1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // WebAssembly does not produce floating-point exceptions on normal floating 49 // point operations. 50 setHasFloatingPointExceptions(false); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 } 67 if (Subtarget->hasUnimplementedSIMD128()) { 68 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 70 } 71 // Compute derived properties from the register classes. 72 computeRegisterProperties(Subtarget->getRegisterInfo()); 73 74 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 75 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 76 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 77 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 78 setOperationAction(ISD::BRIND, MVT::Other, Custom); 79 80 // Take the default expansion for va_arg, va_copy, and va_end. There is no 81 // default action for va_start, so we do that custom. 82 setOperationAction(ISD::VASTART, MVT::Other, Custom); 83 setOperationAction(ISD::VAARG, MVT::Other, Expand); 84 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 85 setOperationAction(ISD::VAEND, MVT::Other, Expand); 86 87 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 88 // Don't expand the floating-point types to constant pools. 89 setOperationAction(ISD::ConstantFP, T, Legal); 90 // Expand floating-point comparisons. 91 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 92 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 93 setCondCodeAction(CC, T, Expand); 94 // Expand floating-point library function operators. 95 for (auto Op : 96 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 97 setOperationAction(Op, T, Expand); 98 // Note supported floating-point library function operators that otherwise 99 // default to expand. 100 for (auto Op : 101 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 102 setOperationAction(Op, T, Legal); 103 // Support minimum and maximum, which otherwise default to expand. 104 setOperationAction(ISD::FMINIMUM, T, Legal); 105 setOperationAction(ISD::FMAXIMUM, T, Legal); 106 // WebAssembly currently has no builtin f16 support. 107 setOperationAction(ISD::FP16_TO_FP, T, Expand); 108 setOperationAction(ISD::FP_TO_FP16, T, Expand); 109 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 110 setTruncStoreAction(T, MVT::f16, Expand); 111 } 112 113 // Expand unavailable integer operations. 114 for (auto Op : 115 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 116 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 117 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 118 for (auto T : {MVT::i32, MVT::i64}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasSIMD128()) 121 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 122 setOperationAction(Op, T, Expand); 123 if (Subtarget->hasUnimplementedSIMD128()) 124 setOperationAction(Op, MVT::v2i64, Expand); 125 } 126 127 // SIMD-specific configuration 128 if (Subtarget->hasSIMD128()) { 129 // Support saturating add for i8x16 and i16x8 130 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 131 for (auto T : {MVT::v16i8, MVT::v8i16}) 132 setOperationAction(Op, T, Legal); 133 134 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 135 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 136 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 137 if (Subtarget->hasUnimplementedSIMD128()) 138 for (auto T : {MVT::v2i64, MVT::v2f64}) 139 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 140 141 // We have custom shuffle lowering to expose the shuffle mask 142 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 if (Subtarget->hasUnimplementedSIMD128()) 145 for (auto T: {MVT::v2i64, MVT::v2f64}) 146 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 147 148 // Custom lowering since wasm shifts must have a scalar shift amount 149 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 150 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 151 setOperationAction(Op, T, Custom); 152 if (Subtarget->hasUnimplementedSIMD128()) 153 setOperationAction(Op, MVT::v2i64, Custom); 154 } 155 156 // Custom lower lane accesses to expand out variable indices 157 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 158 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 159 setOperationAction(Op, T, Custom); 160 if (Subtarget->hasUnimplementedSIMD128()) 161 for (auto T : {MVT::v2i64, MVT::v2f64}) 162 setOperationAction(Op, T, Custom); 163 } 164 165 // There is no i64x2.mul instruction 166 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 167 168 // There are no vector select instructions 169 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 170 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 171 setOperationAction(Op, T, Expand); 172 if (Subtarget->hasUnimplementedSIMD128()) 173 for (auto T : {MVT::v2i64, MVT::v2f64}) 174 setOperationAction(Op, T, Expand); 175 } 176 177 // Expand integer operations supported for scalars but not SIMD 178 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 179 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 180 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 181 setOperationAction(Op, T, Expand); 182 if (Subtarget->hasUnimplementedSIMD128()) 183 setOperationAction(Op, MVT::v2i64, Expand); 184 } 185 186 // Expand float operations supported for scalars but not SIMD 187 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 188 ISD::FCOPYSIGN}) { 189 setOperationAction(Op, MVT::v4f32, Expand); 190 if (Subtarget->hasUnimplementedSIMD128()) 191 setOperationAction(Op, MVT::v2f64, Expand); 192 } 193 194 // Expand additional SIMD ops that V8 hasn't implemented yet 195 if (!Subtarget->hasUnimplementedSIMD128()) { 196 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 197 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 198 } 199 } 200 201 // As a special case, these operators use the type to mean the type to 202 // sign-extend from. 203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 204 if (!Subtarget->hasSignExt()) { 205 // Sign extends are legal only when extending a vector extract 206 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 207 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 208 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 209 } 210 for (auto T : MVT::integer_vector_valuetypes()) 211 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 212 213 // Dynamic stack allocation: use the default expansion. 214 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 215 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 216 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 217 218 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 219 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 220 221 // Expand these forms; we pattern-match the forms that we can handle in isel. 222 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 223 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 224 setOperationAction(Op, T, Expand); 225 226 // We have custom switch handling. 227 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 228 229 // WebAssembly doesn't have: 230 // - Floating-point extending loads. 231 // - Floating-point truncating stores. 232 // - i1 extending loads. 233 // - extending/truncating SIMD loads/stores 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 235 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 236 for (auto T : MVT::integer_valuetypes()) 237 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 238 setLoadExtAction(Ext, T, MVT::i1, Promote); 239 if (Subtarget->hasSIMD128()) { 240 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 241 MVT::v2f64}) { 242 for (auto MemT : MVT::vector_valuetypes()) { 243 if (MVT(T) != MemT) { 244 setTruncStoreAction(T, MemT, Expand); 245 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 246 setLoadExtAction(Ext, T, MemT, Expand); 247 } 248 } 249 } 250 } 251 252 // Don't do anything clever with build_pairs 253 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 254 255 // Trap lowers to wasm unreachable 256 setOperationAction(ISD::TRAP, MVT::Other, Legal); 257 258 // Exception handling intrinsics 259 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 260 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 261 262 setMaxAtomicSizeInBitsSupported(64); 263 264 if (Subtarget->hasBulkMemory()) { 265 // Use memory.copy and friends over multiple loads and stores 266 MaxStoresPerMemcpy = 1; 267 MaxStoresPerMemcpyOptSize = 1; 268 MaxStoresPerMemmove = 1; 269 MaxStoresPerMemmoveOptSize = 1; 270 MaxStoresPerMemset = 1; 271 MaxStoresPerMemsetOptSize = 1; 272 } 273 } 274 275 TargetLowering::AtomicExpansionKind 276 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 277 // We have wasm instructions for these 278 switch (AI->getOperation()) { 279 case AtomicRMWInst::Add: 280 case AtomicRMWInst::Sub: 281 case AtomicRMWInst::And: 282 case AtomicRMWInst::Or: 283 case AtomicRMWInst::Xor: 284 case AtomicRMWInst::Xchg: 285 return AtomicExpansionKind::None; 286 default: 287 break; 288 } 289 return AtomicExpansionKind::CmpXChg; 290 } 291 292 FastISel *WebAssemblyTargetLowering::createFastISel( 293 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 294 return WebAssembly::createFastISel(FuncInfo, LibInfo); 295 } 296 297 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 298 const GlobalAddressSDNode * /*GA*/) const { 299 // All offsets can be folded. 300 return true; 301 } 302 303 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 304 EVT VT) const { 305 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 306 if (BitWidth > 1 && BitWidth < 8) 307 BitWidth = 8; 308 309 if (BitWidth > 64) { 310 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 311 // the count to be an i32. 312 BitWidth = 32; 313 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 314 "32-bit shift counts ought to be enough for anyone"); 315 } 316 317 MVT Result = MVT::getIntegerVT(BitWidth); 318 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 319 "Unable to represent scalar shift amount type"); 320 return Result; 321 } 322 323 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 324 // undefined result on invalid/overflow, to the WebAssembly opcode, which 325 // traps on invalid/overflow. 326 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 327 MachineBasicBlock *BB, 328 const TargetInstrInfo &TII, 329 bool IsUnsigned, bool Int64, 330 bool Float64, unsigned LoweredOpcode) { 331 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 332 333 unsigned OutReg = MI.getOperand(0).getReg(); 334 unsigned InReg = MI.getOperand(1).getReg(); 335 336 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 337 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 338 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 339 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 340 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 341 unsigned Eqz = WebAssembly::EQZ_I32; 342 unsigned And = WebAssembly::AND_I32; 343 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 344 int64_t Substitute = IsUnsigned ? 0 : Limit; 345 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 346 auto &Context = BB->getParent()->getFunction().getContext(); 347 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 348 349 const BasicBlock *LLVMBB = BB->getBasicBlock(); 350 MachineFunction *F = BB->getParent(); 351 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 352 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 353 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 354 355 MachineFunction::iterator It = ++BB->getIterator(); 356 F->insert(It, FalseMBB); 357 F->insert(It, TrueMBB); 358 F->insert(It, DoneMBB); 359 360 // Transfer the remainder of BB and its successor edges to DoneMBB. 361 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 362 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 363 364 BB->addSuccessor(TrueMBB); 365 BB->addSuccessor(FalseMBB); 366 TrueMBB->addSuccessor(DoneMBB); 367 FalseMBB->addSuccessor(DoneMBB); 368 369 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 370 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 371 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 372 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 373 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 374 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 375 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 376 377 MI.eraseFromParent(); 378 // For signed numbers, we can do a single comparison to determine whether 379 // fabs(x) is within range. 380 if (IsUnsigned) { 381 Tmp0 = InReg; 382 } else { 383 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 384 } 385 BuildMI(BB, DL, TII.get(FConst), Tmp1) 386 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 387 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 388 389 // For unsigned numbers, we have to do a separate comparison with zero. 390 if (IsUnsigned) { 391 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 392 unsigned SecondCmpReg = 393 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 394 unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 395 BuildMI(BB, DL, TII.get(FConst), Tmp1) 396 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 397 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 398 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 399 CmpReg = AndReg; 400 } 401 402 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 403 404 // Create the CFG diamond to select between doing the conversion or using 405 // the substitute value. 406 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 407 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 408 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 409 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 410 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 411 .addReg(FalseReg) 412 .addMBB(FalseMBB) 413 .addReg(TrueReg) 414 .addMBB(TrueMBB); 415 416 return DoneMBB; 417 } 418 419 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 420 MachineInstr &MI, MachineBasicBlock *BB) const { 421 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 422 DebugLoc DL = MI.getDebugLoc(); 423 424 switch (MI.getOpcode()) { 425 default: 426 llvm_unreachable("Unexpected instr type to insert"); 427 case WebAssembly::FP_TO_SINT_I32_F32: 428 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 429 WebAssembly::I32_TRUNC_S_F32); 430 case WebAssembly::FP_TO_UINT_I32_F32: 431 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 432 WebAssembly::I32_TRUNC_U_F32); 433 case WebAssembly::FP_TO_SINT_I64_F32: 434 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 435 WebAssembly::I64_TRUNC_S_F32); 436 case WebAssembly::FP_TO_UINT_I64_F32: 437 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 438 WebAssembly::I64_TRUNC_U_F32); 439 case WebAssembly::FP_TO_SINT_I32_F64: 440 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 441 WebAssembly::I32_TRUNC_S_F64); 442 case WebAssembly::FP_TO_UINT_I32_F64: 443 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 444 WebAssembly::I32_TRUNC_U_F64); 445 case WebAssembly::FP_TO_SINT_I64_F64: 446 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 447 WebAssembly::I64_TRUNC_S_F64); 448 case WebAssembly::FP_TO_UINT_I64_F64: 449 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 450 WebAssembly::I64_TRUNC_U_F64); 451 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 452 } 453 } 454 455 const char * 456 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 457 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 458 case WebAssemblyISD::FIRST_NUMBER: 459 break; 460 #define HANDLE_NODETYPE(NODE) \ 461 case WebAssemblyISD::NODE: \ 462 return "WebAssemblyISD::" #NODE; 463 #include "WebAssemblyISD.def" 464 #undef HANDLE_NODETYPE 465 } 466 return nullptr; 467 } 468 469 std::pair<unsigned, const TargetRegisterClass *> 470 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 471 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 472 // First, see if this is a constraint that directly corresponds to a 473 // WebAssembly register class. 474 if (Constraint.size() == 1) { 475 switch (Constraint[0]) { 476 case 'r': 477 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 478 if (Subtarget->hasSIMD128() && VT.isVector()) { 479 if (VT.getSizeInBits() == 128) 480 return std::make_pair(0U, &WebAssembly::V128RegClass); 481 } 482 if (VT.isInteger() && !VT.isVector()) { 483 if (VT.getSizeInBits() <= 32) 484 return std::make_pair(0U, &WebAssembly::I32RegClass); 485 if (VT.getSizeInBits() <= 64) 486 return std::make_pair(0U, &WebAssembly::I64RegClass); 487 } 488 break; 489 default: 490 break; 491 } 492 } 493 494 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 495 } 496 497 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 498 // Assume ctz is a relatively cheap operation. 499 return true; 500 } 501 502 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 503 // Assume clz is a relatively cheap operation. 504 return true; 505 } 506 507 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 508 const AddrMode &AM, 509 Type *Ty, unsigned AS, 510 Instruction *I) const { 511 // WebAssembly offsets are added as unsigned without wrapping. The 512 // isLegalAddressingMode gives us no way to determine if wrapping could be 513 // happening, so we approximate this by accepting only non-negative offsets. 514 if (AM.BaseOffs < 0) 515 return false; 516 517 // WebAssembly has no scale register operands. 518 if (AM.Scale != 0) 519 return false; 520 521 // Everything else is legal. 522 return true; 523 } 524 525 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 526 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const { 527 // WebAssembly supports unaligned accesses, though it should be declared 528 // with the p2align attribute on loads and stores which do so, and there 529 // may be a performance impact. We tell LLVM they're "fast" because 530 // for the kinds of things that LLVM uses this for (merging adjacent stores 531 // of constants, etc.), WebAssembly implementations will either want the 532 // unaligned access or they'll split anyway. 533 if (Fast) 534 *Fast = true; 535 return true; 536 } 537 538 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 539 AttributeList Attr) const { 540 // The current thinking is that wasm engines will perform this optimization, 541 // so we can save on code size. 542 return true; 543 } 544 545 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 546 LLVMContext &C, 547 EVT VT) const { 548 if (VT.isVector()) 549 return VT.changeVectorElementTypeToInteger(); 550 551 return TargetLowering::getSetCCResultType(DL, C, VT); 552 } 553 554 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 555 const CallInst &I, 556 MachineFunction &MF, 557 unsigned Intrinsic) const { 558 switch (Intrinsic) { 559 case Intrinsic::wasm_atomic_notify: 560 Info.opc = ISD::INTRINSIC_W_CHAIN; 561 Info.memVT = MVT::i32; 562 Info.ptrVal = I.getArgOperand(0); 563 Info.offset = 0; 564 Info.align = 4; 565 // atomic.notify instruction does not really load the memory specified with 566 // this argument, but MachineMemOperand should either be load or store, so 567 // we set this to a load. 568 // FIXME Volatile isn't really correct, but currently all LLVM atomic 569 // instructions are treated as volatiles in the backend, so we should be 570 // consistent. The same applies for wasm_atomic_wait intrinsics too. 571 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 572 return true; 573 case Intrinsic::wasm_atomic_wait_i32: 574 Info.opc = ISD::INTRINSIC_W_CHAIN; 575 Info.memVT = MVT::i32; 576 Info.ptrVal = I.getArgOperand(0); 577 Info.offset = 0; 578 Info.align = 4; 579 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 580 return true; 581 case Intrinsic::wasm_atomic_wait_i64: 582 Info.opc = ISD::INTRINSIC_W_CHAIN; 583 Info.memVT = MVT::i64; 584 Info.ptrVal = I.getArgOperand(0); 585 Info.offset = 0; 586 Info.align = 8; 587 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 588 return true; 589 default: 590 return false; 591 } 592 } 593 594 //===----------------------------------------------------------------------===// 595 // WebAssembly Lowering private implementation. 596 //===----------------------------------------------------------------------===// 597 598 //===----------------------------------------------------------------------===// 599 // Lowering Code 600 //===----------------------------------------------------------------------===// 601 602 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 603 MachineFunction &MF = DAG.getMachineFunction(); 604 DAG.getContext()->diagnose( 605 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 606 } 607 608 // Test whether the given calling convention is supported. 609 static bool callingConvSupported(CallingConv::ID CallConv) { 610 // We currently support the language-independent target-independent 611 // conventions. We don't yet have a way to annotate calls with properties like 612 // "cold", and we don't have any call-clobbered registers, so these are mostly 613 // all handled the same. 614 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 615 CallConv == CallingConv::Cold || 616 CallConv == CallingConv::PreserveMost || 617 CallConv == CallingConv::PreserveAll || 618 CallConv == CallingConv::CXX_FAST_TLS; 619 } 620 621 SDValue 622 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 623 SmallVectorImpl<SDValue> &InVals) const { 624 SelectionDAG &DAG = CLI.DAG; 625 SDLoc DL = CLI.DL; 626 SDValue Chain = CLI.Chain; 627 SDValue Callee = CLI.Callee; 628 MachineFunction &MF = DAG.getMachineFunction(); 629 auto Layout = MF.getDataLayout(); 630 631 CallingConv::ID CallConv = CLI.CallConv; 632 if (!callingConvSupported(CallConv)) 633 fail(DL, DAG, 634 "WebAssembly doesn't support language-specific or target-specific " 635 "calling conventions yet"); 636 if (CLI.IsPatchPoint) 637 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 638 639 // WebAssembly doesn't currently support explicit tail calls. If they are 640 // required, fail. Otherwise, just disable them. 641 if ((CallConv == CallingConv::Fast && CLI.IsTailCall && 642 MF.getTarget().Options.GuaranteedTailCallOpt) || 643 (CLI.CS && CLI.CS.isMustTailCall())) 644 fail(DL, DAG, "WebAssembly doesn't support tail call yet"); 645 CLI.IsTailCall = false; 646 647 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 648 if (Ins.size() > 1) 649 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 650 651 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 652 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 653 unsigned NumFixedArgs = 0; 654 for (unsigned I = 0; I < Outs.size(); ++I) { 655 const ISD::OutputArg &Out = Outs[I]; 656 SDValue &OutVal = OutVals[I]; 657 if (Out.Flags.isNest()) 658 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 659 if (Out.Flags.isInAlloca()) 660 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 661 if (Out.Flags.isInConsecutiveRegs()) 662 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 663 if (Out.Flags.isInConsecutiveRegsLast()) 664 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 665 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 666 auto &MFI = MF.getFrameInfo(); 667 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 668 Out.Flags.getByValAlign(), 669 /*isSS=*/false); 670 SDValue SizeNode = 671 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 672 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 673 Chain = DAG.getMemcpy( 674 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 675 /*isVolatile*/ false, /*AlwaysInline=*/false, 676 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 677 OutVal = FINode; 678 } 679 // Count the number of fixed args *after* legalization. 680 NumFixedArgs += Out.IsFixed; 681 } 682 683 bool IsVarArg = CLI.IsVarArg; 684 auto PtrVT = getPointerTy(Layout); 685 686 // Analyze operands of the call, assigning locations to each operand. 687 SmallVector<CCValAssign, 16> ArgLocs; 688 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 689 690 if (IsVarArg) { 691 // Outgoing non-fixed arguments are placed in a buffer. First 692 // compute their offsets and the total amount of buffer space needed. 693 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 694 const ISD::OutputArg &Out = Outs[I]; 695 SDValue &Arg = OutVals[I]; 696 EVT VT = Arg.getValueType(); 697 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 698 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 699 unsigned Align = std::max(Out.Flags.getOrigAlign(), 700 Layout.getABITypeAlignment(Ty)); 701 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 702 Align); 703 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 704 Offset, VT.getSimpleVT(), 705 CCValAssign::Full)); 706 } 707 } 708 709 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 710 711 SDValue FINode; 712 if (IsVarArg && NumBytes) { 713 // For non-fixed arguments, next emit stores to store the argument values 714 // to the stack buffer at the offsets computed above. 715 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 716 Layout.getStackAlignment(), 717 /*isSS=*/false); 718 unsigned ValNo = 0; 719 SmallVector<SDValue, 8> Chains; 720 for (SDValue Arg : 721 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 722 assert(ArgLocs[ValNo].getValNo() == ValNo && 723 "ArgLocs should remain in order and only hold varargs args"); 724 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 725 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 726 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 727 DAG.getConstant(Offset, DL, PtrVT)); 728 Chains.push_back( 729 DAG.getStore(Chain, DL, Arg, Add, 730 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 731 } 732 if (!Chains.empty()) 733 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 734 } else if (IsVarArg) { 735 FINode = DAG.getIntPtrConstant(0, DL); 736 } 737 738 // Compute the operands for the CALLn node. 739 SmallVector<SDValue, 16> Ops; 740 Ops.push_back(Chain); 741 Ops.push_back(Callee); 742 743 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 744 // isn't reliable. 745 Ops.append(OutVals.begin(), 746 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 747 // Add a pointer to the vararg buffer. 748 if (IsVarArg) 749 Ops.push_back(FINode); 750 751 SmallVector<EVT, 8> InTys; 752 for (const auto &In : Ins) { 753 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 754 assert(!In.Flags.isNest() && "nest is not valid for return values"); 755 if (In.Flags.isInAlloca()) 756 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 757 if (In.Flags.isInConsecutiveRegs()) 758 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 759 if (In.Flags.isInConsecutiveRegsLast()) 760 fail(DL, DAG, 761 "WebAssembly hasn't implemented cons regs last return values"); 762 // Ignore In.getOrigAlign() because all our arguments are passed in 763 // registers. 764 InTys.push_back(In.VT); 765 } 766 InTys.push_back(MVT::Other); 767 SDVTList InTyList = DAG.getVTList(InTys); 768 SDValue Res = 769 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 770 DL, InTyList, Ops); 771 if (Ins.empty()) { 772 Chain = Res; 773 } else { 774 InVals.push_back(Res); 775 Chain = Res.getValue(1); 776 } 777 778 return Chain; 779 } 780 781 bool WebAssemblyTargetLowering::CanLowerReturn( 782 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 783 const SmallVectorImpl<ISD::OutputArg> &Outs, 784 LLVMContext & /*Context*/) const { 785 // WebAssembly can't currently handle returning tuples. 786 return Outs.size() <= 1; 787 } 788 789 SDValue WebAssemblyTargetLowering::LowerReturn( 790 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 791 const SmallVectorImpl<ISD::OutputArg> &Outs, 792 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 793 SelectionDAG &DAG) const { 794 assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); 795 if (!callingConvSupported(CallConv)) 796 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 797 798 SmallVector<SDValue, 4> RetOps(1, Chain); 799 RetOps.append(OutVals.begin(), OutVals.end()); 800 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 801 802 // Record the number and types of the return values. 803 for (const ISD::OutputArg &Out : Outs) { 804 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 805 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 806 assert(Out.IsFixed && "non-fixed return value is not valid"); 807 if (Out.Flags.isInAlloca()) 808 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 809 if (Out.Flags.isInConsecutiveRegs()) 810 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 811 if (Out.Flags.isInConsecutiveRegsLast()) 812 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 813 } 814 815 return Chain; 816 } 817 818 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 819 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 820 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 821 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 822 if (!callingConvSupported(CallConv)) 823 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 824 825 MachineFunction &MF = DAG.getMachineFunction(); 826 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 827 828 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 829 // of the incoming values before they're represented by virtual registers. 830 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 831 832 for (const ISD::InputArg &In : Ins) { 833 if (In.Flags.isInAlloca()) 834 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 835 if (In.Flags.isNest()) 836 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 837 if (In.Flags.isInConsecutiveRegs()) 838 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 839 if (In.Flags.isInConsecutiveRegsLast()) 840 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 841 // Ignore In.getOrigAlign() because all our arguments are passed in 842 // registers. 843 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 844 DAG.getTargetConstant(InVals.size(), 845 DL, MVT::i32)) 846 : DAG.getUNDEF(In.VT)); 847 848 // Record the number and types of arguments. 849 MFI->addParam(In.VT); 850 } 851 852 // Varargs are copied into a buffer allocated by the caller, and a pointer to 853 // the buffer is passed as an argument. 854 if (IsVarArg) { 855 MVT PtrVT = getPointerTy(MF.getDataLayout()); 856 unsigned VarargVreg = 857 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 858 MFI->setVarargBufferVreg(VarargVreg); 859 Chain = DAG.getCopyToReg( 860 Chain, DL, VarargVreg, 861 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 862 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 863 MFI->addParam(PtrVT); 864 } 865 866 // Record the number and types of arguments and results. 867 SmallVector<MVT, 4> Params; 868 SmallVector<MVT, 4> Results; 869 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 870 DAG.getTarget(), Params, Results); 871 for (MVT VT : Results) 872 MFI->addResult(VT); 873 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 874 // the param logic here with ComputeSignatureVTs 875 assert(MFI->getParams().size() == Params.size() && 876 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 877 Params.begin())); 878 879 return Chain; 880 } 881 882 //===----------------------------------------------------------------------===// 883 // Custom lowering hooks. 884 //===----------------------------------------------------------------------===// 885 886 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 887 SelectionDAG &DAG) const { 888 SDLoc DL(Op); 889 switch (Op.getOpcode()) { 890 default: 891 llvm_unreachable("unimplemented operation lowering"); 892 return SDValue(); 893 case ISD::FrameIndex: 894 return LowerFrameIndex(Op, DAG); 895 case ISD::GlobalAddress: 896 return LowerGlobalAddress(Op, DAG); 897 case ISD::ExternalSymbol: 898 return LowerExternalSymbol(Op, DAG); 899 case ISD::JumpTable: 900 return LowerJumpTable(Op, DAG); 901 case ISD::BR_JT: 902 return LowerBR_JT(Op, DAG); 903 case ISD::VASTART: 904 return LowerVASTART(Op, DAG); 905 case ISD::BlockAddress: 906 case ISD::BRIND: 907 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 908 return SDValue(); 909 case ISD::RETURNADDR: // Probably nothing meaningful can be returned here. 910 fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address"); 911 return SDValue(); 912 case ISD::FRAMEADDR: 913 return LowerFRAMEADDR(Op, DAG); 914 case ISD::CopyToReg: 915 return LowerCopyToReg(Op, DAG); 916 case ISD::EXTRACT_VECTOR_ELT: 917 case ISD::INSERT_VECTOR_ELT: 918 return LowerAccessVectorElement(Op, DAG); 919 case ISD::INTRINSIC_VOID: 920 case ISD::INTRINSIC_WO_CHAIN: 921 case ISD::INTRINSIC_W_CHAIN: 922 return LowerIntrinsic(Op, DAG); 923 case ISD::SIGN_EXTEND_INREG: 924 return LowerSIGN_EXTEND_INREG(Op, DAG); 925 case ISD::BUILD_VECTOR: 926 return LowerBUILD_VECTOR(Op, DAG); 927 case ISD::VECTOR_SHUFFLE: 928 return LowerVECTOR_SHUFFLE(Op, DAG); 929 case ISD::SHL: 930 case ISD::SRA: 931 case ISD::SRL: 932 return LowerShift(Op, DAG); 933 } 934 } 935 936 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 937 SelectionDAG &DAG) const { 938 SDValue Src = Op.getOperand(2); 939 if (isa<FrameIndexSDNode>(Src.getNode())) { 940 // CopyToReg nodes don't support FrameIndex operands. Other targets select 941 // the FI to some LEA-like instruction, but since we don't have that, we 942 // need to insert some kind of instruction that can take an FI operand and 943 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 944 // local.copy between Op and its FI operand. 945 SDValue Chain = Op.getOperand(0); 946 SDLoc DL(Op); 947 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 948 EVT VT = Src.getValueType(); 949 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 950 : WebAssembly::COPY_I64, 951 DL, VT, Src), 952 0); 953 return Op.getNode()->getNumValues() == 1 954 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 955 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 956 Op.getNumOperands() == 4 ? Op.getOperand(3) 957 : SDValue()); 958 } 959 return SDValue(); 960 } 961 962 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 963 SelectionDAG &DAG) const { 964 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 965 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 966 } 967 968 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 969 SelectionDAG &DAG) const { 970 // Non-zero depths are not supported by WebAssembly currently. Use the 971 // legalizer's default expansion, which is to return 0 (what this function is 972 // documented to do). 973 if (Op.getConstantOperandVal(0) > 0) 974 return SDValue(); 975 976 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 977 EVT VT = Op.getValueType(); 978 unsigned FP = 979 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 980 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 981 } 982 983 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 984 SelectionDAG &DAG) const { 985 SDLoc DL(Op); 986 const auto *GA = cast<GlobalAddressSDNode>(Op); 987 EVT VT = Op.getValueType(); 988 assert(GA->getTargetFlags() == 0 && 989 "Unexpected target flags on generic GlobalAddressSDNode"); 990 if (GA->getAddressSpace() != 0) 991 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 992 return DAG.getNode( 993 WebAssemblyISD::Wrapper, DL, VT, 994 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset())); 995 } 996 997 SDValue 998 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 999 SelectionDAG &DAG) const { 1000 SDLoc DL(Op); 1001 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1002 EVT VT = Op.getValueType(); 1003 assert(ES->getTargetFlags() == 0 && 1004 "Unexpected target flags on generic ExternalSymbolSDNode"); 1005 // Set the TargetFlags to 0x1 which indicates that this is a "function" 1006 // symbol rather than a data symbol. We do this unconditionally even though 1007 // we don't know anything about the symbol other than its name, because all 1008 // external symbols used in target-independent SelectionDAG code are for 1009 // functions. 1010 return DAG.getNode( 1011 WebAssemblyISD::Wrapper, DL, VT, 1012 DAG.getTargetExternalSymbol(ES->getSymbol(), VT, 1013 WebAssemblyII::MO_SYMBOL_FUNCTION)); 1014 } 1015 1016 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1017 SelectionDAG &DAG) const { 1018 // There's no need for a Wrapper node because we always incorporate a jump 1019 // table operand into a BR_TABLE instruction, rather than ever 1020 // materializing it in a register. 1021 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1022 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1023 JT->getTargetFlags()); 1024 } 1025 1026 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1027 SelectionDAG &DAG) const { 1028 SDLoc DL(Op); 1029 SDValue Chain = Op.getOperand(0); 1030 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1031 SDValue Index = Op.getOperand(2); 1032 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1033 1034 SmallVector<SDValue, 8> Ops; 1035 Ops.push_back(Chain); 1036 Ops.push_back(Index); 1037 1038 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1039 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1040 1041 // Add an operand for each case. 1042 for (auto MBB : MBBs) 1043 Ops.push_back(DAG.getBasicBlock(MBB)); 1044 1045 // TODO: For now, we just pick something arbitrary for a default case for now. 1046 // We really want to sniff out the guard and put in the real default case (and 1047 // delete the guard). 1048 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1049 1050 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1051 } 1052 1053 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1054 SelectionDAG &DAG) const { 1055 SDLoc DL(Op); 1056 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1057 1058 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1059 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1060 1061 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1062 MFI->getVarargBufferVreg(), PtrVT); 1063 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1064 MachinePointerInfo(SV), 0); 1065 } 1066 1067 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1068 SelectionDAG &DAG) const { 1069 MachineFunction &MF = DAG.getMachineFunction(); 1070 unsigned IntNo; 1071 switch (Op.getOpcode()) { 1072 case ISD::INTRINSIC_VOID: 1073 case ISD::INTRINSIC_W_CHAIN: 1074 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1075 break; 1076 case ISD::INTRINSIC_WO_CHAIN: 1077 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1078 break; 1079 default: 1080 llvm_unreachable("Invalid intrinsic"); 1081 } 1082 SDLoc DL(Op); 1083 1084 switch (IntNo) { 1085 default: 1086 return SDValue(); // Don't custom lower most intrinsics. 1087 1088 case Intrinsic::wasm_lsda: { 1089 EVT VT = Op.getValueType(); 1090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1091 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1092 auto &Context = MF.getMMI().getContext(); 1093 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1094 Twine(MF.getFunctionNumber())); 1095 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1096 DAG.getMCSymbol(S, PtrVT)); 1097 } 1098 1099 case Intrinsic::wasm_throw: { 1100 // We only support C++ exceptions for now 1101 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1102 if (Tag != CPP_EXCEPTION) 1103 llvm_unreachable("Invalid tag!"); 1104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1105 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1106 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1107 SDValue SymNode = 1108 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1109 DAG.getTargetExternalSymbol( 1110 SymName, PtrVT, WebAssemblyII::MO_SYMBOL_EVENT)); 1111 return DAG.getNode(WebAssemblyISD::THROW, DL, 1112 MVT::Other, // outchain type 1113 { 1114 Op.getOperand(0), // inchain 1115 SymNode, // exception symbol 1116 Op.getOperand(3) // thrown value 1117 }); 1118 } 1119 } 1120 } 1121 1122 SDValue 1123 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1124 SelectionDAG &DAG) const { 1125 // If sign extension operations are disabled, allow sext_inreg only if operand 1126 // is a vector extract. SIMD does not depend on sign extension operations, but 1127 // allowing sext_inreg in this context lets us have simple patterns to select 1128 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1129 // simpler in this file, but would necessitate large and brittle patterns to 1130 // undo the expansion and select extract_lane_s instructions. 1131 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1132 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) 1133 return Op; 1134 // Otherwise expand 1135 return SDValue(); 1136 } 1137 1138 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1139 SelectionDAG &DAG) const { 1140 SDLoc DL(Op); 1141 const EVT VecT = Op.getValueType(); 1142 const EVT LaneT = Op.getOperand(0).getValueType(); 1143 const size_t Lanes = Op.getNumOperands(); 1144 auto IsConstant = [](const SDValue &V) { 1145 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1146 }; 1147 1148 // Find the most common operand, which is approximately the best to splat 1149 using Entry = std::pair<SDValue, size_t>; 1150 SmallVector<Entry, 16> ValueCounts; 1151 size_t NumConst = 0, NumDynamic = 0; 1152 for (const SDValue &Lane : Op->op_values()) { 1153 if (Lane.isUndef()) { 1154 continue; 1155 } else if (IsConstant(Lane)) { 1156 NumConst++; 1157 } else { 1158 NumDynamic++; 1159 } 1160 auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(), 1161 [&Lane](Entry A) { return A.first == Lane; }); 1162 if (CountIt == ValueCounts.end()) { 1163 ValueCounts.emplace_back(Lane, 1); 1164 } else { 1165 CountIt->second++; 1166 } 1167 } 1168 auto CommonIt = 1169 std::max_element(ValueCounts.begin(), ValueCounts.end(), 1170 [](Entry A, Entry B) { return A.second < B.second; }); 1171 assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector"); 1172 SDValue SplatValue = CommonIt->first; 1173 size_t NumCommon = CommonIt->second; 1174 1175 // If v128.const is available, consider using it instead of a splat 1176 if (Subtarget->hasUnimplementedSIMD128()) { 1177 // {i32,i64,f32,f64}.const opcode, and value 1178 const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes); 1179 // SIMD prefix and opcode 1180 const size_t SplatBytes = 2; 1181 const size_t SplatConstBytes = SplatBytes + ConstBytes; 1182 // SIMD prefix, opcode, and lane index 1183 const size_t ReplaceBytes = 3; 1184 const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes; 1185 // SIMD prefix, v128.const opcode, and 128-bit value 1186 const size_t VecConstBytes = 18; 1187 // Initial v128.const and a replace_lane for each non-const operand 1188 const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes; 1189 // Initial splat and all necessary replace_lanes 1190 const size_t SplatInitBytes = 1191 IsConstant(SplatValue) 1192 // Initial constant splat 1193 ? (SplatConstBytes + 1194 // Constant replace_lanes 1195 (NumConst - NumCommon) * ReplaceConstBytes + 1196 // Dynamic replace_lanes 1197 (NumDynamic * ReplaceBytes)) 1198 // Initial dynamic splat 1199 : (SplatBytes + 1200 // Constant replace_lanes 1201 (NumConst * ReplaceConstBytes) + 1202 // Dynamic replace_lanes 1203 (NumDynamic - NumCommon) * ReplaceBytes); 1204 if (ConstInitBytes < SplatInitBytes) { 1205 // Create build_vector that will lower to initial v128.const 1206 SmallVector<SDValue, 16> ConstLanes; 1207 for (const SDValue &Lane : Op->op_values()) { 1208 if (IsConstant(Lane)) { 1209 ConstLanes.push_back(Lane); 1210 } else if (LaneT.isFloatingPoint()) { 1211 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1212 } else { 1213 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1214 } 1215 } 1216 SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1217 // Add replace_lane instructions for non-const lanes 1218 for (size_t I = 0; I < Lanes; ++I) { 1219 const SDValue &Lane = Op->getOperand(I); 1220 if (!Lane.isUndef() && !IsConstant(Lane)) 1221 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1222 DAG.getConstant(I, DL, MVT::i32)); 1223 } 1224 return Result; 1225 } 1226 } 1227 // Use a splat for the initial vector 1228 SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1229 // Add replace_lane instructions for other values 1230 for (size_t I = 0; I < Lanes; ++I) { 1231 const SDValue &Lane = Op->getOperand(I); 1232 if (Lane != SplatValue) 1233 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1234 DAG.getConstant(I, DL, MVT::i32)); 1235 } 1236 return Result; 1237 } 1238 1239 SDValue 1240 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1241 SelectionDAG &DAG) const { 1242 SDLoc DL(Op); 1243 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1244 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1245 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1246 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1247 1248 // Space for two vector args and sixteen mask indices 1249 SDValue Ops[18]; 1250 size_t OpIdx = 0; 1251 Ops[OpIdx++] = Op.getOperand(0); 1252 Ops[OpIdx++] = Op.getOperand(1); 1253 1254 // Expand mask indices to byte indices and materialize them as operands 1255 for (int M : Mask) { 1256 for (size_t J = 0; J < LaneBytes; ++J) { 1257 // Lower undefs (represented by -1 in mask) to zero 1258 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1259 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1260 } 1261 } 1262 1263 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1264 } 1265 1266 SDValue 1267 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1268 SelectionDAG &DAG) const { 1269 // Allow constant lane indices, expand variable lane indices 1270 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1271 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1272 return Op; 1273 else 1274 // Perform default expansion 1275 return SDValue(); 1276 } 1277 1278 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1279 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1280 // 32-bit and 64-bit unrolled shifts will have proper semantics 1281 if (LaneT.bitsGE(MVT::i32)) 1282 return DAG.UnrollVectorOp(Op.getNode()); 1283 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1284 SDLoc DL(Op); 1285 SDValue ShiftVal = Op.getOperand(1); 1286 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1287 SDValue MaskedShiftVal = DAG.getNode( 1288 ISD::AND, // mask opcode 1289 DL, ShiftVal.getValueType(), // masked value type 1290 ShiftVal, // original shift value operand 1291 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1292 ); 1293 1294 return DAG.UnrollVectorOp( 1295 DAG.getNode(Op.getOpcode(), // original shift opcode 1296 DL, Op.getValueType(), // original return type 1297 Op.getOperand(0), // original vector operand, 1298 MaskedShiftVal // new masked shift value operand 1299 ) 1300 .getNode()); 1301 } 1302 1303 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1304 SelectionDAG &DAG) const { 1305 SDLoc DL(Op); 1306 1307 // Only manually lower vector shifts 1308 assert(Op.getSimpleValueType().isVector()); 1309 1310 // Expand all vector shifts until V8 fixes its implementation 1311 // TODO: remove this once V8 is fixed 1312 if (!Subtarget->hasUnimplementedSIMD128()) 1313 return unrollVectorShift(Op, DAG); 1314 1315 // Unroll non-splat vector shifts 1316 BuildVectorSDNode *ShiftVec; 1317 SDValue SplatVal; 1318 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1319 !(SplatVal = ShiftVec->getSplatValue())) 1320 return unrollVectorShift(Op, DAG); 1321 1322 // All splats except i64x2 const splats are handled by patterns 1323 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1324 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1325 return Op; 1326 1327 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1328 unsigned Opcode; 1329 switch (Op.getOpcode()) { 1330 case ISD::SHL: 1331 Opcode = WebAssemblyISD::VEC_SHL; 1332 break; 1333 case ISD::SRA: 1334 Opcode = WebAssemblyISD::VEC_SHR_S; 1335 break; 1336 case ISD::SRL: 1337 Opcode = WebAssemblyISD::VEC_SHR_U; 1338 break; 1339 default: 1340 llvm_unreachable("unexpected opcode"); 1341 } 1342 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1343 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1344 DAG.getConstant(Shift, DL, MVT::i32)); 1345 } 1346 1347 //===----------------------------------------------------------------------===// 1348 // WebAssembly Optimization Hooks 1349 //===----------------------------------------------------------------------===// 1350