1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsWebAssembly.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetOptions.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "wasm-lower" 44 45 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 46 const TargetMachine &TM, const WebAssemblySubtarget &STI) 47 : TargetLowering(TM), Subtarget(&STI) { 48 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 49 50 // Booleans always contain 0 or 1. 51 setBooleanContents(ZeroOrOneBooleanContent); 52 // Except in SIMD vectors 53 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 54 // We don't know the microarchitecture here, so just reduce register pressure. 55 setSchedulingPreference(Sched::RegPressure); 56 // Tell ISel that we have a stack pointer. 57 setStackPointerRegisterToSaveRestore( 58 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 59 // Set up the register classes. 60 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 61 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 62 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 63 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 64 if (Subtarget->hasSIMD128()) { 65 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 70 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 71 } 72 if (Subtarget->hasReferenceTypes()) { 73 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 74 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 75 } 76 // Compute derived properties from the register classes. 77 computeRegisterProperties(Subtarget->getRegisterInfo()); 78 79 // Transform loads and stores to pointers in address space 1 to loads and 80 // stores to WebAssembly global variables, outside linear memory. 81 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 82 setOperationAction(ISD::LOAD, T, Custom); 83 setOperationAction(ISD::STORE, T, Custom); 84 } 85 if (Subtarget->hasSIMD128()) { 86 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 87 MVT::v2f64}) { 88 setOperationAction(ISD::LOAD, T, Custom); 89 setOperationAction(ISD::STORE, T, Custom); 90 } 91 } 92 if (Subtarget->hasReferenceTypes()) { 93 // We need custom load and store lowering for both externref, funcref and 94 // Other. The MVT::Other here represents tables of reference types. 95 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 96 setOperationAction(ISD::LOAD, T, Custom); 97 setOperationAction(ISD::STORE, T, Custom); 98 } 99 } 100 101 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 102 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 103 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 104 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 105 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 106 setOperationAction(ISD::BRIND, MVT::Other, Custom); 107 108 // Take the default expansion for va_arg, va_copy, and va_end. There is no 109 // default action for va_start, so we do that custom. 110 setOperationAction(ISD::VASTART, MVT::Other, Custom); 111 setOperationAction(ISD::VAARG, MVT::Other, Expand); 112 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 113 setOperationAction(ISD::VAEND, MVT::Other, Expand); 114 115 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 116 // Don't expand the floating-point types to constant pools. 117 setOperationAction(ISD::ConstantFP, T, Legal); 118 // Expand floating-point comparisons. 119 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 120 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 121 setCondCodeAction(CC, T, Expand); 122 // Expand floating-point library function operators. 123 for (auto Op : 124 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 125 setOperationAction(Op, T, Expand); 126 // Note supported floating-point library function operators that otherwise 127 // default to expand. 128 for (auto Op : 129 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 130 setOperationAction(Op, T, Legal); 131 // Support minimum and maximum, which otherwise default to expand. 132 setOperationAction(ISD::FMINIMUM, T, Legal); 133 setOperationAction(ISD::FMAXIMUM, T, Legal); 134 // WebAssembly currently has no builtin f16 support. 135 setOperationAction(ISD::FP16_TO_FP, T, Expand); 136 setOperationAction(ISD::FP_TO_FP16, T, Expand); 137 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 138 setTruncStoreAction(T, MVT::f16, Expand); 139 } 140 141 // Expand unavailable integer operations. 142 for (auto Op : 143 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 144 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 145 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 146 for (auto T : {MVT::i32, MVT::i64}) 147 setOperationAction(Op, T, Expand); 148 if (Subtarget->hasSIMD128()) 149 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 150 setOperationAction(Op, T, Expand); 151 } 152 153 if (Subtarget->hasNontrappingFPToInt()) 154 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 155 for (auto T : {MVT::i32, MVT::i64}) 156 setOperationAction(Op, T, Custom); 157 158 // SIMD-specific configuration 159 if (Subtarget->hasSIMD128()) { 160 // Hoist bitcasts out of shuffles 161 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 162 163 // Combine extends of extract_subvectors into widening ops 164 setTargetDAGCombine(ISD::SIGN_EXTEND); 165 setTargetDAGCombine(ISD::ZERO_EXTEND); 166 167 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 168 // conversions ops 169 setTargetDAGCombine(ISD::SINT_TO_FP); 170 setTargetDAGCombine(ISD::UINT_TO_FP); 171 setTargetDAGCombine(ISD::FP_EXTEND); 172 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 173 174 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 175 // into conversion ops 176 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 177 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 178 setTargetDAGCombine(ISD::FP_ROUND); 179 setTargetDAGCombine(ISD::CONCAT_VECTORS); 180 181 setTargetDAGCombine(ISD::TRUNCATE); 182 183 // Support saturating add for i8x16 and i16x8 184 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 185 for (auto T : {MVT::v16i8, MVT::v8i16}) 186 setOperationAction(Op, T, Legal); 187 188 // Support integer abs 189 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 190 setOperationAction(ISD::ABS, T, Legal); 191 192 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 193 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 194 MVT::v2f64}) 195 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 196 197 // We have custom shuffle lowering to expose the shuffle mask 198 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 199 MVT::v2f64}) 200 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 201 202 // Custom lowering since wasm shifts must have a scalar shift amount 203 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 204 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 205 setOperationAction(Op, T, Custom); 206 207 // Custom lower lane accesses to expand out variable indices 208 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 209 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 210 MVT::v2f64}) 211 setOperationAction(Op, T, Custom); 212 213 // There is no i8x16.mul instruction 214 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 215 216 // There is no vector conditional select instruction 217 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 218 MVT::v2f64}) 219 setOperationAction(ISD::SELECT_CC, T, Expand); 220 221 // Expand integer operations supported for scalars but not SIMD 222 for (auto Op : 223 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 224 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 225 setOperationAction(Op, T, Expand); 226 227 // But we do have integer min and max operations 228 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 229 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 230 setOperationAction(Op, T, Legal); 231 232 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 233 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 234 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 235 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 236 237 // Custom lower bit counting operations for other types to scalarize them. 238 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 239 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 240 setOperationAction(Op, T, Custom); 241 242 // Expand float operations supported for scalars but not SIMD 243 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 244 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 245 for (auto T : {MVT::v4f32, MVT::v2f64}) 246 setOperationAction(Op, T, Expand); 247 248 // Unsigned comparison operations are unavailable for i64x2 vectors. 249 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 250 setCondCodeAction(CC, MVT::v2i64, Custom); 251 252 // 64x2 conversions are not in the spec 253 for (auto Op : 254 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 255 for (auto T : {MVT::v2i64, MVT::v2f64}) 256 setOperationAction(Op, T, Expand); 257 258 // But saturating fp_to_int converstions are 259 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 260 setOperationAction(Op, MVT::v4i32, Custom); 261 } 262 263 // As a special case, these operators use the type to mean the type to 264 // sign-extend from. 265 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 266 if (!Subtarget->hasSignExt()) { 267 // Sign extends are legal only when extending a vector extract 268 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 269 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 270 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 271 } 272 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 273 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 274 275 // Dynamic stack allocation: use the default expansion. 276 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 277 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 278 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 279 280 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 281 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 282 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 283 284 // Expand these forms; we pattern-match the forms that we can handle in isel. 285 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 286 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 287 setOperationAction(Op, T, Expand); 288 289 // We have custom switch handling. 290 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 291 292 // WebAssembly doesn't have: 293 // - Floating-point extending loads. 294 // - Floating-point truncating stores. 295 // - i1 extending loads. 296 // - truncating SIMD stores and most extending loads 297 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 298 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 299 for (auto T : MVT::integer_valuetypes()) 300 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 301 setLoadExtAction(Ext, T, MVT::i1, Promote); 302 if (Subtarget->hasSIMD128()) { 303 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 304 MVT::v2f64}) { 305 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 306 if (MVT(T) != MemT) { 307 setTruncStoreAction(T, MemT, Expand); 308 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 309 setLoadExtAction(Ext, T, MemT, Expand); 310 } 311 } 312 } 313 // But some vector extending loads are legal 314 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 315 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 316 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 317 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 318 } 319 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 320 } 321 322 // Don't do anything clever with build_pairs 323 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 324 325 // Trap lowers to wasm unreachable 326 setOperationAction(ISD::TRAP, MVT::Other, Legal); 327 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 328 329 // Exception handling intrinsics 330 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 331 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 332 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 333 334 setMaxAtomicSizeInBitsSupported(64); 335 336 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 337 // consistent with the f64 and f128 names. 338 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 339 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 340 341 // Define the emscripten name for return address helper. 342 // TODO: when implementing other Wasm backends, make this generic or only do 343 // this on emscripten depending on what they end up doing. 344 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 345 346 // Always convert switches to br_tables unless there is only one case, which 347 // is equivalent to a simple branch. This reduces code size for wasm, and we 348 // defer possible jump table optimizations to the VM. 349 setMinimumJumpTableEntries(2); 350 } 351 352 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 353 uint32_t AS) const { 354 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 355 return MVT::externref; 356 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 357 return MVT::funcref; 358 return TargetLowering::getPointerTy(DL, AS); 359 } 360 361 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 362 uint32_t AS) const { 363 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 364 return MVT::externref; 365 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 366 return MVT::funcref; 367 return TargetLowering::getPointerMemTy(DL, AS); 368 } 369 370 TargetLowering::AtomicExpansionKind 371 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 372 // We have wasm instructions for these 373 switch (AI->getOperation()) { 374 case AtomicRMWInst::Add: 375 case AtomicRMWInst::Sub: 376 case AtomicRMWInst::And: 377 case AtomicRMWInst::Or: 378 case AtomicRMWInst::Xor: 379 case AtomicRMWInst::Xchg: 380 return AtomicExpansionKind::None; 381 default: 382 break; 383 } 384 return AtomicExpansionKind::CmpXChg; 385 } 386 387 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 388 // Implementation copied from X86TargetLowering. 389 unsigned Opc = VecOp.getOpcode(); 390 391 // Assume target opcodes can't be scalarized. 392 // TODO - do we have any exceptions? 393 if (Opc >= ISD::BUILTIN_OP_END) 394 return false; 395 396 // If the vector op is not supported, try to convert to scalar. 397 EVT VecVT = VecOp.getValueType(); 398 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 399 return true; 400 401 // If the vector op is supported, but the scalar op is not, the transform may 402 // not be worthwhile. 403 EVT ScalarVT = VecVT.getScalarType(); 404 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 405 } 406 407 FastISel *WebAssemblyTargetLowering::createFastISel( 408 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 409 return WebAssembly::createFastISel(FuncInfo, LibInfo); 410 } 411 412 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 413 EVT VT) const { 414 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 415 if (BitWidth > 1 && BitWidth < 8) 416 BitWidth = 8; 417 418 if (BitWidth > 64) { 419 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 420 // the count to be an i32. 421 BitWidth = 32; 422 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 423 "32-bit shift counts ought to be enough for anyone"); 424 } 425 426 MVT Result = MVT::getIntegerVT(BitWidth); 427 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 428 "Unable to represent scalar shift amount type"); 429 return Result; 430 } 431 432 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 433 // undefined result on invalid/overflow, to the WebAssembly opcode, which 434 // traps on invalid/overflow. 435 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 436 MachineBasicBlock *BB, 437 const TargetInstrInfo &TII, 438 bool IsUnsigned, bool Int64, 439 bool Float64, unsigned LoweredOpcode) { 440 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 441 442 Register OutReg = MI.getOperand(0).getReg(); 443 Register InReg = MI.getOperand(1).getReg(); 444 445 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 446 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 447 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 448 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 449 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 450 unsigned Eqz = WebAssembly::EQZ_I32; 451 unsigned And = WebAssembly::AND_I32; 452 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 453 int64_t Substitute = IsUnsigned ? 0 : Limit; 454 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 455 auto &Context = BB->getParent()->getFunction().getContext(); 456 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 457 458 const BasicBlock *LLVMBB = BB->getBasicBlock(); 459 MachineFunction *F = BB->getParent(); 460 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 461 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 462 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 463 464 MachineFunction::iterator It = ++BB->getIterator(); 465 F->insert(It, FalseMBB); 466 F->insert(It, TrueMBB); 467 F->insert(It, DoneMBB); 468 469 // Transfer the remainder of BB and its successor edges to DoneMBB. 470 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 471 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 472 473 BB->addSuccessor(TrueMBB); 474 BB->addSuccessor(FalseMBB); 475 TrueMBB->addSuccessor(DoneMBB); 476 FalseMBB->addSuccessor(DoneMBB); 477 478 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 479 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 480 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 481 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 482 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 483 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 484 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 485 486 MI.eraseFromParent(); 487 // For signed numbers, we can do a single comparison to determine whether 488 // fabs(x) is within range. 489 if (IsUnsigned) { 490 Tmp0 = InReg; 491 } else { 492 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 493 } 494 BuildMI(BB, DL, TII.get(FConst), Tmp1) 495 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 496 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 497 498 // For unsigned numbers, we have to do a separate comparison with zero. 499 if (IsUnsigned) { 500 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 501 Register SecondCmpReg = 502 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 503 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 504 BuildMI(BB, DL, TII.get(FConst), Tmp1) 505 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 506 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 507 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 508 CmpReg = AndReg; 509 } 510 511 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 512 513 // Create the CFG diamond to select between doing the conversion or using 514 // the substitute value. 515 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 516 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 517 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 518 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 519 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 520 .addReg(FalseReg) 521 .addMBB(FalseMBB) 522 .addReg(TrueReg) 523 .addMBB(TrueMBB); 524 525 return DoneMBB; 526 } 527 528 static MachineBasicBlock * 529 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 530 const WebAssemblySubtarget *Subtarget, 531 const TargetInstrInfo &TII) { 532 MachineInstr &CallParams = *CallResults.getPrevNode(); 533 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 534 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 535 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 536 537 bool IsIndirect = CallParams.getOperand(0).isReg(); 538 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 539 540 bool IsFuncrefCall = false; 541 if (IsIndirect) { 542 Register Reg = CallParams.getOperand(0).getReg(); 543 const MachineFunction *MF = BB->getParent(); 544 const MachineRegisterInfo &MRI = MF->getRegInfo(); 545 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 546 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 547 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 548 } 549 550 unsigned CallOp; 551 if (IsIndirect && IsRetCall) { 552 CallOp = WebAssembly::RET_CALL_INDIRECT; 553 } else if (IsIndirect) { 554 CallOp = WebAssembly::CALL_INDIRECT; 555 } else if (IsRetCall) { 556 CallOp = WebAssembly::RET_CALL; 557 } else { 558 CallOp = WebAssembly::CALL; 559 } 560 561 MachineFunction &MF = *BB->getParent(); 562 const MCInstrDesc &MCID = TII.get(CallOp); 563 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 564 565 // See if we must truncate the function pointer. 566 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 567 // as 64-bit for uniformity with other pointer types. 568 // See also: WebAssemblyFastISel::selectCall 569 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 570 Register Reg32 = 571 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 572 auto &FnPtr = CallParams.getOperand(0); 573 BuildMI(*BB, CallResults.getIterator(), DL, 574 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 575 .addReg(FnPtr.getReg()); 576 FnPtr.setReg(Reg32); 577 } 578 579 // Move the function pointer to the end of the arguments for indirect calls 580 if (IsIndirect) { 581 auto FnPtr = CallParams.getOperand(0); 582 CallParams.removeOperand(0); 583 584 // For funcrefs, call_indirect is done through __funcref_call_table and the 585 // funcref is always installed in slot 0 of the table, therefore instead of having 586 // the function pointer added at the end of the params list, a zero (the index in 587 // __funcref_call_table is added). 588 if (IsFuncrefCall) { 589 Register RegZero = 590 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 591 MachineInstrBuilder MIBC0 = 592 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 593 594 BB->insert(CallResults.getIterator(), MIBC0); 595 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 596 } else 597 CallParams.addOperand(FnPtr); 598 } 599 600 for (auto Def : CallResults.defs()) 601 MIB.add(Def); 602 603 if (IsIndirect) { 604 // Placeholder for the type index. 605 MIB.addImm(0); 606 // The table into which this call_indirect indexes. 607 MCSymbolWasm *Table = IsFuncrefCall 608 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 609 MF.getContext(), Subtarget) 610 : WebAssembly::getOrCreateFunctionTableSymbol( 611 MF.getContext(), Subtarget); 612 if (Subtarget->hasReferenceTypes()) { 613 MIB.addSym(Table); 614 } else { 615 // For the MVP there is at most one table whose number is 0, but we can't 616 // write a table symbol or issue relocations. Instead we just ensure the 617 // table is live and write a zero. 618 Table->setNoStrip(); 619 MIB.addImm(0); 620 } 621 } 622 623 for (auto Use : CallParams.uses()) 624 MIB.add(Use); 625 626 BB->insert(CallResults.getIterator(), MIB); 627 CallParams.eraseFromParent(); 628 CallResults.eraseFromParent(); 629 630 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 631 // table slot with ref.null upon call_indirect return. 632 // 633 // This generates the following code, which comes right after a call_indirect 634 // of a funcref: 635 // 636 // i32.const 0 637 // ref.null func 638 // table.set __funcref_call_table 639 if (IsIndirect && IsFuncrefCall) { 640 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 641 MF.getContext(), Subtarget); 642 Register RegZero = 643 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 644 MachineInstr *Const0 = 645 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 646 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 647 648 Register RegFuncref = 649 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 650 MachineInstr *RefNull = 651 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 652 BB->insertAfter(Const0->getIterator(), RefNull); 653 654 MachineInstr *TableSet = 655 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 656 .addSym(Table) 657 .addReg(RegZero) 658 .addReg(RegFuncref); 659 BB->insertAfter(RefNull->getIterator(), TableSet); 660 } 661 662 return BB; 663 } 664 665 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 666 MachineInstr &MI, MachineBasicBlock *BB) const { 667 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 668 DebugLoc DL = MI.getDebugLoc(); 669 670 switch (MI.getOpcode()) { 671 default: 672 llvm_unreachable("Unexpected instr type to insert"); 673 case WebAssembly::FP_TO_SINT_I32_F32: 674 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 675 WebAssembly::I32_TRUNC_S_F32); 676 case WebAssembly::FP_TO_UINT_I32_F32: 677 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 678 WebAssembly::I32_TRUNC_U_F32); 679 case WebAssembly::FP_TO_SINT_I64_F32: 680 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 681 WebAssembly::I64_TRUNC_S_F32); 682 case WebAssembly::FP_TO_UINT_I64_F32: 683 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 684 WebAssembly::I64_TRUNC_U_F32); 685 case WebAssembly::FP_TO_SINT_I32_F64: 686 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 687 WebAssembly::I32_TRUNC_S_F64); 688 case WebAssembly::FP_TO_UINT_I32_F64: 689 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 690 WebAssembly::I32_TRUNC_U_F64); 691 case WebAssembly::FP_TO_SINT_I64_F64: 692 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 693 WebAssembly::I64_TRUNC_S_F64); 694 case WebAssembly::FP_TO_UINT_I64_F64: 695 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 696 WebAssembly::I64_TRUNC_U_F64); 697 case WebAssembly::CALL_RESULTS: 698 case WebAssembly::RET_CALL_RESULTS: 699 return LowerCallResults(MI, DL, BB, Subtarget, TII); 700 } 701 } 702 703 const char * 704 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 705 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 706 case WebAssemblyISD::FIRST_NUMBER: 707 case WebAssemblyISD::FIRST_MEM_OPCODE: 708 break; 709 #define HANDLE_NODETYPE(NODE) \ 710 case WebAssemblyISD::NODE: \ 711 return "WebAssemblyISD::" #NODE; 712 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 713 #include "WebAssemblyISD.def" 714 #undef HANDLE_MEM_NODETYPE 715 #undef HANDLE_NODETYPE 716 } 717 return nullptr; 718 } 719 720 std::pair<unsigned, const TargetRegisterClass *> 721 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 722 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 723 // First, see if this is a constraint that directly corresponds to a 724 // WebAssembly register class. 725 if (Constraint.size() == 1) { 726 switch (Constraint[0]) { 727 case 'r': 728 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 729 if (Subtarget->hasSIMD128() && VT.isVector()) { 730 if (VT.getSizeInBits() == 128) 731 return std::make_pair(0U, &WebAssembly::V128RegClass); 732 } 733 if (VT.isInteger() && !VT.isVector()) { 734 if (VT.getSizeInBits() <= 32) 735 return std::make_pair(0U, &WebAssembly::I32RegClass); 736 if (VT.getSizeInBits() <= 64) 737 return std::make_pair(0U, &WebAssembly::I64RegClass); 738 } 739 if (VT.isFloatingPoint() && !VT.isVector()) { 740 switch (VT.getSizeInBits()) { 741 case 32: 742 return std::make_pair(0U, &WebAssembly::F32RegClass); 743 case 64: 744 return std::make_pair(0U, &WebAssembly::F64RegClass); 745 default: 746 break; 747 } 748 } 749 break; 750 default: 751 break; 752 } 753 } 754 755 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 756 } 757 758 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 759 // Assume ctz is a relatively cheap operation. 760 return true; 761 } 762 763 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 764 // Assume clz is a relatively cheap operation. 765 return true; 766 } 767 768 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 769 const AddrMode &AM, 770 Type *Ty, unsigned AS, 771 Instruction *I) const { 772 // WebAssembly offsets are added as unsigned without wrapping. The 773 // isLegalAddressingMode gives us no way to determine if wrapping could be 774 // happening, so we approximate this by accepting only non-negative offsets. 775 if (AM.BaseOffs < 0) 776 return false; 777 778 // WebAssembly has no scale register operands. 779 if (AM.Scale != 0) 780 return false; 781 782 // Everything else is legal. 783 return true; 784 } 785 786 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 787 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 788 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 789 // WebAssembly supports unaligned accesses, though it should be declared 790 // with the p2align attribute on loads and stores which do so, and there 791 // may be a performance impact. We tell LLVM they're "fast" because 792 // for the kinds of things that LLVM uses this for (merging adjacent stores 793 // of constants, etc.), WebAssembly implementations will either want the 794 // unaligned access or they'll split anyway. 795 if (Fast) 796 *Fast = true; 797 return true; 798 } 799 800 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 801 AttributeList Attr) const { 802 // The current thinking is that wasm engines will perform this optimization, 803 // so we can save on code size. 804 return true; 805 } 806 807 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 808 EVT ExtT = ExtVal.getValueType(); 809 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 810 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 811 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 812 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 813 } 814 815 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 816 const GlobalAddressSDNode *GA) const { 817 // Wasm doesn't support function addresses with offsets 818 const GlobalValue *GV = GA->getGlobal(); 819 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 820 } 821 822 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 823 LLVMContext &C, 824 EVT VT) const { 825 if (VT.isVector()) 826 return VT.changeVectorElementTypeToInteger(); 827 828 // So far, all branch instructions in Wasm take an I32 condition. 829 // The default TargetLowering::getSetCCResultType returns the pointer size, 830 // which would be useful to reduce instruction counts when testing 831 // against 64-bit pointers/values if at some point Wasm supports that. 832 return EVT::getIntegerVT(C, 32); 833 } 834 835 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 836 const CallInst &I, 837 MachineFunction &MF, 838 unsigned Intrinsic) const { 839 switch (Intrinsic) { 840 case Intrinsic::wasm_memory_atomic_notify: 841 Info.opc = ISD::INTRINSIC_W_CHAIN; 842 Info.memVT = MVT::i32; 843 Info.ptrVal = I.getArgOperand(0); 844 Info.offset = 0; 845 Info.align = Align(4); 846 // atomic.notify instruction does not really load the memory specified with 847 // this argument, but MachineMemOperand should either be load or store, so 848 // we set this to a load. 849 // FIXME Volatile isn't really correct, but currently all LLVM atomic 850 // instructions are treated as volatiles in the backend, so we should be 851 // consistent. The same applies for wasm_atomic_wait intrinsics too. 852 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 853 return true; 854 case Intrinsic::wasm_memory_atomic_wait32: 855 Info.opc = ISD::INTRINSIC_W_CHAIN; 856 Info.memVT = MVT::i32; 857 Info.ptrVal = I.getArgOperand(0); 858 Info.offset = 0; 859 Info.align = Align(4); 860 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 861 return true; 862 case Intrinsic::wasm_memory_atomic_wait64: 863 Info.opc = ISD::INTRINSIC_W_CHAIN; 864 Info.memVT = MVT::i64; 865 Info.ptrVal = I.getArgOperand(0); 866 Info.offset = 0; 867 Info.align = Align(8); 868 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 869 return true; 870 default: 871 return false; 872 } 873 } 874 875 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 876 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 877 const SelectionDAG &DAG, unsigned Depth) const { 878 switch (Op.getOpcode()) { 879 default: 880 break; 881 case ISD::INTRINSIC_WO_CHAIN: { 882 unsigned IntNo = Op.getConstantOperandVal(0); 883 switch (IntNo) { 884 default: 885 break; 886 case Intrinsic::wasm_bitmask: { 887 unsigned BitWidth = Known.getBitWidth(); 888 EVT VT = Op.getOperand(1).getSimpleValueType(); 889 unsigned PossibleBits = VT.getVectorNumElements(); 890 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 891 Known.Zero |= ZeroMask; 892 break; 893 } 894 } 895 } 896 } 897 } 898 899 TargetLoweringBase::LegalizeTypeAction 900 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 901 if (VT.isFixedLengthVector()) { 902 MVT EltVT = VT.getVectorElementType(); 903 // We have legal vector types with these lane types, so widening the 904 // vector would let us use some of the lanes directly without having to 905 // extend or truncate values. 906 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 907 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 908 return TypeWidenVector; 909 } 910 911 return TargetLoweringBase::getPreferredVectorAction(VT); 912 } 913 914 //===----------------------------------------------------------------------===// 915 // WebAssembly Lowering private implementation. 916 //===----------------------------------------------------------------------===// 917 918 //===----------------------------------------------------------------------===// 919 // Lowering Code 920 //===----------------------------------------------------------------------===// 921 922 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 923 MachineFunction &MF = DAG.getMachineFunction(); 924 DAG.getContext()->diagnose( 925 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 926 } 927 928 // Test whether the given calling convention is supported. 929 static bool callingConvSupported(CallingConv::ID CallConv) { 930 // We currently support the language-independent target-independent 931 // conventions. We don't yet have a way to annotate calls with properties like 932 // "cold", and we don't have any call-clobbered registers, so these are mostly 933 // all handled the same. 934 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 935 CallConv == CallingConv::Cold || 936 CallConv == CallingConv::PreserveMost || 937 CallConv == CallingConv::PreserveAll || 938 CallConv == CallingConv::CXX_FAST_TLS || 939 CallConv == CallingConv::WASM_EmscriptenInvoke || 940 CallConv == CallingConv::Swift; 941 } 942 943 SDValue 944 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 945 SmallVectorImpl<SDValue> &InVals) const { 946 SelectionDAG &DAG = CLI.DAG; 947 SDLoc DL = CLI.DL; 948 SDValue Chain = CLI.Chain; 949 SDValue Callee = CLI.Callee; 950 MachineFunction &MF = DAG.getMachineFunction(); 951 auto Layout = MF.getDataLayout(); 952 953 CallingConv::ID CallConv = CLI.CallConv; 954 if (!callingConvSupported(CallConv)) 955 fail(DL, DAG, 956 "WebAssembly doesn't support language-specific or target-specific " 957 "calling conventions yet"); 958 if (CLI.IsPatchPoint) 959 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 960 961 if (CLI.IsTailCall) { 962 auto NoTail = [&](const char *Msg) { 963 if (CLI.CB && CLI.CB->isMustTailCall()) 964 fail(DL, DAG, Msg); 965 CLI.IsTailCall = false; 966 }; 967 968 if (!Subtarget->hasTailCall()) 969 NoTail("WebAssembly 'tail-call' feature not enabled"); 970 971 // Varargs calls cannot be tail calls because the buffer is on the stack 972 if (CLI.IsVarArg) 973 NoTail("WebAssembly does not support varargs tail calls"); 974 975 // Do not tail call unless caller and callee return types match 976 const Function &F = MF.getFunction(); 977 const TargetMachine &TM = getTargetMachine(); 978 Type *RetTy = F.getReturnType(); 979 SmallVector<MVT, 4> CallerRetTys; 980 SmallVector<MVT, 4> CalleeRetTys; 981 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 982 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 983 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 984 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 985 CalleeRetTys.begin()); 986 if (!TypesMatch) 987 NoTail("WebAssembly tail call requires caller and callee return types to " 988 "match"); 989 990 // If pointers to local stack values are passed, we cannot tail call 991 if (CLI.CB) { 992 for (auto &Arg : CLI.CB->args()) { 993 Value *Val = Arg.get(); 994 // Trace the value back through pointer operations 995 while (true) { 996 Value *Src = Val->stripPointerCastsAndAliases(); 997 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 998 Src = GEP->getPointerOperand(); 999 if (Val == Src) 1000 break; 1001 Val = Src; 1002 } 1003 if (isa<AllocaInst>(Val)) { 1004 NoTail( 1005 "WebAssembly does not support tail calling with stack arguments"); 1006 break; 1007 } 1008 } 1009 } 1010 } 1011 1012 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1013 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1014 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1015 1016 // The generic code may have added an sret argument. If we're lowering an 1017 // invoke function, the ABI requires that the function pointer be the first 1018 // argument, so we may have to swap the arguments. 1019 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1020 Outs[0].Flags.isSRet()) { 1021 std::swap(Outs[0], Outs[1]); 1022 std::swap(OutVals[0], OutVals[1]); 1023 } 1024 1025 bool HasSwiftSelfArg = false; 1026 bool HasSwiftErrorArg = false; 1027 unsigned NumFixedArgs = 0; 1028 for (unsigned I = 0; I < Outs.size(); ++I) { 1029 const ISD::OutputArg &Out = Outs[I]; 1030 SDValue &OutVal = OutVals[I]; 1031 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1032 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1033 if (Out.Flags.isNest()) 1034 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1035 if (Out.Flags.isInAlloca()) 1036 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1037 if (Out.Flags.isInConsecutiveRegs()) 1038 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1039 if (Out.Flags.isInConsecutiveRegsLast()) 1040 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1041 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1042 auto &MFI = MF.getFrameInfo(); 1043 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1044 Out.Flags.getNonZeroByValAlign(), 1045 /*isSS=*/false); 1046 SDValue SizeNode = 1047 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1048 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1049 Chain = DAG.getMemcpy( 1050 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1051 /*isVolatile*/ false, /*AlwaysInline=*/false, 1052 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1053 OutVal = FINode; 1054 } 1055 // Count the number of fixed args *after* legalization. 1056 NumFixedArgs += Out.IsFixed; 1057 } 1058 1059 bool IsVarArg = CLI.IsVarArg; 1060 auto PtrVT = getPointerTy(Layout); 1061 1062 // For swiftcc, emit additional swiftself and swifterror arguments 1063 // if there aren't. These additional arguments are also added for callee 1064 // signature They are necessary to match callee and caller signature for 1065 // indirect call. 1066 if (CallConv == CallingConv::Swift) { 1067 if (!HasSwiftSelfArg) { 1068 NumFixedArgs++; 1069 ISD::OutputArg Arg; 1070 Arg.Flags.setSwiftSelf(); 1071 CLI.Outs.push_back(Arg); 1072 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1073 CLI.OutVals.push_back(ArgVal); 1074 } 1075 if (!HasSwiftErrorArg) { 1076 NumFixedArgs++; 1077 ISD::OutputArg Arg; 1078 Arg.Flags.setSwiftError(); 1079 CLI.Outs.push_back(Arg); 1080 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1081 CLI.OutVals.push_back(ArgVal); 1082 } 1083 } 1084 1085 // Analyze operands of the call, assigning locations to each operand. 1086 SmallVector<CCValAssign, 16> ArgLocs; 1087 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1088 1089 if (IsVarArg) { 1090 // Outgoing non-fixed arguments are placed in a buffer. First 1091 // compute their offsets and the total amount of buffer space needed. 1092 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1093 const ISD::OutputArg &Out = Outs[I]; 1094 SDValue &Arg = OutVals[I]; 1095 EVT VT = Arg.getValueType(); 1096 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1097 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1098 Align Alignment = 1099 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1100 unsigned Offset = 1101 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1102 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1103 Offset, VT.getSimpleVT(), 1104 CCValAssign::Full)); 1105 } 1106 } 1107 1108 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1109 1110 SDValue FINode; 1111 if (IsVarArg && NumBytes) { 1112 // For non-fixed arguments, next emit stores to store the argument values 1113 // to the stack buffer at the offsets computed above. 1114 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1115 Layout.getStackAlignment(), 1116 /*isSS=*/false); 1117 unsigned ValNo = 0; 1118 SmallVector<SDValue, 8> Chains; 1119 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1120 assert(ArgLocs[ValNo].getValNo() == ValNo && 1121 "ArgLocs should remain in order and only hold varargs args"); 1122 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1123 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1124 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1125 DAG.getConstant(Offset, DL, PtrVT)); 1126 Chains.push_back( 1127 DAG.getStore(Chain, DL, Arg, Add, 1128 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1129 } 1130 if (!Chains.empty()) 1131 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1132 } else if (IsVarArg) { 1133 FINode = DAG.getIntPtrConstant(0, DL); 1134 } 1135 1136 if (Callee->getOpcode() == ISD::GlobalAddress) { 1137 // If the callee is a GlobalAddress node (quite common, every direct call 1138 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1139 // doesn't at MO_GOT which is not needed for direct calls. 1140 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1141 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1142 getPointerTy(DAG.getDataLayout()), 1143 GA->getOffset()); 1144 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1145 getPointerTy(DAG.getDataLayout()), Callee); 1146 } 1147 1148 // Compute the operands for the CALLn node. 1149 SmallVector<SDValue, 16> Ops; 1150 Ops.push_back(Chain); 1151 Ops.push_back(Callee); 1152 1153 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1154 // isn't reliable. 1155 Ops.append(OutVals.begin(), 1156 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1157 // Add a pointer to the vararg buffer. 1158 if (IsVarArg) 1159 Ops.push_back(FINode); 1160 1161 SmallVector<EVT, 8> InTys; 1162 for (const auto &In : Ins) { 1163 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1164 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1165 if (In.Flags.isInAlloca()) 1166 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1167 if (In.Flags.isInConsecutiveRegs()) 1168 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1169 if (In.Flags.isInConsecutiveRegsLast()) 1170 fail(DL, DAG, 1171 "WebAssembly hasn't implemented cons regs last return values"); 1172 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1173 // registers. 1174 InTys.push_back(In.VT); 1175 } 1176 1177 // Lastly, if this is a call to a funcref we need to add an instruction 1178 // table.set to the chain and transform the call. 1179 if (CLI.CB && 1180 WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) { 1181 // In the absence of function references proposal where a funcref call is 1182 // lowered to call_ref, using reference types we generate a table.set to set 1183 // the funcref to a special table used solely for this purpose, followed by 1184 // a call_indirect. Here we just generate the table set, and return the 1185 // SDValue of the table.set so that LowerCall can finalize the lowering by 1186 // generating the call_indirect. 1187 SDValue Chain = Ops[0]; 1188 1189 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1190 MF.getContext(), Subtarget); 1191 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1192 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1193 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1194 SDValue TableSet = DAG.getMemIntrinsicNode( 1195 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1196 MVT::funcref, 1197 // Machine Mem Operand args 1198 MachinePointerInfo( 1199 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1200 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1201 MachineMemOperand::MOStore); 1202 1203 Ops[0] = TableSet; // The new chain is the TableSet itself 1204 } 1205 1206 if (CLI.IsTailCall) { 1207 // ret_calls do not return values to the current frame 1208 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1209 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1210 } 1211 1212 InTys.push_back(MVT::Other); 1213 SDVTList InTyList = DAG.getVTList(InTys); 1214 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1215 1216 for (size_t I = 0; I < Ins.size(); ++I) 1217 InVals.push_back(Res.getValue(I)); 1218 1219 // Return the chain 1220 return Res.getValue(Ins.size()); 1221 } 1222 1223 bool WebAssemblyTargetLowering::CanLowerReturn( 1224 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1225 const SmallVectorImpl<ISD::OutputArg> &Outs, 1226 LLVMContext & /*Context*/) const { 1227 // WebAssembly can only handle returning tuples with multivalue enabled 1228 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1229 } 1230 1231 SDValue WebAssemblyTargetLowering::LowerReturn( 1232 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1233 const SmallVectorImpl<ISD::OutputArg> &Outs, 1234 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1235 SelectionDAG &DAG) const { 1236 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1237 "MVP WebAssembly can only return up to one value"); 1238 if (!callingConvSupported(CallConv)) 1239 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1240 1241 SmallVector<SDValue, 4> RetOps(1, Chain); 1242 RetOps.append(OutVals.begin(), OutVals.end()); 1243 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1244 1245 // Record the number and types of the return values. 1246 for (const ISD::OutputArg &Out : Outs) { 1247 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1248 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1249 assert(Out.IsFixed && "non-fixed return value is not valid"); 1250 if (Out.Flags.isInAlloca()) 1251 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1252 if (Out.Flags.isInConsecutiveRegs()) 1253 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1254 if (Out.Flags.isInConsecutiveRegsLast()) 1255 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1256 } 1257 1258 return Chain; 1259 } 1260 1261 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1262 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1263 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1264 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1265 if (!callingConvSupported(CallConv)) 1266 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1267 1268 MachineFunction &MF = DAG.getMachineFunction(); 1269 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1270 1271 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1272 // of the incoming values before they're represented by virtual registers. 1273 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1274 1275 bool HasSwiftErrorArg = false; 1276 bool HasSwiftSelfArg = false; 1277 for (const ISD::InputArg &In : Ins) { 1278 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1279 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1280 if (In.Flags.isInAlloca()) 1281 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1282 if (In.Flags.isNest()) 1283 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1284 if (In.Flags.isInConsecutiveRegs()) 1285 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1286 if (In.Flags.isInConsecutiveRegsLast()) 1287 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1288 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1289 // registers. 1290 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1291 DAG.getTargetConstant(InVals.size(), 1292 DL, MVT::i32)) 1293 : DAG.getUNDEF(In.VT)); 1294 1295 // Record the number and types of arguments. 1296 MFI->addParam(In.VT); 1297 } 1298 1299 // For swiftcc, emit additional swiftself and swifterror arguments 1300 // if there aren't. These additional arguments are also added for callee 1301 // signature They are necessary to match callee and caller signature for 1302 // indirect call. 1303 auto PtrVT = getPointerTy(MF.getDataLayout()); 1304 if (CallConv == CallingConv::Swift) { 1305 if (!HasSwiftSelfArg) { 1306 MFI->addParam(PtrVT); 1307 } 1308 if (!HasSwiftErrorArg) { 1309 MFI->addParam(PtrVT); 1310 } 1311 } 1312 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1313 // the buffer is passed as an argument. 1314 if (IsVarArg) { 1315 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1316 Register VarargVreg = 1317 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1318 MFI->setVarargBufferVreg(VarargVreg); 1319 Chain = DAG.getCopyToReg( 1320 Chain, DL, VarargVreg, 1321 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1322 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1323 MFI->addParam(PtrVT); 1324 } 1325 1326 // Record the number and types of arguments and results. 1327 SmallVector<MVT, 4> Params; 1328 SmallVector<MVT, 4> Results; 1329 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1330 MF.getFunction(), DAG.getTarget(), Params, Results); 1331 for (MVT VT : Results) 1332 MFI->addResult(VT); 1333 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1334 // the param logic here with ComputeSignatureVTs 1335 assert(MFI->getParams().size() == Params.size() && 1336 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1337 Params.begin())); 1338 1339 return Chain; 1340 } 1341 1342 void WebAssemblyTargetLowering::ReplaceNodeResults( 1343 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1344 switch (N->getOpcode()) { 1345 case ISD::SIGN_EXTEND_INREG: 1346 // Do not add any results, signifying that N should not be custom lowered 1347 // after all. This happens because simd128 turns on custom lowering for 1348 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1349 // illegal type. 1350 break; 1351 default: 1352 llvm_unreachable( 1353 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1354 } 1355 } 1356 1357 //===----------------------------------------------------------------------===// 1358 // Custom lowering hooks. 1359 //===----------------------------------------------------------------------===// 1360 1361 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1362 SelectionDAG &DAG) const { 1363 SDLoc DL(Op); 1364 switch (Op.getOpcode()) { 1365 default: 1366 llvm_unreachable("unimplemented operation lowering"); 1367 return SDValue(); 1368 case ISD::FrameIndex: 1369 return LowerFrameIndex(Op, DAG); 1370 case ISD::GlobalAddress: 1371 return LowerGlobalAddress(Op, DAG); 1372 case ISD::GlobalTLSAddress: 1373 return LowerGlobalTLSAddress(Op, DAG); 1374 case ISD::ExternalSymbol: 1375 return LowerExternalSymbol(Op, DAG); 1376 case ISD::JumpTable: 1377 return LowerJumpTable(Op, DAG); 1378 case ISD::BR_JT: 1379 return LowerBR_JT(Op, DAG); 1380 case ISD::VASTART: 1381 return LowerVASTART(Op, DAG); 1382 case ISD::BlockAddress: 1383 case ISD::BRIND: 1384 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1385 return SDValue(); 1386 case ISD::RETURNADDR: 1387 return LowerRETURNADDR(Op, DAG); 1388 case ISD::FRAMEADDR: 1389 return LowerFRAMEADDR(Op, DAG); 1390 case ISD::CopyToReg: 1391 return LowerCopyToReg(Op, DAG); 1392 case ISD::EXTRACT_VECTOR_ELT: 1393 case ISD::INSERT_VECTOR_ELT: 1394 return LowerAccessVectorElement(Op, DAG); 1395 case ISD::INTRINSIC_VOID: 1396 case ISD::INTRINSIC_WO_CHAIN: 1397 case ISD::INTRINSIC_W_CHAIN: 1398 return LowerIntrinsic(Op, DAG); 1399 case ISD::SIGN_EXTEND_INREG: 1400 return LowerSIGN_EXTEND_INREG(Op, DAG); 1401 case ISD::BUILD_VECTOR: 1402 return LowerBUILD_VECTOR(Op, DAG); 1403 case ISD::VECTOR_SHUFFLE: 1404 return LowerVECTOR_SHUFFLE(Op, DAG); 1405 case ISD::SETCC: 1406 return LowerSETCC(Op, DAG); 1407 case ISD::SHL: 1408 case ISD::SRA: 1409 case ISD::SRL: 1410 return LowerShift(Op, DAG); 1411 case ISD::FP_TO_SINT_SAT: 1412 case ISD::FP_TO_UINT_SAT: 1413 return LowerFP_TO_INT_SAT(Op, DAG); 1414 case ISD::LOAD: 1415 return LowerLoad(Op, DAG); 1416 case ISD::STORE: 1417 return LowerStore(Op, DAG); 1418 case ISD::CTPOP: 1419 case ISD::CTLZ: 1420 case ISD::CTTZ: 1421 return DAG.UnrollVectorOp(Op.getNode()); 1422 } 1423 } 1424 1425 static bool IsWebAssemblyGlobal(SDValue Op) { 1426 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1427 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1428 1429 return false; 1430 } 1431 1432 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1433 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1434 if (!FI) 1435 return None; 1436 1437 auto &MF = DAG.getMachineFunction(); 1438 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1439 } 1440 1441 static bool IsWebAssemblyTable(SDValue Op) { 1442 const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 1443 if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) { 1444 const GlobalValue *Value = GA->getGlobal(); 1445 const Type *Ty = Value->getValueType(); 1446 1447 if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType())) 1448 return true; 1449 } 1450 return false; 1451 } 1452 1453 // This function will accept as Op any access to a table, so Op can 1454 // be the actual table or an offset into the table. 1455 static bool IsWebAssemblyTableWithOffset(SDValue Op) { 1456 if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2) 1457 return (Op->getOperand(1).getSimpleValueType() == MVT::i32 && 1458 IsWebAssemblyTableWithOffset(Op->getOperand(0))) || 1459 (Op->getOperand(0).getSimpleValueType() == MVT::i32 && 1460 IsWebAssemblyTableWithOffset(Op->getOperand(1))); 1461 1462 return IsWebAssemblyTable(Op); 1463 } 1464 1465 // Helper for table pattern matching used in LowerStore and LowerLoad 1466 bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG, 1467 const SDLoc &DL, 1468 const SDValue &Base, 1469 GlobalAddressSDNode *&GA, 1470 SDValue &Idx) const { 1471 // We expect the following graph for a load of the form: 1472 // table[<var> + <constant offset>] 1473 // 1474 // Case 1: 1475 // externref = load t1 1476 // t1: i32 = add t2, i32:<constant offset> 1477 // t2: i32 = add tX, table 1478 // 1479 // This is in some cases simplified to just: 1480 // Case 2: 1481 // externref = load t1 1482 // t1: i32 = add t2, i32:tX 1483 // 1484 // So, unfortunately we need to check for both cases and if we are in the 1485 // first case extract the table GlobalAddressNode and build a new node tY 1486 // that's tY: i32 = add i32:<constant offset>, i32:tX 1487 // 1488 if (IsWebAssemblyTable(Base)) { 1489 GA = cast<GlobalAddressSDNode>(Base); 1490 Idx = DAG.getConstant(0, DL, MVT::i32); 1491 } else { 1492 GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0)); 1493 if (GA) { 1494 // We are in Case 2 above. 1495 Idx = Base->getOperand(1); 1496 assert(GA->getNumValues() == 1); 1497 } else { 1498 // This might be Case 1 above (or an error) 1499 SDValue V = Base->getOperand(0); 1500 GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1)); 1501 1502 if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA) 1503 return false; 1504 1505 SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1), 1506 V->getOperand(0)); 1507 Idx = IdxV; 1508 } 1509 } 1510 1511 return true; 1512 } 1513 1514 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1515 SelectionDAG &DAG) const { 1516 SDLoc DL(Op); 1517 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1518 const SDValue &Value = SN->getValue(); 1519 const SDValue &Base = SN->getBasePtr(); 1520 const SDValue &Offset = SN->getOffset(); 1521 1522 if (IsWebAssemblyTableWithOffset(Base)) { 1523 if (!Offset->isUndef()) 1524 report_fatal_error( 1525 "unexpected offset when loading from webassembly table", false); 1526 1527 SDValue Idx; 1528 GlobalAddressSDNode *GA; 1529 1530 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1531 report_fatal_error("failed pattern matching for lowering table store", 1532 false); 1533 1534 SDVTList Tys = DAG.getVTList(MVT::Other); 1535 SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value}; 1536 SDValue TableSet = 1537 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps, 1538 SN->getMemoryVT(), SN->getMemOperand()); 1539 return TableSet; 1540 } 1541 1542 if (IsWebAssemblyGlobal(Base)) { 1543 if (!Offset->isUndef()) 1544 report_fatal_error("unexpected offset when storing to webassembly global", 1545 false); 1546 1547 SDVTList Tys = DAG.getVTList(MVT::Other); 1548 SDValue Ops[] = {SN->getChain(), Value, Base}; 1549 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1550 SN->getMemoryVT(), SN->getMemOperand()); 1551 } 1552 1553 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1554 if (!Offset->isUndef()) 1555 report_fatal_error("unexpected offset when storing to webassembly local", 1556 false); 1557 1558 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1559 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1560 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1561 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1562 } 1563 1564 return Op; 1565 } 1566 1567 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1568 SelectionDAG &DAG) const { 1569 SDLoc DL(Op); 1570 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1571 const SDValue &Base = LN->getBasePtr(); 1572 const SDValue &Offset = LN->getOffset(); 1573 1574 if (IsWebAssemblyTableWithOffset(Base)) { 1575 if (!Offset->isUndef()) 1576 report_fatal_error( 1577 "unexpected offset when loading from webassembly table", false); 1578 1579 GlobalAddressSDNode *GA; 1580 SDValue Idx; 1581 1582 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1583 report_fatal_error("failed pattern matching for lowering table load", 1584 false); 1585 1586 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1587 SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx}; 1588 SDValue TableGet = 1589 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps, 1590 LN->getMemoryVT(), LN->getMemOperand()); 1591 return TableGet; 1592 } 1593 1594 if (IsWebAssemblyGlobal(Base)) { 1595 if (!Offset->isUndef()) 1596 report_fatal_error( 1597 "unexpected offset when loading from webassembly global", false); 1598 1599 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1600 SDValue Ops[] = {LN->getChain(), Base}; 1601 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1602 LN->getMemoryVT(), LN->getMemOperand()); 1603 } 1604 1605 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1606 if (!Offset->isUndef()) 1607 report_fatal_error( 1608 "unexpected offset when loading from webassembly local", false); 1609 1610 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1611 EVT LocalVT = LN->getValueType(0); 1612 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1613 {LN->getChain(), Idx}); 1614 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1615 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1616 return Result; 1617 } 1618 1619 return Op; 1620 } 1621 1622 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1623 SelectionDAG &DAG) const { 1624 SDValue Src = Op.getOperand(2); 1625 if (isa<FrameIndexSDNode>(Src.getNode())) { 1626 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1627 // the FI to some LEA-like instruction, but since we don't have that, we 1628 // need to insert some kind of instruction that can take an FI operand and 1629 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1630 // local.copy between Op and its FI operand. 1631 SDValue Chain = Op.getOperand(0); 1632 SDLoc DL(Op); 1633 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1634 EVT VT = Src.getValueType(); 1635 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1636 : WebAssembly::COPY_I64, 1637 DL, VT, Src), 1638 0); 1639 return Op.getNode()->getNumValues() == 1 1640 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1641 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1642 Op.getNumOperands() == 4 ? Op.getOperand(3) 1643 : SDValue()); 1644 } 1645 return SDValue(); 1646 } 1647 1648 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1649 SelectionDAG &DAG) const { 1650 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1651 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1652 } 1653 1654 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1655 SelectionDAG &DAG) const { 1656 SDLoc DL(Op); 1657 1658 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1659 fail(DL, DAG, 1660 "Non-Emscripten WebAssembly hasn't implemented " 1661 "__builtin_return_address"); 1662 return SDValue(); 1663 } 1664 1665 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1666 return SDValue(); 1667 1668 unsigned Depth = Op.getConstantOperandVal(0); 1669 MakeLibCallOptions CallOptions; 1670 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1671 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1672 .first; 1673 } 1674 1675 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1676 SelectionDAG &DAG) const { 1677 // Non-zero depths are not supported by WebAssembly currently. Use the 1678 // legalizer's default expansion, which is to return 0 (what this function is 1679 // documented to do). 1680 if (Op.getConstantOperandVal(0) > 0) 1681 return SDValue(); 1682 1683 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1684 EVT VT = Op.getValueType(); 1685 Register FP = 1686 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1687 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1688 } 1689 1690 SDValue 1691 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1692 SelectionDAG &DAG) const { 1693 SDLoc DL(Op); 1694 const auto *GA = cast<GlobalAddressSDNode>(Op); 1695 1696 MachineFunction &MF = DAG.getMachineFunction(); 1697 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1698 report_fatal_error("cannot use thread-local storage without bulk memory", 1699 false); 1700 1701 const GlobalValue *GV = GA->getGlobal(); 1702 1703 // Currently Emscripten does not support dynamic linking with threads. 1704 // Therefore, if we have thread-local storage, only the local-exec model 1705 // is possible. 1706 // TODO: remove this and implement proper TLS models once Emscripten 1707 // supports dynamic linking with threads. 1708 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1709 !Subtarget->getTargetTriple().isOSEmscripten()) { 1710 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1711 "non-Emscripten OSes: variable " + 1712 GV->getName(), 1713 false); 1714 } 1715 1716 auto model = GV->getThreadLocalMode(); 1717 1718 // Unsupported TLS modes 1719 assert(model != GlobalValue::NotThreadLocal); 1720 assert(model != GlobalValue::InitialExecTLSModel); 1721 1722 if (model == GlobalValue::LocalExecTLSModel || 1723 model == GlobalValue::LocalDynamicTLSModel || 1724 (model == GlobalValue::GeneralDynamicTLSModel && 1725 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { 1726 // For DSO-local TLS variables we use offset from __tls_base 1727 1728 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1729 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1730 : WebAssembly::GLOBAL_GET_I32; 1731 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1732 1733 SDValue BaseAddr( 1734 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1735 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1736 0); 1737 1738 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1739 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1740 SDValue SymOffset = 1741 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1742 1743 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1744 } 1745 1746 assert(model == GlobalValue::GeneralDynamicTLSModel); 1747 1748 EVT VT = Op.getValueType(); 1749 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1750 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1751 GA->getOffset(), 1752 WebAssemblyII::MO_GOT_TLS)); 1753 } 1754 1755 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1756 SelectionDAG &DAG) const { 1757 SDLoc DL(Op); 1758 const auto *GA = cast<GlobalAddressSDNode>(Op); 1759 EVT VT = Op.getValueType(); 1760 assert(GA->getTargetFlags() == 0 && 1761 "Unexpected target flags on generic GlobalAddressSDNode"); 1762 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1763 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1764 1765 unsigned OperandFlags = 0; 1766 if (isPositionIndependent()) { 1767 const GlobalValue *GV = GA->getGlobal(); 1768 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1769 MachineFunction &MF = DAG.getMachineFunction(); 1770 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1771 const char *BaseName; 1772 if (GV->getValueType()->isFunctionTy()) { 1773 BaseName = MF.createExternalSymbolName("__table_base"); 1774 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1775 } 1776 else { 1777 BaseName = MF.createExternalSymbolName("__memory_base"); 1778 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1779 } 1780 SDValue BaseAddr = 1781 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1782 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1783 1784 SDValue SymAddr = DAG.getNode( 1785 WebAssemblyISD::WrapperREL, DL, VT, 1786 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1787 OperandFlags)); 1788 1789 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1790 } 1791 OperandFlags = WebAssemblyII::MO_GOT; 1792 } 1793 1794 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1795 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1796 GA->getOffset(), OperandFlags)); 1797 } 1798 1799 SDValue 1800 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1801 SelectionDAG &DAG) const { 1802 SDLoc DL(Op); 1803 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1804 EVT VT = Op.getValueType(); 1805 assert(ES->getTargetFlags() == 0 && 1806 "Unexpected target flags on generic ExternalSymbolSDNode"); 1807 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1808 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1809 } 1810 1811 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1812 SelectionDAG &DAG) const { 1813 // There's no need for a Wrapper node because we always incorporate a jump 1814 // table operand into a BR_TABLE instruction, rather than ever 1815 // materializing it in a register. 1816 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1817 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1818 JT->getTargetFlags()); 1819 } 1820 1821 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1822 SelectionDAG &DAG) const { 1823 SDLoc DL(Op); 1824 SDValue Chain = Op.getOperand(0); 1825 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1826 SDValue Index = Op.getOperand(2); 1827 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1828 1829 SmallVector<SDValue, 8> Ops; 1830 Ops.push_back(Chain); 1831 Ops.push_back(Index); 1832 1833 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1834 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1835 1836 // Add an operand for each case. 1837 for (auto MBB : MBBs) 1838 Ops.push_back(DAG.getBasicBlock(MBB)); 1839 1840 // Add the first MBB as a dummy default target for now. This will be replaced 1841 // with the proper default target (and the preceding range check eliminated) 1842 // if possible by WebAssemblyFixBrTableDefaults. 1843 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1844 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1845 } 1846 1847 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1848 SelectionDAG &DAG) const { 1849 SDLoc DL(Op); 1850 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1851 1852 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1853 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1854 1855 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1856 MFI->getVarargBufferVreg(), PtrVT); 1857 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1858 MachinePointerInfo(SV)); 1859 } 1860 1861 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1862 SelectionDAG &DAG) const { 1863 MachineFunction &MF = DAG.getMachineFunction(); 1864 unsigned IntNo; 1865 switch (Op.getOpcode()) { 1866 case ISD::INTRINSIC_VOID: 1867 case ISD::INTRINSIC_W_CHAIN: 1868 IntNo = Op.getConstantOperandVal(1); 1869 break; 1870 case ISD::INTRINSIC_WO_CHAIN: 1871 IntNo = Op.getConstantOperandVal(0); 1872 break; 1873 default: 1874 llvm_unreachable("Invalid intrinsic"); 1875 } 1876 SDLoc DL(Op); 1877 1878 switch (IntNo) { 1879 default: 1880 return SDValue(); // Don't custom lower most intrinsics. 1881 1882 case Intrinsic::wasm_lsda: { 1883 auto PtrVT = getPointerTy(MF.getDataLayout()); 1884 const char *SymName = MF.createExternalSymbolName( 1885 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 1886 if (isPositionIndependent()) { 1887 SDValue Node = DAG.getTargetExternalSymbol( 1888 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 1889 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 1890 SDValue BaseAddr = 1891 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1892 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1893 SDValue SymAddr = 1894 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 1895 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1896 } 1897 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 1898 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 1899 } 1900 1901 case Intrinsic::wasm_shuffle: { 1902 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1903 SDValue Ops[18]; 1904 size_t OpIdx = 0; 1905 Ops[OpIdx++] = Op.getOperand(1); 1906 Ops[OpIdx++] = Op.getOperand(2); 1907 while (OpIdx < 18) { 1908 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1909 if (MaskIdx.isUndef() || 1910 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1911 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1912 } else { 1913 Ops[OpIdx++] = MaskIdx; 1914 } 1915 } 1916 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1917 } 1918 } 1919 } 1920 1921 SDValue 1922 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1923 SelectionDAG &DAG) const { 1924 SDLoc DL(Op); 1925 // If sign extension operations are disabled, allow sext_inreg only if operand 1926 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1927 // extension operations, but allowing sext_inreg in this context lets us have 1928 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1929 // everywhere would be simpler in this file, but would necessitate large and 1930 // brittle patterns to undo the expansion and select extract_lane_s 1931 // instructions. 1932 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1933 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1934 return SDValue(); 1935 1936 const SDValue &Extract = Op.getOperand(0); 1937 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1938 if (VecT.getVectorElementType().getSizeInBits() > 32) 1939 return SDValue(); 1940 MVT ExtractedLaneT = 1941 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1942 MVT ExtractedVecT = 1943 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1944 if (ExtractedVecT == VecT) 1945 return Op; 1946 1947 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1948 const SDNode *Index = Extract.getOperand(1).getNode(); 1949 if (!isa<ConstantSDNode>(Index)) 1950 return SDValue(); 1951 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1952 unsigned Scale = 1953 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1954 assert(Scale > 1); 1955 SDValue NewIndex = 1956 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1957 SDValue NewExtract = DAG.getNode( 1958 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1959 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1960 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1961 Op.getOperand(1)); 1962 } 1963 1964 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1965 SDLoc DL(Op); 1966 if (Op.getValueType() != MVT::v2f64) 1967 return SDValue(); 1968 1969 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1970 unsigned &Index) -> bool { 1971 switch (Op.getOpcode()) { 1972 case ISD::SINT_TO_FP: 1973 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1974 break; 1975 case ISD::UINT_TO_FP: 1976 Opcode = WebAssemblyISD::CONVERT_LOW_U; 1977 break; 1978 case ISD::FP_EXTEND: 1979 Opcode = WebAssemblyISD::PROMOTE_LOW; 1980 break; 1981 default: 1982 return false; 1983 } 1984 1985 auto ExtractVector = Op.getOperand(0); 1986 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1987 return false; 1988 1989 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 1990 return false; 1991 1992 SrcVec = ExtractVector.getOperand(0); 1993 Index = ExtractVector.getConstantOperandVal(1); 1994 return true; 1995 }; 1996 1997 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 1998 SDValue LHSSrcVec, RHSSrcVec; 1999 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 2000 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 2001 return SDValue(); 2002 2003 if (LHSOpcode != RHSOpcode) 2004 return SDValue(); 2005 2006 MVT ExpectedSrcVT; 2007 switch (LHSOpcode) { 2008 case WebAssemblyISD::CONVERT_LOW_S: 2009 case WebAssemblyISD::CONVERT_LOW_U: 2010 ExpectedSrcVT = MVT::v4i32; 2011 break; 2012 case WebAssemblyISD::PROMOTE_LOW: 2013 ExpectedSrcVT = MVT::v4f32; 2014 break; 2015 } 2016 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 2017 return SDValue(); 2018 2019 auto Src = LHSSrcVec; 2020 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 2021 // Shuffle the source vector so that the converted lanes are the low lanes. 2022 Src = DAG.getVectorShuffle( 2023 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2024 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2025 } 2026 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2027 } 2028 2029 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2030 SelectionDAG &DAG) const { 2031 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2032 return ConvertLow; 2033 2034 SDLoc DL(Op); 2035 const EVT VecT = Op.getValueType(); 2036 const EVT LaneT = Op.getOperand(0).getValueType(); 2037 const size_t Lanes = Op.getNumOperands(); 2038 bool CanSwizzle = VecT == MVT::v16i8; 2039 2040 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2041 // possible number of lanes at once followed by a sequence of replace_lane 2042 // instructions to individually initialize any remaining lanes. 2043 2044 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2045 // swizzled lanes should be given greater weight. 2046 2047 // TODO: Investigate looping rather than always extracting/replacing specific 2048 // lanes to fill gaps. 2049 2050 auto IsConstant = [](const SDValue &V) { 2051 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2052 }; 2053 2054 // Returns the source vector and index vector pair if they exist. Checks for: 2055 // (extract_vector_elt 2056 // $src, 2057 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2058 // ) 2059 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2060 auto Bail = std::make_pair(SDValue(), SDValue()); 2061 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2062 return Bail; 2063 const SDValue &SwizzleSrc = Lane->getOperand(0); 2064 const SDValue &IndexExt = Lane->getOperand(1); 2065 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2066 return Bail; 2067 const SDValue &Index = IndexExt->getOperand(0); 2068 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2069 return Bail; 2070 const SDValue &SwizzleIndices = Index->getOperand(0); 2071 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2072 SwizzleIndices.getValueType() != MVT::v16i8 || 2073 Index->getOperand(1)->getOpcode() != ISD::Constant || 2074 Index->getConstantOperandVal(1) != I) 2075 return Bail; 2076 return std::make_pair(SwizzleSrc, SwizzleIndices); 2077 }; 2078 2079 // If the lane is extracted from another vector at a constant index, return 2080 // that vector. The source vector must not have more lanes than the dest 2081 // because the shufflevector indices are in terms of the destination lanes and 2082 // would not be able to address the smaller individual source lanes. 2083 auto GetShuffleSrc = [&](const SDValue &Lane) { 2084 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2085 return SDValue(); 2086 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2087 return SDValue(); 2088 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2089 VecT.getVectorNumElements()) 2090 return SDValue(); 2091 return Lane->getOperand(0); 2092 }; 2093 2094 using ValueEntry = std::pair<SDValue, size_t>; 2095 SmallVector<ValueEntry, 16> SplatValueCounts; 2096 2097 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2098 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2099 2100 using ShuffleEntry = std::pair<SDValue, size_t>; 2101 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2102 2103 auto AddCount = [](auto &Counts, const auto &Val) { 2104 auto CountIt = 2105 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2106 if (CountIt == Counts.end()) { 2107 Counts.emplace_back(Val, 1); 2108 } else { 2109 CountIt->second++; 2110 } 2111 }; 2112 2113 auto GetMostCommon = [](auto &Counts) { 2114 auto CommonIt = 2115 std::max_element(Counts.begin(), Counts.end(), 2116 [](auto A, auto B) { return A.second < B.second; }); 2117 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2118 return *CommonIt; 2119 }; 2120 2121 size_t NumConstantLanes = 0; 2122 2123 // Count eligible lanes for each type of vector creation op 2124 for (size_t I = 0; I < Lanes; ++I) { 2125 const SDValue &Lane = Op->getOperand(I); 2126 if (Lane.isUndef()) 2127 continue; 2128 2129 AddCount(SplatValueCounts, Lane); 2130 2131 if (IsConstant(Lane)) 2132 NumConstantLanes++; 2133 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2134 AddCount(ShuffleCounts, ShuffleSrc); 2135 if (CanSwizzle) { 2136 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2137 if (SwizzleSrcs.first) 2138 AddCount(SwizzleCounts, SwizzleSrcs); 2139 } 2140 } 2141 2142 SDValue SplatValue; 2143 size_t NumSplatLanes; 2144 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2145 2146 SDValue SwizzleSrc; 2147 SDValue SwizzleIndices; 2148 size_t NumSwizzleLanes = 0; 2149 if (SwizzleCounts.size()) 2150 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2151 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2152 2153 // Shuffles can draw from up to two vectors, so find the two most common 2154 // sources. 2155 SDValue ShuffleSrc1, ShuffleSrc2; 2156 size_t NumShuffleLanes = 0; 2157 if (ShuffleCounts.size()) { 2158 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2159 llvm::erase_if(ShuffleCounts, 2160 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2161 } 2162 if (ShuffleCounts.size()) { 2163 size_t AdditionalShuffleLanes; 2164 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2165 GetMostCommon(ShuffleCounts); 2166 NumShuffleLanes += AdditionalShuffleLanes; 2167 } 2168 2169 // Predicate returning true if the lane is properly initialized by the 2170 // original instruction 2171 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2172 SDValue Result; 2173 // Prefer swizzles over shuffles over vector consts over splats 2174 if (NumSwizzleLanes >= NumShuffleLanes && 2175 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2176 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2177 SwizzleIndices); 2178 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2179 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2180 return Swizzled == GetSwizzleSrcs(I, Lane); 2181 }; 2182 } else if (NumShuffleLanes >= NumConstantLanes && 2183 NumShuffleLanes >= NumSplatLanes) { 2184 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2185 size_t DestLaneCount = VecT.getVectorNumElements(); 2186 size_t Scale1 = 1; 2187 size_t Scale2 = 1; 2188 SDValue Src1 = ShuffleSrc1; 2189 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2190 if (Src1.getValueType() != VecT) { 2191 size_t LaneSize = 2192 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2193 assert(LaneSize > DestLaneSize); 2194 Scale1 = LaneSize / DestLaneSize; 2195 Src1 = DAG.getBitcast(VecT, Src1); 2196 } 2197 if (Src2.getValueType() != VecT) { 2198 size_t LaneSize = 2199 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2200 assert(LaneSize > DestLaneSize); 2201 Scale2 = LaneSize / DestLaneSize; 2202 Src2 = DAG.getBitcast(VecT, Src2); 2203 } 2204 2205 int Mask[16]; 2206 assert(DestLaneCount <= 16); 2207 for (size_t I = 0; I < DestLaneCount; ++I) { 2208 const SDValue &Lane = Op->getOperand(I); 2209 SDValue Src = GetShuffleSrc(Lane); 2210 if (Src == ShuffleSrc1) { 2211 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2212 } else if (Src && Src == ShuffleSrc2) { 2213 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2214 } else { 2215 Mask[I] = -1; 2216 } 2217 } 2218 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2219 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2220 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2221 auto Src = GetShuffleSrc(Lane); 2222 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2223 }; 2224 } else if (NumConstantLanes >= NumSplatLanes) { 2225 SmallVector<SDValue, 16> ConstLanes; 2226 for (const SDValue &Lane : Op->op_values()) { 2227 if (IsConstant(Lane)) { 2228 // Values may need to be fixed so that they will sign extend to be 2229 // within the expected range during ISel. Check whether the value is in 2230 // bounds based on the lane bit width and if it is out of bounds, lop 2231 // off the extra bits and subtract 2^n to reflect giving the high bit 2232 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2233 // cannot possibly be out of range. 2234 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2235 int64_t Val = Const ? Const->getSExtValue() : 0; 2236 uint64_t LaneBits = 128 / Lanes; 2237 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2238 "Unexpected out of bounds negative value"); 2239 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2240 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); 2241 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2242 } else { 2243 ConstLanes.push_back(Lane); 2244 } 2245 } else if (LaneT.isFloatingPoint()) { 2246 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2247 } else { 2248 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2249 } 2250 } 2251 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2252 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2253 return IsConstant(Lane); 2254 }; 2255 } else { 2256 // Use a splat, but possibly a load_splat 2257 LoadSDNode *SplattedLoad; 2258 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 2259 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 2260 Result = DAG.getMemIntrinsicNode( 2261 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 2262 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 2263 SplattedLoad->getOffset()}, 2264 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 2265 } else { 2266 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2267 } 2268 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2269 return Lane == SplatValue; 2270 }; 2271 } 2272 2273 assert(Result); 2274 assert(IsLaneConstructed); 2275 2276 // Add replace_lane instructions for any unhandled values 2277 for (size_t I = 0; I < Lanes; ++I) { 2278 const SDValue &Lane = Op->getOperand(I); 2279 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2280 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2281 DAG.getConstant(I, DL, MVT::i32)); 2282 } 2283 2284 return Result; 2285 } 2286 2287 SDValue 2288 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2289 SelectionDAG &DAG) const { 2290 SDLoc DL(Op); 2291 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2292 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2293 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2294 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2295 2296 // Space for two vector args and sixteen mask indices 2297 SDValue Ops[18]; 2298 size_t OpIdx = 0; 2299 Ops[OpIdx++] = Op.getOperand(0); 2300 Ops[OpIdx++] = Op.getOperand(1); 2301 2302 // Expand mask indices to byte indices and materialize them as operands 2303 for (int M : Mask) { 2304 for (size_t J = 0; J < LaneBytes; ++J) { 2305 // Lower undefs (represented by -1 in mask) to zero 2306 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 2307 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2308 } 2309 } 2310 2311 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2312 } 2313 2314 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2315 SelectionDAG &DAG) const { 2316 SDLoc DL(Op); 2317 // The legalizer does not know how to expand the unsupported comparison modes 2318 // of i64x2 vectors, so we manually unroll them here. 2319 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2320 SmallVector<SDValue, 2> LHS, RHS; 2321 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2322 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2323 const SDValue &CC = Op->getOperand(2); 2324 auto MakeLane = [&](unsigned I) { 2325 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2326 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2327 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2328 }; 2329 return DAG.getBuildVector(Op->getValueType(0), DL, 2330 {MakeLane(0), MakeLane(1)}); 2331 } 2332 2333 SDValue 2334 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2335 SelectionDAG &DAG) const { 2336 // Allow constant lane indices, expand variable lane indices 2337 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2338 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2339 return Op; 2340 else 2341 // Perform default expansion 2342 return SDValue(); 2343 } 2344 2345 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2346 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2347 // 32-bit and 64-bit unrolled shifts will have proper semantics 2348 if (LaneT.bitsGE(MVT::i32)) 2349 return DAG.UnrollVectorOp(Op.getNode()); 2350 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2351 SDLoc DL(Op); 2352 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2353 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2354 unsigned ShiftOpcode = Op.getOpcode(); 2355 SmallVector<SDValue, 16> ShiftedElements; 2356 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2357 SmallVector<SDValue, 16> ShiftElements; 2358 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2359 SmallVector<SDValue, 16> UnrolledOps; 2360 for (size_t i = 0; i < NumLanes; ++i) { 2361 SDValue MaskedShiftValue = 2362 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2363 SDValue ShiftedValue = ShiftedElements[i]; 2364 if (ShiftOpcode == ISD::SRA) 2365 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2366 ShiftedValue, DAG.getValueType(LaneT)); 2367 UnrolledOps.push_back( 2368 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2369 } 2370 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2371 } 2372 2373 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2374 SelectionDAG &DAG) const { 2375 SDLoc DL(Op); 2376 2377 // Only manually lower vector shifts 2378 assert(Op.getSimpleValueType().isVector()); 2379 2380 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2381 if (!ShiftVal) 2382 return unrollVectorShift(Op, DAG); 2383 2384 // Use anyext because none of the high bits can affect the shift 2385 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2386 2387 unsigned Opcode; 2388 switch (Op.getOpcode()) { 2389 case ISD::SHL: 2390 Opcode = WebAssemblyISD::VEC_SHL; 2391 break; 2392 case ISD::SRA: 2393 Opcode = WebAssemblyISD::VEC_SHR_S; 2394 break; 2395 case ISD::SRL: 2396 Opcode = WebAssemblyISD::VEC_SHR_U; 2397 break; 2398 default: 2399 llvm_unreachable("unexpected opcode"); 2400 } 2401 2402 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2403 } 2404 2405 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2406 SelectionDAG &DAG) const { 2407 SDLoc DL(Op); 2408 EVT ResT = Op.getValueType(); 2409 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2410 2411 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2412 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2413 return Op; 2414 2415 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2416 return Op; 2417 2418 return SDValue(); 2419 } 2420 2421 //===----------------------------------------------------------------------===// 2422 // Custom DAG combine hooks 2423 //===----------------------------------------------------------------------===// 2424 static SDValue 2425 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2426 auto &DAG = DCI.DAG; 2427 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2428 2429 // Hoist vector bitcasts that don't change the number of lanes out of unary 2430 // shuffles, where they are less likely to get in the way of other combines. 2431 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2432 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2433 SDValue Bitcast = N->getOperand(0); 2434 if (Bitcast.getOpcode() != ISD::BITCAST) 2435 return SDValue(); 2436 if (!N->getOperand(1).isUndef()) 2437 return SDValue(); 2438 SDValue CastOp = Bitcast.getOperand(0); 2439 MVT SrcType = CastOp.getSimpleValueType(); 2440 MVT DstType = Bitcast.getSimpleValueType(); 2441 if (!SrcType.is128BitVector() || 2442 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2443 return SDValue(); 2444 SDValue NewShuffle = DAG.getVectorShuffle( 2445 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2446 return DAG.getBitcast(DstType, NewShuffle); 2447 } 2448 2449 static SDValue 2450 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2451 auto &DAG = DCI.DAG; 2452 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2453 N->getOpcode() == ISD::ZERO_EXTEND); 2454 2455 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2456 // possible before the extract_subvector can be expanded. 2457 auto Extract = N->getOperand(0); 2458 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2459 return SDValue(); 2460 auto Source = Extract.getOperand(0); 2461 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2462 if (IndexNode == nullptr) 2463 return SDValue(); 2464 auto Index = IndexNode->getZExtValue(); 2465 2466 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2467 // extracted subvector is the low or high half of its source. 2468 EVT ResVT = N->getValueType(0); 2469 if (ResVT == MVT::v8i16) { 2470 if (Extract.getValueType() != MVT::v8i8 || 2471 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2472 return SDValue(); 2473 } else if (ResVT == MVT::v4i32) { 2474 if (Extract.getValueType() != MVT::v4i16 || 2475 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2476 return SDValue(); 2477 } else if (ResVT == MVT::v2i64) { 2478 if (Extract.getValueType() != MVT::v2i32 || 2479 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2480 return SDValue(); 2481 } else { 2482 return SDValue(); 2483 } 2484 2485 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2486 bool IsLow = Index == 0; 2487 2488 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2489 : WebAssemblyISD::EXTEND_HIGH_S) 2490 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2491 : WebAssemblyISD::EXTEND_HIGH_U); 2492 2493 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2494 } 2495 2496 static SDValue 2497 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2498 auto &DAG = DCI.DAG; 2499 2500 auto GetWasmConversionOp = [](unsigned Op) { 2501 switch (Op) { 2502 case ISD::FP_TO_SINT_SAT: 2503 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2504 case ISD::FP_TO_UINT_SAT: 2505 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2506 case ISD::FP_ROUND: 2507 return WebAssemblyISD::DEMOTE_ZERO; 2508 } 2509 llvm_unreachable("unexpected op"); 2510 }; 2511 2512 auto IsZeroSplat = [](SDValue SplatVal) { 2513 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2514 APInt SplatValue, SplatUndef; 2515 unsigned SplatBitSize; 2516 bool HasAnyUndefs; 2517 return Splat && 2518 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2519 HasAnyUndefs) && 2520 SplatValue == 0; 2521 }; 2522 2523 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2524 // Combine this: 2525 // 2526 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2527 // 2528 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2529 // 2530 // Or this: 2531 // 2532 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2533 // 2534 // into (f32x4.demote_zero_f64x2 $x). 2535 EVT ResVT; 2536 EVT ExpectedConversionType; 2537 auto Conversion = N->getOperand(0); 2538 auto ConversionOp = Conversion.getOpcode(); 2539 switch (ConversionOp) { 2540 case ISD::FP_TO_SINT_SAT: 2541 case ISD::FP_TO_UINT_SAT: 2542 ResVT = MVT::v4i32; 2543 ExpectedConversionType = MVT::v2i32; 2544 break; 2545 case ISD::FP_ROUND: 2546 ResVT = MVT::v4f32; 2547 ExpectedConversionType = MVT::v2f32; 2548 break; 2549 default: 2550 return SDValue(); 2551 } 2552 2553 if (N->getValueType(0) != ResVT) 2554 return SDValue(); 2555 2556 if (Conversion.getValueType() != ExpectedConversionType) 2557 return SDValue(); 2558 2559 auto Source = Conversion.getOperand(0); 2560 if (Source.getValueType() != MVT::v2f64) 2561 return SDValue(); 2562 2563 if (!IsZeroSplat(N->getOperand(1)) || 2564 N->getOperand(1).getValueType() != ExpectedConversionType) 2565 return SDValue(); 2566 2567 unsigned Op = GetWasmConversionOp(ConversionOp); 2568 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2569 } 2570 2571 // Combine this: 2572 // 2573 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2574 // 2575 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2576 // 2577 // Or this: 2578 // 2579 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2580 // 2581 // into (f32x4.demote_zero_f64x2 $x). 2582 EVT ResVT; 2583 auto ConversionOp = N->getOpcode(); 2584 switch (ConversionOp) { 2585 case ISD::FP_TO_SINT_SAT: 2586 case ISD::FP_TO_UINT_SAT: 2587 ResVT = MVT::v4i32; 2588 break; 2589 case ISD::FP_ROUND: 2590 ResVT = MVT::v4f32; 2591 break; 2592 default: 2593 llvm_unreachable("unexpected op"); 2594 } 2595 2596 if (N->getValueType(0) != ResVT) 2597 return SDValue(); 2598 2599 auto Concat = N->getOperand(0); 2600 if (Concat.getValueType() != MVT::v4f64) 2601 return SDValue(); 2602 2603 auto Source = Concat.getOperand(0); 2604 if (Source.getValueType() != MVT::v2f64) 2605 return SDValue(); 2606 2607 if (!IsZeroSplat(Concat.getOperand(1)) || 2608 Concat.getOperand(1).getValueType() != MVT::v2f64) 2609 return SDValue(); 2610 2611 unsigned Op = GetWasmConversionOp(ConversionOp); 2612 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2613 } 2614 2615 // Helper to extract VectorWidth bits from Vec, starting from IdxVal. 2616 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, 2617 const SDLoc &DL, unsigned VectorWidth) { 2618 EVT VT = Vec.getValueType(); 2619 EVT ElVT = VT.getVectorElementType(); 2620 unsigned Factor = VT.getSizeInBits() / VectorWidth; 2621 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, 2622 VT.getVectorNumElements() / Factor); 2623 2624 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR 2625 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); 2626 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); 2627 2628 // This is the index of the first element of the VectorWidth-bit chunk 2629 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. 2630 IdxVal &= ~(ElemsPerChunk - 1); 2631 2632 // If the input is a buildvector just emit a smaller one. 2633 if (Vec.getOpcode() == ISD::BUILD_VECTOR) 2634 return DAG.getBuildVector(ResultVT, DL, 2635 Vec->ops().slice(IdxVal, ElemsPerChunk)); 2636 2637 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); 2638 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); 2639 } 2640 2641 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT 2642 // is the expected destination value type after recursion. In is the initial 2643 // input. Note that the input should have enough leading zero bits to prevent 2644 // NARROW_U from saturating results. 2645 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, 2646 SelectionDAG &DAG) { 2647 EVT SrcVT = In.getValueType(); 2648 2649 // No truncation required, we might get here due to recursive calls. 2650 if (SrcVT == DstVT) 2651 return In; 2652 2653 unsigned SrcSizeInBits = SrcVT.getSizeInBits(); 2654 unsigned NumElems = SrcVT.getVectorNumElements(); 2655 if (!isPowerOf2_32(NumElems)) 2656 return SDValue(); 2657 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); 2658 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); 2659 2660 LLVMContext &Ctx = *DAG.getContext(); 2661 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); 2662 2663 // Narrow to the largest type possible: 2664 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. 2665 EVT InVT = MVT::i16, OutVT = MVT::i8; 2666 if (SrcVT.getScalarSizeInBits() > 16) { 2667 InVT = MVT::i32; 2668 OutVT = MVT::i16; 2669 } 2670 unsigned SubSizeInBits = SrcSizeInBits / 2; 2671 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); 2672 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); 2673 2674 // Split lower/upper subvectors. 2675 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); 2676 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); 2677 2678 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. 2679 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { 2680 Lo = DAG.getBitcast(InVT, Lo); 2681 Hi = DAG.getBitcast(InVT, Hi); 2682 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); 2683 return DAG.getBitcast(DstVT, Res); 2684 } 2685 2686 // Recursively narrow lower/upper subvectors, concat result and narrow again. 2687 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); 2688 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); 2689 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); 2690 2691 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); 2692 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); 2693 return truncateVectorWithNARROW(DstVT, Res, DL, DAG); 2694 } 2695 2696 static SDValue performTruncateCombine(SDNode *N, 2697 TargetLowering::DAGCombinerInfo &DCI) { 2698 auto &DAG = DCI.DAG; 2699 2700 SDValue In = N->getOperand(0); 2701 EVT InVT = In.getValueType(); 2702 if (!InVT.isSimple()) 2703 return SDValue(); 2704 2705 EVT OutVT = N->getValueType(0); 2706 if (!OutVT.isVector()) 2707 return SDValue(); 2708 2709 EVT OutSVT = OutVT.getVectorElementType(); 2710 EVT InSVT = InVT.getVectorElementType(); 2711 // Currently only cover truncate to v16i8 or v8i16. 2712 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && 2713 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) 2714 return SDValue(); 2715 2716 SDLoc DL(N); 2717 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), 2718 OutVT.getScalarSizeInBits()); 2719 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); 2720 return truncateVectorWithNARROW(OutVT, In, DL, DAG); 2721 } 2722 2723 SDValue 2724 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2725 DAGCombinerInfo &DCI) const { 2726 switch (N->getOpcode()) { 2727 default: 2728 return SDValue(); 2729 case ISD::VECTOR_SHUFFLE: 2730 return performVECTOR_SHUFFLECombine(N, DCI); 2731 case ISD::SIGN_EXTEND: 2732 case ISD::ZERO_EXTEND: 2733 return performVectorExtendCombine(N, DCI); 2734 case ISD::FP_TO_SINT_SAT: 2735 case ISD::FP_TO_UINT_SAT: 2736 case ISD::FP_ROUND: 2737 case ISD::CONCAT_VECTORS: 2738 return performVectorTruncZeroCombine(N, DCI); 2739 case ISD::TRUNCATE: 2740 return performTruncateCombine(N, DCI); 2741 } 2742 } 2743