1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "wasm-lower"
38 
39 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
40     const TargetMachine &TM, const WebAssemblySubtarget &STI)
41     : TargetLowering(TM), Subtarget(&STI) {
42   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
43 
44   // Booleans always contain 0 or 1.
45   setBooleanContents(ZeroOrOneBooleanContent);
46   // Except in SIMD vectors
47   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
48   // WebAssembly does not produce floating-point exceptions on normal floating
49   // point operations.
50   setHasFloatingPointExceptions(false);
51   // We don't know the microarchitecture here, so just reduce register pressure.
52   setSchedulingPreference(Sched::RegPressure);
53   // Tell ISel that we have a stack pointer.
54   setStackPointerRegisterToSaveRestore(
55       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
56   // Set up the register classes.
57   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
58   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
59   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
60   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
61   if (Subtarget->hasSIMD128()) {
62     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
66   }
67   if (Subtarget->hasUnimplementedSIMD128()) {
68     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
69     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
70   }
71   // Compute derived properties from the register classes.
72   computeRegisterProperties(Subtarget->getRegisterInfo());
73 
74   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
75   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
76   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
77   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
78   setOperationAction(ISD::BRIND, MVT::Other, Custom);
79 
80   // Take the default expansion for va_arg, va_copy, and va_end. There is no
81   // default action for va_start, so we do that custom.
82   setOperationAction(ISD::VASTART, MVT::Other, Custom);
83   setOperationAction(ISD::VAARG, MVT::Other, Expand);
84   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
85   setOperationAction(ISD::VAEND, MVT::Other, Expand);
86 
87   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
88     // Don't expand the floating-point types to constant pools.
89     setOperationAction(ISD::ConstantFP, T, Legal);
90     // Expand floating-point comparisons.
91     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
92                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
93       setCondCodeAction(CC, T, Expand);
94     // Expand floating-point library function operators.
95     for (auto Op :
96          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
97       setOperationAction(Op, T, Expand);
98     // Note supported floating-point library function operators that otherwise
99     // default to expand.
100     for (auto Op :
101          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
102       setOperationAction(Op, T, Legal);
103     // Support minimum and maximum, which otherwise default to expand.
104     setOperationAction(ISD::FMINIMUM, T, Legal);
105     setOperationAction(ISD::FMAXIMUM, T, Legal);
106     // WebAssembly currently has no builtin f16 support.
107     setOperationAction(ISD::FP16_TO_FP, T, Expand);
108     setOperationAction(ISD::FP_TO_FP16, T, Expand);
109     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
110     setTruncStoreAction(T, MVT::f16, Expand);
111   }
112 
113   // Expand unavailable integer operations.
114   for (auto Op :
115        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
116         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
117         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
118     for (auto T : {MVT::i32, MVT::i64})
119       setOperationAction(Op, T, Expand);
120     if (Subtarget->hasSIMD128())
121       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
122         setOperationAction(Op, T, Expand);
123     if (Subtarget->hasUnimplementedSIMD128())
124       setOperationAction(Op, MVT::v2i64, Expand);
125   }
126 
127   // SIMD-specific configuration
128   if (Subtarget->hasSIMD128()) {
129     // Support saturating add for i8x16 and i16x8
130     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
131       for (auto T : {MVT::v16i8, MVT::v8i16})
132         setOperationAction(Op, T, Legal);
133 
134     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
135     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
136       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
137     if (Subtarget->hasUnimplementedSIMD128())
138       for (auto T : {MVT::v2i64, MVT::v2f64})
139         setOperationAction(ISD::BUILD_VECTOR, T, Custom);
140 
141     // We have custom shuffle lowering to expose the shuffle mask
142     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
143       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
144     if (Subtarget->hasUnimplementedSIMD128())
145       for (auto T: {MVT::v2i64, MVT::v2f64})
146         setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
147 
148     // Custom lowering since wasm shifts must have a scalar shift amount
149     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
150       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
151         setOperationAction(Op, T, Custom);
152       if (Subtarget->hasUnimplementedSIMD128())
153         setOperationAction(Op, MVT::v2i64, Custom);
154     }
155 
156     // Custom lower lane accesses to expand out variable indices
157     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
158       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
159         setOperationAction(Op, T, Custom);
160       if (Subtarget->hasUnimplementedSIMD128())
161         for (auto T : {MVT::v2i64, MVT::v2f64})
162           setOperationAction(Op, T, Custom);
163     }
164 
165     // There is no i64x2.mul instruction
166     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
167 
168     // There are no vector select instructions
169     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
170       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
171         setOperationAction(Op, T, Expand);
172       if (Subtarget->hasUnimplementedSIMD128())
173         for (auto T : {MVT::v2i64, MVT::v2f64})
174           setOperationAction(Op, T, Expand);
175     }
176 
177     // Expand additional SIMD ops that V8 hasn't implemented yet
178     if (!Subtarget->hasUnimplementedSIMD128()) {
179       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
180       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
181     }
182   }
183 
184   // As a special case, these operators use the type to mean the type to
185   // sign-extend from.
186   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
187   if (!Subtarget->hasSignExt()) {
188     // Sign extends are legal only when extending a vector extract
189     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
190     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
191       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
192   }
193   for (auto T : MVT::integer_vector_valuetypes())
194     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
195 
196   // Dynamic stack allocation: use the default expansion.
197   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
198   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
199   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
200 
201   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
202   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
203 
204   // Expand these forms; we pattern-match the forms that we can handle in isel.
205   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
206     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
207       setOperationAction(Op, T, Expand);
208 
209   // We have custom switch handling.
210   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
211 
212   // WebAssembly doesn't have:
213   //  - Floating-point extending loads.
214   //  - Floating-point truncating stores.
215   //  - i1 extending loads.
216   //  - extending/truncating SIMD loads/stores
217   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
218   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
219   for (auto T : MVT::integer_valuetypes())
220     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
221       setLoadExtAction(Ext, T, MVT::i1, Promote);
222   if (Subtarget->hasSIMD128()) {
223     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
224                    MVT::v2f64}) {
225       for (auto MemT : MVT::vector_valuetypes()) {
226         if (MVT(T) != MemT) {
227           setTruncStoreAction(T, MemT, Expand);
228           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
229             setLoadExtAction(Ext, T, MemT, Expand);
230         }
231       }
232     }
233   }
234 
235   // Don't do anything clever with build_pairs
236   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
237 
238   // Trap lowers to wasm unreachable
239   setOperationAction(ISD::TRAP, MVT::Other, Legal);
240 
241   // Exception handling intrinsics
242   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
243   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
244 
245   setMaxAtomicSizeInBitsSupported(64);
246 }
247 
248 TargetLowering::AtomicExpansionKind
249 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
250   // We have wasm instructions for these
251   switch (AI->getOperation()) {
252   case AtomicRMWInst::Add:
253   case AtomicRMWInst::Sub:
254   case AtomicRMWInst::And:
255   case AtomicRMWInst::Or:
256   case AtomicRMWInst::Xor:
257   case AtomicRMWInst::Xchg:
258     return AtomicExpansionKind::None;
259   default:
260     break;
261   }
262   return AtomicExpansionKind::CmpXChg;
263 }
264 
265 FastISel *WebAssemblyTargetLowering::createFastISel(
266     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
267   return WebAssembly::createFastISel(FuncInfo, LibInfo);
268 }
269 
270 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
271     const GlobalAddressSDNode * /*GA*/) const {
272   // All offsets can be folded.
273   return true;
274 }
275 
276 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
277                                                       EVT VT) const {
278   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
279   if (BitWidth > 1 && BitWidth < 8)
280     BitWidth = 8;
281 
282   if (BitWidth > 64) {
283     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
284     // the count to be an i32.
285     BitWidth = 32;
286     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
287            "32-bit shift counts ought to be enough for anyone");
288   }
289 
290   MVT Result = MVT::getIntegerVT(BitWidth);
291   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
292          "Unable to represent scalar shift amount type");
293   return Result;
294 }
295 
296 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
297 // undefined result on invalid/overflow, to the WebAssembly opcode, which
298 // traps on invalid/overflow.
299 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
300                                        MachineBasicBlock *BB,
301                                        const TargetInstrInfo &TII,
302                                        bool IsUnsigned, bool Int64,
303                                        bool Float64, unsigned LoweredOpcode) {
304   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
305 
306   unsigned OutReg = MI.getOperand(0).getReg();
307   unsigned InReg = MI.getOperand(1).getReg();
308 
309   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
310   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
311   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
312   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
313   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
314   unsigned Eqz = WebAssembly::EQZ_I32;
315   unsigned And = WebAssembly::AND_I32;
316   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
317   int64_t Substitute = IsUnsigned ? 0 : Limit;
318   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
319   auto &Context = BB->getParent()->getFunction().getContext();
320   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
321 
322   const BasicBlock *LLVM_BB = BB->getBasicBlock();
323   MachineFunction *F = BB->getParent();
324   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVM_BB);
325   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
326   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVM_BB);
327 
328   MachineFunction::iterator It = ++BB->getIterator();
329   F->insert(It, FalseMBB);
330   F->insert(It, TrueMBB);
331   F->insert(It, DoneMBB);
332 
333   // Transfer the remainder of BB and its successor edges to DoneMBB.
334   DoneMBB->splice(DoneMBB->begin(), BB,
335                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
336   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
337 
338   BB->addSuccessor(TrueMBB);
339   BB->addSuccessor(FalseMBB);
340   TrueMBB->addSuccessor(DoneMBB);
341   FalseMBB->addSuccessor(DoneMBB);
342 
343   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
344   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
345   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
346   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
347   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
348   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
349   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
350 
351   MI.eraseFromParent();
352   // For signed numbers, we can do a single comparison to determine whether
353   // fabs(x) is within range.
354   if (IsUnsigned) {
355     Tmp0 = InReg;
356   } else {
357     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
358   }
359   BuildMI(BB, DL, TII.get(FConst), Tmp1)
360       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
361   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
362 
363   // For unsigned numbers, we have to do a separate comparison with zero.
364   if (IsUnsigned) {
365     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
366     unsigned SecondCmpReg =
367         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
368     unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
369     BuildMI(BB, DL, TII.get(FConst), Tmp1)
370         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
371     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
372     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
373     CmpReg = AndReg;
374   }
375 
376   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
377 
378   // Create the CFG diamond to select between doing the conversion or using
379   // the substitute value.
380   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
381   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
382   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
383   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
384   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
385       .addReg(FalseReg)
386       .addMBB(FalseMBB)
387       .addReg(TrueReg)
388       .addMBB(TrueMBB);
389 
390   return DoneMBB;
391 }
392 
393 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
394     MachineInstr &MI, MachineBasicBlock *BB) const {
395   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
396   DebugLoc DL = MI.getDebugLoc();
397 
398   switch (MI.getOpcode()) {
399   default:
400     llvm_unreachable("Unexpected instr type to insert");
401   case WebAssembly::FP_TO_SINT_I32_F32:
402     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
403                         WebAssembly::I32_TRUNC_S_F32);
404   case WebAssembly::FP_TO_UINT_I32_F32:
405     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
406                         WebAssembly::I32_TRUNC_U_F32);
407   case WebAssembly::FP_TO_SINT_I64_F32:
408     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
409                         WebAssembly::I64_TRUNC_S_F32);
410   case WebAssembly::FP_TO_UINT_I64_F32:
411     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
412                         WebAssembly::I64_TRUNC_U_F32);
413   case WebAssembly::FP_TO_SINT_I32_F64:
414     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
415                         WebAssembly::I32_TRUNC_S_F64);
416   case WebAssembly::FP_TO_UINT_I32_F64:
417     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
418                         WebAssembly::I32_TRUNC_U_F64);
419   case WebAssembly::FP_TO_SINT_I64_F64:
420     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
421                         WebAssembly::I64_TRUNC_S_F64);
422   case WebAssembly::FP_TO_UINT_I64_F64:
423     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
424                         WebAssembly::I64_TRUNC_U_F64);
425     llvm_unreachable("Unexpected instruction to emit with custom inserter");
426   }
427 }
428 
429 const char *
430 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
431   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
432   case WebAssemblyISD::FIRST_NUMBER:
433     break;
434 #define HANDLE_NODETYPE(NODE)                                                  \
435   case WebAssemblyISD::NODE:                                                   \
436     return "WebAssemblyISD::" #NODE;
437 #include "WebAssemblyISD.def"
438 #undef HANDLE_NODETYPE
439   }
440   return nullptr;
441 }
442 
443 std::pair<unsigned, const TargetRegisterClass *>
444 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
445     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
446   // First, see if this is a constraint that directly corresponds to a
447   // WebAssembly register class.
448   if (Constraint.size() == 1) {
449     switch (Constraint[0]) {
450     case 'r':
451       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
452       if (Subtarget->hasSIMD128() && VT.isVector()) {
453         if (VT.getSizeInBits() == 128)
454           return std::make_pair(0U, &WebAssembly::V128RegClass);
455       }
456       if (VT.isInteger() && !VT.isVector()) {
457         if (VT.getSizeInBits() <= 32)
458           return std::make_pair(0U, &WebAssembly::I32RegClass);
459         if (VT.getSizeInBits() <= 64)
460           return std::make_pair(0U, &WebAssembly::I64RegClass);
461       }
462       break;
463     default:
464       break;
465     }
466   }
467 
468   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
469 }
470 
471 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
472   // Assume ctz is a relatively cheap operation.
473   return true;
474 }
475 
476 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
477   // Assume clz is a relatively cheap operation.
478   return true;
479 }
480 
481 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
482                                                       const AddrMode &AM,
483                                                       Type *Ty, unsigned AS,
484                                                       Instruction *I) const {
485   // WebAssembly offsets are added as unsigned without wrapping. The
486   // isLegalAddressingMode gives us no way to determine if wrapping could be
487   // happening, so we approximate this by accepting only non-negative offsets.
488   if (AM.BaseOffs < 0)
489     return false;
490 
491   // WebAssembly has no scale register operands.
492   if (AM.Scale != 0)
493     return false;
494 
495   // Everything else is legal.
496   return true;
497 }
498 
499 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
500     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const {
501   // WebAssembly supports unaligned accesses, though it should be declared
502   // with the p2align attribute on loads and stores which do so, and there
503   // may be a performance impact. We tell LLVM they're "fast" because
504   // for the kinds of things that LLVM uses this for (merging adjacent stores
505   // of constants, etc.), WebAssembly implementations will either want the
506   // unaligned access or they'll split anyway.
507   if (Fast)
508     *Fast = true;
509   return true;
510 }
511 
512 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
513                                               AttributeList Attr) const {
514   // The current thinking is that wasm engines will perform this optimization,
515   // so we can save on code size.
516   return true;
517 }
518 
519 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
520                                                   LLVMContext &C,
521                                                   EVT VT) const {
522   if (VT.isVector())
523     return VT.changeVectorElementTypeToInteger();
524 
525   return TargetLowering::getSetCCResultType(DL, C, VT);
526 }
527 
528 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
529                                                    const CallInst &I,
530                                                    MachineFunction &MF,
531                                                    unsigned Intrinsic) const {
532   switch (Intrinsic) {
533   case Intrinsic::wasm_atomic_notify:
534     Info.opc = ISD::INTRINSIC_W_CHAIN;
535     Info.memVT = MVT::i32;
536     Info.ptrVal = I.getArgOperand(0);
537     Info.offset = 0;
538     Info.align = 4;
539     // atomic.notify instruction does not really load the memory specified with
540     // this argument, but MachineMemOperand should either be load or store, so
541     // we set this to a load.
542     // FIXME Volatile isn't really correct, but currently all LLVM atomic
543     // instructions are treated as volatiles in the backend, so we should be
544     // consistent. The same applies for wasm_atomic_wait intrinsics too.
545     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
546     return true;
547   case Intrinsic::wasm_atomic_wait_i32:
548     Info.opc = ISD::INTRINSIC_W_CHAIN;
549     Info.memVT = MVT::i32;
550     Info.ptrVal = I.getArgOperand(0);
551     Info.offset = 0;
552     Info.align = 4;
553     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
554     return true;
555   case Intrinsic::wasm_atomic_wait_i64:
556     Info.opc = ISD::INTRINSIC_W_CHAIN;
557     Info.memVT = MVT::i64;
558     Info.ptrVal = I.getArgOperand(0);
559     Info.offset = 0;
560     Info.align = 8;
561     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
562     return true;
563   default:
564     return false;
565   }
566 }
567 
568 //===----------------------------------------------------------------------===//
569 // WebAssembly Lowering private implementation.
570 //===----------------------------------------------------------------------===//
571 
572 //===----------------------------------------------------------------------===//
573 // Lowering Code
574 //===----------------------------------------------------------------------===//
575 
576 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *msg) {
577   MachineFunction &MF = DAG.getMachineFunction();
578   DAG.getContext()->diagnose(
579       DiagnosticInfoUnsupported(MF.getFunction(), msg, DL.getDebugLoc()));
580 }
581 
582 // Test whether the given calling convention is supported.
583 static bool CallingConvSupported(CallingConv::ID CallConv) {
584   // We currently support the language-independent target-independent
585   // conventions. We don't yet have a way to annotate calls with properties like
586   // "cold", and we don't have any call-clobbered registers, so these are mostly
587   // all handled the same.
588   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
589          CallConv == CallingConv::Cold ||
590          CallConv == CallingConv::PreserveMost ||
591          CallConv == CallingConv::PreserveAll ||
592          CallConv == CallingConv::CXX_FAST_TLS;
593 }
594 
595 SDValue
596 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
597                                      SmallVectorImpl<SDValue> &InVals) const {
598   SelectionDAG &DAG = CLI.DAG;
599   SDLoc DL = CLI.DL;
600   SDValue Chain = CLI.Chain;
601   SDValue Callee = CLI.Callee;
602   MachineFunction &MF = DAG.getMachineFunction();
603   auto Layout = MF.getDataLayout();
604 
605   CallingConv::ID CallConv = CLI.CallConv;
606   if (!CallingConvSupported(CallConv))
607     fail(DL, DAG,
608          "WebAssembly doesn't support language-specific or target-specific "
609          "calling conventions yet");
610   if (CLI.IsPatchPoint)
611     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
612 
613   // WebAssembly doesn't currently support explicit tail calls. If they are
614   // required, fail. Otherwise, just disable them.
615   if ((CallConv == CallingConv::Fast && CLI.IsTailCall &&
616        MF.getTarget().Options.GuaranteedTailCallOpt) ||
617       (CLI.CS && CLI.CS.isMustTailCall()))
618     fail(DL, DAG, "WebAssembly doesn't support tail call yet");
619   CLI.IsTailCall = false;
620 
621   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
622   if (Ins.size() > 1)
623     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
624 
625   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
626   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
627   unsigned NumFixedArgs = 0;
628   for (unsigned i = 0; i < Outs.size(); ++i) {
629     const ISD::OutputArg &Out = Outs[i];
630     SDValue &OutVal = OutVals[i];
631     if (Out.Flags.isNest())
632       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
633     if (Out.Flags.isInAlloca())
634       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
635     if (Out.Flags.isInConsecutiveRegs())
636       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
637     if (Out.Flags.isInConsecutiveRegsLast())
638       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
639     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
640       auto &MFI = MF.getFrameInfo();
641       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
642                                      Out.Flags.getByValAlign(),
643                                      /*isSS=*/false);
644       SDValue SizeNode =
645           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
646       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
647       Chain = DAG.getMemcpy(
648           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
649           /*isVolatile*/ false, /*AlwaysInline=*/false,
650           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
651       OutVal = FINode;
652     }
653     // Count the number of fixed args *after* legalization.
654     NumFixedArgs += Out.IsFixed;
655   }
656 
657   bool IsVarArg = CLI.IsVarArg;
658   auto PtrVT = getPointerTy(Layout);
659 
660   // Analyze operands of the call, assigning locations to each operand.
661   SmallVector<CCValAssign, 16> ArgLocs;
662   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
663 
664   if (IsVarArg) {
665     // Outgoing non-fixed arguments are placed in a buffer. First
666     // compute their offsets and the total amount of buffer space needed.
667     for (SDValue Arg :
668          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
669       EVT VT = Arg.getValueType();
670       assert(VT != MVT::iPTR && "Legalized args should be concrete");
671       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
672       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
673                                              Layout.getABITypeAlignment(Ty));
674       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
675                                         Offset, VT.getSimpleVT(),
676                                         CCValAssign::Full));
677     }
678   }
679 
680   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
681 
682   SDValue FINode;
683   if (IsVarArg && NumBytes) {
684     // For non-fixed arguments, next emit stores to store the argument values
685     // to the stack buffer at the offsets computed above.
686     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
687                                                  Layout.getStackAlignment(),
688                                                  /*isSS=*/false);
689     unsigned ValNo = 0;
690     SmallVector<SDValue, 8> Chains;
691     for (SDValue Arg :
692          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
693       assert(ArgLocs[ValNo].getValNo() == ValNo &&
694              "ArgLocs should remain in order and only hold varargs args");
695       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
696       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
697       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
698                                 DAG.getConstant(Offset, DL, PtrVT));
699       Chains.push_back(
700           DAG.getStore(Chain, DL, Arg, Add,
701                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
702     }
703     if (!Chains.empty())
704       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
705   } else if (IsVarArg) {
706     FINode = DAG.getIntPtrConstant(0, DL);
707   }
708 
709   // Compute the operands for the CALLn node.
710   SmallVector<SDValue, 16> Ops;
711   Ops.push_back(Chain);
712   Ops.push_back(Callee);
713 
714   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
715   // isn't reliable.
716   Ops.append(OutVals.begin(),
717              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
718   // Add a pointer to the vararg buffer.
719   if (IsVarArg)
720     Ops.push_back(FINode);
721 
722   SmallVector<EVT, 8> InTys;
723   for (const auto &In : Ins) {
724     assert(!In.Flags.isByVal() && "byval is not valid for return values");
725     assert(!In.Flags.isNest() && "nest is not valid for return values");
726     if (In.Flags.isInAlloca())
727       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
728     if (In.Flags.isInConsecutiveRegs())
729       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
730     if (In.Flags.isInConsecutiveRegsLast())
731       fail(DL, DAG,
732            "WebAssembly hasn't implemented cons regs last return values");
733     // Ignore In.getOrigAlign() because all our arguments are passed in
734     // registers.
735     InTys.push_back(In.VT);
736   }
737   InTys.push_back(MVT::Other);
738   SDVTList InTyList = DAG.getVTList(InTys);
739   SDValue Res =
740       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
741                   DL, InTyList, Ops);
742   if (Ins.empty()) {
743     Chain = Res;
744   } else {
745     InVals.push_back(Res);
746     Chain = Res.getValue(1);
747   }
748 
749   return Chain;
750 }
751 
752 bool WebAssemblyTargetLowering::CanLowerReturn(
753     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
754     const SmallVectorImpl<ISD::OutputArg> &Outs,
755     LLVMContext & /*Context*/) const {
756   // WebAssembly can't currently handle returning tuples.
757   return Outs.size() <= 1;
758 }
759 
760 SDValue WebAssemblyTargetLowering::LowerReturn(
761     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
762     const SmallVectorImpl<ISD::OutputArg> &Outs,
763     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
764     SelectionDAG &DAG) const {
765   assert(Outs.size() <= 1 && "WebAssembly can only return up to one value");
766   if (!CallingConvSupported(CallConv))
767     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
768 
769   SmallVector<SDValue, 4> RetOps(1, Chain);
770   RetOps.append(OutVals.begin(), OutVals.end());
771   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
772 
773   // Record the number and types of the return values.
774   for (const ISD::OutputArg &Out : Outs) {
775     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
776     assert(!Out.Flags.isNest() && "nest is not valid for return values");
777     assert(Out.IsFixed && "non-fixed return value is not valid");
778     if (Out.Flags.isInAlloca())
779       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
780     if (Out.Flags.isInConsecutiveRegs())
781       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
782     if (Out.Flags.isInConsecutiveRegsLast())
783       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
784   }
785 
786   return Chain;
787 }
788 
789 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
790     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
791     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
792     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
793   if (!CallingConvSupported(CallConv))
794     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
795 
796   MachineFunction &MF = DAG.getMachineFunction();
797   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
798 
799   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
800   // of the incoming values before they're represented by virtual registers.
801   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
802 
803   for (const ISD::InputArg &In : Ins) {
804     if (In.Flags.isInAlloca())
805       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
806     if (In.Flags.isNest())
807       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
808     if (In.Flags.isInConsecutiveRegs())
809       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
810     if (In.Flags.isInConsecutiveRegsLast())
811       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
812     // Ignore In.getOrigAlign() because all our arguments are passed in
813     // registers.
814     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
815                                            DAG.getTargetConstant(InVals.size(),
816                                                                  DL, MVT::i32))
817                              : DAG.getUNDEF(In.VT));
818 
819     // Record the number and types of arguments.
820     MFI->addParam(In.VT);
821   }
822 
823   // Varargs are copied into a buffer allocated by the caller, and a pointer to
824   // the buffer is passed as an argument.
825   if (IsVarArg) {
826     MVT PtrVT = getPointerTy(MF.getDataLayout());
827     unsigned VarargVreg =
828         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
829     MFI->setVarargBufferVreg(VarargVreg);
830     Chain = DAG.getCopyToReg(
831         Chain, DL, VarargVreg,
832         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
833                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
834     MFI->addParam(PtrVT);
835   }
836 
837   // Record the number and types of arguments and results.
838   SmallVector<MVT, 4> Params;
839   SmallVector<MVT, 4> Results;
840   ComputeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
841                       DAG.getTarget(), Params, Results);
842   for (MVT VT : Results)
843     MFI->addResult(VT);
844   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
845   // the param logic here with ComputeSignatureVTs
846   assert(MFI->getParams().size() == Params.size() &&
847          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
848                     Params.begin()));
849 
850   return Chain;
851 }
852 
853 //===----------------------------------------------------------------------===//
854 //  Custom lowering hooks.
855 //===----------------------------------------------------------------------===//
856 
857 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
858                                                   SelectionDAG &DAG) const {
859   SDLoc DL(Op);
860   switch (Op.getOpcode()) {
861   default:
862     llvm_unreachable("unimplemented operation lowering");
863     return SDValue();
864   case ISD::FrameIndex:
865     return LowerFrameIndex(Op, DAG);
866   case ISD::GlobalAddress:
867     return LowerGlobalAddress(Op, DAG);
868   case ISD::ExternalSymbol:
869     return LowerExternalSymbol(Op, DAG);
870   case ISD::JumpTable:
871     return LowerJumpTable(Op, DAG);
872   case ISD::BR_JT:
873     return LowerBR_JT(Op, DAG);
874   case ISD::VASTART:
875     return LowerVASTART(Op, DAG);
876   case ISD::BlockAddress:
877   case ISD::BRIND:
878     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
879     return SDValue();
880   case ISD::RETURNADDR: // Probably nothing meaningful can be returned here.
881     fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address");
882     return SDValue();
883   case ISD::FRAMEADDR:
884     return LowerFRAMEADDR(Op, DAG);
885   case ISD::CopyToReg:
886     return LowerCopyToReg(Op, DAG);
887   case ISD::EXTRACT_VECTOR_ELT:
888   case ISD::INSERT_VECTOR_ELT:
889     return LowerAccessVectorElement(Op, DAG);
890   case ISD::INTRINSIC_VOID:
891   case ISD::INTRINSIC_WO_CHAIN:
892   case ISD::INTRINSIC_W_CHAIN:
893     return LowerIntrinsic(Op, DAG);
894   case ISD::SIGN_EXTEND_INREG:
895     return LowerSIGN_EXTEND_INREG(Op, DAG);
896   case ISD::BUILD_VECTOR:
897     return LowerBUILD_VECTOR(Op, DAG);
898   case ISD::VECTOR_SHUFFLE:
899     return LowerVECTOR_SHUFFLE(Op, DAG);
900   case ISD::SHL:
901   case ISD::SRA:
902   case ISD::SRL:
903     return LowerShift(Op, DAG);
904   }
905 }
906 
907 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
908                                                   SelectionDAG &DAG) const {
909   SDValue Src = Op.getOperand(2);
910   if (isa<FrameIndexSDNode>(Src.getNode())) {
911     // CopyToReg nodes don't support FrameIndex operands. Other targets select
912     // the FI to some LEA-like instruction, but since we don't have that, we
913     // need to insert some kind of instruction that can take an FI operand and
914     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
915     // local.copy between Op and its FI operand.
916     SDValue Chain = Op.getOperand(0);
917     SDLoc DL(Op);
918     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
919     EVT VT = Src.getValueType();
920     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
921                                                    : WebAssembly::COPY_I64,
922                                     DL, VT, Src),
923                  0);
924     return Op.getNode()->getNumValues() == 1
925                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
926                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
927                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
928                                                            : SDValue());
929   }
930   return SDValue();
931 }
932 
933 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
934                                                    SelectionDAG &DAG) const {
935   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
936   return DAG.getTargetFrameIndex(FI, Op.getValueType());
937 }
938 
939 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
940                                                   SelectionDAG &DAG) const {
941   // Non-zero depths are not supported by WebAssembly currently. Use the
942   // legalizer's default expansion, which is to return 0 (what this function is
943   // documented to do).
944   if (Op.getConstantOperandVal(0) > 0)
945     return SDValue();
946 
947   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
948   EVT VT = Op.getValueType();
949   unsigned FP =
950       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
951   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
952 }
953 
954 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
955                                                       SelectionDAG &DAG) const {
956   SDLoc DL(Op);
957   const auto *GA = cast<GlobalAddressSDNode>(Op);
958   EVT VT = Op.getValueType();
959   assert(GA->getTargetFlags() == 0 &&
960          "Unexpected target flags on generic GlobalAddressSDNode");
961   if (GA->getAddressSpace() != 0)
962     fail(DL, DAG, "WebAssembly only expects the 0 address space");
963   return DAG.getNode(
964       WebAssemblyISD::Wrapper, DL, VT,
965       DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset()));
966 }
967 
968 SDValue
969 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
970                                                SelectionDAG &DAG) const {
971   SDLoc DL(Op);
972   const auto *ES = cast<ExternalSymbolSDNode>(Op);
973   EVT VT = Op.getValueType();
974   assert(ES->getTargetFlags() == 0 &&
975          "Unexpected target flags on generic ExternalSymbolSDNode");
976   // Set the TargetFlags to 0x1 which indicates that this is a "function"
977   // symbol rather than a data symbol. We do this unconditionally even though
978   // we don't know anything about the symbol other than its name, because all
979   // external symbols used in target-independent SelectionDAG code are for
980   // functions.
981   return DAG.getNode(
982       WebAssemblyISD::Wrapper, DL, VT,
983       DAG.getTargetExternalSymbol(ES->getSymbol(), VT,
984                                   WebAssemblyII::MO_SYMBOL_FUNCTION));
985 }
986 
987 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
988                                                   SelectionDAG &DAG) const {
989   // There's no need for a Wrapper node because we always incorporate a jump
990   // table operand into a BR_TABLE instruction, rather than ever
991   // materializing it in a register.
992   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
993   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
994                                 JT->getTargetFlags());
995 }
996 
997 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
998                                               SelectionDAG &DAG) const {
999   SDLoc DL(Op);
1000   SDValue Chain = Op.getOperand(0);
1001   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1002   SDValue Index = Op.getOperand(2);
1003   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1004 
1005   SmallVector<SDValue, 8> Ops;
1006   Ops.push_back(Chain);
1007   Ops.push_back(Index);
1008 
1009   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1010   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1011 
1012   // Add an operand for each case.
1013   for (auto MBB : MBBs)
1014     Ops.push_back(DAG.getBasicBlock(MBB));
1015 
1016   // TODO: For now, we just pick something arbitrary for a default case for now.
1017   // We really want to sniff out the guard and put in the real default case (and
1018   // delete the guard).
1019   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1020 
1021   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1022 }
1023 
1024 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1025                                                 SelectionDAG &DAG) const {
1026   SDLoc DL(Op);
1027   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1028 
1029   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1030   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1031 
1032   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1033                                     MFI->getVarargBufferVreg(), PtrVT);
1034   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1035                       MachinePointerInfo(SV), 0);
1036 }
1037 
1038 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1039                                                   SelectionDAG &DAG) const {
1040   MachineFunction &MF = DAG.getMachineFunction();
1041   unsigned IntNo;
1042   switch (Op.getOpcode()) {
1043   case ISD::INTRINSIC_VOID:
1044   case ISD::INTRINSIC_W_CHAIN:
1045     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1046     break;
1047   case ISD::INTRINSIC_WO_CHAIN:
1048     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1049     break;
1050   default:
1051     llvm_unreachable("Invalid intrinsic");
1052   }
1053   SDLoc DL(Op);
1054 
1055   switch (IntNo) {
1056   default:
1057     return {}; // Don't custom lower most intrinsics.
1058 
1059   case Intrinsic::wasm_lsda: {
1060     EVT VT = Op.getValueType();
1061     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1062     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1063     auto &Context = MF.getMMI().getContext();
1064     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1065                                             Twine(MF.getFunctionNumber()));
1066     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1067                        DAG.getMCSymbol(S, PtrVT));
1068   }
1069 
1070   case Intrinsic::wasm_throw: {
1071     // We only support C++ exceptions for now
1072     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1073     if (Tag != CPP_EXCEPTION)
1074       llvm_unreachable("Invalid tag!");
1075     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1076     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1077     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1078     SDValue SymNode =
1079         DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1080                     DAG.getTargetExternalSymbol(
1081                         SymName, PtrVT, WebAssemblyII::MO_SYMBOL_EVENT));
1082     return DAG.getNode(WebAssemblyISD::THROW, DL,
1083                        MVT::Other, // outchain type
1084                        {
1085                            Op.getOperand(0), // inchain
1086                            SymNode,          // exception symbol
1087                            Op.getOperand(3)  // thrown value
1088                        });
1089   }
1090   }
1091 }
1092 
1093 SDValue
1094 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1095                                                   SelectionDAG &DAG) const {
1096   // If sign extension operations are disabled, allow sext_inreg only if operand
1097   // is a vector extract. SIMD does not depend on sign extension operations, but
1098   // allowing sext_inreg in this context lets us have simple patterns to select
1099   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1100   // simpler in this file, but would necessitate large and brittle patterns to
1101   // undo the expansion and select extract_lane_s instructions.
1102   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1103   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT)
1104     return Op;
1105   // Otherwise expand
1106   return SDValue();
1107 }
1108 
1109 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1110                                                      SelectionDAG &DAG) const {
1111   SDLoc DL(Op);
1112   const EVT VecT = Op.getValueType();
1113   const EVT LaneT = Op.getOperand(0).getValueType();
1114   const size_t Lanes = Op.getNumOperands();
1115   auto IsConstant = [](const SDValue &V) {
1116     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1117   };
1118 
1119   // Find the most common operand, which is approximately the best to splat
1120   using Entry = std::pair<SDValue, size_t>;
1121   SmallVector<Entry, 16> ValueCounts;
1122   size_t NumConst = 0, NumDynamic = 0;
1123   for (const SDValue &Lane : Op->op_values()) {
1124     if (Lane.isUndef()) {
1125       continue;
1126     } else if (IsConstant(Lane)) {
1127       NumConst++;
1128     } else {
1129       NumDynamic++;
1130     }
1131     auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(),
1132                                 [&Lane](Entry A) { return A.first == Lane; });
1133     if (CountIt == ValueCounts.end()) {
1134       ValueCounts.emplace_back(Lane, 1);
1135     } else {
1136       CountIt->second++;
1137     }
1138   }
1139   auto CommonIt =
1140       std::max_element(ValueCounts.begin(), ValueCounts.end(),
1141                        [](Entry A, Entry B) { return A.second < B.second; });
1142   assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector");
1143   SDValue SplatValue = CommonIt->first;
1144   size_t NumCommon = CommonIt->second;
1145 
1146   // If v128.const is available, consider using it instead of a splat
1147   if (Subtarget->hasUnimplementedSIMD128()) {
1148     // {i32,i64,f32,f64}.const opcode, and value
1149     const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes);
1150     // SIMD prefix and opcode
1151     const size_t SplatBytes = 2;
1152     const size_t SplatConstBytes = SplatBytes + ConstBytes;
1153     // SIMD prefix, opcode, and lane index
1154     const size_t ReplaceBytes = 3;
1155     const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes;
1156     // SIMD prefix, v128.const opcode, and 128-bit value
1157     const size_t VecConstBytes = 18;
1158     // Initial v128.const and a replace_lane for each non-const operand
1159     const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes;
1160     // Initial splat and all necessary replace_lanes
1161     const size_t SplatInitBytes =
1162         IsConstant(SplatValue)
1163             // Initial constant splat
1164             ? (SplatConstBytes +
1165                // Constant replace_lanes
1166                (NumConst - NumCommon) * ReplaceConstBytes +
1167                // Dynamic replace_lanes
1168                (NumDynamic * ReplaceBytes))
1169             // Initial dynamic splat
1170             : (SplatBytes +
1171                // Constant replace_lanes
1172                (NumConst * ReplaceConstBytes) +
1173                // Dynamic replace_lanes
1174                (NumDynamic - NumCommon) * ReplaceBytes);
1175     if (ConstInitBytes < SplatInitBytes) {
1176       // Create build_vector that will lower to initial v128.const
1177       SmallVector<SDValue, 16> ConstLanes;
1178       for (const SDValue &Lane : Op->op_values()) {
1179         if (IsConstant(Lane)) {
1180           ConstLanes.push_back(Lane);
1181         } else if (LaneT.isFloatingPoint()) {
1182           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1183         } else {
1184           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1185         }
1186       }
1187       SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1188       // Add replace_lane instructions for non-const lanes
1189       for (size_t I = 0; I < Lanes; ++I) {
1190         const SDValue &Lane = Op->getOperand(I);
1191         if (!Lane.isUndef() && !IsConstant(Lane))
1192           Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1193                                DAG.getConstant(I, DL, MVT::i32));
1194       }
1195       return Result;
1196     }
1197   }
1198   // Use a splat for the initial vector
1199   SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1200   // Add replace_lane instructions for other values
1201   for (size_t I = 0; I < Lanes; ++I) {
1202     const SDValue &Lane = Op->getOperand(I);
1203     if (Lane != SplatValue)
1204       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1205                            DAG.getConstant(I, DL, MVT::i32));
1206   }
1207   return Result;
1208 }
1209 
1210 SDValue
1211 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1212                                                SelectionDAG &DAG) const {
1213   SDLoc DL(Op);
1214   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1215   MVT VecType = Op.getOperand(0).getSimpleValueType();
1216   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1217   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1218 
1219   // Space for two vector args and sixteen mask indices
1220   SDValue Ops[18];
1221   size_t OpIdx = 0;
1222   Ops[OpIdx++] = Op.getOperand(0);
1223   Ops[OpIdx++] = Op.getOperand(1);
1224 
1225   // Expand mask indices to byte indices and materialize them as operands
1226   for (size_t I = 0, Lanes = Mask.size(); I < Lanes; ++I) {
1227     for (size_t J = 0; J < LaneBytes; ++J) {
1228       // Lower undefs (represented by -1 in mask) to zero
1229       uint64_t ByteIndex =
1230           Mask[I] == -1 ? 0 : (uint64_t)Mask[I] * LaneBytes + J;
1231       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1232     }
1233   }
1234 
1235   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1236 }
1237 
1238 SDValue
1239 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1240                                                     SelectionDAG &DAG) const {
1241   // Allow constant lane indices, expand variable lane indices
1242   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1243   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1244     return Op;
1245   else
1246     // Perform default expansion
1247     return SDValue();
1248 }
1249 
1250 static SDValue UnrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1251   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1252   // 32-bit and 64-bit unrolled shifts will have proper semantics
1253   if (LaneT.bitsGE(MVT::i32))
1254     return DAG.UnrollVectorOp(Op.getNode());
1255   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1256   SDLoc DL(Op);
1257   SDValue ShiftVal = Op.getOperand(1);
1258   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1259   SDValue MaskedShiftVal = DAG.getNode(
1260       ISD::AND,                    // mask opcode
1261       DL, ShiftVal.getValueType(), // masked value type
1262       ShiftVal,                    // original shift value operand
1263       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1264   );
1265 
1266   return DAG.UnrollVectorOp(
1267       DAG.getNode(Op.getOpcode(),        // original shift opcode
1268                   DL, Op.getValueType(), // original return type
1269                   Op.getOperand(0),      // original vector operand,
1270                   MaskedShiftVal         // new masked shift value operand
1271                   )
1272           .getNode());
1273 }
1274 
1275 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1276                                               SelectionDAG &DAG) const {
1277   SDLoc DL(Op);
1278 
1279   // Only manually lower vector shifts
1280   assert(Op.getSimpleValueType().isVector());
1281 
1282   // Expand all vector shifts until V8 fixes its implementation
1283   // TODO: remove this once V8 is fixed
1284   if (!Subtarget->hasUnimplementedSIMD128())
1285     return UnrollVectorShift(Op, DAG);
1286 
1287   // Unroll non-splat vector shifts
1288   BuildVectorSDNode *ShiftVec;
1289   SDValue SplatVal;
1290   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1291       !(SplatVal = ShiftVec->getSplatValue()))
1292     return UnrollVectorShift(Op, DAG);
1293 
1294   // All splats except i64x2 const splats are handled by patterns
1295   ConstantSDNode *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1296   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1297     return Op;
1298 
1299   // i64x2 const splats are custom lowered to avoid unnecessary wraps
1300   unsigned Opcode;
1301   switch (Op.getOpcode()) {
1302   case ISD::SHL:
1303     Opcode = WebAssemblyISD::VEC_SHL;
1304     break;
1305   case ISD::SRA:
1306     Opcode = WebAssemblyISD::VEC_SHR_S;
1307     break;
1308   case ISD::SRL:
1309     Opcode = WebAssemblyISD::VEC_SHR_U;
1310     break;
1311   default:
1312     llvm_unreachable("unexpected opcode");
1313   }
1314   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1315   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1316                      DAG.getConstant(Shift, DL, MVT::i32));
1317 }
1318 
1319 //===----------------------------------------------------------------------===//
1320 //                          WebAssembly Optimization Hooks
1321 //===----------------------------------------------------------------------===//
1322