1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // WebAssembly does not produce floating-point exceptions on normal floating 49 // point operations. 50 setHasFloatingPointExceptions(false); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 } 67 if (Subtarget->hasUnimplementedSIMD128()) { 68 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 70 } 71 // Compute derived properties from the register classes. 72 computeRegisterProperties(Subtarget->getRegisterInfo()); 73 74 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 75 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 76 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 77 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 78 setOperationAction(ISD::BRIND, MVT::Other, Custom); 79 80 // Take the default expansion for va_arg, va_copy, and va_end. There is no 81 // default action for va_start, so we do that custom. 82 setOperationAction(ISD::VASTART, MVT::Other, Custom); 83 setOperationAction(ISD::VAARG, MVT::Other, Expand); 84 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 85 setOperationAction(ISD::VAEND, MVT::Other, Expand); 86 87 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 88 // Don't expand the floating-point types to constant pools. 89 setOperationAction(ISD::ConstantFP, T, Legal); 90 // Expand floating-point comparisons. 91 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 92 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 93 setCondCodeAction(CC, T, Expand); 94 // Expand floating-point library function operators. 95 for (auto Op : 96 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 97 setOperationAction(Op, T, Expand); 98 // Note supported floating-point library function operators that otherwise 99 // default to expand. 100 for (auto Op : 101 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 102 setOperationAction(Op, T, Legal); 103 // Support minimum and maximum, which otherwise default to expand. 104 setOperationAction(ISD::FMINIMUM, T, Legal); 105 setOperationAction(ISD::FMAXIMUM, T, Legal); 106 // WebAssembly currently has no builtin f16 support. 107 setOperationAction(ISD::FP16_TO_FP, T, Expand); 108 setOperationAction(ISD::FP_TO_FP16, T, Expand); 109 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 110 setTruncStoreAction(T, MVT::f16, Expand); 111 } 112 113 // Expand unavailable integer operations. 114 for (auto Op : 115 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 116 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 117 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 118 for (auto T : {MVT::i32, MVT::i64}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasSIMD128()) 121 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 122 setOperationAction(Op, T, Expand); 123 if (Subtarget->hasUnimplementedSIMD128()) 124 setOperationAction(Op, MVT::v2i64, Expand); 125 } 126 127 // SIMD-specific configuration 128 if (Subtarget->hasSIMD128()) { 129 // Support saturating add for i8x16 and i16x8 130 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 131 for (auto T : {MVT::v16i8, MVT::v8i16}) 132 setOperationAction(Op, T, Legal); 133 134 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 135 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 136 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 137 if (Subtarget->hasUnimplementedSIMD128()) 138 for (auto T : {MVT::v2i64, MVT::v2f64}) 139 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 140 141 // We have custom shuffle lowering to expose the shuffle mask 142 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 if (Subtarget->hasUnimplementedSIMD128()) 145 for (auto T: {MVT::v2i64, MVT::v2f64}) 146 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 147 148 // Custom lowering since wasm shifts must have a scalar shift amount 149 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 150 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 151 setOperationAction(Op, T, Custom); 152 if (Subtarget->hasUnimplementedSIMD128()) 153 setOperationAction(Op, MVT::v2i64, Custom); 154 } 155 156 // Custom lower lane accesses to expand out variable indices 157 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 158 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 159 setOperationAction(Op, T, Custom); 160 if (Subtarget->hasUnimplementedSIMD128()) 161 for (auto T : {MVT::v2i64, MVT::v2f64}) 162 setOperationAction(Op, T, Custom); 163 } 164 165 // There is no i64x2.mul instruction 166 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 167 168 // There are no vector select instructions 169 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 170 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 171 setOperationAction(Op, T, Expand); 172 if (Subtarget->hasUnimplementedSIMD128()) 173 for (auto T : {MVT::v2i64, MVT::v2f64}) 174 setOperationAction(Op, T, Expand); 175 } 176 177 // Expand additional SIMD ops that V8 hasn't implemented yet 178 if (!Subtarget->hasUnimplementedSIMD128()) { 179 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 180 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 181 } 182 } 183 184 // As a special case, these operators use the type to mean the type to 185 // sign-extend from. 186 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 187 if (!Subtarget->hasSignExt()) { 188 // Sign extends are legal only when extending a vector extract 189 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 190 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 191 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 192 } 193 for (auto T : MVT::integer_vector_valuetypes()) 194 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 195 196 // Dynamic stack allocation: use the default expansion. 197 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 198 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 199 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 200 201 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 202 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 203 204 // Expand these forms; we pattern-match the forms that we can handle in isel. 205 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 206 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 207 setOperationAction(Op, T, Expand); 208 209 // We have custom switch handling. 210 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 211 212 // WebAssembly doesn't have: 213 // - Floating-point extending loads. 214 // - Floating-point truncating stores. 215 // - i1 extending loads. 216 // - extending/truncating SIMD loads/stores 217 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 218 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 219 for (auto T : MVT::integer_valuetypes()) 220 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 221 setLoadExtAction(Ext, T, MVT::i1, Promote); 222 if (Subtarget->hasSIMD128()) { 223 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 224 MVT::v2f64}) { 225 for (auto MemT : MVT::vector_valuetypes()) { 226 if (MVT(T) != MemT) { 227 setTruncStoreAction(T, MemT, Expand); 228 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 229 setLoadExtAction(Ext, T, MemT, Expand); 230 } 231 } 232 } 233 } 234 235 // Don't do anything clever with build_pairs 236 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 237 238 // Trap lowers to wasm unreachable 239 setOperationAction(ISD::TRAP, MVT::Other, Legal); 240 241 // Exception handling intrinsics 242 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 243 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 244 245 setMaxAtomicSizeInBitsSupported(64); 246 } 247 248 TargetLowering::AtomicExpansionKind 249 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 250 // We have wasm instructions for these 251 switch (AI->getOperation()) { 252 case AtomicRMWInst::Add: 253 case AtomicRMWInst::Sub: 254 case AtomicRMWInst::And: 255 case AtomicRMWInst::Or: 256 case AtomicRMWInst::Xor: 257 case AtomicRMWInst::Xchg: 258 return AtomicExpansionKind::None; 259 default: 260 break; 261 } 262 return AtomicExpansionKind::CmpXChg; 263 } 264 265 FastISel *WebAssemblyTargetLowering::createFastISel( 266 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 267 return WebAssembly::createFastISel(FuncInfo, LibInfo); 268 } 269 270 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 271 const GlobalAddressSDNode * /*GA*/) const { 272 // All offsets can be folded. 273 return true; 274 } 275 276 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 277 EVT VT) const { 278 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 279 if (BitWidth > 1 && BitWidth < 8) 280 BitWidth = 8; 281 282 if (BitWidth > 64) { 283 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 284 // the count to be an i32. 285 BitWidth = 32; 286 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 287 "32-bit shift counts ought to be enough for anyone"); 288 } 289 290 MVT Result = MVT::getIntegerVT(BitWidth); 291 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 292 "Unable to represent scalar shift amount type"); 293 return Result; 294 } 295 296 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 297 // undefined result on invalid/overflow, to the WebAssembly opcode, which 298 // traps on invalid/overflow. 299 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 300 MachineBasicBlock *BB, 301 const TargetInstrInfo &TII, 302 bool IsUnsigned, bool Int64, 303 bool Float64, unsigned LoweredOpcode) { 304 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 305 306 unsigned OutReg = MI.getOperand(0).getReg(); 307 unsigned InReg = MI.getOperand(1).getReg(); 308 309 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 310 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 311 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 312 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 313 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 314 unsigned Eqz = WebAssembly::EQZ_I32; 315 unsigned And = WebAssembly::AND_I32; 316 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 317 int64_t Substitute = IsUnsigned ? 0 : Limit; 318 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 319 auto &Context = BB->getParent()->getFunction().getContext(); 320 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 321 322 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 323 MachineFunction *F = BB->getParent(); 324 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVM_BB); 325 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 326 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVM_BB); 327 328 MachineFunction::iterator It = ++BB->getIterator(); 329 F->insert(It, FalseMBB); 330 F->insert(It, TrueMBB); 331 F->insert(It, DoneMBB); 332 333 // Transfer the remainder of BB and its successor edges to DoneMBB. 334 DoneMBB->splice(DoneMBB->begin(), BB, 335 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 336 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 337 338 BB->addSuccessor(TrueMBB); 339 BB->addSuccessor(FalseMBB); 340 TrueMBB->addSuccessor(DoneMBB); 341 FalseMBB->addSuccessor(DoneMBB); 342 343 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 344 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 345 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 346 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 347 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 348 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 349 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 350 351 MI.eraseFromParent(); 352 // For signed numbers, we can do a single comparison to determine whether 353 // fabs(x) is within range. 354 if (IsUnsigned) { 355 Tmp0 = InReg; 356 } else { 357 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 358 } 359 BuildMI(BB, DL, TII.get(FConst), Tmp1) 360 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 361 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 362 363 // For unsigned numbers, we have to do a separate comparison with zero. 364 if (IsUnsigned) { 365 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 366 unsigned SecondCmpReg = 367 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 368 unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 369 BuildMI(BB, DL, TII.get(FConst), Tmp1) 370 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 371 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 372 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 373 CmpReg = AndReg; 374 } 375 376 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 377 378 // Create the CFG diamond to select between doing the conversion or using 379 // the substitute value. 380 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 381 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 382 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 383 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 384 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 385 .addReg(FalseReg) 386 .addMBB(FalseMBB) 387 .addReg(TrueReg) 388 .addMBB(TrueMBB); 389 390 return DoneMBB; 391 } 392 393 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 394 MachineInstr &MI, MachineBasicBlock *BB) const { 395 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 396 DebugLoc DL = MI.getDebugLoc(); 397 398 switch (MI.getOpcode()) { 399 default: 400 llvm_unreachable("Unexpected instr type to insert"); 401 case WebAssembly::FP_TO_SINT_I32_F32: 402 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 403 WebAssembly::I32_TRUNC_S_F32); 404 case WebAssembly::FP_TO_UINT_I32_F32: 405 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 406 WebAssembly::I32_TRUNC_U_F32); 407 case WebAssembly::FP_TO_SINT_I64_F32: 408 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 409 WebAssembly::I64_TRUNC_S_F32); 410 case WebAssembly::FP_TO_UINT_I64_F32: 411 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 412 WebAssembly::I64_TRUNC_U_F32); 413 case WebAssembly::FP_TO_SINT_I32_F64: 414 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 415 WebAssembly::I32_TRUNC_S_F64); 416 case WebAssembly::FP_TO_UINT_I32_F64: 417 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 418 WebAssembly::I32_TRUNC_U_F64); 419 case WebAssembly::FP_TO_SINT_I64_F64: 420 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 421 WebAssembly::I64_TRUNC_S_F64); 422 case WebAssembly::FP_TO_UINT_I64_F64: 423 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 424 WebAssembly::I64_TRUNC_U_F64); 425 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 426 } 427 } 428 429 const char * 430 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 431 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 432 case WebAssemblyISD::FIRST_NUMBER: 433 break; 434 #define HANDLE_NODETYPE(NODE) \ 435 case WebAssemblyISD::NODE: \ 436 return "WebAssemblyISD::" #NODE; 437 #include "WebAssemblyISD.def" 438 #undef HANDLE_NODETYPE 439 } 440 return nullptr; 441 } 442 443 std::pair<unsigned, const TargetRegisterClass *> 444 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 445 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 446 // First, see if this is a constraint that directly corresponds to a 447 // WebAssembly register class. 448 if (Constraint.size() == 1) { 449 switch (Constraint[0]) { 450 case 'r': 451 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 452 if (Subtarget->hasSIMD128() && VT.isVector()) { 453 if (VT.getSizeInBits() == 128) 454 return std::make_pair(0U, &WebAssembly::V128RegClass); 455 } 456 if (VT.isInteger() && !VT.isVector()) { 457 if (VT.getSizeInBits() <= 32) 458 return std::make_pair(0U, &WebAssembly::I32RegClass); 459 if (VT.getSizeInBits() <= 64) 460 return std::make_pair(0U, &WebAssembly::I64RegClass); 461 } 462 break; 463 default: 464 break; 465 } 466 } 467 468 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 469 } 470 471 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 472 // Assume ctz is a relatively cheap operation. 473 return true; 474 } 475 476 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 477 // Assume clz is a relatively cheap operation. 478 return true; 479 } 480 481 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 482 const AddrMode &AM, 483 Type *Ty, unsigned AS, 484 Instruction *I) const { 485 // WebAssembly offsets are added as unsigned without wrapping. The 486 // isLegalAddressingMode gives us no way to determine if wrapping could be 487 // happening, so we approximate this by accepting only non-negative offsets. 488 if (AM.BaseOffs < 0) 489 return false; 490 491 // WebAssembly has no scale register operands. 492 if (AM.Scale != 0) 493 return false; 494 495 // Everything else is legal. 496 return true; 497 } 498 499 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 500 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const { 501 // WebAssembly supports unaligned accesses, though it should be declared 502 // with the p2align attribute on loads and stores which do so, and there 503 // may be a performance impact. We tell LLVM they're "fast" because 504 // for the kinds of things that LLVM uses this for (merging adjacent stores 505 // of constants, etc.), WebAssembly implementations will either want the 506 // unaligned access or they'll split anyway. 507 if (Fast) 508 *Fast = true; 509 return true; 510 } 511 512 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 513 AttributeList Attr) const { 514 // The current thinking is that wasm engines will perform this optimization, 515 // so we can save on code size. 516 return true; 517 } 518 519 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 520 LLVMContext &C, 521 EVT VT) const { 522 if (VT.isVector()) 523 return VT.changeVectorElementTypeToInteger(); 524 525 return TargetLowering::getSetCCResultType(DL, C, VT); 526 } 527 528 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 529 const CallInst &I, 530 MachineFunction &MF, 531 unsigned Intrinsic) const { 532 switch (Intrinsic) { 533 case Intrinsic::wasm_atomic_notify: 534 Info.opc = ISD::INTRINSIC_W_CHAIN; 535 Info.memVT = MVT::i32; 536 Info.ptrVal = I.getArgOperand(0); 537 Info.offset = 0; 538 Info.align = 4; 539 // atomic.notify instruction does not really load the memory specified with 540 // this argument, but MachineMemOperand should either be load or store, so 541 // we set this to a load. 542 // FIXME Volatile isn't really correct, but currently all LLVM atomic 543 // instructions are treated as volatiles in the backend, so we should be 544 // consistent. The same applies for wasm_atomic_wait intrinsics too. 545 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 546 return true; 547 case Intrinsic::wasm_atomic_wait_i32: 548 Info.opc = ISD::INTRINSIC_W_CHAIN; 549 Info.memVT = MVT::i32; 550 Info.ptrVal = I.getArgOperand(0); 551 Info.offset = 0; 552 Info.align = 4; 553 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 554 return true; 555 case Intrinsic::wasm_atomic_wait_i64: 556 Info.opc = ISD::INTRINSIC_W_CHAIN; 557 Info.memVT = MVT::i64; 558 Info.ptrVal = I.getArgOperand(0); 559 Info.offset = 0; 560 Info.align = 8; 561 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 562 return true; 563 default: 564 return false; 565 } 566 } 567 568 //===----------------------------------------------------------------------===// 569 // WebAssembly Lowering private implementation. 570 //===----------------------------------------------------------------------===// 571 572 //===----------------------------------------------------------------------===// 573 // Lowering Code 574 //===----------------------------------------------------------------------===// 575 576 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *msg) { 577 MachineFunction &MF = DAG.getMachineFunction(); 578 DAG.getContext()->diagnose( 579 DiagnosticInfoUnsupported(MF.getFunction(), msg, DL.getDebugLoc())); 580 } 581 582 // Test whether the given calling convention is supported. 583 static bool CallingConvSupported(CallingConv::ID CallConv) { 584 // We currently support the language-independent target-independent 585 // conventions. We don't yet have a way to annotate calls with properties like 586 // "cold", and we don't have any call-clobbered registers, so these are mostly 587 // all handled the same. 588 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 589 CallConv == CallingConv::Cold || 590 CallConv == CallingConv::PreserveMost || 591 CallConv == CallingConv::PreserveAll || 592 CallConv == CallingConv::CXX_FAST_TLS; 593 } 594 595 SDValue 596 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 597 SmallVectorImpl<SDValue> &InVals) const { 598 SelectionDAG &DAG = CLI.DAG; 599 SDLoc DL = CLI.DL; 600 SDValue Chain = CLI.Chain; 601 SDValue Callee = CLI.Callee; 602 MachineFunction &MF = DAG.getMachineFunction(); 603 auto Layout = MF.getDataLayout(); 604 605 CallingConv::ID CallConv = CLI.CallConv; 606 if (!CallingConvSupported(CallConv)) 607 fail(DL, DAG, 608 "WebAssembly doesn't support language-specific or target-specific " 609 "calling conventions yet"); 610 if (CLI.IsPatchPoint) 611 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 612 613 // WebAssembly doesn't currently support explicit tail calls. If they are 614 // required, fail. Otherwise, just disable them. 615 if ((CallConv == CallingConv::Fast && CLI.IsTailCall && 616 MF.getTarget().Options.GuaranteedTailCallOpt) || 617 (CLI.CS && CLI.CS.isMustTailCall())) 618 fail(DL, DAG, "WebAssembly doesn't support tail call yet"); 619 CLI.IsTailCall = false; 620 621 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 622 if (Ins.size() > 1) 623 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 624 625 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 626 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 627 unsigned NumFixedArgs = 0; 628 for (unsigned i = 0; i < Outs.size(); ++i) { 629 const ISD::OutputArg &Out = Outs[i]; 630 SDValue &OutVal = OutVals[i]; 631 if (Out.Flags.isNest()) 632 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 633 if (Out.Flags.isInAlloca()) 634 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 635 if (Out.Flags.isInConsecutiveRegs()) 636 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 637 if (Out.Flags.isInConsecutiveRegsLast()) 638 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 639 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 640 auto &MFI = MF.getFrameInfo(); 641 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 642 Out.Flags.getByValAlign(), 643 /*isSS=*/false); 644 SDValue SizeNode = 645 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 646 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 647 Chain = DAG.getMemcpy( 648 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 649 /*isVolatile*/ false, /*AlwaysInline=*/false, 650 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 651 OutVal = FINode; 652 } 653 // Count the number of fixed args *after* legalization. 654 NumFixedArgs += Out.IsFixed; 655 } 656 657 bool IsVarArg = CLI.IsVarArg; 658 auto PtrVT = getPointerTy(Layout); 659 660 // Analyze operands of the call, assigning locations to each operand. 661 SmallVector<CCValAssign, 16> ArgLocs; 662 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 663 664 if (IsVarArg) { 665 // Outgoing non-fixed arguments are placed in a buffer. First 666 // compute their offsets and the total amount of buffer space needed. 667 for (SDValue Arg : 668 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 669 EVT VT = Arg.getValueType(); 670 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 671 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 672 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 673 Layout.getABITypeAlignment(Ty)); 674 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 675 Offset, VT.getSimpleVT(), 676 CCValAssign::Full)); 677 } 678 } 679 680 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 681 682 SDValue FINode; 683 if (IsVarArg && NumBytes) { 684 // For non-fixed arguments, next emit stores to store the argument values 685 // to the stack buffer at the offsets computed above. 686 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 687 Layout.getStackAlignment(), 688 /*isSS=*/false); 689 unsigned ValNo = 0; 690 SmallVector<SDValue, 8> Chains; 691 for (SDValue Arg : 692 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 693 assert(ArgLocs[ValNo].getValNo() == ValNo && 694 "ArgLocs should remain in order and only hold varargs args"); 695 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 696 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 697 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 698 DAG.getConstant(Offset, DL, PtrVT)); 699 Chains.push_back( 700 DAG.getStore(Chain, DL, Arg, Add, 701 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 702 } 703 if (!Chains.empty()) 704 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 705 } else if (IsVarArg) { 706 FINode = DAG.getIntPtrConstant(0, DL); 707 } 708 709 // Compute the operands for the CALLn node. 710 SmallVector<SDValue, 16> Ops; 711 Ops.push_back(Chain); 712 Ops.push_back(Callee); 713 714 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 715 // isn't reliable. 716 Ops.append(OutVals.begin(), 717 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 718 // Add a pointer to the vararg buffer. 719 if (IsVarArg) 720 Ops.push_back(FINode); 721 722 SmallVector<EVT, 8> InTys; 723 for (const auto &In : Ins) { 724 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 725 assert(!In.Flags.isNest() && "nest is not valid for return values"); 726 if (In.Flags.isInAlloca()) 727 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 728 if (In.Flags.isInConsecutiveRegs()) 729 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 730 if (In.Flags.isInConsecutiveRegsLast()) 731 fail(DL, DAG, 732 "WebAssembly hasn't implemented cons regs last return values"); 733 // Ignore In.getOrigAlign() because all our arguments are passed in 734 // registers. 735 InTys.push_back(In.VT); 736 } 737 InTys.push_back(MVT::Other); 738 SDVTList InTyList = DAG.getVTList(InTys); 739 SDValue Res = 740 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 741 DL, InTyList, Ops); 742 if (Ins.empty()) { 743 Chain = Res; 744 } else { 745 InVals.push_back(Res); 746 Chain = Res.getValue(1); 747 } 748 749 return Chain; 750 } 751 752 bool WebAssemblyTargetLowering::CanLowerReturn( 753 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 754 const SmallVectorImpl<ISD::OutputArg> &Outs, 755 LLVMContext & /*Context*/) const { 756 // WebAssembly can't currently handle returning tuples. 757 return Outs.size() <= 1; 758 } 759 760 SDValue WebAssemblyTargetLowering::LowerReturn( 761 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 762 const SmallVectorImpl<ISD::OutputArg> &Outs, 763 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 764 SelectionDAG &DAG) const { 765 assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); 766 if (!CallingConvSupported(CallConv)) 767 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 768 769 SmallVector<SDValue, 4> RetOps(1, Chain); 770 RetOps.append(OutVals.begin(), OutVals.end()); 771 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 772 773 // Record the number and types of the return values. 774 for (const ISD::OutputArg &Out : Outs) { 775 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 776 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 777 assert(Out.IsFixed && "non-fixed return value is not valid"); 778 if (Out.Flags.isInAlloca()) 779 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 780 if (Out.Flags.isInConsecutiveRegs()) 781 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 782 if (Out.Flags.isInConsecutiveRegsLast()) 783 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 784 } 785 786 return Chain; 787 } 788 789 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 790 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 791 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 792 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 793 if (!CallingConvSupported(CallConv)) 794 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 795 796 MachineFunction &MF = DAG.getMachineFunction(); 797 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 798 799 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 800 // of the incoming values before they're represented by virtual registers. 801 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 802 803 for (const ISD::InputArg &In : Ins) { 804 if (In.Flags.isInAlloca()) 805 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 806 if (In.Flags.isNest()) 807 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 808 if (In.Flags.isInConsecutiveRegs()) 809 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 810 if (In.Flags.isInConsecutiveRegsLast()) 811 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 812 // Ignore In.getOrigAlign() because all our arguments are passed in 813 // registers. 814 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 815 DAG.getTargetConstant(InVals.size(), 816 DL, MVT::i32)) 817 : DAG.getUNDEF(In.VT)); 818 819 // Record the number and types of arguments. 820 MFI->addParam(In.VT); 821 } 822 823 // Varargs are copied into a buffer allocated by the caller, and a pointer to 824 // the buffer is passed as an argument. 825 if (IsVarArg) { 826 MVT PtrVT = getPointerTy(MF.getDataLayout()); 827 unsigned VarargVreg = 828 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 829 MFI->setVarargBufferVreg(VarargVreg); 830 Chain = DAG.getCopyToReg( 831 Chain, DL, VarargVreg, 832 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 833 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 834 MFI->addParam(PtrVT); 835 } 836 837 // Record the number and types of arguments and results. 838 SmallVector<MVT, 4> Params; 839 SmallVector<MVT, 4> Results; 840 ComputeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 841 DAG.getTarget(), Params, Results); 842 for (MVT VT : Results) 843 MFI->addResult(VT); 844 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 845 // the param logic here with ComputeSignatureVTs 846 assert(MFI->getParams().size() == Params.size() && 847 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 848 Params.begin())); 849 850 return Chain; 851 } 852 853 //===----------------------------------------------------------------------===// 854 // Custom lowering hooks. 855 //===----------------------------------------------------------------------===// 856 857 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 858 SelectionDAG &DAG) const { 859 SDLoc DL(Op); 860 switch (Op.getOpcode()) { 861 default: 862 llvm_unreachable("unimplemented operation lowering"); 863 return SDValue(); 864 case ISD::FrameIndex: 865 return LowerFrameIndex(Op, DAG); 866 case ISD::GlobalAddress: 867 return LowerGlobalAddress(Op, DAG); 868 case ISD::ExternalSymbol: 869 return LowerExternalSymbol(Op, DAG); 870 case ISD::JumpTable: 871 return LowerJumpTable(Op, DAG); 872 case ISD::BR_JT: 873 return LowerBR_JT(Op, DAG); 874 case ISD::VASTART: 875 return LowerVASTART(Op, DAG); 876 case ISD::BlockAddress: 877 case ISD::BRIND: 878 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 879 return SDValue(); 880 case ISD::RETURNADDR: // Probably nothing meaningful can be returned here. 881 fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address"); 882 return SDValue(); 883 case ISD::FRAMEADDR: 884 return LowerFRAMEADDR(Op, DAG); 885 case ISD::CopyToReg: 886 return LowerCopyToReg(Op, DAG); 887 case ISD::EXTRACT_VECTOR_ELT: 888 case ISD::INSERT_VECTOR_ELT: 889 return LowerAccessVectorElement(Op, DAG); 890 case ISD::INTRINSIC_VOID: 891 case ISD::INTRINSIC_WO_CHAIN: 892 case ISD::INTRINSIC_W_CHAIN: 893 return LowerIntrinsic(Op, DAG); 894 case ISD::SIGN_EXTEND_INREG: 895 return LowerSIGN_EXTEND_INREG(Op, DAG); 896 case ISD::BUILD_VECTOR: 897 return LowerBUILD_VECTOR(Op, DAG); 898 case ISD::VECTOR_SHUFFLE: 899 return LowerVECTOR_SHUFFLE(Op, DAG); 900 case ISD::SHL: 901 case ISD::SRA: 902 case ISD::SRL: 903 return LowerShift(Op, DAG); 904 } 905 } 906 907 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 908 SelectionDAG &DAG) const { 909 SDValue Src = Op.getOperand(2); 910 if (isa<FrameIndexSDNode>(Src.getNode())) { 911 // CopyToReg nodes don't support FrameIndex operands. Other targets select 912 // the FI to some LEA-like instruction, but since we don't have that, we 913 // need to insert some kind of instruction that can take an FI operand and 914 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 915 // local.copy between Op and its FI operand. 916 SDValue Chain = Op.getOperand(0); 917 SDLoc DL(Op); 918 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 919 EVT VT = Src.getValueType(); 920 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 921 : WebAssembly::COPY_I64, 922 DL, VT, Src), 923 0); 924 return Op.getNode()->getNumValues() == 1 925 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 926 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 927 Op.getNumOperands() == 4 ? Op.getOperand(3) 928 : SDValue()); 929 } 930 return SDValue(); 931 } 932 933 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 934 SelectionDAG &DAG) const { 935 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 936 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 937 } 938 939 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 940 SelectionDAG &DAG) const { 941 // Non-zero depths are not supported by WebAssembly currently. Use the 942 // legalizer's default expansion, which is to return 0 (what this function is 943 // documented to do). 944 if (Op.getConstantOperandVal(0) > 0) 945 return SDValue(); 946 947 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 948 EVT VT = Op.getValueType(); 949 unsigned FP = 950 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 951 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 952 } 953 954 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 955 SelectionDAG &DAG) const { 956 SDLoc DL(Op); 957 const auto *GA = cast<GlobalAddressSDNode>(Op); 958 EVT VT = Op.getValueType(); 959 assert(GA->getTargetFlags() == 0 && 960 "Unexpected target flags on generic GlobalAddressSDNode"); 961 if (GA->getAddressSpace() != 0) 962 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 963 return DAG.getNode( 964 WebAssemblyISD::Wrapper, DL, VT, 965 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset())); 966 } 967 968 SDValue 969 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 970 SelectionDAG &DAG) const { 971 SDLoc DL(Op); 972 const auto *ES = cast<ExternalSymbolSDNode>(Op); 973 EVT VT = Op.getValueType(); 974 assert(ES->getTargetFlags() == 0 && 975 "Unexpected target flags on generic ExternalSymbolSDNode"); 976 // Set the TargetFlags to 0x1 which indicates that this is a "function" 977 // symbol rather than a data symbol. We do this unconditionally even though 978 // we don't know anything about the symbol other than its name, because all 979 // external symbols used in target-independent SelectionDAG code are for 980 // functions. 981 return DAG.getNode( 982 WebAssemblyISD::Wrapper, DL, VT, 983 DAG.getTargetExternalSymbol(ES->getSymbol(), VT, 984 WebAssemblyII::MO_SYMBOL_FUNCTION)); 985 } 986 987 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 988 SelectionDAG &DAG) const { 989 // There's no need for a Wrapper node because we always incorporate a jump 990 // table operand into a BR_TABLE instruction, rather than ever 991 // materializing it in a register. 992 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 993 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 994 JT->getTargetFlags()); 995 } 996 997 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 998 SelectionDAG &DAG) const { 999 SDLoc DL(Op); 1000 SDValue Chain = Op.getOperand(0); 1001 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1002 SDValue Index = Op.getOperand(2); 1003 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1004 1005 SmallVector<SDValue, 8> Ops; 1006 Ops.push_back(Chain); 1007 Ops.push_back(Index); 1008 1009 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1010 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1011 1012 // Add an operand for each case. 1013 for (auto MBB : MBBs) 1014 Ops.push_back(DAG.getBasicBlock(MBB)); 1015 1016 // TODO: For now, we just pick something arbitrary for a default case for now. 1017 // We really want to sniff out the guard and put in the real default case (and 1018 // delete the guard). 1019 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1020 1021 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1022 } 1023 1024 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1025 SelectionDAG &DAG) const { 1026 SDLoc DL(Op); 1027 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1028 1029 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1030 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1031 1032 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1033 MFI->getVarargBufferVreg(), PtrVT); 1034 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1035 MachinePointerInfo(SV), 0); 1036 } 1037 1038 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1039 SelectionDAG &DAG) const { 1040 MachineFunction &MF = DAG.getMachineFunction(); 1041 unsigned IntNo; 1042 switch (Op.getOpcode()) { 1043 case ISD::INTRINSIC_VOID: 1044 case ISD::INTRINSIC_W_CHAIN: 1045 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1046 break; 1047 case ISD::INTRINSIC_WO_CHAIN: 1048 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1049 break; 1050 default: 1051 llvm_unreachable("Invalid intrinsic"); 1052 } 1053 SDLoc DL(Op); 1054 1055 switch (IntNo) { 1056 default: 1057 return {}; // Don't custom lower most intrinsics. 1058 1059 case Intrinsic::wasm_lsda: { 1060 EVT VT = Op.getValueType(); 1061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1062 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1063 auto &Context = MF.getMMI().getContext(); 1064 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1065 Twine(MF.getFunctionNumber())); 1066 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1067 DAG.getMCSymbol(S, PtrVT)); 1068 } 1069 1070 case Intrinsic::wasm_throw: { 1071 // We only support C++ exceptions for now 1072 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1073 if (Tag != CPP_EXCEPTION) 1074 llvm_unreachable("Invalid tag!"); 1075 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1076 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1077 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1078 SDValue SymNode = 1079 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1080 DAG.getTargetExternalSymbol( 1081 SymName, PtrVT, WebAssemblyII::MO_SYMBOL_EVENT)); 1082 return DAG.getNode(WebAssemblyISD::THROW, DL, 1083 MVT::Other, // outchain type 1084 { 1085 Op.getOperand(0), // inchain 1086 SymNode, // exception symbol 1087 Op.getOperand(3) // thrown value 1088 }); 1089 } 1090 } 1091 } 1092 1093 SDValue 1094 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1095 SelectionDAG &DAG) const { 1096 // If sign extension operations are disabled, allow sext_inreg only if operand 1097 // is a vector extract. SIMD does not depend on sign extension operations, but 1098 // allowing sext_inreg in this context lets us have simple patterns to select 1099 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1100 // simpler in this file, but would necessitate large and brittle patterns to 1101 // undo the expansion and select extract_lane_s instructions. 1102 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1103 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) 1104 return Op; 1105 // Otherwise expand 1106 return SDValue(); 1107 } 1108 1109 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1110 SelectionDAG &DAG) const { 1111 SDLoc DL(Op); 1112 const EVT VecT = Op.getValueType(); 1113 const EVT LaneT = Op.getOperand(0).getValueType(); 1114 const size_t Lanes = Op.getNumOperands(); 1115 auto IsConstant = [](const SDValue &V) { 1116 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1117 }; 1118 1119 // Find the most common operand, which is approximately the best to splat 1120 using Entry = std::pair<SDValue, size_t>; 1121 SmallVector<Entry, 16> ValueCounts; 1122 size_t NumConst = 0, NumDynamic = 0; 1123 for (const SDValue &Lane : Op->op_values()) { 1124 if (Lane.isUndef()) { 1125 continue; 1126 } else if (IsConstant(Lane)) { 1127 NumConst++; 1128 } else { 1129 NumDynamic++; 1130 } 1131 auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(), 1132 [&Lane](Entry A) { return A.first == Lane; }); 1133 if (CountIt == ValueCounts.end()) { 1134 ValueCounts.emplace_back(Lane, 1); 1135 } else { 1136 CountIt->second++; 1137 } 1138 } 1139 auto CommonIt = 1140 std::max_element(ValueCounts.begin(), ValueCounts.end(), 1141 [](Entry A, Entry B) { return A.second < B.second; }); 1142 assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector"); 1143 SDValue SplatValue = CommonIt->first; 1144 size_t NumCommon = CommonIt->second; 1145 1146 // If v128.const is available, consider using it instead of a splat 1147 if (Subtarget->hasUnimplementedSIMD128()) { 1148 // {i32,i64,f32,f64}.const opcode, and value 1149 const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes); 1150 // SIMD prefix and opcode 1151 const size_t SplatBytes = 2; 1152 const size_t SplatConstBytes = SplatBytes + ConstBytes; 1153 // SIMD prefix, opcode, and lane index 1154 const size_t ReplaceBytes = 3; 1155 const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes; 1156 // SIMD prefix, v128.const opcode, and 128-bit value 1157 const size_t VecConstBytes = 18; 1158 // Initial v128.const and a replace_lane for each non-const operand 1159 const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes; 1160 // Initial splat and all necessary replace_lanes 1161 const size_t SplatInitBytes = 1162 IsConstant(SplatValue) 1163 // Initial constant splat 1164 ? (SplatConstBytes + 1165 // Constant replace_lanes 1166 (NumConst - NumCommon) * ReplaceConstBytes + 1167 // Dynamic replace_lanes 1168 (NumDynamic * ReplaceBytes)) 1169 // Initial dynamic splat 1170 : (SplatBytes + 1171 // Constant replace_lanes 1172 (NumConst * ReplaceConstBytes) + 1173 // Dynamic replace_lanes 1174 (NumDynamic - NumCommon) * ReplaceBytes); 1175 if (ConstInitBytes < SplatInitBytes) { 1176 // Create build_vector that will lower to initial v128.const 1177 SmallVector<SDValue, 16> ConstLanes; 1178 for (const SDValue &Lane : Op->op_values()) { 1179 if (IsConstant(Lane)) { 1180 ConstLanes.push_back(Lane); 1181 } else if (LaneT.isFloatingPoint()) { 1182 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1183 } else { 1184 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1185 } 1186 } 1187 SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1188 // Add replace_lane instructions for non-const lanes 1189 for (size_t I = 0; I < Lanes; ++I) { 1190 const SDValue &Lane = Op->getOperand(I); 1191 if (!Lane.isUndef() && !IsConstant(Lane)) 1192 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1193 DAG.getConstant(I, DL, MVT::i32)); 1194 } 1195 return Result; 1196 } 1197 } 1198 // Use a splat for the initial vector 1199 SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1200 // Add replace_lane instructions for other values 1201 for (size_t I = 0; I < Lanes; ++I) { 1202 const SDValue &Lane = Op->getOperand(I); 1203 if (Lane != SplatValue) 1204 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1205 DAG.getConstant(I, DL, MVT::i32)); 1206 } 1207 return Result; 1208 } 1209 1210 SDValue 1211 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1212 SelectionDAG &DAG) const { 1213 SDLoc DL(Op); 1214 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1215 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1216 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1217 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1218 1219 // Space for two vector args and sixteen mask indices 1220 SDValue Ops[18]; 1221 size_t OpIdx = 0; 1222 Ops[OpIdx++] = Op.getOperand(0); 1223 Ops[OpIdx++] = Op.getOperand(1); 1224 1225 // Expand mask indices to byte indices and materialize them as operands 1226 for (size_t I = 0, Lanes = Mask.size(); I < Lanes; ++I) { 1227 for (size_t J = 0; J < LaneBytes; ++J) { 1228 // Lower undefs (represented by -1 in mask) to zero 1229 uint64_t ByteIndex = 1230 Mask[I] == -1 ? 0 : (uint64_t)Mask[I] * LaneBytes + J; 1231 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1232 } 1233 } 1234 1235 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1236 } 1237 1238 SDValue 1239 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1240 SelectionDAG &DAG) const { 1241 // Allow constant lane indices, expand variable lane indices 1242 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1243 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1244 return Op; 1245 else 1246 // Perform default expansion 1247 return SDValue(); 1248 } 1249 1250 static SDValue UnrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1251 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1252 // 32-bit and 64-bit unrolled shifts will have proper semantics 1253 if (LaneT.bitsGE(MVT::i32)) 1254 return DAG.UnrollVectorOp(Op.getNode()); 1255 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1256 SDLoc DL(Op); 1257 SDValue ShiftVal = Op.getOperand(1); 1258 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1259 SDValue MaskedShiftVal = DAG.getNode( 1260 ISD::AND, // mask opcode 1261 DL, ShiftVal.getValueType(), // masked value type 1262 ShiftVal, // original shift value operand 1263 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1264 ); 1265 1266 return DAG.UnrollVectorOp( 1267 DAG.getNode(Op.getOpcode(), // original shift opcode 1268 DL, Op.getValueType(), // original return type 1269 Op.getOperand(0), // original vector operand, 1270 MaskedShiftVal // new masked shift value operand 1271 ) 1272 .getNode()); 1273 } 1274 1275 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1276 SelectionDAG &DAG) const { 1277 SDLoc DL(Op); 1278 1279 // Only manually lower vector shifts 1280 assert(Op.getSimpleValueType().isVector()); 1281 1282 // Expand all vector shifts until V8 fixes its implementation 1283 // TODO: remove this once V8 is fixed 1284 if (!Subtarget->hasUnimplementedSIMD128()) 1285 return UnrollVectorShift(Op, DAG); 1286 1287 // Unroll non-splat vector shifts 1288 BuildVectorSDNode *ShiftVec; 1289 SDValue SplatVal; 1290 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1291 !(SplatVal = ShiftVec->getSplatValue())) 1292 return UnrollVectorShift(Op, DAG); 1293 1294 // All splats except i64x2 const splats are handled by patterns 1295 ConstantSDNode *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1296 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1297 return Op; 1298 1299 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1300 unsigned Opcode; 1301 switch (Op.getOpcode()) { 1302 case ISD::SHL: 1303 Opcode = WebAssemblyISD::VEC_SHL; 1304 break; 1305 case ISD::SRA: 1306 Opcode = WebAssemblyISD::VEC_SHR_S; 1307 break; 1308 case ISD::SRL: 1309 Opcode = WebAssemblyISD::VEC_SHR_U; 1310 break; 1311 default: 1312 llvm_unreachable("unexpected opcode"); 1313 } 1314 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1315 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1316 DAG.getConstant(Shift, DL, MVT::i32)); 1317 } 1318 1319 //===----------------------------------------------------------------------===// 1320 // WebAssembly Optimization Hooks 1321 //===----------------------------------------------------------------------===// 1322