MF = DAG.getMachineFunction();
816   auto Layout = MF.getDataLayout();
817 
818   CallingConv::ID CallConv = CLI.CallConv;
819   if (!callingConvSupported(CallConv))
820     fail(DL, DAG,
821          "WebAssembly doesn't support language-specific or target-specific "
822          "calling conventions yet");
823   if (CLI.IsPatchPoint)
824     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
825 
826   if (CLI.IsTailCall) {
827     auto NoTail = [&](const char *Msg) {
828       if (CLI.CB && CLI.CB->isMustTailCall())
829         fail(DL, DAG, Msg);
830       CLI.IsTailCall = false;
831     };
832 
833     if (!Subtarget->hasTailCall())
834       NoTail("WebAssembly 'tail-call' feature not enabled");
835 
836     // Varargs calls cannot be tail calls because the buffer is on the stack
837     if (CLI.IsVarArg)
838       NoTail("WebAssembly does not support varargs tail calls");
839 
840     // Do not tail call unless caller and callee return types match
841     const Function &F = MF.getFunction();
842     const TargetMachine &TM = getTargetMachine();
843     Type *RetTy = F.getReturnType();
844     SmallVector<MVT, 4> CallerRetTys;
845     SmallVector<MVT, 4> CalleeRetTys;
846     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
847     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
848     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
849                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
850                                  CalleeRetTys.begin());
851     if (!TypesMatch)
852       NoTail("WebAssembly tail call requires caller and callee return types to "
853              "match");
854 
855     // If pointers to local stack values are passed, we cannot tail call
856     if (CLI.CB) {
857       for (auto &Arg : CLI.CB->args()) {
858         Value *Val = Arg.get();
859         // Trace the value back through pointer operations
860         while (true) {
861           Value *Src = Val->stripPointerCastsAndAliases();
862           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
863             Src = GEP->getPointerOperand();
864           if (Val == Src)
865             break;
866           Val = Src;
867         }
868         if (isa<AllocaInst>(Val)) {
869           NoTail(
870               "WebAssembly does not support tail calling with stack arguments");
871           break;
872         }
873       }
874     }
875   }
876 
877   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
878   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
879   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
880 
881   // The generic code may have added an sret argument. If we're lowering an
882   // invoke function, the ABI requires that the function pointer be the first
883   // argument, so we may have to swap the arguments.
884   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
885       Outs[0].Flags.isSRet()) {
886     std::swap(Outs[0], Outs[1]);
887     std::swap(OutVals[0], OutVals[1]);
888   }
889 
890   bool HasSwiftSelfArg = false;
891   bool HasSwiftErrorArg = false;
892   unsigned NumFixedArgs = 0;
893   for (unsigned I = 0; I < Outs.size(); ++I) {
894     const ISD::OutputArg &Out = Outs[I];
895     SDValue &OutVal = OutVals[I];
896     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
897     HasSwiftErrorArg |= Out.Flags.isSwiftError();
898     if (Out.Flags.isNest())
899       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
900     if (Out.Flags.isInAlloca())
901       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
902     if (Out.Flags.isInConsecutiveRegs())
903       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
904     if (Out.Flags.isInConsecutiveRegsLast())
905       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
906     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
907       auto &MFI = MF.getFrameInfo();
908       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
909                                      Out.Flags.getNonZeroByValAlign(),
910                                      /*isSS=*/false);
911       SDValue SizeNode =
912           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
913       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
914       Chain = DAG.getMemcpy(
915           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
916           /*isVolatile*/ false, /*AlwaysInline=*/false,
917           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
918       OutVal = FINode;
919     }
920     // Count the number of fixed args *after* legalization.
921     NumFixedArgs += Out.IsFixed;
922   }
923 
924   bool IsVarArg = CLI.IsVarArg;
925   auto PtrVT = getPointerTy(Layout);
926 
927   // For swiftcc, emit additional swiftself and swifterror arguments
928   // if there aren't. These additional arguments are also added for callee
929   // signature They are necessary to match callee and caller signature for
930   // indirect call.
931   if (CallConv == CallingConv::Swift) {
932     if (!HasSwiftSelfArg) {
933       NumFixedArgs++;
934       ISD::OutputArg Arg;
935       Arg.Flags.setSwiftSelf();
936       CLI.Outs.push_back(Arg);
937       SDValue ArgVal = DAG.getUNDEF(PtrVT);
938       CLI.OutVals.push_back(ArgVal);
939     }
940     if (!HasSwiftErrorArg) {
941       NumFixedArgs++;
942       ISD::OutputArg Arg;
943       Arg.Flags.setSwiftError();
944       CLI.Outs.push_back(Arg);
945       SDValue ArgVal = DAG.getUNDEF(PtrVT);
946       CLI.OutVals.push_back(ArgVal);
947     }
948   }
949 
950   // Analyze operands of the call, assigning locations to each operand.
951   SmallVector<CCValAssign, 16> ArgLocs;
952   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
953 
954   if (IsVarArg) {
955     // Outgoing non-fixed arguments are placed in a buffer. First
956     // compute their offsets and the total amount of buffer space needed.
957     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
958       const ISD::OutputArg &Out = Outs[I];
959       SDValue &Arg = OutVals[I];
960       EVT VT = Arg.getValueType();
961       assert(VT != MVT::iPTR && "Legalized args should be concrete");
962       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
963       Align Alignment =
964           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
965       unsigned Offset =
966           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
967       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
968                                         Offset, VT.getSimpleVT(),
969                                         CCValAssign::Full));
970     }
971   }
972 
973   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
974 
975   SDValue FINode;
976   if (IsVarArg && NumBytes) {
977     // For non-fixed arguments, next emit stores to store the argument values
978     // to the stack buffer at the offsets computed above.
979     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
980                                                  Layout.getStackAlignment(),
981                                                  /*isSS=*/false);
982     unsigned ValNo = 0;
983     SmallVector<SDValue, 8> Chains;
984     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
985       assert(ArgLocs[ValNo].getValNo() == ValNo &&
986              "ArgLocs should remain in order and only hold varargs args");
987       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
988       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
989       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
990                                 DAG.getConstant(Offset, DL, PtrVT));
991       Chains.push_back(
992           DAG.getStore(Chain, DL, Arg, Add,
993                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
994     }
995     if (!Chains.empty())
996       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
997   } else if (IsVarArg) {
998     FINode = DAG.getIntPtrConstant(0, DL);
999   }
1000 
1001   if (Callee->getOpcode() == ISD::GlobalAddress) {
1002     // If the callee is a GlobalAddress node (quite common, every direct call
1003     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1004     // doesn't at MO_GOT which is not needed for direct calls.
1005     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1006     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1007                                         getPointerTy(DAG.getDataLayout()),
1008                                         GA->getOffset());
1009     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1010                          getPointerTy(DAG.getDataLayout()), Callee);
1011   }
1012 
1013   // Compute the operands for the CALLn node.
1014   SmallVector<SDValue, 16> Ops;
1015   Ops.push_back(Chain);
1016   Ops.push_back(Callee);
1017 
1018   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1019   // isn't reliable.
1020   Ops.append(OutVals.begin(),
1021              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1022   // Add a pointer to the vararg buffer.
1023   if (IsVarArg)
1024     Ops.push_back(FINode);
1025 
1026   SmallVector<EVT, 8> InTys;
1027   for (const auto &In : Ins) {
1028     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1029     assert(!In.Flags.isNest() && "nest is not valid for return values");
1030     if (In.Flags.isInAlloca())
1031       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1032     if (In.Flags.isInConsecutiveRegs())
1033       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1034     if (In.Flags.isInConsecutiveRegsLast())
1035       fail(DL, DAG,
1036            "WebAssembly hasn't implemented cons regs last return values");
1037     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1038     // registers.
1039     InTys.push_back(In.VT);
1040   }
1041 
1042   if (CLI.IsTailCall) {
1043     // ret_calls do not return values to the current frame
1044     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1045     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1046   }
1047 
1048   InTys.push_back(MVT::Other);
1049   SDVTList InTyList = DAG.getVTList(InTys);
1050   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1051 
1052   for (size_t I = 0; I < Ins.size(); ++I)
1053     InVals.push_back(Res.getValue(I));
1054 
1055   // Return the chain
1056   return Res.getValue(Ins.size());
1057 }
1058 
1059 bool WebAssemblyTargetLowering::CanLowerReturn(
1060     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1061     const SmallVectorImpl<ISD::OutputArg> &Outs,
1062     LLVMContext & /*Context*/) const {
1063   // WebAssembly can only handle returning tuples with multivalue enabled
1064   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1065 }
1066 
1067 SDValue WebAssemblyTargetLowering::LowerReturn(
1068     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1069     const SmallVectorImpl<ISD::OutputArg> &Outs,
1070     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1071     SelectionDAG &DAG) const {
1072   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1073          "MVP WebAssembly can only return up to one value");
1074   if (!callingConvSupported(CallConv))
1075     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1076 
1077   SmallVector<SDValue, 4> RetOps(1, Chain);
1078   RetOps.append(OutVals.begin(), OutVals.end());
1079   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1080 
1081   // Record the number and types of the return values.
1082   for (const ISD::OutputArg &Out : Outs) {
1083     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1084     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1085     assert(Out.IsFixed && "non-fixed return value is not valid");
1086     if (Out.Flags.isInAlloca())
1087       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1088     if (Out.Flags.isInConsecutiveRegs())
1089       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1090     if (Out.Flags.isInConsecutiveRegsLast())
1091       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1092   }
1093 
1094   return Chain;
1095 }
1096 
1097 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1098     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1099     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1100     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1101   if (!callingConvSupported(CallConv))
1102     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1103 
1104   MachineFunction &MF = DAG.getMachineFunction();
1105   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1106 
1107   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1108   // of the incoming values before they're represented by virtual registers.
1109   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1110 
1111   bool HasSwiftErrorArg = false;
1112   bool HasSwiftSelfArg = false;
1113   for (const ISD::InputArg &In : Ins) {
1114     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1115     HasSwiftErrorArg |= In.Flags.isSwiftError();
1116     if (In.Flags.isInAlloca())
1117       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1118     if (In.Flags.isNest())
1119       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1120     if (In.Flags.isInConsecutiveRegs())
1121       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1122     if (In.Flags.isInConsecutiveRegsLast())
1123       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1124     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1125     // registers.
1126     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1127                                            DAG.getTargetConstant(InVals.size(),
1128                                                                  DL, MVT::i32))
1129                              : DAG.getUNDEF(In.VT));
1130 
1131     // Record the number and types of arguments.
1132     MFI->addParam(In.VT);
1133   }
1134 
1135   // For swiftcc, emit additional swiftself and swifterror arguments
1136   // if there aren't. These additional arguments are also added for callee
1137   // signature They are necessary to match callee and caller signature for
1138   // indirect call.
1139   auto PtrVT = getPointerTy(MF.getDataLayout());
1140   if (CallConv == CallingConv::Swift) {
1141     if (!HasSwiftSelfArg) {
1142       MFI->addParam(PtrVT);
1143     }
1144     if (!HasSwiftErrorArg) {
1145       MFI->addParam(PtrVT);
1146     }
1147   }
1148   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1149   // the buffer is passed as an argument.
1150   if (IsVarArg) {
1151     MVT PtrVT = getPointerTy(MF.getDataLayout());
1152     Register VarargVreg =
1153         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1154     MFI->setVarargBufferVreg(VarargVreg);
1155     Chain = DAG.getCopyToReg(
1156         Chain, DL, VarargVreg,
1157         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1158                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1159     MFI->addParam(PtrVT);
1160   }
1161 
1162   // Record the number and types of arguments and results.
1163   SmallVector<MVT, 4> Params;
1164   SmallVector<MVT, 4> Results;
1165   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1166                       MF.getFunction(), DAG.getTarget(), Params, Results);
1167   for (MVT VT : Results)
1168     MFI->addResult(VT);
1169   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1170   // the param logic here with ComputeSignatureVTs
1171   assert(MFI->getParams().size() == Params.size() &&
1172          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1173                     Params.begin()));
1174 
1175   return Chain;
1176 }
1177 
1178 void WebAssemblyTargetLowering::ReplaceNodeResults(
1179     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1180   switch (N->getOpcode()) {
1181   case ISD::SIGN_EXTEND_INREG:
1182     // Do not add any results, signifying that N should not be custom lowered
1183     // after all. This happens because simd128 turns on custom lowering for
1184     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1185     // illegal type.
1186     break;
1187   default:
1188     llvm_unreachable(
1189         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1190   }
1191 }
1192 
1193 //===----------------------------------------------------------------------===//
1194 //  Custom lowering hooks.
1195 //===----------------------------------------------------------------------===//
1196 
1197 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1198                                                   SelectionDAG &DAG) const {
1199   SDLoc DL(Op);
1200   switch (Op.getOpcode()) {
1201   default:
1202     llvm_unreachable("unimplemented operation lowering");
1203     return SDValue();
1204   case ISD::FrameIndex:
1205     return LowerFrameIndex(Op, DAG);
1206   case ISD::GlobalAddress:
1207     return LowerGlobalAddress(Op, DAG);
1208   case ISD::GlobalTLSAddress:
1209     return LowerGlobalTLSAddress(Op, DAG);
1210   case ISD::ExternalSymbol:
1211     return LowerExternalSymbol(Op, DAG);
1212   case ISD::JumpTable:
1213     return LowerJumpTable(Op, DAG);
1214   case ISD::BR_JT:
1215     return LowerBR_JT(Op, DAG);
1216   case ISD::VASTART:
1217     return LowerVASTART(Op, DAG);
1218   case ISD::BlockAddress:
1219   case ISD::BRIND:
1220     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1221     return SDValue();
1222   case ISD::RETURNADDR:
1223     return LowerRETURNADDR(Op, DAG);
1224   case ISD::FRAMEADDR:
1225     return LowerFRAMEADDR(Op, DAG);
1226   case ISD::CopyToReg:
1227     return LowerCopyToReg(Op, DAG);
1228   case ISD::EXTRACT_VECTOR_ELT:
1229   case ISD::INSERT_VECTOR_ELT:
1230     return LowerAccessVectorElement(Op, DAG);
1231   case ISD::INTRINSIC_VOID:
1232   case ISD::INTRINSIC_WO_CHAIN:
1233   case ISD::INTRINSIC_W_CHAIN:
1234     return LowerIntrinsic(Op, DAG);
1235   case ISD::SIGN_EXTEND_INREG:
1236     return LowerSIGN_EXTEND_INREG(Op, DAG);
1237   case ISD::BUILD_VECTOR:
1238     return LowerBUILD_VECTOR(Op, DAG);
1239   case ISD::VECTOR_SHUFFLE:
1240     return LowerVECTOR_SHUFFLE(Op, DAG);
1241   case ISD::SETCC:
1242     return LowerSETCC(Op, DAG);
1243   case ISD::SHL:
1244   case ISD::SRA:
1245   case ISD::SRL:
1246     return LowerShift(Op, DAG);
1247   }
1248 }
1249 
1250 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1251                                                   SelectionDAG &DAG) const {
1252   SDValue Src = Op.getOperand(2);
1253   if (isa<FrameIndexSDNode>(Src.getNode())) {
1254     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1255     // the FI to some LEA-like instruction, but since we don't have that, we
1256     // need to insert some kind of instruction that can take an FI operand and
1257     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1258     // local.copy between Op and its FI operand.
1259     SDValue Chain = Op.getOperand(0);
1260     SDLoc DL(Op);
1261     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1262     EVT VT = Src.getValueType();
1263     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1264                                                    : WebAssembly::COPY_I64,
1265                                     DL, VT, Src),
1266                  0);
1267     return Op.getNode()->getNumValues() == 1
1268                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1269                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1270                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1271                                                            : SDValue());
1272   }
1273   return SDValue();
1274 }
1275 
1276 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1277                                                    SelectionDAG &DAG) const {
1278   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1279   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1280 }
1281 
1282 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1283                                                    SelectionDAG &DAG) const {
1284   SDLoc DL(Op);
1285 
1286   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1287     fail(DL, DAG,
1288          "Non-Emscripten WebAssembly hasn't implemented "
1289          "__builtin_return_address");
1290     return SDValue();
1291   }
1292 
1293   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1294     return SDValue();
1295 
1296   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1297   MakeLibCallOptions CallOptions;
1298   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1299                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1300       .first;
1301 }
1302 
1303 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1304                                                   SelectionDAG &DAG) const {
1305   // Non-zero depths are not supported by WebAssembly currently. Use the
1306   // legalizer's default expansion, which is to return 0 (what this function is
1307   // documented to do).
1308   if (Op.getConstantOperandVal(0) > 0)
1309     return SDValue();
1310 
1311   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1312   EVT VT = Op.getValueType();
1313   Register FP =
1314       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1315   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1316 }
1317 
1318 SDValue
1319 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1320                                                  SelectionDAG &DAG) const {
1321   SDLoc DL(Op);
1322   const auto *GA = cast<GlobalAddressSDNode>(Op);
1323   MVT PtrVT = getPointerTy(DAG.getDataLayout());
1324 
1325   MachineFunction &MF = DAG.getMachineFunction();
1326   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1327     report_fatal_error("cannot use thread-local storage without bulk memory",
1328                        false);
1329 
1330   const GlobalValue *GV = GA->getGlobal();
1331 
1332   // Currently Emscripten does not support dynamic linking with threads.
1333   // Therefore, if we have thread-local storage, only the local-exec model
1334   // is possible.
1335   // TODO: remove this and implement proper TLS models once Emscripten
1336   // supports dynamic linking with threads.
1337   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1338       !Subtarget->getTargetTriple().isOSEmscripten()) {
1339     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1340                        "non-Emscripten OSes: variable " +
1341                            GV->getName(),
1342                        false);
1343   }
1344 
1345   auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1346                                      : WebAssembly::GLOBAL_GET_I32;
1347   const char *BaseName = MF.createExternalSymbolName("__tls_base");
1348 
1349   SDValue BaseAddr(
1350       DAG.getMachineNode(GlobalGet, DL, PtrVT,
1351                          DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1352       0);
1353 
1354   SDValue TLSOffset = DAG.getTargetGlobalAddress(
1355       GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1356   SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset);
1357 
1358   return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1359 }
1360 
1361 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1362                                                       SelectionDAG &DAG) const {
1363   SDLoc DL(Op);
1364   const auto *GA = cast<GlobalAddressSDNode>(Op);
1365   EVT VT = Op.getValueType();
1366   assert(GA->getTargetFlags() == 0 &&
1367          "Unexpected target flags on generic GlobalAddressSDNode");
1368   if (GA->getAddressSpace() != 0)
1369     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1370 
1371   unsigned OperandFlags = 0;
1372   if (isPositionIndependent()) {
1373     const GlobalValue *GV = GA->getGlobal();
1374     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1375       MachineFunction &MF = DAG.getMachineFunction();
1376       MVT PtrVT = getPointerTy(MF.getDataLayout());
1377       const char *BaseName;
1378       if (GV->getValueType()->isFunctionTy()) {
1379         BaseName = MF.createExternalSymbolName("__table_base");
1380         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1381       }
1382       else {
1383         BaseName = MF.createExternalSymbolName("__memory_base");
1384         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1385       }
1386       SDValue BaseAddr =
1387           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1388                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1389 
1390       SDValue SymAddr = DAG.getNode(
1391           WebAssemblyISD::WrapperPIC, DL, VT,
1392           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1393                                      OperandFlags));
1394 
1395       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1396     } else {
1397       OperandFlags = WebAssemblyII::MO_GOT;
1398     }
1399   }
1400 
1401   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1402                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1403                                                 GA->getOffset(), OperandFlags));
1404 }
1405 
1406 SDValue
1407 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1408                                                SelectionDAG &DAG) const {
1409   SDLoc DL(Op);
1410   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1411   EVT VT = Op.getValueType();
1412   assert(ES->getTargetFlags() == 0 &&
1413          "Unexpected target flags on generic ExternalSymbolSDNode");
1414   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1415                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1416 }
1417 
1418 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1419                                                   SelectionDAG &DAG) const {
1420   // There's no need for a Wrapper node because we always incorporate a jump
1421   // table operand into a BR_TABLE instruction, rather than ever
1422   // materializing it in a register.
1423   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1424   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1425                                 JT->getTargetFlags());
1426 }
1427 
1428 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1429                                               SelectionDAG &DAG) const {
1430   SDLoc DL(Op);
1431   SDValue Chain = Op.getOperand(0);
1432   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1433   SDValue Index = Op.getOperand(2);
1434   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1435 
1436   SmallVector<SDValue, 8> Ops;
1437   Ops.push_back(Chain);
1438   Ops.push_back(Index);
1439 
1440   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1441   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1442 
1443   // Add an operand for each case.
1444   for (auto MBB : MBBs)
1445     Ops.push_back(DAG.getBasicBlock(MBB));
1446 
1447   // Add the first MBB as a dummy default target for now. This will be replaced
1448   // with the proper default target (and the preceding range check eliminated)
1449   // if possible by WebAssemblyFixBrTableDefaults.
1450   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1451   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1452 }
1453 
1454 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1455                                                 SelectionDAG &DAG) const {
1456   SDLoc DL(Op);
1457   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1458 
1459   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1460   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1461 
1462   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1463                                     MFI->getVarargBufferVreg(), PtrVT);
1464   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1465                       MachinePointerInfo(SV));
1466 }
1467 
1468 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex,
1469                                       SelectionDAG &DAG) {
1470   // We only support C++ exceptions for now
1471   int Tag =
1472       cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue();
1473   if (Tag != WebAssembly::CPP_EXCEPTION)
1474     llvm_unreachable("Invalid tag: We only support C++ exceptions for now");
1475   auto &MF = DAG.getMachineFunction();
1476   const auto &TLI = DAG.getTargetLoweringInfo();
1477   MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1478   const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1479   return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT,
1480                      DAG.getTargetExternalSymbol(SymName, PtrVT));
1481 }
1482 
1483 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1484                                                   SelectionDAG &DAG) const {
1485   MachineFunction &MF = DAG.getMachineFunction();
1486   unsigned IntNo;
1487   switch (Op.getOpcode()) {
1488   case ISD::INTRINSIC_VOID:
1489   case ISD::INTRINSIC_W_CHAIN:
1490     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1491     break;
1492   case ISD::INTRINSIC_WO_CHAIN:
1493     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1494     break;
1495   default:
1496     llvm_unreachable("Invalid intrinsic");
1497   }
1498   SDLoc DL(Op);
1499 
1500   switch (IntNo) {
1501   default:
1502     return SDValue(); // Don't custom lower most intrinsics.
1503 
1504   case Intrinsic::wasm_lsda: {
1505     EVT VT = Op.getValueType();
1506     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1507     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1508     auto &Context = MF.getMMI().getContext();
1509     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1510                                             Twine(MF.getFunctionNumber()));
1511     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1512                        DAG.getMCSymbol(S, PtrVT));
1513   }
1514 
1515   case Intrinsic::wasm_throw: {
1516     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1517     return DAG.getNode(WebAssemblyISD::THROW, DL,
1518                        MVT::Other, // outchain type
1519                        {
1520                            Op.getOperand(0), // inchain
1521                            SymNode,          // exception symbol
1522                            Op.getOperand(3)  // thrown value
1523                        });
1524   }
1525 
1526   case Intrinsic::wasm_catch: {
1527     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1528     return DAG.getNode(WebAssemblyISD::CATCH, DL,
1529                        {
1530                            MVT::i32,  // outchain type
1531                            MVT::Other // return value
1532                        },
1533                        {
1534                            Op.getOperand(0), // inchain
1535                            SymNode           // exception symbol
1536                        });
1537   }
1538 
1539   case Intrinsic::wasm_shuffle: {
1540     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1541     SDValue Ops[18];
1542     size_t OpIdx = 0;
1543     Ops[OpIdx++] = Op.getOperand(1);
1544     Ops[OpIdx++] = Op.getOperand(2);
1545     while (OpIdx < 18) {
1546       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1547       if (MaskIdx.isUndef() ||
1548           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1549         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1550       } else {
1551         Ops[OpIdx++] = MaskIdx;
1552       }
1553     }
1554     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1555   }
1556   }
1557 }
1558 
1559 SDValue
1560 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1561                                                   SelectionDAG &DAG) const {
1562   SDLoc DL(Op);
1563   // If sign extension operations are disabled, allow sext_inreg only if operand
1564   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1565   // extension operations, but allowing sext_inreg in this context lets us have
1566   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1567   // everywhere would be simpler in this file, but would necessitate large and
1568   // brittle patterns to undo the expansion and select extract_lane_s
1569   // instructions.
1570   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1571   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1572     return SDValue();
1573 
1574   const SDValue &Extract = Op.getOperand(0);
1575   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1576   if (VecT.getVectorElementType().getSizeInBits() > 32)
1577     return SDValue();
1578   MVT ExtractedLaneT =
1579       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1580   MVT ExtractedVecT =
1581       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1582   if (ExtractedVecT == VecT)
1583     return Op;
1584 
1585   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1586   const SDNode *Index = Extract.getOperand(1).getNode();
1587   if (!isa<ConstantSDNode>(Index))
1588     return SDValue();
1589   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1590   unsigned Scale =
1591       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1592   assert(Scale > 1);
1593   SDValue NewIndex =
1594       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1595   SDValue NewExtract = DAG.getNode(
1596       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1597       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1598   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1599                      Op.getOperand(1));
1600 }
1601 
1602 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1603                                                      SelectionDAG &DAG) const {
1604   SDLoc DL(Op);
1605   const EVT VecT = Op.getValueType();
1606   const EVT LaneT = Op.getOperand(0).getValueType();
1607   const size_t Lanes = Op.getNumOperands();
1608   bool CanSwizzle = VecT == MVT::v16i8;
1609 
1610   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1611   // possible number of lanes at once followed by a sequence of replace_lane
1612   // instructions to individually initialize any remaining lanes.
1613 
1614   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1615   // swizzled lanes should be given greater weight.
1616 
1617   // TODO: Investigate building vectors by shuffling together vectors built by
1618   // separately specialized means.
1619 
1620   auto IsConstant = [](const SDValue &V) {
1621     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1622   };
1623 
1624   // Returns the source vector and index vector pair if they exist. Checks for:
1625   //   (extract_vector_elt
1626   //     $src,
1627   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1628   //   )
1629   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1630     auto Bail = std::make_pair(SDValue(), SDValue());
1631     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1632       return Bail;
1633     const SDValue &SwizzleSrc = Lane->getOperand(0);
1634     const SDValue &IndexExt = Lane->getOperand(1);
1635     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1636       return Bail;
1637     const SDValue &Index = IndexExt->getOperand(0);
1638     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1639       return Bail;
1640     const SDValue &SwizzleIndices = Index->getOperand(0);
1641     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1642         SwizzleIndices.getValueType() != MVT::v16i8 ||
1643         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1644         Index->getConstantOperandVal(1) != I)
1645       return Bail;
1646     return std::make_pair(SwizzleSrc, SwizzleIndices);
1647   };
1648 
1649   using ValueEntry = std::pair<SDValue, size_t>;
1650   SmallVector<ValueEntry, 16> SplatValueCounts;
1651 
1652   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1653   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1654 
1655   auto AddCount = [](auto &Counts, const auto &Val) {
1656     auto CountIt =
1657         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
1658     if (CountIt == Counts.end()) {
1659       Counts.emplace_back(Val, 1);
1660     } else {
1661       CountIt->second++;
1662     }
1663   };
1664 
1665   auto GetMostCommon = [](auto &Counts) {
1666     auto CommonIt =
1667         std::max_element(Counts.begin(), Counts.end(),
1668                          [](auto A, auto B) { return A.second < B.second; });
1669     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1670     return *CommonIt;
1671   };
1672 
1673   size_t NumConstantLanes = 0;
1674 
1675   // Count eligible lanes for each type of vector creation op
1676   for (size_t I = 0; I < Lanes; ++I) {
1677     const SDValue &Lane = Op->getOperand(I);
1678     if (Lane.isUndef())
1679       continue;
1680 
1681     AddCount(SplatValueCounts, Lane);
1682 
1683     if (IsConstant(Lane)) {
1684       NumConstantLanes++;
1685     } else if (CanSwizzle) {
1686       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1687       if (SwizzleSrcs.first)
1688         AddCount(SwizzleCounts, SwizzleSrcs);
1689     }
1690   }
1691 
1692   SDValue SplatValue;
1693   size_t NumSplatLanes;
1694   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1695 
1696   SDValue SwizzleSrc;
1697   SDValue SwizzleIndices;
1698   size_t NumSwizzleLanes = 0;
1699   if (SwizzleCounts.size())
1700     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1701                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1702 
1703   // Predicate returning true if the lane is properly initialized by the
1704   // original instruction
1705   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1706   SDValue Result;
1707   // Prefer swizzles over vector consts over splats
1708   if (NumSwizzleLanes >= NumSplatLanes &&
1709       (!Subtarget->hasUnimplementedSIMD128() ||
1710        NumSwizzleLanes >= NumConstantLanes)) {
1711     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1712                          SwizzleIndices);
1713     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1714     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1715       return Swizzled == GetSwizzleSrcs(I, Lane);
1716     };
1717   } else if (NumConstantLanes >= NumSplatLanes &&
1718              Subtarget->hasUnimplementedSIMD128()) {
1719     // If we support v128.const, emit it directly
1720     SmallVector<SDValue, 16> ConstLanes;
1721     for (const SDValue &Lane : Op->op_values()) {
1722       if (IsConstant(Lane)) {
1723         ConstLanes.push_back(Lane);
1724       } else if (LaneT.isFloatingPoint()) {
1725         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1726       } else {
1727         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1728       }
1729     }
1730     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1731     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1732       return IsConstant(Lane);
1733     };
1734   } else if (NumConstantLanes >= NumSplatLanes && VecT.isInteger()) {
1735     // Otherwise, if this is an integer vector, pack the lane values together so
1736     // we can construct the 128-bit constant from a pair of i64s using a splat
1737     // followed by at most one i64x2.replace_lane. Also keep track of the lanes
1738     // that actually matter so we can avoid the replace_lane in more cases.
1739     std::array<uint64_t, 2> I64s{{0, 0}};
1740     std::array<uint64_t, 2> ConstLaneMasks{{0, 0}};
1741     size_t LaneBits = 128 / Lanes;
1742     size_t HalfLanes = Lanes / 2;
1743     for (size_t I = 0; I < Lanes; ++I) {
1744       const SDValue &Lane = Op.getOperand(I);
1745       if (IsConstant(Lane)) {
1746         // How much we need to shift Val to position it in an i64
1747         auto Shift = LaneBits * (I % HalfLanes);
1748         auto Mask = maskTrailingOnes<uint64_t>(LaneBits);
1749         auto Val = cast<ConstantSDNode>(Lane.getNode())->getZExtValue() & Mask;
1750         I64s[I / HalfLanes] |= Val << Shift;
1751         ConstLaneMasks[I / HalfLanes] |= Mask << Shift;
1752       }
1753     }
1754     // Check whether all constant lanes in the second half of the vector are
1755     // equivalent in the first half or vice versa to determine whether splatting
1756     // either side will be sufficient to materialize the constant. As a special
1757     // case, if the first and second halves have no constant lanes in common, we
1758     // can just combine them.
1759     bool FirstHalfSufficient = (I64s[0] & ConstLaneMasks[1]) == I64s[1];
1760     bool SecondHalfSufficient = (I64s[1] & ConstLaneMasks[0]) == I64s[0];
1761     bool CombinedSufficient = (ConstLaneMasks[0] & ConstLaneMasks[1]) == 0;
1762 
1763     uint64_t Splatted;
1764     if (SecondHalfSufficient) {
1765       Splatted = I64s[1];
1766     } else if (CombinedSufficient) {
1767       Splatted = I64s[0] | I64s[1];
1768     } else {
1769       Splatted = I64s[0];
1770     }
1771 
1772     Result = DAG.getSplatBuildVector(MVT::v2i64, DL,
1773                                      DAG.getConstant(Splatted, DL, MVT::i64));
1774     if (!FirstHalfSufficient && !SecondHalfSufficient && !CombinedSufficient) {
1775       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i64, Result,
1776                            DAG.getConstant(I64s[1], DL, MVT::i64),
1777                            DAG.getConstant(1, DL, MVT::i32));
1778     }
1779     Result = DAG.getBitcast(VecT, Result);
1780     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1781       return IsConstant(Lane);
1782     };
1783   } else {
1784     // Use a splat, but possibly a load_splat
1785     LoadSDNode *SplattedLoad;
1786     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1787         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1788       Result = DAG.getMemIntrinsicNode(
1789           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1790           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1791            SplattedLoad->getOffset()},
1792           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1793     } else {
1794       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1795     }
1796     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
1797       return Lane == SplatValue;
1798     };
1799   }
1800 
1801   assert(Result);
1802   assert(IsLaneConstructed);
1803 
1804   // Add replace_lane instructions for any unhandled values
1805   for (size_t I = 0; I < Lanes; ++I) {
1806     const SDValue &Lane = Op->getOperand(I);
1807     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1808       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1809                            DAG.getConstant(I, DL, MVT::i32));
1810   }
1811 
1812   return Result;
1813 }
1814 
1815 SDValue
1816 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1817                                                SelectionDAG &DAG) const {
1818   SDLoc DL(Op);
1819   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1820   MVT VecType = Op.getOperand(0).getSimpleValueType();
1821   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1822   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1823 
1824   // Space for two vector args and sixteen mask indices
1825   SDValue Ops[18];
1826   size_t OpIdx = 0;
1827   Ops[OpIdx++] = Op.getOperand(0);
1828   Ops[OpIdx++] = Op.getOperand(1);
1829 
1830   // Expand mask indices to byte indices and materialize them as operands
1831   for (int M : Mask) {
1832     for (size_t J = 0; J < LaneBytes; ++J) {
1833       // Lower undefs (represented by -1 in mask) to zero
1834       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1835       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1836     }
1837   }
1838 
1839   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1840 }
1841 
1842 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
1843                                               SelectionDAG &DAG) const {
1844   SDLoc DL(Op);
1845   // The legalizer does not know how to expand the comparison modes of i64x2
1846   // vectors because no comparison modes are supported. We could solve this by
1847   // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes
1848   // (which return i64x2 results) as well. So instead we manually unroll i64x2
1849   // comparisons here.
1850   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
1851   SmallVector<SDValue, 2> LHS, RHS;
1852   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
1853   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
1854   const SDValue &CC = Op->getOperand(2);
1855   auto MakeLane = [&](unsigned I) {
1856     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
1857                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
1858                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
1859   };
1860   return DAG.getBuildVector(Op->getValueType(0), DL,
1861                             {MakeLane(0), MakeLane(1)});
1862 }
1863 
1864 SDValue
1865 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1866                                                     SelectionDAG &DAG) const {
1867   // Allow constant lane indices, expand variable lane indices
1868   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1869   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1870     return Op;
1871   else
1872     // Perform default expansion
1873     return SDValue();
1874 }
1875 
1876 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1877   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1878   // 32-bit and 64-bit unrolled shifts will have proper semantics
1879   if (LaneT.bitsGE(MVT::i32))
1880     return DAG.UnrollVectorOp(Op.getNode());
1881   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1882   SDLoc DL(Op);
1883   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
1884   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
1885   unsigned ShiftOpcode = Op.getOpcode();
1886   SmallVector<SDValue, 16> ShiftedElements;
1887   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
1888   SmallVector<SDValue, 16> ShiftElements;
1889   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
1890   SmallVector<SDValue, 16> UnrolledOps;
1891   for (size_t i = 0; i < NumLanes; ++i) {
1892     SDValue MaskedShiftValue =
1893         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
1894     SDValue ShiftedValue = ShiftedElements[i];
1895     if (ShiftOpcode == ISD::SRA)
1896       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
1897                                  ShiftedValue, DAG.getValueType(LaneT));
1898     UnrolledOps.push_back(
1899         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
1900   }
1901   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
1902 }
1903 
1904 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1905                                               SelectionDAG &DAG) const {
1906   SDLoc DL(Op);
1907 
1908   // Only manually lower vector shifts
1909   assert(Op.getSimpleValueType().isVector());
1910 
1911   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
1912   if (!ShiftVal)
1913     return unrollVectorShift(Op, DAG);
1914 
1915   // Use anyext because none of the high bits can affect the shift
1916   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
1917 
1918   unsigned Opcode;
1919   switch (Op.getOpcode()) {
1920   case ISD::SHL:
1921     Opcode = WebAssemblyISD::VEC_SHL;
1922     break;
1923   case ISD::SRA:
1924     Opcode = WebAssemblyISD::VEC_SHR_S;
1925     break;
1926   case ISD::SRL:
1927     Opcode = WebAssemblyISD::VEC_SHR_U;
1928     break;
1929   default:
1930     llvm_unreachable("unexpected opcode");
1931   }
1932 
1933   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
1934 }
1935 
1936 //===----------------------------------------------------------------------===//
1937 //   Custom DAG combine hooks
1938 //===----------------------------------------------------------------------===//
1939 static SDValue
1940 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
1941   auto &DAG = DCI.DAG;
1942   auto Shuffle = cast<ShuffleVectorSDNode>(N);
1943 
1944   // Hoist vector bitcasts that don't change the number of lanes out of unary
1945   // shuffles, where they are less likely to get in the way of other combines.
1946   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
1947   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
1948   SDValue Bitcast = N->getOperand(0);
1949   if (Bitcast.getOpcode() != ISD::BITCAST)
1950     return SDValue();
1951   if (!N->getOperand(1).isUndef())
1952     return SDValue();
1953   SDValue CastOp = Bitcast.getOperand(0);
1954   MVT SrcType = CastOp.getSimpleValueType();
1955   MVT DstType = Bitcast.getSimpleValueType();
1956   if (!SrcType.is128BitVector() ||
1957       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
1958     return SDValue();
1959   SDValue NewShuffle = DAG.getVectorShuffle(
1960       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
1961   return DAG.getBitcast(DstType, NewShuffle);
1962 }
1963 
1964 static SDValue performVectorWidenCombine(SDNode *N,
1965                                          TargetLowering::DAGCombinerInfo &DCI) {
1966   auto &DAG = DCI.DAG;
1967   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
1968          N->getOpcode() == ISD::ZERO_EXTEND);
1969 
1970   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
1971   // possible before the extract_subvector can be expanded.
1972   auto Extract = N->getOperand(0);
1973   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
1974     return SDValue();
1975   auto Source = Extract.getOperand(0);
1976   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
1977   if (IndexNode == nullptr)
1978     return SDValue();
1979   auto Index = IndexNode->getZExtValue();
1980 
1981   // Only v8i8 and v4i16 extracts can be widened, and only if the extracted
1982   // subvector is the low or high half of its source.
1983   EVT ResVT = N->getValueType(0);
1984   if (ResVT == MVT::v8i16) {
1985     if (Extract.getValueType() != MVT::v8i8 ||
1986         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
1987       return SDValue();
1988   } else if (ResVT == MVT::v4i32) {
1989     if (Extract.getValueType() != MVT::v4i16 ||
1990         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
1991       return SDValue();
1992   } else {
1993     return SDValue();
1994   }
1995 
1996   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
1997   bool IsLow = Index == 0;
1998 
1999   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S
2000                                 : WebAssemblyISD::WIDEN_HIGH_S)
2001                        : (IsLow ? WebAssemblyISD::WIDEN_LOW_U
2002                                 : WebAssemblyISD::WIDEN_HIGH_U);
2003 
2004   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2005 }
2006 
2007 SDValue
2008 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2009                                              DAGCombinerInfo &DCI) const {
2010   switch (N->getOpcode()) {
2011   default:
2012     return SDValue();
2013   case ISD::VECTOR_SHUFFLE:
2014     return performVECTOR_SHUFFLECombine(N, DCI);
2015   case ISD::SIGN_EXTEND:
2016   case ISD::ZERO_EXTEND:
2017     return performVectorWidenCombine(N, DCI);
2018   }
2019 }
2020