1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "WebAssemblyUtilities.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 73 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 74 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 75 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 76 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 77 setOperationAction(ISD::BRIND, MVT::Other, Custom); 78 79 // Take the default expansion for va_arg, va_copy, and va_end. There is no 80 // default action for va_start, so we do that custom. 81 setOperationAction(ISD::VASTART, MVT::Other, Custom); 82 setOperationAction(ISD::VAARG, MVT::Other, Expand); 83 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 84 setOperationAction(ISD::VAEND, MVT::Other, Expand); 85 86 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 87 // Don't expand the floating-point types to constant pools. 88 setOperationAction(ISD::ConstantFP, T, Legal); 89 // Expand floating-point comparisons. 90 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 91 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 92 setCondCodeAction(CC, T, Expand); 93 // Expand floating-point library function operators. 94 for (auto Op : 95 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 96 setOperationAction(Op, T, Expand); 97 // Note supported floating-point library function operators that otherwise 98 // default to expand. 99 for (auto Op : 100 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 101 setOperationAction(Op, T, Legal); 102 // Support minimum and maximum, which otherwise default to expand. 103 setOperationAction(ISD::FMINIMUM, T, Legal); 104 setOperationAction(ISD::FMAXIMUM, T, Legal); 105 // WebAssembly currently has no builtin f16 support. 106 setOperationAction(ISD::FP16_TO_FP, T, Expand); 107 setOperationAction(ISD::FP_TO_FP16, T, Expand); 108 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 109 setTruncStoreAction(T, MVT::f16, Expand); 110 } 111 112 // Expand unavailable integer operations. 113 for (auto Op : 114 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 115 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 116 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 117 for (auto T : {MVT::i32, MVT::i64}) 118 setOperationAction(Op, T, Expand); 119 if (Subtarget->hasSIMD128()) 120 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 121 setOperationAction(Op, T, Expand); 122 } 123 124 // SIMD-specific configuration 125 if (Subtarget->hasSIMD128()) { 126 // Hoist bitcasts out of shuffles 127 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 128 129 // Combine extends of extract_subvectors into widening ops 130 setTargetDAGCombine(ISD::SIGN_EXTEND); 131 setTargetDAGCombine(ISD::ZERO_EXTEND); 132 133 // Support saturating add for i8x16 and i16x8 134 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 135 for (auto T : {MVT::v16i8, MVT::v8i16}) 136 setOperationAction(Op, T, Legal); 137 138 // Support integer abs 139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 140 setOperationAction(ISD::ABS, T, Legal); 141 142 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 143 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 144 MVT::v2f64}) 145 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 146 147 // We have custom shuffle lowering to expose the shuffle mask 148 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 149 MVT::v2f64}) 150 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 151 152 // Custom lowering since wasm shifts must have a scalar shift amount 153 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 154 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 155 setOperationAction(Op, T, Custom); 156 157 // Custom lower lane accesses to expand out variable indices 158 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 159 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 160 MVT::v2f64}) 161 setOperationAction(Op, T, Custom); 162 163 // There is no i8x16.mul instruction 164 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 165 166 // There is no vector conditional select instruction 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 168 MVT::v2f64}) 169 setOperationAction(ISD::SELECT_CC, T, Expand); 170 171 // Expand integer operations supported for scalars but not SIMD 172 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 173 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 174 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 175 setOperationAction(Op, T, Expand); 176 177 // But we do have integer min and max operations 178 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 179 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 180 setOperationAction(Op, T, Legal); 181 182 // Expand float operations supported for scalars but not SIMD 183 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 184 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 185 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 186 for (auto T : {MVT::v4f32, MVT::v2f64}) 187 setOperationAction(Op, T, Expand); 188 189 // Expand operations not supported for i64x2 vectors 190 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 191 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 192 193 // 64x2 conversions are not in the spec 194 for (auto Op : 195 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 196 for (auto T : {MVT::v2i64, MVT::v2f64}) 197 setOperationAction(Op, T, Expand); 198 } 199 200 // As a special case, these operators use the type to mean the type to 201 // sign-extend from. 202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 203 if (!Subtarget->hasSignExt()) { 204 // Sign extends are legal only when extending a vector extract 205 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 206 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 207 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 208 } 209 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 210 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 211 212 // Dynamic stack allocation: use the default expansion. 213 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 214 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 215 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 216 217 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 218 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 219 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 220 221 // Expand these forms; we pattern-match the forms that we can handle in isel. 222 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 223 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 224 setOperationAction(Op, T, Expand); 225 226 // We have custom switch handling. 227 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 228 229 // WebAssembly doesn't have: 230 // - Floating-point extending loads. 231 // - Floating-point truncating stores. 232 // - i1 extending loads. 233 // - truncating SIMD stores and most extending loads 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 235 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 236 for (auto T : MVT::integer_valuetypes()) 237 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 238 setLoadExtAction(Ext, T, MVT::i1, Promote); 239 if (Subtarget->hasSIMD128()) { 240 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 241 MVT::v2f64}) { 242 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 243 if (MVT(T) != MemT) { 244 setTruncStoreAction(T, MemT, Expand); 245 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 246 setLoadExtAction(Ext, T, MemT, Expand); 247 } 248 } 249 } 250 // But some vector extending loads are legal 251 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 252 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 253 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 254 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 255 } 256 // And some truncating stores are legal as well 257 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 258 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 259 } 260 261 // Don't do anything clever with build_pairs 262 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 263 264 // Trap lowers to wasm unreachable 265 setOperationAction(ISD::TRAP, MVT::Other, Legal); 266 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 267 268 // Exception handling intrinsics 269 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 270 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 271 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 272 273 setMaxAtomicSizeInBitsSupported(64); 274 275 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 276 // consistent with the f64 and f128 names. 277 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 278 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 279 280 // Define the emscripten name for return address helper. 281 // TODO: when implementing other Wasm backends, make this generic or only do 282 // this on emscripten depending on what they end up doing. 283 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 284 285 // Always convert switches to br_tables unless there is only one case, which 286 // is equivalent to a simple branch. This reduces code size for wasm, and we 287 // defer possible jump table optimizations to the VM. 288 setMinimumJumpTableEntries(2); 289 } 290 291 TargetLowering::AtomicExpansionKind 292 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 293 // We have wasm instructions for these 294 switch (AI->getOperation()) { 295 case AtomicRMWInst::Add: 296 case AtomicRMWInst::Sub: 297 case AtomicRMWInst::And: 298 case AtomicRMWInst::Or: 299 case AtomicRMWInst::Xor: 300 case AtomicRMWInst::Xchg: 301 return AtomicExpansionKind::None; 302 default: 303 break; 304 } 305 return AtomicExpansionKind::CmpXChg; 306 } 307 308 FastISel *WebAssemblyTargetLowering::createFastISel( 309 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 310 return WebAssembly::createFastISel(FuncInfo, LibInfo); 311 } 312 313 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 314 EVT VT) const { 315 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 316 if (BitWidth > 1 && BitWidth < 8) 317 BitWidth = 8; 318 319 if (BitWidth > 64) { 320 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 321 // the count to be an i32. 322 BitWidth = 32; 323 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 324 "32-bit shift counts ought to be enough for anyone"); 325 } 326 327 MVT Result = MVT::getIntegerVT(BitWidth); 328 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 329 "Unable to represent scalar shift amount type"); 330 return Result; 331 } 332 333 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 334 // undefined result on invalid/overflow, to the WebAssembly opcode, which 335 // traps on invalid/overflow. 336 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 337 MachineBasicBlock *BB, 338 const TargetInstrInfo &TII, 339 bool IsUnsigned, bool Int64, 340 bool Float64, unsigned LoweredOpcode) { 341 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 342 343 Register OutReg = MI.getOperand(0).getReg(); 344 Register InReg = MI.getOperand(1).getReg(); 345 346 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 347 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 348 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 349 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 350 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 351 unsigned Eqz = WebAssembly::EQZ_I32; 352 unsigned And = WebAssembly::AND_I32; 353 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 354 int64_t Substitute = IsUnsigned ? 0 : Limit; 355 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 356 auto &Context = BB->getParent()->getFunction().getContext(); 357 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 358 359 const BasicBlock *LLVMBB = BB->getBasicBlock(); 360 MachineFunction *F = BB->getParent(); 361 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 362 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 363 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 364 365 MachineFunction::iterator It = ++BB->getIterator(); 366 F->insert(It, FalseMBB); 367 F->insert(It, TrueMBB); 368 F->insert(It, DoneMBB); 369 370 // Transfer the remainder of BB and its successor edges to DoneMBB. 371 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 372 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 373 374 BB->addSuccessor(TrueMBB); 375 BB->addSuccessor(FalseMBB); 376 TrueMBB->addSuccessor(DoneMBB); 377 FalseMBB->addSuccessor(DoneMBB); 378 379 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 380 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 381 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 382 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 383 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 384 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 385 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 386 387 MI.eraseFromParent(); 388 // For signed numbers, we can do a single comparison to determine whether 389 // fabs(x) is within range. 390 if (IsUnsigned) { 391 Tmp0 = InReg; 392 } else { 393 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 394 } 395 BuildMI(BB, DL, TII.get(FConst), Tmp1) 396 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 397 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 398 399 // For unsigned numbers, we have to do a separate comparison with zero. 400 if (IsUnsigned) { 401 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 402 Register SecondCmpReg = 403 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 404 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 405 BuildMI(BB, DL, TII.get(FConst), Tmp1) 406 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 407 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 408 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 409 CmpReg = AndReg; 410 } 411 412 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 413 414 // Create the CFG diamond to select between doing the conversion or using 415 // the substitute value. 416 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 417 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 418 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 419 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 420 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 421 .addReg(FalseReg) 422 .addMBB(FalseMBB) 423 .addReg(TrueReg) 424 .addMBB(TrueMBB); 425 426 return DoneMBB; 427 } 428 429 static MachineBasicBlock * 430 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 431 const WebAssemblySubtarget *Subtarget, 432 const TargetInstrInfo &TII) { 433 MachineInstr &CallParams = *CallResults.getPrevNode(); 434 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 435 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 436 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 437 438 bool IsIndirect = CallParams.getOperand(0).isReg(); 439 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 440 441 unsigned CallOp; 442 if (IsIndirect && IsRetCall) { 443 CallOp = WebAssembly::RET_CALL_INDIRECT; 444 } else if (IsIndirect) { 445 CallOp = WebAssembly::CALL_INDIRECT; 446 } else if (IsRetCall) { 447 CallOp = WebAssembly::RET_CALL; 448 } else { 449 CallOp = WebAssembly::CALL; 450 } 451 452 MachineFunction &MF = *BB->getParent(); 453 const MCInstrDesc &MCID = TII.get(CallOp); 454 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 455 456 // See if we must truncate the function pointer. 457 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 458 // as 64-bit for uniformity with other pointer types. 459 // See also: WebAssemblyFastISel::selectCall 460 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 461 Register Reg32 = 462 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 463 auto &FnPtr = CallParams.getOperand(0); 464 BuildMI(*BB, CallResults.getIterator(), DL, 465 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 466 .addReg(FnPtr.getReg()); 467 FnPtr.setReg(Reg32); 468 } 469 470 // Move the function pointer to the end of the arguments for indirect calls 471 if (IsIndirect) { 472 auto FnPtr = CallParams.getOperand(0); 473 CallParams.RemoveOperand(0); 474 CallParams.addOperand(FnPtr); 475 } 476 477 for (auto Def : CallResults.defs()) 478 MIB.add(Def); 479 480 if (IsIndirect) { 481 // Placeholder for the type index. 482 MIB.addImm(0); 483 // The table into which this call_indirect indexes. 484 MCSymbolWasm *Table = 485 WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget); 486 if (Subtarget->hasReferenceTypes()) { 487 MIB.addSym(Table); 488 } else { 489 // For the MVP there is at most one table whose number is 0, but we can't 490 // write a table symbol or issue relocations. Instead we just ensure the 491 // table is live and write a zero. 492 Table->setNoStrip(); 493 MIB.addImm(0); 494 } 495 } 496 497 for (auto Use : CallParams.uses()) 498 MIB.add(Use); 499 500 BB->insert(CallResults.getIterator(), MIB); 501 CallParams.eraseFromParent(); 502 CallResults.eraseFromParent(); 503 504 return BB; 505 } 506 507 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 508 MachineInstr &MI, MachineBasicBlock *BB) const { 509 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 510 DebugLoc DL = MI.getDebugLoc(); 511 512 switch (MI.getOpcode()) { 513 default: 514 llvm_unreachable("Unexpected instr type to insert"); 515 case WebAssembly::FP_TO_SINT_I32_F32: 516 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 517 WebAssembly::I32_TRUNC_S_F32); 518 case WebAssembly::FP_TO_UINT_I32_F32: 519 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 520 WebAssembly::I32_TRUNC_U_F32); 521 case WebAssembly::FP_TO_SINT_I64_F32: 522 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 523 WebAssembly::I64_TRUNC_S_F32); 524 case WebAssembly::FP_TO_UINT_I64_F32: 525 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 526 WebAssembly::I64_TRUNC_U_F32); 527 case WebAssembly::FP_TO_SINT_I32_F64: 528 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 529 WebAssembly::I32_TRUNC_S_F64); 530 case WebAssembly::FP_TO_UINT_I32_F64: 531 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 532 WebAssembly::I32_TRUNC_U_F64); 533 case WebAssembly::FP_TO_SINT_I64_F64: 534 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 535 WebAssembly::I64_TRUNC_S_F64); 536 case WebAssembly::FP_TO_UINT_I64_F64: 537 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 538 WebAssembly::I64_TRUNC_U_F64); 539 case WebAssembly::CALL_RESULTS: 540 case WebAssembly::RET_CALL_RESULTS: 541 return LowerCallResults(MI, DL, BB, Subtarget, TII); 542 } 543 } 544 545 const char * 546 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 547 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 548 case WebAssemblyISD::FIRST_NUMBER: 549 case WebAssemblyISD::FIRST_MEM_OPCODE: 550 break; 551 #define HANDLE_NODETYPE(NODE) \ 552 case WebAssemblyISD::NODE: \ 553 return "WebAssemblyISD::" #NODE; 554 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 555 #include "WebAssemblyISD.def" 556 #undef HANDLE_MEM_NODETYPE 557 #undef HANDLE_NODETYPE 558 } 559 return nullptr; 560 } 561 562 std::pair<unsigned, const TargetRegisterClass *> 563 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 564 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 565 // First, see if this is a constraint that directly corresponds to a 566 // WebAssembly register class. 567 if (Constraint.size() == 1) { 568 switch (Constraint[0]) { 569 case 'r': 570 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 571 if (Subtarget->hasSIMD128() && VT.isVector()) { 572 if (VT.getSizeInBits() == 128) 573 return std::make_pair(0U, &WebAssembly::V128RegClass); 574 } 575 if (VT.isInteger() && !VT.isVector()) { 576 if (VT.getSizeInBits() <= 32) 577 return std::make_pair(0U, &WebAssembly::I32RegClass); 578 if (VT.getSizeInBits() <= 64) 579 return std::make_pair(0U, &WebAssembly::I64RegClass); 580 } 581 if (VT.isFloatingPoint() && !VT.isVector()) { 582 switch (VT.getSizeInBits()) { 583 case 32: 584 return std::make_pair(0U, &WebAssembly::F32RegClass); 585 case 64: 586 return std::make_pair(0U, &WebAssembly::F64RegClass); 587 default: 588 break; 589 } 590 } 591 break; 592 default: 593 break; 594 } 595 } 596 597 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 598 } 599 600 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 601 // Assume ctz is a relatively cheap operation. 602 return true; 603 } 604 605 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 606 // Assume clz is a relatively cheap operation. 607 return true; 608 } 609 610 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 611 const AddrMode &AM, 612 Type *Ty, unsigned AS, 613 Instruction *I) const { 614 // WebAssembly offsets are added as unsigned without wrapping. The 615 // isLegalAddressingMode gives us no way to determine if wrapping could be 616 // happening, so we approximate this by accepting only non-negative offsets. 617 if (AM.BaseOffs < 0) 618 return false; 619 620 // WebAssembly has no scale register operands. 621 if (AM.Scale != 0) 622 return false; 623 624 // Everything else is legal. 625 return true; 626 } 627 628 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 629 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 630 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 631 // WebAssembly supports unaligned accesses, though it should be declared 632 // with the p2align attribute on loads and stores which do so, and there 633 // may be a performance impact. We tell LLVM they're "fast" because 634 // for the kinds of things that LLVM uses this for (merging adjacent stores 635 // of constants, etc.), WebAssembly implementations will either want the 636 // unaligned access or they'll split anyway. 637 if (Fast) 638 *Fast = true; 639 return true; 640 } 641 642 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 643 AttributeList Attr) const { 644 // The current thinking is that wasm engines will perform this optimization, 645 // so we can save on code size. 646 return true; 647 } 648 649 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 650 EVT ExtT = ExtVal.getValueType(); 651 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 652 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 653 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 654 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 655 } 656 657 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 658 LLVMContext &C, 659 EVT VT) const { 660 if (VT.isVector()) 661 return VT.changeVectorElementTypeToInteger(); 662 663 // So far, all branch instructions in Wasm take an I32 condition. 664 // The default TargetLowering::getSetCCResultType returns the pointer size, 665 // which would be useful to reduce instruction counts when testing 666 // against 64-bit pointers/values if at some point Wasm supports that. 667 return EVT::getIntegerVT(C, 32); 668 } 669 670 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 671 const CallInst &I, 672 MachineFunction &MF, 673 unsigned Intrinsic) const { 674 switch (Intrinsic) { 675 case Intrinsic::wasm_memory_atomic_notify: 676 Info.opc = ISD::INTRINSIC_W_CHAIN; 677 Info.memVT = MVT::i32; 678 Info.ptrVal = I.getArgOperand(0); 679 Info.offset = 0; 680 Info.align = Align(4); 681 // atomic.notify instruction does not really load the memory specified with 682 // this argument, but MachineMemOperand should either be load or store, so 683 // we set this to a load. 684 // FIXME Volatile isn't really correct, but currently all LLVM atomic 685 // instructions are treated as volatiles in the backend, so we should be 686 // consistent. The same applies for wasm_atomic_wait intrinsics too. 687 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 688 return true; 689 case Intrinsic::wasm_memory_atomic_wait32: 690 Info.opc = ISD::INTRINSIC_W_CHAIN; 691 Info.memVT = MVT::i32; 692 Info.ptrVal = I.getArgOperand(0); 693 Info.offset = 0; 694 Info.align = Align(4); 695 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 696 return true; 697 case Intrinsic::wasm_memory_atomic_wait64: 698 Info.opc = ISD::INTRINSIC_W_CHAIN; 699 Info.memVT = MVT::i64; 700 Info.ptrVal = I.getArgOperand(0); 701 Info.offset = 0; 702 Info.align = Align(8); 703 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 704 return true; 705 case Intrinsic::wasm_load32_zero: 706 case Intrinsic::wasm_load64_zero: 707 Info.opc = ISD::INTRINSIC_W_CHAIN; 708 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 709 Info.ptrVal = I.getArgOperand(0); 710 Info.offset = 0; 711 Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8); 712 Info.flags = MachineMemOperand::MOLoad; 713 return true; 714 case Intrinsic::wasm_load8_lane: 715 case Intrinsic::wasm_load16_lane: 716 case Intrinsic::wasm_load32_lane: 717 case Intrinsic::wasm_load64_lane: 718 case Intrinsic::wasm_store8_lane: 719 case Intrinsic::wasm_store16_lane: 720 case Intrinsic::wasm_store32_lane: 721 case Intrinsic::wasm_store64_lane: { 722 MVT MemVT; 723 Align MemAlign; 724 switch (Intrinsic) { 725 case Intrinsic::wasm_load8_lane: 726 case Intrinsic::wasm_store8_lane: 727 MemVT = MVT::i8; 728 MemAlign = Align(1); 729 break; 730 case Intrinsic::wasm_load16_lane: 731 case Intrinsic::wasm_store16_lane: 732 MemVT = MVT::i16; 733 MemAlign = Align(2); 734 break; 735 case Intrinsic::wasm_load32_lane: 736 case Intrinsic::wasm_store32_lane: 737 MemVT = MVT::i32; 738 MemAlign = Align(4); 739 break; 740 case Intrinsic::wasm_load64_lane: 741 case Intrinsic::wasm_store64_lane: 742 MemVT = MVT::i64; 743 MemAlign = Align(8); 744 break; 745 default: 746 llvm_unreachable("unexpected intrinsic"); 747 } 748 if (Intrinsic == Intrinsic::wasm_load8_lane || 749 Intrinsic == Intrinsic::wasm_load16_lane || 750 Intrinsic == Intrinsic::wasm_load32_lane || 751 Intrinsic == Intrinsic::wasm_load64_lane) { 752 Info.opc = ISD::INTRINSIC_W_CHAIN; 753 Info.flags = MachineMemOperand::MOLoad; 754 } else { 755 Info.opc = ISD::INTRINSIC_VOID; 756 Info.flags = MachineMemOperand::MOStore; 757 } 758 Info.ptrVal = I.getArgOperand(0); 759 Info.memVT = MemVT; 760 Info.offset = 0; 761 Info.align = MemAlign; 762 return true; 763 } 764 case Intrinsic::wasm_prefetch_t: 765 case Intrinsic::wasm_prefetch_nt: { 766 Info.opc = ISD::INTRINSIC_VOID; 767 Info.memVT = MVT::i8; 768 Info.ptrVal = I.getArgOperand(0); 769 Info.offset = 0; 770 Info.align = Align(1); 771 Info.flags = MachineMemOperand::MOLoad; 772 return true; 773 } 774 default: 775 return false; 776 } 777 } 778 779 //===----------------------------------------------------------------------===// 780 // WebAssembly Lowering private implementation. 781 //===----------------------------------------------------------------------===// 782 783 //===----------------------------------------------------------------------===// 784 // Lowering Code 785 //===----------------------------------------------------------------------===// 786 787 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 788 MachineFunction &MF = DAG.getMachineFunction(); 789 DAG.getContext()->diagnose( 790 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 791 } 792 793 // Test whether the given calling convention is supported. 794 static bool callingConvSupported(CallingConv::ID CallConv) { 795 // We currently support the language-independent target-independent 796 // conventions. We don't yet have a way to annotate calls with properties like 797 // "cold", and we don't have any call-clobbered registers, so these are mostly 798 // all handled the same. 799 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 800 CallConv == CallingConv::Cold || 801 CallConv == CallingConv::PreserveMost || 802 CallConv == CallingConv::PreserveAll || 803 CallConv == CallingConv::CXX_FAST_TLS || 804 CallConv == CallingConv::WASM_EmscriptenInvoke || 805 CallConv == CallingConv::Swift; 806 } 807 808 SDValue 809 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 810 SmallVectorImpl<SDValue> &InVals) const { 811 SelectionDAG &DAG = CLI.DAG; 812 SDLoc DL = CLI.DL; 813 SDValue Chain = CLI.Chain; 814 SDValue Callee = CLI.Callee; 815 MachineFunction &MF = DAG.getMachineFunction(); 816 auto Layout = MF.getDataLayout(); 817 818 CallingConv::ID CallConv = CLI.CallConv; 819 if (!callingConvSupported(CallConv)) 820 fail(DL, DAG, 821 "WebAssembly doesn't support language-specific or target-specific " 822 "calling conventions yet"); 823 if (CLI.IsPatchPoint) 824 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 825 826 if (CLI.IsTailCall) { 827 auto NoTail = [&](const char *Msg) { 828 if (CLI.CB && CLI.CB->isMustTailCall()) 829 fail(DL, DAG, Msg); 830 CLI.IsTailCall = false; 831 }; 832 833 if (!Subtarget->hasTailCall()) 834 NoTail("WebAssembly 'tail-call' feature not enabled"); 835 836 // Varargs calls cannot be tail calls because the buffer is on the stack 837 if (CLI.IsVarArg) 838 NoTail("WebAssembly does not support varargs tail calls"); 839 840 // Do not tail call unless caller and callee return types match 841 const Function &F = MF.getFunction(); 842 const TargetMachine &TM = getTargetMachine(); 843 Type *RetTy = F.getReturnType(); 844 SmallVector<MVT, 4> CallerRetTys; 845 SmallVector<MVT, 4> CalleeRetTys; 846 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 847 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 848 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 849 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 850 CalleeRetTys.begin()); 851 if (!TypesMatch) 852 NoTail("WebAssembly tail call requires caller and callee return types to " 853 "match"); 854 855 // If pointers to local stack values are passed, we cannot tail call 856 if (CLI.CB) { 857 for (auto &Arg : CLI.CB->args()) { 858 Value *Val = Arg.get(); 859 // Trace the value back through pointer operations 860 while (true) { 861 Value *Src = Val->stripPointerCastsAndAliases(); 862 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 863 Src = GEP->getPointerOperand(); 864 if (Val == Src) 865 break; 866 Val = Src; 867 } 868 if (isa<AllocaInst>(Val)) { 869 NoTail( 870 "WebAssembly does not support tail calling with stack arguments"); 871 break; 872 } 873 } 874 } 875 } 876 877 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 878 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 879 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 880 881 // The generic code may have added an sret argument. If we're lowering an 882 // invoke function, the ABI requires that the function pointer be the first 883 // argument, so we may have to swap the arguments. 884 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 885 Outs[0].Flags.isSRet()) { 886 std::swap(Outs[0], Outs[1]); 887 std::swap(OutVals[0], OutVals[1]); 888 } 889 890 bool HasSwiftSelfArg = false; 891 bool HasSwiftErrorArg = false; 892 unsigned NumFixedArgs = 0; 893 for (unsigned I = 0; I < Outs.size(); ++I) { 894 const ISD::OutputArg &Out = Outs[I]; 895 SDValue &OutVal = OutVals[I]; 896 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 897 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 898 if (Out.Flags.isNest()) 899 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 900 if (Out.Flags.isInAlloca()) 901 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 902 if (Out.Flags.isInConsecutiveRegs()) 903 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 904 if (Out.Flags.isInConsecutiveRegsLast()) 905 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 906 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 907 auto &MFI = MF.getFrameInfo(); 908 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 909 Out.Flags.getNonZeroByValAlign(), 910 /*isSS=*/false); 911 SDValue SizeNode = 912 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 913 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 914 Chain = DAG.getMemcpy( 915 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 916 /*isVolatile*/ false, /*AlwaysInline=*/false, 917 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 918 OutVal = FINode; 919 } 920 // Count the number of fixed args *after* legalization. 921 NumFixedArgs += Out.IsFixed; 922 } 923 924 bool IsVarArg = CLI.IsVarArg; 925 auto PtrVT = getPointerTy(Layout); 926 927 // For swiftcc, emit additional swiftself and swifterror arguments 928 // if there aren't. These additional arguments are also added for callee 929 // signature They are necessary to match callee and caller signature for 930 // indirect call. 931 if (CallConv == CallingConv::Swift) { 932 if (!HasSwiftSelfArg) { 933 NumFixedArgs++; 934 ISD::OutputArg Arg; 935 Arg.Flags.setSwiftSelf(); 936 CLI.Outs.push_back(Arg); 937 SDValue ArgVal = DAG.getUNDEF(PtrVT); 938 CLI.OutVals.push_back(ArgVal); 939 } 940 if (!HasSwiftErrorArg) { 941 NumFixedArgs++; 942 ISD::OutputArg Arg; 943 Arg.Flags.setSwiftError(); 944 CLI.Outs.push_back(Arg); 945 SDValue ArgVal = DAG.getUNDEF(PtrVT); 946 CLI.OutVals.push_back(ArgVal); 947 } 948 } 949 950 // Analyze operands of the call, assigning locations to each operand. 951 SmallVector<CCValAssign, 16> ArgLocs; 952 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 953 954 if (IsVarArg) { 955 // Outgoing non-fixed arguments are placed in a buffer. First 956 // compute their offsets and the total amount of buffer space needed. 957 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 958 const ISD::OutputArg &Out = Outs[I]; 959 SDValue &Arg = OutVals[I]; 960 EVT VT = Arg.getValueType(); 961 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 962 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 963 Align Alignment = 964 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 965 unsigned Offset = 966 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 967 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 968 Offset, VT.getSimpleVT(), 969 CCValAssign::Full)); 970 } 971 } 972 973 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 974 975 SDValue FINode; 976 if (IsVarArg && NumBytes) { 977 // For non-fixed arguments, next emit stores to store the argument values 978 // to the stack buffer at the offsets computed above. 979 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 980 Layout.getStackAlignment(), 981 /*isSS=*/false); 982 unsigned ValNo = 0; 983 SmallVector<SDValue, 8> Chains; 984 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 985 assert(ArgLocs[ValNo].getValNo() == ValNo && 986 "ArgLocs should remain in order and only hold varargs args"); 987 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 988 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 989 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 990 DAG.getConstant(Offset, DL, PtrVT)); 991 Chains.push_back( 992 DAG.getStore(Chain, DL, Arg, Add, 993 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 994 } 995 if (!Chains.empty()) 996 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 997 } else if (IsVarArg) { 998 FINode = DAG.getIntPtrConstant(0, DL); 999 } 1000 1001 if (Callee->getOpcode() == ISD::GlobalAddress) { 1002 // If the callee is a GlobalAddress node (quite common, every direct call 1003 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1004 // doesn't at MO_GOT which is not needed for direct calls. 1005 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1006 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1007 getPointerTy(DAG.getDataLayout()), 1008 GA->getOffset()); 1009 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1010 getPointerTy(DAG.getDataLayout()), Callee); 1011 } 1012 1013 // Compute the operands for the CALLn node. 1014 SmallVector<SDValue, 16> Ops; 1015 Ops.push_back(Chain); 1016 Ops.push_back(Callee); 1017 1018 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1019 // isn't reliable. 1020 Ops.append(OutVals.begin(), 1021 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1022 // Add a pointer to the vararg buffer. 1023 if (IsVarArg) 1024 Ops.push_back(FINode); 1025 1026 SmallVector<EVT, 8> InTys; 1027 for (const auto &In : Ins) { 1028 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1029 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1030 if (In.Flags.isInAlloca()) 1031 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1032 if (In.Flags.isInConsecutiveRegs()) 1033 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1034 if (In.Flags.isInConsecutiveRegsLast()) 1035 fail(DL, DAG, 1036 "WebAssembly hasn't implemented cons regs last return values"); 1037 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1038 // registers. 1039 InTys.push_back(In.VT); 1040 } 1041 1042 if (CLI.IsTailCall) { 1043 // ret_calls do not return values to the current frame 1044 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1045 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1046 } 1047 1048 InTys.push_back(MVT::Other); 1049 SDVTList InTyList = DAG.getVTList(InTys); 1050 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1051 1052 for (size_t I = 0; I < Ins.size(); ++I) 1053 InVals.push_back(Res.getValue(I)); 1054 1055 // Return the chain 1056 return Res.getValue(Ins.size()); 1057 } 1058 1059 bool WebAssemblyTargetLowering::CanLowerReturn( 1060 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1061 const SmallVectorImpl<ISD::OutputArg> &Outs, 1062 LLVMContext & /*Context*/) const { 1063 // WebAssembly can only handle returning tuples with multivalue enabled 1064 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1065 } 1066 1067 SDValue WebAssemblyTargetLowering::LowerReturn( 1068 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1069 const SmallVectorImpl<ISD::OutputArg> &Outs, 1070 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1071 SelectionDAG &DAG) const { 1072 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1073 "MVP WebAssembly can only return up to one value"); 1074 if (!callingConvSupported(CallConv)) 1075 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1076 1077 SmallVector<SDValue, 4> RetOps(1, Chain); 1078 RetOps.append(OutVals.begin(), OutVals.end()); 1079 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1080 1081 // Record the number and types of the return values. 1082 for (const ISD::OutputArg &Out : Outs) { 1083 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1084 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1085 assert(Out.IsFixed && "non-fixed return value is not valid"); 1086 if (Out.Flags.isInAlloca()) 1087 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1088 if (Out.Flags.isInConsecutiveRegs()) 1089 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1090 if (Out.Flags.isInConsecutiveRegsLast()) 1091 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1092 } 1093 1094 return Chain; 1095 } 1096 1097 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1098 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1099 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1100 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1101 if (!callingConvSupported(CallConv)) 1102 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1103 1104 MachineFunction &MF = DAG.getMachineFunction(); 1105 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1106 1107 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1108 // of the incoming values before they're represented by virtual registers. 1109 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1110 1111 bool HasSwiftErrorArg = false; 1112 bool HasSwiftSelfArg = false; 1113 for (const ISD::InputArg &In : Ins) { 1114 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1115 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1116 if (In.Flags.isInAlloca()) 1117 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1118 if (In.Flags.isNest()) 1119 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1120 if (In.Flags.isInConsecutiveRegs()) 1121 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1122 if (In.Flags.isInConsecutiveRegsLast()) 1123 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1124 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1125 // registers. 1126 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1127 DAG.getTargetConstant(InVals.size(), 1128 DL, MVT::i32)) 1129 : DAG.getUNDEF(In.VT)); 1130 1131 // Record the number and types of arguments. 1132 MFI->addParam(In.VT); 1133 } 1134 1135 // For swiftcc, emit additional swiftself and swifterror arguments 1136 // if there aren't. These additional arguments are also added for callee 1137 // signature They are necessary to match callee and caller signature for 1138 // indirect call. 1139 auto PtrVT = getPointerTy(MF.getDataLayout()); 1140 if (CallConv == CallingConv::Swift) { 1141 if (!HasSwiftSelfArg) { 1142 MFI->addParam(PtrVT); 1143 } 1144 if (!HasSwiftErrorArg) { 1145 MFI->addParam(PtrVT); 1146 } 1147 } 1148 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1149 // the buffer is passed as an argument. 1150 if (IsVarArg) { 1151 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1152 Register VarargVreg = 1153 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1154 MFI->setVarargBufferVreg(VarargVreg); 1155 Chain = DAG.getCopyToReg( 1156 Chain, DL, VarargVreg, 1157 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1158 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1159 MFI->addParam(PtrVT); 1160 } 1161 1162 // Record the number and types of arguments and results. 1163 SmallVector<MVT, 4> Params; 1164 SmallVector<MVT, 4> Results; 1165 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1166 MF.getFunction(), DAG.getTarget(), Params, Results); 1167 for (MVT VT : Results) 1168 MFI->addResult(VT); 1169 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1170 // the param logic here with ComputeSignatureVTs 1171 assert(MFI->getParams().size() == Params.size() && 1172 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1173 Params.begin())); 1174 1175 return Chain; 1176 } 1177 1178 void WebAssemblyTargetLowering::ReplaceNodeResults( 1179 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1180 switch (N->getOpcode()) { 1181 case ISD::SIGN_EXTEND_INREG: 1182 // Do not add any results, signifying that N should not be custom lowered 1183 // after all. This happens because simd128 turns on custom lowering for 1184 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1185 // illegal type. 1186 break; 1187 default: 1188 llvm_unreachable( 1189 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1190 } 1191 } 1192 1193 //===----------------------------------------------------------------------===// 1194 // Custom lowering hooks. 1195 //===----------------------------------------------------------------------===// 1196 1197 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1198 SelectionDAG &DAG) const { 1199 SDLoc DL(Op); 1200 switch (Op.getOpcode()) { 1201 default: 1202 llvm_unreachable("unimplemented operation lowering"); 1203 return SDValue(); 1204 case ISD::FrameIndex: 1205 return LowerFrameIndex(Op, DAG); 1206 case ISD::GlobalAddress: 1207 return LowerGlobalAddress(Op, DAG); 1208 case ISD::GlobalTLSAddress: 1209 return LowerGlobalTLSAddress(Op, DAG); 1210 case ISD::ExternalSymbol: 1211 return LowerExternalSymbol(Op, DAG); 1212 case ISD::JumpTable: 1213 return LowerJumpTable(Op, DAG); 1214 case ISD::BR_JT: 1215 return LowerBR_JT(Op, DAG); 1216 case ISD::VASTART: 1217 return LowerVASTART(Op, DAG); 1218 case ISD::BlockAddress: 1219 case ISD::BRIND: 1220 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1221 return SDValue(); 1222 case ISD::RETURNADDR: 1223 return LowerRETURNADDR(Op, DAG); 1224 case ISD::FRAMEADDR: 1225 return LowerFRAMEADDR(Op, DAG); 1226 case ISD::CopyToReg: 1227 return LowerCopyToReg(Op, DAG); 1228 case ISD::EXTRACT_VECTOR_ELT: 1229 case ISD::INSERT_VECTOR_ELT: 1230 return LowerAccessVectorElement(Op, DAG); 1231 case ISD::INTRINSIC_VOID: 1232 case ISD::INTRINSIC_WO_CHAIN: 1233 case ISD::INTRINSIC_W_CHAIN: 1234 return LowerIntrinsic(Op, DAG); 1235 case ISD::SIGN_EXTEND_INREG: 1236 return LowerSIGN_EXTEND_INREG(Op, DAG); 1237 case ISD::BUILD_VECTOR: 1238 return LowerBUILD_VECTOR(Op, DAG); 1239 case ISD::VECTOR_SHUFFLE: 1240 return LowerVECTOR_SHUFFLE(Op, DAG); 1241 case ISD::SETCC: 1242 return LowerSETCC(Op, DAG); 1243 case ISD::SHL: 1244 case ISD::SRA: 1245 case ISD::SRL: 1246 return LowerShift(Op, DAG); 1247 } 1248 } 1249 1250 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1251 SelectionDAG &DAG) const { 1252 SDValue Src = Op.getOperand(2); 1253 if (isa<FrameIndexSDNode>(Src.getNode())) { 1254 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1255 // the FI to some LEA-like instruction, but since we don't have that, we 1256 // need to insert some kind of instruction that can take an FI operand and 1257 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1258 // local.copy between Op and its FI operand. 1259 SDValue Chain = Op.getOperand(0); 1260 SDLoc DL(Op); 1261 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1262 EVT VT = Src.getValueType(); 1263 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1264 : WebAssembly::COPY_I64, 1265 DL, VT, Src), 1266 0); 1267 return Op.getNode()->getNumValues() == 1 1268 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1269 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1270 Op.getNumOperands() == 4 ? Op.getOperand(3) 1271 : SDValue()); 1272 } 1273 return SDValue(); 1274 } 1275 1276 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1277 SelectionDAG &DAG) const { 1278 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1279 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1280 } 1281 1282 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1283 SelectionDAG &DAG) const { 1284 SDLoc DL(Op); 1285 1286 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1287 fail(DL, DAG, 1288 "Non-Emscripten WebAssembly hasn't implemented " 1289 "__builtin_return_address"); 1290 return SDValue(); 1291 } 1292 1293 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1294 return SDValue(); 1295 1296 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1297 MakeLibCallOptions CallOptions; 1298 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1299 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1300 .first; 1301 } 1302 1303 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1304 SelectionDAG &DAG) const { 1305 // Non-zero depths are not supported by WebAssembly currently. Use the 1306 // legalizer's default expansion, which is to return 0 (what this function is 1307 // documented to do). 1308 if (Op.getConstantOperandVal(0) > 0) 1309 return SDValue(); 1310 1311 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1312 EVT VT = Op.getValueType(); 1313 Register FP = 1314 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1315 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1316 } 1317 1318 SDValue 1319 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1320 SelectionDAG &DAG) const { 1321 SDLoc DL(Op); 1322 const auto *GA = cast<GlobalAddressSDNode>(Op); 1323 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1324 1325 MachineFunction &MF = DAG.getMachineFunction(); 1326 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1327 report_fatal_error("cannot use thread-local storage without bulk memory", 1328 false); 1329 1330 const GlobalValue *GV = GA->getGlobal(); 1331 1332 // Currently Emscripten does not support dynamic linking with threads. 1333 // Therefore, if we have thread-local storage, only the local-exec model 1334 // is possible. 1335 // TODO: remove this and implement proper TLS models once Emscripten 1336 // supports dynamic linking with threads. 1337 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1338 !Subtarget->getTargetTriple().isOSEmscripten()) { 1339 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1340 "non-Emscripten OSes: variable " + 1341 GV->getName(), 1342 false); 1343 } 1344 1345 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1346 : WebAssembly::GLOBAL_GET_I32; 1347 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1348 1349 SDValue BaseAddr( 1350 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1351 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1352 0); 1353 1354 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1355 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1356 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1357 1358 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1359 } 1360 1361 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1362 SelectionDAG &DAG) const { 1363 SDLoc DL(Op); 1364 const auto *GA = cast<GlobalAddressSDNode>(Op); 1365 EVT VT = Op.getValueType(); 1366 assert(GA->getTargetFlags() == 0 && 1367 "Unexpected target flags on generic GlobalAddressSDNode"); 1368 if (GA->getAddressSpace() != 0) 1369 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1370 1371 unsigned OperandFlags = 0; 1372 if (isPositionIndependent()) { 1373 const GlobalValue *GV = GA->getGlobal(); 1374 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1375 MachineFunction &MF = DAG.getMachineFunction(); 1376 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1377 const char *BaseName; 1378 if (GV->getValueType()->isFunctionTy()) { 1379 BaseName = MF.createExternalSymbolName("__table_base"); 1380 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1381 } 1382 else { 1383 BaseName = MF.createExternalSymbolName("__memory_base"); 1384 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1385 } 1386 SDValue BaseAddr = 1387 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1388 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1389 1390 SDValue SymAddr = DAG.getNode( 1391 WebAssemblyISD::WrapperPIC, DL, VT, 1392 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1393 OperandFlags)); 1394 1395 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1396 } else { 1397 OperandFlags = WebAssemblyII::MO_GOT; 1398 } 1399 } 1400 1401 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1402 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1403 GA->getOffset(), OperandFlags)); 1404 } 1405 1406 SDValue 1407 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1408 SelectionDAG &DAG) const { 1409 SDLoc DL(Op); 1410 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1411 EVT VT = Op.getValueType(); 1412 assert(ES->getTargetFlags() == 0 && 1413 "Unexpected target flags on generic ExternalSymbolSDNode"); 1414 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1415 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1416 } 1417 1418 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1419 SelectionDAG &DAG) const { 1420 // There's no need for a Wrapper node because we always incorporate a jump 1421 // table operand into a BR_TABLE instruction, rather than ever 1422 // materializing it in a register. 1423 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1424 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1425 JT->getTargetFlags()); 1426 } 1427 1428 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1429 SelectionDAG &DAG) const { 1430 SDLoc DL(Op); 1431 SDValue Chain = Op.getOperand(0); 1432 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1433 SDValue Index = Op.getOperand(2); 1434 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1435 1436 SmallVector<SDValue, 8> Ops; 1437 Ops.push_back(Chain); 1438 Ops.push_back(Index); 1439 1440 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1441 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1442 1443 // Add an operand for each case. 1444 for (auto MBB : MBBs) 1445 Ops.push_back(DAG.getBasicBlock(MBB)); 1446 1447 // Add the first MBB as a dummy default target for now. This will be replaced 1448 // with the proper default target (and the preceding range check eliminated) 1449 // if possible by WebAssemblyFixBrTableDefaults. 1450 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1451 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1452 } 1453 1454 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1455 SelectionDAG &DAG) const { 1456 SDLoc DL(Op); 1457 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1458 1459 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1460 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1461 1462 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1463 MFI->getVarargBufferVreg(), PtrVT); 1464 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1465 MachinePointerInfo(SV)); 1466 } 1467 1468 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1469 SelectionDAG &DAG) { 1470 // We only support C++ exceptions for now 1471 int Tag = 1472 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1473 if (Tag != WebAssembly::CPP_EXCEPTION) 1474 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1475 auto &MF = DAG.getMachineFunction(); 1476 const auto &TLI = DAG.getTargetLoweringInfo(); 1477 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1478 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1479 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1480 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1481 } 1482 1483 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1484 SelectionDAG &DAG) const { 1485 MachineFunction &MF = DAG.getMachineFunction(); 1486 unsigned IntNo; 1487 switch (Op.getOpcode()) { 1488 case ISD::INTRINSIC_VOID: 1489 case ISD::INTRINSIC_W_CHAIN: 1490 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1491 break; 1492 case ISD::INTRINSIC_WO_CHAIN: 1493 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1494 break; 1495 default: 1496 llvm_unreachable("Invalid intrinsic"); 1497 } 1498 SDLoc DL(Op); 1499 1500 switch (IntNo) { 1501 default: 1502 return SDValue(); // Don't custom lower most intrinsics. 1503 1504 case Intrinsic::wasm_lsda: { 1505 EVT VT = Op.getValueType(); 1506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1507 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1508 auto &Context = MF.getMMI().getContext(); 1509 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1510 Twine(MF.getFunctionNumber())); 1511 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1512 DAG.getMCSymbol(S, PtrVT)); 1513 } 1514 1515 case Intrinsic::wasm_throw: { 1516 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1517 return DAG.getNode(WebAssemblyISD::THROW, DL, 1518 MVT::Other, // outchain type 1519 { 1520 Op.getOperand(0), // inchain 1521 SymNode, // exception symbol 1522 Op.getOperand(3) // thrown value 1523 }); 1524 } 1525 1526 case Intrinsic::wasm_catch: { 1527 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1528 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1529 { 1530 MVT::i32, // outchain type 1531 MVT::Other // return value 1532 }, 1533 { 1534 Op.getOperand(0), // inchain 1535 SymNode // exception symbol 1536 }); 1537 } 1538 1539 case Intrinsic::wasm_shuffle: { 1540 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1541 SDValue Ops[18]; 1542 size_t OpIdx = 0; 1543 Ops[OpIdx++] = Op.getOperand(1); 1544 Ops[OpIdx++] = Op.getOperand(2); 1545 while (OpIdx < 18) { 1546 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1547 if (MaskIdx.isUndef() || 1548 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1549 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1550 } else { 1551 Ops[OpIdx++] = MaskIdx; 1552 } 1553 } 1554 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1555 } 1556 } 1557 } 1558 1559 SDValue 1560 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1561 SelectionDAG &DAG) const { 1562 SDLoc DL(Op); 1563 // If sign extension operations are disabled, allow sext_inreg only if operand 1564 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1565 // extension operations, but allowing sext_inreg in this context lets us have 1566 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1567 // everywhere would be simpler in this file, but would necessitate large and 1568 // brittle patterns to undo the expansion and select extract_lane_s 1569 // instructions. 1570 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1571 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1572 return SDValue(); 1573 1574 const SDValue &Extract = Op.getOperand(0); 1575 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1576 if (VecT.getVectorElementType().getSizeInBits() > 32) 1577 return SDValue(); 1578 MVT ExtractedLaneT = 1579 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1580 MVT ExtractedVecT = 1581 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1582 if (ExtractedVecT == VecT) 1583 return Op; 1584 1585 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1586 const SDNode *Index = Extract.getOperand(1).getNode(); 1587 if (!isa<ConstantSDNode>(Index)) 1588 return SDValue(); 1589 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1590 unsigned Scale = 1591 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1592 assert(Scale > 1); 1593 SDValue NewIndex = 1594 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1595 SDValue NewExtract = DAG.getNode( 1596 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1597 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1598 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1599 Op.getOperand(1)); 1600 } 1601 1602 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1603 SelectionDAG &DAG) const { 1604 SDLoc DL(Op); 1605 const EVT VecT = Op.getValueType(); 1606 const EVT LaneT = Op.getOperand(0).getValueType(); 1607 const size_t Lanes = Op.getNumOperands(); 1608 bool CanSwizzle = VecT == MVT::v16i8; 1609 1610 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1611 // possible number of lanes at once followed by a sequence of replace_lane 1612 // instructions to individually initialize any remaining lanes. 1613 1614 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1615 // swizzled lanes should be given greater weight. 1616 1617 // TODO: Investigate building vectors by shuffling together vectors built by 1618 // separately specialized means. 1619 1620 auto IsConstant = [](const SDValue &V) { 1621 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1622 }; 1623 1624 // Returns the source vector and index vector pair if they exist. Checks for: 1625 // (extract_vector_elt 1626 // $src, 1627 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1628 // ) 1629 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1630 auto Bail = std::make_pair(SDValue(), SDValue()); 1631 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1632 return Bail; 1633 const SDValue &SwizzleSrc = Lane->getOperand(0); 1634 const SDValue &IndexExt = Lane->getOperand(1); 1635 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1636 return Bail; 1637 const SDValue &Index = IndexExt->getOperand(0); 1638 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1639 return Bail; 1640 const SDValue &SwizzleIndices = Index->getOperand(0); 1641 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1642 SwizzleIndices.getValueType() != MVT::v16i8 || 1643 Index->getOperand(1)->getOpcode() != ISD::Constant || 1644 Index->getConstantOperandVal(1) != I) 1645 return Bail; 1646 return std::make_pair(SwizzleSrc, SwizzleIndices); 1647 }; 1648 1649 using ValueEntry = std::pair<SDValue, size_t>; 1650 SmallVector<ValueEntry, 16> SplatValueCounts; 1651 1652 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1653 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1654 1655 auto AddCount = [](auto &Counts, const auto &Val) { 1656 auto CountIt = 1657 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1658 if (CountIt == Counts.end()) { 1659 Counts.emplace_back(Val, 1); 1660 } else { 1661 CountIt->second++; 1662 } 1663 }; 1664 1665 auto GetMostCommon = [](auto &Counts) { 1666 auto CommonIt = 1667 std::max_element(Counts.begin(), Counts.end(), 1668 [](auto A, auto B) { return A.second < B.second; }); 1669 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1670 return *CommonIt; 1671 }; 1672 1673 size_t NumConstantLanes = 0; 1674 1675 // Count eligible lanes for each type of vector creation op 1676 for (size_t I = 0; I < Lanes; ++I) { 1677 const SDValue &Lane = Op->getOperand(I); 1678 if (Lane.isUndef()) 1679 continue; 1680 1681 AddCount(SplatValueCounts, Lane); 1682 1683 if (IsConstant(Lane)) { 1684 NumConstantLanes++; 1685 } else if (CanSwizzle) { 1686 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1687 if (SwizzleSrcs.first) 1688 AddCount(SwizzleCounts, SwizzleSrcs); 1689 } 1690 } 1691 1692 SDValue SplatValue; 1693 size_t NumSplatLanes; 1694 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1695 1696 SDValue SwizzleSrc; 1697 SDValue SwizzleIndices; 1698 size_t NumSwizzleLanes = 0; 1699 if (SwizzleCounts.size()) 1700 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1701 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1702 1703 // Predicate returning true if the lane is properly initialized by the 1704 // original instruction 1705 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1706 SDValue Result; 1707 // Prefer swizzles over vector consts over splats 1708 if (NumSwizzleLanes >= NumSplatLanes && 1709 (!Subtarget->hasUnimplementedSIMD128() || 1710 NumSwizzleLanes >= NumConstantLanes)) { 1711 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1712 SwizzleIndices); 1713 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1714 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1715 return Swizzled == GetSwizzleSrcs(I, Lane); 1716 }; 1717 } else if (NumConstantLanes >= NumSplatLanes && 1718 Subtarget->hasUnimplementedSIMD128()) { 1719 // If we support v128.const, emit it directly 1720 SmallVector<SDValue, 16> ConstLanes; 1721 for (const SDValue &Lane : Op->op_values()) { 1722 if (IsConstant(Lane)) { 1723 ConstLanes.push_back(Lane); 1724 } else if (LaneT.isFloatingPoint()) { 1725 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1726 } else { 1727 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1728 } 1729 } 1730 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1731 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1732 return IsConstant(Lane); 1733 }; 1734 } else if (NumConstantLanes >= NumSplatLanes && VecT.isInteger()) { 1735 // Otherwise, if this is an integer vector, pack the lane values together so 1736 // we can construct the 128-bit constant from a pair of i64s using a splat 1737 // followed by at most one i64x2.replace_lane. Also keep track of the lanes 1738 // that actually matter so we can avoid the replace_lane in more cases. 1739 std::array<uint64_t, 2> I64s{{0, 0}}; 1740 std::array<uint64_t, 2> ConstLaneMasks{{0, 0}}; 1741 size_t LaneBits = 128 / Lanes; 1742 size_t HalfLanes = Lanes / 2; 1743 for (size_t I = 0; I < Lanes; ++I) { 1744 const SDValue &Lane = Op.getOperand(I); 1745 if (IsConstant(Lane)) { 1746 // How much we need to shift Val to position it in an i64 1747 auto Shift = LaneBits * (I % HalfLanes); 1748 auto Mask = maskTrailingOnes<uint64_t>(LaneBits); 1749 auto Val = cast<ConstantSDNode>(Lane.getNode())->getZExtValue() & Mask; 1750 I64s[I / HalfLanes] |= Val << Shift; 1751 ConstLaneMasks[I / HalfLanes] |= Mask << Shift; 1752 } 1753 } 1754 // Check whether all constant lanes in the second half of the vector are 1755 // equivalent in the first half or vice versa to determine whether splatting 1756 // either side will be sufficient to materialize the constant. As a special 1757 // case, if the first and second halves have no constant lanes in common, we 1758 // can just combine them. 1759 bool FirstHalfSufficient = (I64s[0] & ConstLaneMasks[1]) == I64s[1]; 1760 bool SecondHalfSufficient = (I64s[1] & ConstLaneMasks[0]) == I64s[0]; 1761 bool CombinedSufficient = (ConstLaneMasks[0] & ConstLaneMasks[1]) == 0; 1762 1763 uint64_t Splatted; 1764 if (SecondHalfSufficient) { 1765 Splatted = I64s[1]; 1766 } else if (CombinedSufficient) { 1767 Splatted = I64s[0] | I64s[1]; 1768 } else { 1769 Splatted = I64s[0]; 1770 } 1771 1772 Result = DAG.getSplatBuildVector(MVT::v2i64, DL, 1773 DAG.getConstant(Splatted, DL, MVT::i64)); 1774 if (!FirstHalfSufficient && !SecondHalfSufficient && !CombinedSufficient) { 1775 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i64, Result, 1776 DAG.getConstant(I64s[1], DL, MVT::i64), 1777 DAG.getConstant(1, DL, MVT::i32)); 1778 } 1779 Result = DAG.getBitcast(VecT, Result); 1780 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1781 return IsConstant(Lane); 1782 }; 1783 } else { 1784 // Use a splat, but possibly a load_splat 1785 LoadSDNode *SplattedLoad; 1786 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1787 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1788 Result = DAG.getMemIntrinsicNode( 1789 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1790 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1791 SplattedLoad->getOffset()}, 1792 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1793 } else { 1794 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1795 } 1796 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1797 return Lane == SplatValue; 1798 }; 1799 } 1800 1801 assert(Result); 1802 assert(IsLaneConstructed); 1803 1804 // Add replace_lane instructions for any unhandled values 1805 for (size_t I = 0; I < Lanes; ++I) { 1806 const SDValue &Lane = Op->getOperand(I); 1807 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1808 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1809 DAG.getConstant(I, DL, MVT::i32)); 1810 } 1811 1812 return Result; 1813 } 1814 1815 SDValue 1816 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1817 SelectionDAG &DAG) const { 1818 SDLoc DL(Op); 1819 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1820 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1821 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1822 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1823 1824 // Space for two vector args and sixteen mask indices 1825 SDValue Ops[18]; 1826 size_t OpIdx = 0; 1827 Ops[OpIdx++] = Op.getOperand(0); 1828 Ops[OpIdx++] = Op.getOperand(1); 1829 1830 // Expand mask indices to byte indices and materialize them as operands 1831 for (int M : Mask) { 1832 for (size_t J = 0; J < LaneBytes; ++J) { 1833 // Lower undefs (represented by -1 in mask) to zero 1834 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1835 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1836 } 1837 } 1838 1839 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1840 } 1841 1842 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1843 SelectionDAG &DAG) const { 1844 SDLoc DL(Op); 1845 // The legalizer does not know how to expand the comparison modes of i64x2 1846 // vectors because no comparison modes are supported. We could solve this by 1847 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1848 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1849 // comparisons here. 1850 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1851 SmallVector<SDValue, 2> LHS, RHS; 1852 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1853 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1854 const SDValue &CC = Op->getOperand(2); 1855 auto MakeLane = [&](unsigned I) { 1856 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1857 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1858 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1859 }; 1860 return DAG.getBuildVector(Op->getValueType(0), DL, 1861 {MakeLane(0), MakeLane(1)}); 1862 } 1863 1864 SDValue 1865 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1866 SelectionDAG &DAG) const { 1867 // Allow constant lane indices, expand variable lane indices 1868 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1869 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1870 return Op; 1871 else 1872 // Perform default expansion 1873 return SDValue(); 1874 } 1875 1876 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1877 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1878 // 32-bit and 64-bit unrolled shifts will have proper semantics 1879 if (LaneT.bitsGE(MVT::i32)) 1880 return DAG.UnrollVectorOp(Op.getNode()); 1881 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1882 SDLoc DL(Op); 1883 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1884 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1885 unsigned ShiftOpcode = Op.getOpcode(); 1886 SmallVector<SDValue, 16> ShiftedElements; 1887 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1888 SmallVector<SDValue, 16> ShiftElements; 1889 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1890 SmallVector<SDValue, 16> UnrolledOps; 1891 for (size_t i = 0; i < NumLanes; ++i) { 1892 SDValue MaskedShiftValue = 1893 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1894 SDValue ShiftedValue = ShiftedElements[i]; 1895 if (ShiftOpcode == ISD::SRA) 1896 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1897 ShiftedValue, DAG.getValueType(LaneT)); 1898 UnrolledOps.push_back( 1899 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1900 } 1901 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1902 } 1903 1904 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1905 SelectionDAG &DAG) const { 1906 SDLoc DL(Op); 1907 1908 // Only manually lower vector shifts 1909 assert(Op.getSimpleValueType().isVector()); 1910 1911 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1912 if (!ShiftVal) 1913 return unrollVectorShift(Op, DAG); 1914 1915 // Use anyext because none of the high bits can affect the shift 1916 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1917 1918 unsigned Opcode; 1919 switch (Op.getOpcode()) { 1920 case ISD::SHL: 1921 Opcode = WebAssemblyISD::VEC_SHL; 1922 break; 1923 case ISD::SRA: 1924 Opcode = WebAssemblyISD::VEC_SHR_S; 1925 break; 1926 case ISD::SRL: 1927 Opcode = WebAssemblyISD::VEC_SHR_U; 1928 break; 1929 default: 1930 llvm_unreachable("unexpected opcode"); 1931 } 1932 1933 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1934 } 1935 1936 //===----------------------------------------------------------------------===// 1937 // Custom DAG combine hooks 1938 //===----------------------------------------------------------------------===// 1939 static SDValue 1940 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1941 auto &DAG = DCI.DAG; 1942 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1943 1944 // Hoist vector bitcasts that don't change the number of lanes out of unary 1945 // shuffles, where they are less likely to get in the way of other combines. 1946 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1947 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1948 SDValue Bitcast = N->getOperand(0); 1949 if (Bitcast.getOpcode() != ISD::BITCAST) 1950 return SDValue(); 1951 if (!N->getOperand(1).isUndef()) 1952 return SDValue(); 1953 SDValue CastOp = Bitcast.getOperand(0); 1954 MVT SrcType = CastOp.getSimpleValueType(); 1955 MVT DstType = Bitcast.getSimpleValueType(); 1956 if (!SrcType.is128BitVector() || 1957 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1958 return SDValue(); 1959 SDValue NewShuffle = DAG.getVectorShuffle( 1960 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1961 return DAG.getBitcast(DstType, NewShuffle); 1962 } 1963 1964 static SDValue performVectorWidenCombine(SDNode *N, 1965 TargetLowering::DAGCombinerInfo &DCI) { 1966 auto &DAG = DCI.DAG; 1967 assert(N->getOpcode() == ISD::SIGN_EXTEND || 1968 N->getOpcode() == ISD::ZERO_EXTEND); 1969 1970 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 1971 // possible before the extract_subvector can be expanded. 1972 auto Extract = N->getOperand(0); 1973 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 1974 return SDValue(); 1975 auto Source = Extract.getOperand(0); 1976 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 1977 if (IndexNode == nullptr) 1978 return SDValue(); 1979 auto Index = IndexNode->getZExtValue(); 1980 1981 // Only v8i8 and v4i16 extracts can be widened, and only if the extracted 1982 // subvector is the low or high half of its source. 1983 EVT ResVT = N->getValueType(0); 1984 if (ResVT == MVT::v8i16) { 1985 if (Extract.getValueType() != MVT::v8i8 || 1986 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 1987 return SDValue(); 1988 } else if (ResVT == MVT::v4i32) { 1989 if (Extract.getValueType() != MVT::v4i16 || 1990 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 1991 return SDValue(); 1992 } else { 1993 return SDValue(); 1994 } 1995 1996 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 1997 bool IsLow = Index == 0; 1998 1999 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S 2000 : WebAssemblyISD::WIDEN_HIGH_S) 2001 : (IsLow ? WebAssemblyISD::WIDEN_LOW_U 2002 : WebAssemblyISD::WIDEN_HIGH_U); 2003 2004 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2005 } 2006 2007 SDValue 2008 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2009 DAGCombinerInfo &DCI) const { 2010 switch (N->getOpcode()) { 2011 default: 2012 return SDValue(); 2013 case ISD::VECTOR_SHUFFLE: 2014 return performVECTOR_SHUFFLECombine(N, DCI); 2015 case ISD::SIGN_EXTEND: 2016 case ISD::ZERO_EXTEND: 2017 return performVectorWidenCombine(N, DCI); 2018 } 2019 } 2020