1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetOptions.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-lower" 42 43 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 44 const TargetMachine &TM, const WebAssemblySubtarget &STI) 45 : TargetLowering(TM), Subtarget(&STI) { 46 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 47 48 // Booleans always contain 0 or 1. 49 setBooleanContents(ZeroOrOneBooleanContent); 50 // Except in SIMD vectors 51 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 52 // We don't know the microarchitecture here, so just reduce register pressure. 53 setSchedulingPreference(Sched::RegPressure); 54 // Tell ISel that we have a stack pointer. 55 setStackPointerRegisterToSaveRestore( 56 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 57 // Set up the register classes. 58 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 59 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 60 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 61 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 62 if (Subtarget->hasSIMD128()) { 63 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 69 } 70 if (Subtarget->hasReferenceTypes()) { 71 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 72 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 73 } 74 // Compute derived properties from the register classes. 75 computeRegisterProperties(Subtarget->getRegisterInfo()); 76 77 // Transform loads and stores to pointers in address space 1 to loads and 78 // stores to WebAssembly global variables, outside linear memory. 79 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 80 setOperationAction(ISD::LOAD, T, Custom); 81 setOperationAction(ISD::STORE, T, Custom); 82 } 83 if (Subtarget->hasSIMD128()) { 84 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 85 MVT::v2f64}) { 86 setOperationAction(ISD::LOAD, T, Custom); 87 setOperationAction(ISD::STORE, T, Custom); 88 } 89 } 90 if (Subtarget->hasReferenceTypes()) { 91 for (auto T : {MVT::externref, MVT::funcref}) { 92 setOperationAction(ISD::LOAD, T, Custom); 93 setOperationAction(ISD::STORE, T, Custom); 94 } 95 } 96 97 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 98 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 99 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 100 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 101 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 102 setOperationAction(ISD::BRIND, MVT::Other, Custom); 103 104 // Take the default expansion for va_arg, va_copy, and va_end. There is no 105 // default action for va_start, so we do that custom. 106 setOperationAction(ISD::VASTART, MVT::Other, Custom); 107 setOperationAction(ISD::VAARG, MVT::Other, Expand); 108 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 109 setOperationAction(ISD::VAEND, MVT::Other, Expand); 110 111 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 112 // Don't expand the floating-point types to constant pools. 113 setOperationAction(ISD::ConstantFP, T, Legal); 114 // Expand floating-point comparisons. 115 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 116 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 117 setCondCodeAction(CC, T, Expand); 118 // Expand floating-point library function operators. 119 for (auto Op : 120 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 121 setOperationAction(Op, T, Expand); 122 // Note supported floating-point library function operators that otherwise 123 // default to expand. 124 for (auto Op : 125 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 126 setOperationAction(Op, T, Legal); 127 // Support minimum and maximum, which otherwise default to expand. 128 setOperationAction(ISD::FMINIMUM, T, Legal); 129 setOperationAction(ISD::FMAXIMUM, T, Legal); 130 // WebAssembly currently has no builtin f16 support. 131 setOperationAction(ISD::FP16_TO_FP, T, Expand); 132 setOperationAction(ISD::FP_TO_FP16, T, Expand); 133 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 134 setTruncStoreAction(T, MVT::f16, Expand); 135 } 136 137 // Expand unavailable integer operations. 138 for (auto Op : 139 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 140 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 141 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 142 for (auto T : {MVT::i32, MVT::i64}) 143 setOperationAction(Op, T, Expand); 144 if (Subtarget->hasSIMD128()) 145 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 146 setOperationAction(Op, T, Expand); 147 } 148 149 if (Subtarget->hasNontrappingFPToInt()) 150 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 151 for (auto T : {MVT::i32, MVT::i64}) 152 setOperationAction(Op, T, Custom); 153 154 // SIMD-specific configuration 155 if (Subtarget->hasSIMD128()) { 156 // Hoist bitcasts out of shuffles 157 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 158 159 // Combine extends of extract_subvectors into widening ops 160 setTargetDAGCombine(ISD::SIGN_EXTEND); 161 setTargetDAGCombine(ISD::ZERO_EXTEND); 162 163 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 164 // conversions ops 165 setTargetDAGCombine(ISD::SINT_TO_FP); 166 setTargetDAGCombine(ISD::UINT_TO_FP); 167 setTargetDAGCombine(ISD::FP_EXTEND); 168 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 169 170 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 171 // into conversion ops 172 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 173 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 174 setTargetDAGCombine(ISD::FP_ROUND); 175 setTargetDAGCombine(ISD::CONCAT_VECTORS); 176 177 // Support saturating add for i8x16 and i16x8 178 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 179 for (auto T : {MVT::v16i8, MVT::v8i16}) 180 setOperationAction(Op, T, Legal); 181 182 // Support integer abs 183 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 184 setOperationAction(ISD::ABS, T, Legal); 185 186 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 188 MVT::v2f64}) 189 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 190 191 // We have custom shuffle lowering to expose the shuffle mask 192 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 193 MVT::v2f64}) 194 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 195 196 // Custom lowering since wasm shifts must have a scalar shift amount 197 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 198 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 199 setOperationAction(Op, T, Custom); 200 201 // Custom lower lane accesses to expand out variable indices 202 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 203 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 204 MVT::v2f64}) 205 setOperationAction(Op, T, Custom); 206 207 // There is no i8x16.mul instruction 208 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 209 210 // There is no vector conditional select instruction 211 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 212 MVT::v2f64}) 213 setOperationAction(ISD::SELECT_CC, T, Expand); 214 215 // Expand integer operations supported for scalars but not SIMD 216 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 217 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 218 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 219 setOperationAction(Op, T, Expand); 220 221 // But we do have integer min and max operations 222 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 223 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 224 setOperationAction(Op, T, Legal); 225 226 // And we have popcnt for i8x16 227 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 228 229 // Expand float operations supported for scalars but not SIMD 230 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 231 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 232 for (auto T : {MVT::v4f32, MVT::v2f64}) 233 setOperationAction(Op, T, Expand); 234 235 // Unsigned comparison operations are unavailable for i64x2 vectors. 236 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 237 setCondCodeAction(CC, MVT::v2i64, Custom); 238 239 // 64x2 conversions are not in the spec 240 for (auto Op : 241 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 242 for (auto T : {MVT::v2i64, MVT::v2f64}) 243 setOperationAction(Op, T, Expand); 244 245 // But saturating fp_to_int converstions are 246 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 247 setOperationAction(Op, MVT::v4i32, Custom); 248 } 249 250 // As a special case, these operators use the type to mean the type to 251 // sign-extend from. 252 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 253 if (!Subtarget->hasSignExt()) { 254 // Sign extends are legal only when extending a vector extract 255 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 256 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 257 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 258 } 259 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 260 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 261 262 // Dynamic stack allocation: use the default expansion. 263 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 264 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 265 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 266 267 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 268 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 269 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 270 271 // Expand these forms; we pattern-match the forms that we can handle in isel. 272 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 273 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 274 setOperationAction(Op, T, Expand); 275 276 // We have custom switch handling. 277 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 278 279 // WebAssembly doesn't have: 280 // - Floating-point extending loads. 281 // - Floating-point truncating stores. 282 // - i1 extending loads. 283 // - truncating SIMD stores and most extending loads 284 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 285 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 286 for (auto T : MVT::integer_valuetypes()) 287 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 288 setLoadExtAction(Ext, T, MVT::i1, Promote); 289 if (Subtarget->hasSIMD128()) { 290 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 291 MVT::v2f64}) { 292 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 293 if (MVT(T) != MemT) { 294 setTruncStoreAction(T, MemT, Expand); 295 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 296 setLoadExtAction(Ext, T, MemT, Expand); 297 } 298 } 299 } 300 // But some vector extending loads are legal 301 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 302 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 303 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 304 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 305 } 306 } 307 308 // Don't do anything clever with build_pairs 309 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 310 311 // Trap lowers to wasm unreachable 312 setOperationAction(ISD::TRAP, MVT::Other, Legal); 313 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 314 315 // Exception handling intrinsics 316 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 317 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 318 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 319 320 setMaxAtomicSizeInBitsSupported(64); 321 322 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 323 // consistent with the f64 and f128 names. 324 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 325 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 326 327 // Define the emscripten name for return address helper. 328 // TODO: when implementing other Wasm backends, make this generic or only do 329 // this on emscripten depending on what they end up doing. 330 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 331 332 // Always convert switches to br_tables unless there is only one case, which 333 // is equivalent to a simple branch. This reduces code size for wasm, and we 334 // defer possible jump table optimizations to the VM. 335 setMinimumJumpTableEntries(2); 336 } 337 338 TargetLowering::AtomicExpansionKind 339 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 340 // We have wasm instructions for these 341 switch (AI->getOperation()) { 342 case AtomicRMWInst::Add: 343 case AtomicRMWInst::Sub: 344 case AtomicRMWInst::And: 345 case AtomicRMWInst::Or: 346 case AtomicRMWInst::Xor: 347 case AtomicRMWInst::Xchg: 348 return AtomicExpansionKind::None; 349 default: 350 break; 351 } 352 return AtomicExpansionKind::CmpXChg; 353 } 354 355 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 356 // Implementation copied from X86TargetLowering. 357 unsigned Opc = VecOp.getOpcode(); 358 359 // Assume target opcodes can't be scalarized. 360 // TODO - do we have any exceptions? 361 if (Opc >= ISD::BUILTIN_OP_END) 362 return false; 363 364 // If the vector op is not supported, try to convert to scalar. 365 EVT VecVT = VecOp.getValueType(); 366 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 367 return true; 368 369 // If the vector op is supported, but the scalar op is not, the transform may 370 // not be worthwhile. 371 EVT ScalarVT = VecVT.getScalarType(); 372 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 373 } 374 375 FastISel *WebAssemblyTargetLowering::createFastISel( 376 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 377 return WebAssembly::createFastISel(FuncInfo, LibInfo); 378 } 379 380 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 381 EVT VT) const { 382 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 383 if (BitWidth > 1 && BitWidth < 8) 384 BitWidth = 8; 385 386 if (BitWidth > 64) { 387 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 388 // the count to be an i32. 389 BitWidth = 32; 390 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 391 "32-bit shift counts ought to be enough for anyone"); 392 } 393 394 MVT Result = MVT::getIntegerVT(BitWidth); 395 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 396 "Unable to represent scalar shift amount type"); 397 return Result; 398 } 399 400 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 401 // undefined result on invalid/overflow, to the WebAssembly opcode, which 402 // traps on invalid/overflow. 403 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 404 MachineBasicBlock *BB, 405 const TargetInstrInfo &TII, 406 bool IsUnsigned, bool Int64, 407 bool Float64, unsigned LoweredOpcode) { 408 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 409 410 Register OutReg = MI.getOperand(0).getReg(); 411 Register InReg = MI.getOperand(1).getReg(); 412 413 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 414 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 415 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 416 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 417 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 418 unsigned Eqz = WebAssembly::EQZ_I32; 419 unsigned And = WebAssembly::AND_I32; 420 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 421 int64_t Substitute = IsUnsigned ? 0 : Limit; 422 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 423 auto &Context = BB->getParent()->getFunction().getContext(); 424 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 425 426 const BasicBlock *LLVMBB = BB->getBasicBlock(); 427 MachineFunction *F = BB->getParent(); 428 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 429 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 430 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 431 432 MachineFunction::iterator It = ++BB->getIterator(); 433 F->insert(It, FalseMBB); 434 F->insert(It, TrueMBB); 435 F->insert(It, DoneMBB); 436 437 // Transfer the remainder of BB and its successor edges to DoneMBB. 438 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 439 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 440 441 BB->addSuccessor(TrueMBB); 442 BB->addSuccessor(FalseMBB); 443 TrueMBB->addSuccessor(DoneMBB); 444 FalseMBB->addSuccessor(DoneMBB); 445 446 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 447 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 448 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 449 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 450 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 451 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 452 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 453 454 MI.eraseFromParent(); 455 // For signed numbers, we can do a single comparison to determine whether 456 // fabs(x) is within range. 457 if (IsUnsigned) { 458 Tmp0 = InReg; 459 } else { 460 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 461 } 462 BuildMI(BB, DL, TII.get(FConst), Tmp1) 463 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 464 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 465 466 // For unsigned numbers, we have to do a separate comparison with zero. 467 if (IsUnsigned) { 468 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 469 Register SecondCmpReg = 470 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 471 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 472 BuildMI(BB, DL, TII.get(FConst), Tmp1) 473 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 474 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 475 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 476 CmpReg = AndReg; 477 } 478 479 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 480 481 // Create the CFG diamond to select between doing the conversion or using 482 // the substitute value. 483 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 484 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 485 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 486 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 487 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 488 .addReg(FalseReg) 489 .addMBB(FalseMBB) 490 .addReg(TrueReg) 491 .addMBB(TrueMBB); 492 493 return DoneMBB; 494 } 495 496 static MachineBasicBlock * 497 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 498 const WebAssemblySubtarget *Subtarget, 499 const TargetInstrInfo &TII) { 500 MachineInstr &CallParams = *CallResults.getPrevNode(); 501 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 502 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 503 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 504 505 bool IsIndirect = CallParams.getOperand(0).isReg(); 506 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 507 508 bool IsFuncrefCall = false; 509 if (IsIndirect) { 510 Register Reg = CallParams.getOperand(0).getReg(); 511 const MachineFunction *MF = BB->getParent(); 512 const MachineRegisterInfo &MRI = MF->getRegInfo(); 513 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 514 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 515 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 516 } 517 518 unsigned CallOp; 519 if (IsIndirect && IsRetCall) { 520 CallOp = WebAssembly::RET_CALL_INDIRECT; 521 } else if (IsIndirect) { 522 CallOp = WebAssembly::CALL_INDIRECT; 523 } else if (IsRetCall) { 524 CallOp = WebAssembly::RET_CALL; 525 } else { 526 CallOp = WebAssembly::CALL; 527 } 528 529 MachineFunction &MF = *BB->getParent(); 530 const MCInstrDesc &MCID = TII.get(CallOp); 531 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 532 533 // See if we must truncate the function pointer. 534 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 535 // as 64-bit for uniformity with other pointer types. 536 // See also: WebAssemblyFastISel::selectCall 537 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 538 Register Reg32 = 539 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 540 auto &FnPtr = CallParams.getOperand(0); 541 BuildMI(*BB, CallResults.getIterator(), DL, 542 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 543 .addReg(FnPtr.getReg()); 544 FnPtr.setReg(Reg32); 545 } 546 547 // Move the function pointer to the end of the arguments for indirect calls 548 if (IsIndirect) { 549 auto FnPtr = CallParams.getOperand(0); 550 CallParams.RemoveOperand(0); 551 CallParams.addOperand(FnPtr); 552 } 553 554 for (auto Def : CallResults.defs()) 555 MIB.add(Def); 556 557 if (IsIndirect) { 558 // Placeholder for the type index. 559 MIB.addImm(0); 560 // The table into which this call_indirect indexes. 561 MCSymbolWasm *Table = IsFuncrefCall 562 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 563 MF.getContext(), Subtarget) 564 : WebAssembly::getOrCreateFunctionTableSymbol( 565 MF.getContext(), Subtarget); 566 if (Subtarget->hasReferenceTypes()) { 567 MIB.addSym(Table); 568 } else { 569 // For the MVP there is at most one table whose number is 0, but we can't 570 // write a table symbol or issue relocations. Instead we just ensure the 571 // table is live and write a zero. 572 Table->setNoStrip(); 573 MIB.addImm(0); 574 } 575 } 576 577 for (auto Use : CallParams.uses()) 578 MIB.add(Use); 579 580 BB->insert(CallResults.getIterator(), MIB); 581 CallParams.eraseFromParent(); 582 CallResults.eraseFromParent(); 583 584 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 585 // table slot with ref.null upon call_indirect return. 586 // 587 // This generates the following code, which comes right after a call_indirect 588 // of a funcref: 589 // 590 // i32.const 0 591 // ref.null func 592 // table.set __funcref_call_table 593 if (IsIndirect && IsFuncrefCall) { 594 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 595 MF.getContext(), Subtarget); 596 Register RegZero = 597 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 598 MachineInstr *Const0 = 599 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 600 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 601 602 Register RegFuncref = 603 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 604 MachineInstr *RefNull = 605 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref) 606 .addImm(static_cast<int32_t>(WebAssembly::HeapType::Funcref)); 607 BB->insertAfter(Const0->getIterator(), RefNull); 608 609 MachineInstr *TableSet = 610 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 611 .addSym(Table) 612 .addReg(RegZero) 613 .addReg(RegFuncref); 614 BB->insertAfter(RefNull->getIterator(), TableSet); 615 } 616 617 return BB; 618 } 619 620 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 621 MachineInstr &MI, MachineBasicBlock *BB) const { 622 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 623 DebugLoc DL = MI.getDebugLoc(); 624 625 switch (MI.getOpcode()) { 626 default: 627 llvm_unreachable("Unexpected instr type to insert"); 628 case WebAssembly::FP_TO_SINT_I32_F32: 629 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 630 WebAssembly::I32_TRUNC_S_F32); 631 case WebAssembly::FP_TO_UINT_I32_F32: 632 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 633 WebAssembly::I32_TRUNC_U_F32); 634 case WebAssembly::FP_TO_SINT_I64_F32: 635 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 636 WebAssembly::I64_TRUNC_S_F32); 637 case WebAssembly::FP_TO_UINT_I64_F32: 638 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 639 WebAssembly::I64_TRUNC_U_F32); 640 case WebAssembly::FP_TO_SINT_I32_F64: 641 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 642 WebAssembly::I32_TRUNC_S_F64); 643 case WebAssembly::FP_TO_UINT_I32_F64: 644 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 645 WebAssembly::I32_TRUNC_U_F64); 646 case WebAssembly::FP_TO_SINT_I64_F64: 647 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 648 WebAssembly::I64_TRUNC_S_F64); 649 case WebAssembly::FP_TO_UINT_I64_F64: 650 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 651 WebAssembly::I64_TRUNC_U_F64); 652 case WebAssembly::CALL_RESULTS: 653 case WebAssembly::RET_CALL_RESULTS: 654 return LowerCallResults(MI, DL, BB, Subtarget, TII); 655 } 656 } 657 658 const char * 659 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 660 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 661 case WebAssemblyISD::FIRST_NUMBER: 662 case WebAssemblyISD::FIRST_MEM_OPCODE: 663 break; 664 #define HANDLE_NODETYPE(NODE) \ 665 case WebAssemblyISD::NODE: \ 666 return "WebAssemblyISD::" #NODE; 667 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 668 #include "WebAssemblyISD.def" 669 #undef HANDLE_MEM_NODETYPE 670 #undef HANDLE_NODETYPE 671 } 672 return nullptr; 673 } 674 675 std::pair<unsigned, const TargetRegisterClass *> 676 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 677 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 678 // First, see if this is a constraint that directly corresponds to a 679 // WebAssembly register class. 680 if (Constraint.size() == 1) { 681 switch (Constraint[0]) { 682 case 'r': 683 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 684 if (Subtarget->hasSIMD128() && VT.isVector()) { 685 if (VT.getSizeInBits() == 128) 686 return std::make_pair(0U, &WebAssembly::V128RegClass); 687 } 688 if (VT.isInteger() && !VT.isVector()) { 689 if (VT.getSizeInBits() <= 32) 690 return std::make_pair(0U, &WebAssembly::I32RegClass); 691 if (VT.getSizeInBits() <= 64) 692 return std::make_pair(0U, &WebAssembly::I64RegClass); 693 } 694 if (VT.isFloatingPoint() && !VT.isVector()) { 695 switch (VT.getSizeInBits()) { 696 case 32: 697 return std::make_pair(0U, &WebAssembly::F32RegClass); 698 case 64: 699 return std::make_pair(0U, &WebAssembly::F64RegClass); 700 default: 701 break; 702 } 703 } 704 break; 705 default: 706 break; 707 } 708 } 709 710 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 711 } 712 713 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 714 // Assume ctz is a relatively cheap operation. 715 return true; 716 } 717 718 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 719 // Assume clz is a relatively cheap operation. 720 return true; 721 } 722 723 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 724 const AddrMode &AM, 725 Type *Ty, unsigned AS, 726 Instruction *I) const { 727 // WebAssembly offsets are added as unsigned without wrapping. The 728 // isLegalAddressingMode gives us no way to determine if wrapping could be 729 // happening, so we approximate this by accepting only non-negative offsets. 730 if (AM.BaseOffs < 0) 731 return false; 732 733 // WebAssembly has no scale register operands. 734 if (AM.Scale != 0) 735 return false; 736 737 // Everything else is legal. 738 return true; 739 } 740 741 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 742 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 743 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 744 // WebAssembly supports unaligned accesses, though it should be declared 745 // with the p2align attribute on loads and stores which do so, and there 746 // may be a performance impact. We tell LLVM they're "fast" because 747 // for the kinds of things that LLVM uses this for (merging adjacent stores 748 // of constants, etc.), WebAssembly implementations will either want the 749 // unaligned access or they'll split anyway. 750 if (Fast) 751 *Fast = true; 752 return true; 753 } 754 755 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 756 AttributeList Attr) const { 757 // The current thinking is that wasm engines will perform this optimization, 758 // so we can save on code size. 759 return true; 760 } 761 762 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 763 EVT ExtT = ExtVal.getValueType(); 764 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 765 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 766 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 767 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 768 } 769 770 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 771 const GlobalAddressSDNode *GA) const { 772 // Wasm doesn't support function addresses with offsets 773 const GlobalValue *GV = GA->getGlobal(); 774 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 775 } 776 777 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 778 LLVMContext &C, 779 EVT VT) const { 780 if (VT.isVector()) 781 return VT.changeVectorElementTypeToInteger(); 782 783 // So far, all branch instructions in Wasm take an I32 condition. 784 // The default TargetLowering::getSetCCResultType returns the pointer size, 785 // which would be useful to reduce instruction counts when testing 786 // against 64-bit pointers/values if at some point Wasm supports that. 787 return EVT::getIntegerVT(C, 32); 788 } 789 790 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 791 const CallInst &I, 792 MachineFunction &MF, 793 unsigned Intrinsic) const { 794 switch (Intrinsic) { 795 case Intrinsic::wasm_memory_atomic_notify: 796 Info.opc = ISD::INTRINSIC_W_CHAIN; 797 Info.memVT = MVT::i32; 798 Info.ptrVal = I.getArgOperand(0); 799 Info.offset = 0; 800 Info.align = Align(4); 801 // atomic.notify instruction does not really load the memory specified with 802 // this argument, but MachineMemOperand should either be load or store, so 803 // we set this to a load. 804 // FIXME Volatile isn't really correct, but currently all LLVM atomic 805 // instructions are treated as volatiles in the backend, so we should be 806 // consistent. The same applies for wasm_atomic_wait intrinsics too. 807 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 808 return true; 809 case Intrinsic::wasm_memory_atomic_wait32: 810 Info.opc = ISD::INTRINSIC_W_CHAIN; 811 Info.memVT = MVT::i32; 812 Info.ptrVal = I.getArgOperand(0); 813 Info.offset = 0; 814 Info.align = Align(4); 815 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 816 return true; 817 case Intrinsic::wasm_memory_atomic_wait64: 818 Info.opc = ISD::INTRINSIC_W_CHAIN; 819 Info.memVT = MVT::i64; 820 Info.ptrVal = I.getArgOperand(0); 821 Info.offset = 0; 822 Info.align = Align(8); 823 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 824 return true; 825 default: 826 return false; 827 } 828 } 829 830 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 831 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 832 const SelectionDAG &DAG, unsigned Depth) const { 833 switch (Op.getOpcode()) { 834 default: 835 break; 836 case ISD::INTRINSIC_WO_CHAIN: { 837 unsigned IntNo = Op.getConstantOperandVal(0); 838 switch (IntNo) { 839 default: 840 break; 841 case Intrinsic::wasm_bitmask: { 842 unsigned BitWidth = Known.getBitWidth(); 843 EVT VT = Op.getOperand(1).getSimpleValueType(); 844 unsigned PossibleBits = VT.getVectorNumElements(); 845 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 846 Known.Zero |= ZeroMask; 847 break; 848 } 849 } 850 } 851 } 852 } 853 854 TargetLoweringBase::LegalizeTypeAction 855 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 856 if (VT.isFixedLengthVector()) { 857 MVT EltVT = VT.getVectorElementType(); 858 // We have legal vector types with these lane types, so widening the 859 // vector would let us use some of the lanes directly without having to 860 // extend or truncate values. 861 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 862 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 863 return TypeWidenVector; 864 } 865 866 return TargetLoweringBase::getPreferredVectorAction(VT); 867 } 868 869 //===----------------------------------------------------------------------===// 870 // WebAssembly Lowering private implementation. 871 //===----------------------------------------------------------------------===// 872 873 //===----------------------------------------------------------------------===// 874 // Lowering Code 875 //===----------------------------------------------------------------------===// 876 877 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 878 MachineFunction &MF = DAG.getMachineFunction(); 879 DAG.getContext()->diagnose( 880 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 881 } 882 883 // Test whether the given calling convention is supported. 884 static bool callingConvSupported(CallingConv::ID CallConv) { 885 // We currently support the language-independent target-independent 886 // conventions. We don't yet have a way to annotate calls with properties like 887 // "cold", and we don't have any call-clobbered registers, so these are mostly 888 // all handled the same. 889 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 890 CallConv == CallingConv::Cold || 891 CallConv == CallingConv::PreserveMost || 892 CallConv == CallingConv::PreserveAll || 893 CallConv == CallingConv::CXX_FAST_TLS || 894 CallConv == CallingConv::WASM_EmscriptenInvoke || 895 CallConv == CallingConv::Swift; 896 } 897 898 SDValue 899 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 900 SmallVectorImpl<SDValue> &InVals) const { 901 SelectionDAG &DAG = CLI.DAG; 902 SDLoc DL = CLI.DL; 903 SDValue Chain = CLI.Chain; 904 SDValue Callee = CLI.Callee; 905 MachineFunction &MF = DAG.getMachineFunction(); 906 auto Layout = MF.getDataLayout(); 907 908 CallingConv::ID CallConv = CLI.CallConv; 909 if (!callingConvSupported(CallConv)) 910 fail(DL, DAG, 911 "WebAssembly doesn't support language-specific or target-specific " 912 "calling conventions yet"); 913 if (CLI.IsPatchPoint) 914 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 915 916 if (CLI.IsTailCall) { 917 auto NoTail = [&](const char *Msg) { 918 if (CLI.CB && CLI.CB->isMustTailCall()) 919 fail(DL, DAG, Msg); 920 CLI.IsTailCall = false; 921 }; 922 923 if (!Subtarget->hasTailCall()) 924 NoTail("WebAssembly 'tail-call' feature not enabled"); 925 926 // Varargs calls cannot be tail calls because the buffer is on the stack 927 if (CLI.IsVarArg) 928 NoTail("WebAssembly does not support varargs tail calls"); 929 930 // Do not tail call unless caller and callee return types match 931 const Function &F = MF.getFunction(); 932 const TargetMachine &TM = getTargetMachine(); 933 Type *RetTy = F.getReturnType(); 934 SmallVector<MVT, 4> CallerRetTys; 935 SmallVector<MVT, 4> CalleeRetTys; 936 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 937 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 938 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 939 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 940 CalleeRetTys.begin()); 941 if (!TypesMatch) 942 NoTail("WebAssembly tail call requires caller and callee return types to " 943 "match"); 944 945 // If pointers to local stack values are passed, we cannot tail call 946 if (CLI.CB) { 947 for (auto &Arg : CLI.CB->args()) { 948 Value *Val = Arg.get(); 949 // Trace the value back through pointer operations 950 while (true) { 951 Value *Src = Val->stripPointerCastsAndAliases(); 952 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 953 Src = GEP->getPointerOperand(); 954 if (Val == Src) 955 break; 956 Val = Src; 957 } 958 if (isa<AllocaInst>(Val)) { 959 NoTail( 960 "WebAssembly does not support tail calling with stack arguments"); 961 break; 962 } 963 } 964 } 965 } 966 967 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 968 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 969 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 970 971 // The generic code may have added an sret argument. If we're lowering an 972 // invoke function, the ABI requires that the function pointer be the first 973 // argument, so we may have to swap the arguments. 974 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 975 Outs[0].Flags.isSRet()) { 976 std::swap(Outs[0], Outs[1]); 977 std::swap(OutVals[0], OutVals[1]); 978 } 979 980 bool HasSwiftSelfArg = false; 981 bool HasSwiftErrorArg = false; 982 unsigned NumFixedArgs = 0; 983 for (unsigned I = 0; I < Outs.size(); ++I) { 984 const ISD::OutputArg &Out = Outs[I]; 985 SDValue &OutVal = OutVals[I]; 986 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 987 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 988 if (Out.Flags.isNest()) 989 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 990 if (Out.Flags.isInAlloca()) 991 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 992 if (Out.Flags.isInConsecutiveRegs()) 993 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 994 if (Out.Flags.isInConsecutiveRegsLast()) 995 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 996 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 997 auto &MFI = MF.getFrameInfo(); 998 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 999 Out.Flags.getNonZeroByValAlign(), 1000 /*isSS=*/false); 1001 SDValue SizeNode = 1002 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1003 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1004 Chain = DAG.getMemcpy( 1005 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1006 /*isVolatile*/ false, /*AlwaysInline=*/false, 1007 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1008 OutVal = FINode; 1009 } 1010 // Count the number of fixed args *after* legalization. 1011 NumFixedArgs += Out.IsFixed; 1012 } 1013 1014 bool IsVarArg = CLI.IsVarArg; 1015 auto PtrVT = getPointerTy(Layout); 1016 1017 // For swiftcc, emit additional swiftself and swifterror arguments 1018 // if there aren't. These additional arguments are also added for callee 1019 // signature They are necessary to match callee and caller signature for 1020 // indirect call. 1021 if (CallConv == CallingConv::Swift) { 1022 if (!HasSwiftSelfArg) { 1023 NumFixedArgs++; 1024 ISD::OutputArg Arg; 1025 Arg.Flags.setSwiftSelf(); 1026 CLI.Outs.push_back(Arg); 1027 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1028 CLI.OutVals.push_back(ArgVal); 1029 } 1030 if (!HasSwiftErrorArg) { 1031 NumFixedArgs++; 1032 ISD::OutputArg Arg; 1033 Arg.Flags.setSwiftError(); 1034 CLI.Outs.push_back(Arg); 1035 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1036 CLI.OutVals.push_back(ArgVal); 1037 } 1038 } 1039 1040 // Analyze operands of the call, assigning locations to each operand. 1041 SmallVector<CCValAssign, 16> ArgLocs; 1042 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1043 1044 if (IsVarArg) { 1045 // Outgoing non-fixed arguments are placed in a buffer. First 1046 // compute their offsets and the total amount of buffer space needed. 1047 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1048 const ISD::OutputArg &Out = Outs[I]; 1049 SDValue &Arg = OutVals[I]; 1050 EVT VT = Arg.getValueType(); 1051 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1052 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1053 Align Alignment = 1054 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1055 unsigned Offset = 1056 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1057 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1058 Offset, VT.getSimpleVT(), 1059 CCValAssign::Full)); 1060 } 1061 } 1062 1063 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1064 1065 SDValue FINode; 1066 if (IsVarArg && NumBytes) { 1067 // For non-fixed arguments, next emit stores to store the argument values 1068 // to the stack buffer at the offsets computed above. 1069 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1070 Layout.getStackAlignment(), 1071 /*isSS=*/false); 1072 unsigned ValNo = 0; 1073 SmallVector<SDValue, 8> Chains; 1074 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1075 assert(ArgLocs[ValNo].getValNo() == ValNo && 1076 "ArgLocs should remain in order and only hold varargs args"); 1077 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1078 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1079 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1080 DAG.getConstant(Offset, DL, PtrVT)); 1081 Chains.push_back( 1082 DAG.getStore(Chain, DL, Arg, Add, 1083 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1084 } 1085 if (!Chains.empty()) 1086 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1087 } else if (IsVarArg) { 1088 FINode = DAG.getIntPtrConstant(0, DL); 1089 } 1090 1091 if (Callee->getOpcode() == ISD::GlobalAddress) { 1092 // If the callee is a GlobalAddress node (quite common, every direct call 1093 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1094 // doesn't at MO_GOT which is not needed for direct calls. 1095 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1096 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1097 getPointerTy(DAG.getDataLayout()), 1098 GA->getOffset()); 1099 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1100 getPointerTy(DAG.getDataLayout()), Callee); 1101 } 1102 1103 // Compute the operands for the CALLn node. 1104 SmallVector<SDValue, 16> Ops; 1105 Ops.push_back(Chain); 1106 Ops.push_back(Callee); 1107 1108 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1109 // isn't reliable. 1110 Ops.append(OutVals.begin(), 1111 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1112 // Add a pointer to the vararg buffer. 1113 if (IsVarArg) 1114 Ops.push_back(FINode); 1115 1116 SmallVector<EVT, 8> InTys; 1117 for (const auto &In : Ins) { 1118 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1119 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1120 if (In.Flags.isInAlloca()) 1121 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1122 if (In.Flags.isInConsecutiveRegs()) 1123 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1124 if (In.Flags.isInConsecutiveRegsLast()) 1125 fail(DL, DAG, 1126 "WebAssembly hasn't implemented cons regs last return values"); 1127 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1128 // registers. 1129 InTys.push_back(In.VT); 1130 } 1131 1132 // Lastly, if this is a call to a funcref we need to add an instruction 1133 // table.set to the chain and transform the call. 1134 if (CLI.CB && isFuncrefType(CLI.CB->getCalledOperand()->getType())) { 1135 // In the absence of function references proposal where a funcref call is 1136 // lowered to call_ref, using reference types we generate a table.set to set 1137 // the funcref to a special table used solely for this purpose, followed by 1138 // a call_indirect. Here we just generate the table set, and return the 1139 // SDValue of the table.set so that LowerCall can finalize the lowering by 1140 // generating the call_indirect. 1141 SDValue Chain = Ops[0]; 1142 1143 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1144 MF.getContext(), Subtarget); 1145 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1146 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1147 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1148 SDValue TableSet = DAG.getMemIntrinsicNode( 1149 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1150 MVT::funcref, 1151 // Machine Mem Operand args 1152 MachinePointerInfo(WasmAddressSpace::FUNCREF), 1153 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1154 MachineMemOperand::MOStore); 1155 1156 Ops[0] = TableSet; // The new chain is the TableSet itself 1157 } 1158 1159 if (CLI.IsTailCall) { 1160 // ret_calls do not return values to the current frame 1161 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1162 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1163 } 1164 1165 InTys.push_back(MVT::Other); 1166 SDVTList InTyList = DAG.getVTList(InTys); 1167 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1168 1169 for (size_t I = 0; I < Ins.size(); ++I) 1170 InVals.push_back(Res.getValue(I)); 1171 1172 // Return the chain 1173 return Res.getValue(Ins.size()); 1174 } 1175 1176 bool WebAssemblyTargetLowering::CanLowerReturn( 1177 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1178 const SmallVectorImpl<ISD::OutputArg> &Outs, 1179 LLVMContext & /*Context*/) const { 1180 // WebAssembly can only handle returning tuples with multivalue enabled 1181 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1182 } 1183 1184 SDValue WebAssemblyTargetLowering::LowerReturn( 1185 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1186 const SmallVectorImpl<ISD::OutputArg> &Outs, 1187 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1188 SelectionDAG &DAG) const { 1189 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1190 "MVP WebAssembly can only return up to one value"); 1191 if (!callingConvSupported(CallConv)) 1192 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1193 1194 SmallVector<SDValue, 4> RetOps(1, Chain); 1195 RetOps.append(OutVals.begin(), OutVals.end()); 1196 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1197 1198 // Record the number and types of the return values. 1199 for (const ISD::OutputArg &Out : Outs) { 1200 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1201 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1202 assert(Out.IsFixed && "non-fixed return value is not valid"); 1203 if (Out.Flags.isInAlloca()) 1204 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1205 if (Out.Flags.isInConsecutiveRegs()) 1206 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1207 if (Out.Flags.isInConsecutiveRegsLast()) 1208 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1209 } 1210 1211 return Chain; 1212 } 1213 1214 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1215 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1216 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1217 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1218 if (!callingConvSupported(CallConv)) 1219 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1220 1221 MachineFunction &MF = DAG.getMachineFunction(); 1222 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1223 1224 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1225 // of the incoming values before they're represented by virtual registers. 1226 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1227 1228 bool HasSwiftErrorArg = false; 1229 bool HasSwiftSelfArg = false; 1230 for (const ISD::InputArg &In : Ins) { 1231 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1232 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1233 if (In.Flags.isInAlloca()) 1234 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1235 if (In.Flags.isNest()) 1236 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1237 if (In.Flags.isInConsecutiveRegs()) 1238 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1239 if (In.Flags.isInConsecutiveRegsLast()) 1240 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1241 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1242 // registers. 1243 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1244 DAG.getTargetConstant(InVals.size(), 1245 DL, MVT::i32)) 1246 : DAG.getUNDEF(In.VT)); 1247 1248 // Record the number and types of arguments. 1249 MFI->addParam(In.VT); 1250 } 1251 1252 // For swiftcc, emit additional swiftself and swifterror arguments 1253 // if there aren't. These additional arguments are also added for callee 1254 // signature They are necessary to match callee and caller signature for 1255 // indirect call. 1256 auto PtrVT = getPointerTy(MF.getDataLayout()); 1257 if (CallConv == CallingConv::Swift) { 1258 if (!HasSwiftSelfArg) { 1259 MFI->addParam(PtrVT); 1260 } 1261 if (!HasSwiftErrorArg) { 1262 MFI->addParam(PtrVT); 1263 } 1264 } 1265 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1266 // the buffer is passed as an argument. 1267 if (IsVarArg) { 1268 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1269 Register VarargVreg = 1270 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1271 MFI->setVarargBufferVreg(VarargVreg); 1272 Chain = DAG.getCopyToReg( 1273 Chain, DL, VarargVreg, 1274 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1275 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1276 MFI->addParam(PtrVT); 1277 } 1278 1279 // Record the number and types of arguments and results. 1280 SmallVector<MVT, 4> Params; 1281 SmallVector<MVT, 4> Results; 1282 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1283 MF.getFunction(), DAG.getTarget(), Params, Results); 1284 for (MVT VT : Results) 1285 MFI->addResult(VT); 1286 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1287 // the param logic here with ComputeSignatureVTs 1288 assert(MFI->getParams().size() == Params.size() && 1289 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1290 Params.begin())); 1291 1292 return Chain; 1293 } 1294 1295 void WebAssemblyTargetLowering::ReplaceNodeResults( 1296 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1297 switch (N->getOpcode()) { 1298 case ISD::SIGN_EXTEND_INREG: 1299 // Do not add any results, signifying that N should not be custom lowered 1300 // after all. This happens because simd128 turns on custom lowering for 1301 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1302 // illegal type. 1303 break; 1304 default: 1305 llvm_unreachable( 1306 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1307 } 1308 } 1309 1310 //===----------------------------------------------------------------------===// 1311 // Custom lowering hooks. 1312 //===----------------------------------------------------------------------===// 1313 1314 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1315 SelectionDAG &DAG) const { 1316 SDLoc DL(Op); 1317 switch (Op.getOpcode()) { 1318 default: 1319 llvm_unreachable("unimplemented operation lowering"); 1320 return SDValue(); 1321 case ISD::FrameIndex: 1322 return LowerFrameIndex(Op, DAG); 1323 case ISD::GlobalAddress: 1324 return LowerGlobalAddress(Op, DAG); 1325 case ISD::GlobalTLSAddress: 1326 return LowerGlobalTLSAddress(Op, DAG); 1327 case ISD::ExternalSymbol: 1328 return LowerExternalSymbol(Op, DAG); 1329 case ISD::JumpTable: 1330 return LowerJumpTable(Op, DAG); 1331 case ISD::BR_JT: 1332 return LowerBR_JT(Op, DAG); 1333 case ISD::VASTART: 1334 return LowerVASTART(Op, DAG); 1335 case ISD::BlockAddress: 1336 case ISD::BRIND: 1337 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1338 return SDValue(); 1339 case ISD::RETURNADDR: 1340 return LowerRETURNADDR(Op, DAG); 1341 case ISD::FRAMEADDR: 1342 return LowerFRAMEADDR(Op, DAG); 1343 case ISD::CopyToReg: 1344 return LowerCopyToReg(Op, DAG); 1345 case ISD::EXTRACT_VECTOR_ELT: 1346 case ISD::INSERT_VECTOR_ELT: 1347 return LowerAccessVectorElement(Op, DAG); 1348 case ISD::INTRINSIC_VOID: 1349 case ISD::INTRINSIC_WO_CHAIN: 1350 case ISD::INTRINSIC_W_CHAIN: 1351 return LowerIntrinsic(Op, DAG); 1352 case ISD::SIGN_EXTEND_INREG: 1353 return LowerSIGN_EXTEND_INREG(Op, DAG); 1354 case ISD::BUILD_VECTOR: 1355 return LowerBUILD_VECTOR(Op, DAG); 1356 case ISD::VECTOR_SHUFFLE: 1357 return LowerVECTOR_SHUFFLE(Op, DAG); 1358 case ISD::SETCC: 1359 return LowerSETCC(Op, DAG); 1360 case ISD::SHL: 1361 case ISD::SRA: 1362 case ISD::SRL: 1363 return LowerShift(Op, DAG); 1364 case ISD::FP_TO_SINT_SAT: 1365 case ISD::FP_TO_UINT_SAT: 1366 return LowerFP_TO_INT_SAT(Op, DAG); 1367 case ISD::LOAD: 1368 return LowerLoad(Op, DAG); 1369 case ISD::STORE: 1370 return LowerStore(Op, DAG); 1371 } 1372 } 1373 1374 static bool IsWebAssemblyGlobal(SDValue Op) { 1375 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1376 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1377 1378 return false; 1379 } 1380 1381 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1382 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1383 if (!FI) 1384 return None; 1385 1386 auto &MF = DAG.getMachineFunction(); 1387 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1388 } 1389 1390 bool WebAssemblyTargetLowering::isFuncrefType(const Type *Ty) { 1391 return isa<PointerType>(Ty) && 1392 Ty->getPointerAddressSpace() == WasmAddressSpace::FUNCREF; 1393 } 1394 1395 bool WebAssemblyTargetLowering::isExternrefType(const Type *Ty) { 1396 return isa<PointerType>(Ty) && 1397 Ty->getPointerAddressSpace() == WasmAddressSpace::EXTERNREF; 1398 } 1399 1400 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1401 SelectionDAG &DAG) const { 1402 SDLoc DL(Op); 1403 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1404 const SDValue &Value = SN->getValue(); 1405 const SDValue &Base = SN->getBasePtr(); 1406 const SDValue &Offset = SN->getOffset(); 1407 1408 if (IsWebAssemblyGlobal(Base)) { 1409 if (!Offset->isUndef()) 1410 report_fatal_error("unexpected offset when storing to webassembly global", 1411 false); 1412 1413 SDVTList Tys = DAG.getVTList(MVT::Other); 1414 SDValue Ops[] = {SN->getChain(), Value, Base}; 1415 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1416 SN->getMemoryVT(), SN->getMemOperand()); 1417 } 1418 1419 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1420 if (!Offset->isUndef()) 1421 report_fatal_error("unexpected offset when storing to webassembly local", 1422 false); 1423 1424 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1425 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1426 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1427 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1428 } 1429 1430 return Op; 1431 } 1432 1433 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1434 SelectionDAG &DAG) const { 1435 SDLoc DL(Op); 1436 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1437 const SDValue &Base = LN->getBasePtr(); 1438 const SDValue &Offset = LN->getOffset(); 1439 1440 if (IsWebAssemblyGlobal(Base)) { 1441 if (!Offset->isUndef()) 1442 report_fatal_error( 1443 "unexpected offset when loading from webassembly global", false); 1444 1445 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1446 SDValue Ops[] = {LN->getChain(), Base}; 1447 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1448 LN->getMemoryVT(), LN->getMemOperand()); 1449 } 1450 1451 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1452 if (!Offset->isUndef()) 1453 report_fatal_error( 1454 "unexpected offset when loading from webassembly local", false); 1455 1456 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1457 EVT LocalVT = LN->getValueType(0); 1458 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1459 {LN->getChain(), Idx}); 1460 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1461 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1462 return Result; 1463 } 1464 1465 return Op; 1466 } 1467 1468 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1469 SelectionDAG &DAG) const { 1470 SDValue Src = Op.getOperand(2); 1471 if (isa<FrameIndexSDNode>(Src.getNode())) { 1472 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1473 // the FI to some LEA-like instruction, but since we don't have that, we 1474 // need to insert some kind of instruction that can take an FI operand and 1475 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1476 // local.copy between Op and its FI operand. 1477 SDValue Chain = Op.getOperand(0); 1478 SDLoc DL(Op); 1479 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1480 EVT VT = Src.getValueType(); 1481 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1482 : WebAssembly::COPY_I64, 1483 DL, VT, Src), 1484 0); 1485 return Op.getNode()->getNumValues() == 1 1486 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1487 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1488 Op.getNumOperands() == 4 ? Op.getOperand(3) 1489 : SDValue()); 1490 } 1491 return SDValue(); 1492 } 1493 1494 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1495 SelectionDAG &DAG) const { 1496 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1497 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1498 } 1499 1500 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1501 SelectionDAG &DAG) const { 1502 SDLoc DL(Op); 1503 1504 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1505 fail(DL, DAG, 1506 "Non-Emscripten WebAssembly hasn't implemented " 1507 "__builtin_return_address"); 1508 return SDValue(); 1509 } 1510 1511 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1512 return SDValue(); 1513 1514 unsigned Depth = Op.getConstantOperandVal(0); 1515 MakeLibCallOptions CallOptions; 1516 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1517 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1518 .first; 1519 } 1520 1521 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1522 SelectionDAG &DAG) const { 1523 // Non-zero depths are not supported by WebAssembly currently. Use the 1524 // legalizer's default expansion, which is to return 0 (what this function is 1525 // documented to do). 1526 if (Op.getConstantOperandVal(0) > 0) 1527 return SDValue(); 1528 1529 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1530 EVT VT = Op.getValueType(); 1531 Register FP = 1532 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1533 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1534 } 1535 1536 SDValue 1537 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1538 SelectionDAG &DAG) const { 1539 SDLoc DL(Op); 1540 const auto *GA = cast<GlobalAddressSDNode>(Op); 1541 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1542 1543 MachineFunction &MF = DAG.getMachineFunction(); 1544 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1545 report_fatal_error("cannot use thread-local storage without bulk memory", 1546 false); 1547 1548 const GlobalValue *GV = GA->getGlobal(); 1549 1550 // Currently Emscripten does not support dynamic linking with threads. 1551 // Therefore, if we have thread-local storage, only the local-exec model 1552 // is possible. 1553 // TODO: remove this and implement proper TLS models once Emscripten 1554 // supports dynamic linking with threads. 1555 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1556 !Subtarget->getTargetTriple().isOSEmscripten()) { 1557 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1558 "non-Emscripten OSes: variable " + 1559 GV->getName(), 1560 false); 1561 } 1562 1563 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1564 : WebAssembly::GLOBAL_GET_I32; 1565 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1566 1567 SDValue BaseAddr( 1568 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1569 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1570 0); 1571 1572 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1573 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1574 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1575 1576 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1577 } 1578 1579 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1580 SelectionDAG &DAG) const { 1581 SDLoc DL(Op); 1582 const auto *GA = cast<GlobalAddressSDNode>(Op); 1583 EVT VT = Op.getValueType(); 1584 assert(GA->getTargetFlags() == 0 && 1585 "Unexpected target flags on generic GlobalAddressSDNode"); 1586 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1587 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1588 1589 unsigned OperandFlags = 0; 1590 if (isPositionIndependent()) { 1591 const GlobalValue *GV = GA->getGlobal(); 1592 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1593 MachineFunction &MF = DAG.getMachineFunction(); 1594 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1595 const char *BaseName; 1596 if (GV->getValueType()->isFunctionTy()) { 1597 BaseName = MF.createExternalSymbolName("__table_base"); 1598 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1599 } 1600 else { 1601 BaseName = MF.createExternalSymbolName("__memory_base"); 1602 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1603 } 1604 SDValue BaseAddr = 1605 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1606 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1607 1608 SDValue SymAddr = DAG.getNode( 1609 WebAssemblyISD::WrapperPIC, DL, VT, 1610 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1611 OperandFlags)); 1612 1613 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1614 } else { 1615 OperandFlags = WebAssemblyII::MO_GOT; 1616 } 1617 } 1618 1619 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1620 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1621 GA->getOffset(), OperandFlags)); 1622 } 1623 1624 SDValue 1625 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1626 SelectionDAG &DAG) const { 1627 SDLoc DL(Op); 1628 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1629 EVT VT = Op.getValueType(); 1630 assert(ES->getTargetFlags() == 0 && 1631 "Unexpected target flags on generic ExternalSymbolSDNode"); 1632 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1633 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1634 } 1635 1636 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1637 SelectionDAG &DAG) const { 1638 // There's no need for a Wrapper node because we always incorporate a jump 1639 // table operand into a BR_TABLE instruction, rather than ever 1640 // materializing it in a register. 1641 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1642 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1643 JT->getTargetFlags()); 1644 } 1645 1646 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1647 SelectionDAG &DAG) const { 1648 SDLoc DL(Op); 1649 SDValue Chain = Op.getOperand(0); 1650 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1651 SDValue Index = Op.getOperand(2); 1652 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1653 1654 SmallVector<SDValue, 8> Ops; 1655 Ops.push_back(Chain); 1656 Ops.push_back(Index); 1657 1658 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1659 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1660 1661 // Add an operand for each case. 1662 for (auto MBB : MBBs) 1663 Ops.push_back(DAG.getBasicBlock(MBB)); 1664 1665 // Add the first MBB as a dummy default target for now. This will be replaced 1666 // with the proper default target (and the preceding range check eliminated) 1667 // if possible by WebAssemblyFixBrTableDefaults. 1668 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1669 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1670 } 1671 1672 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1673 SelectionDAG &DAG) const { 1674 SDLoc DL(Op); 1675 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1676 1677 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1678 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1679 1680 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1681 MFI->getVarargBufferVreg(), PtrVT); 1682 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1683 MachinePointerInfo(SV)); 1684 } 1685 1686 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1687 SelectionDAG &DAG) const { 1688 MachineFunction &MF = DAG.getMachineFunction(); 1689 unsigned IntNo; 1690 switch (Op.getOpcode()) { 1691 case ISD::INTRINSIC_VOID: 1692 case ISD::INTRINSIC_W_CHAIN: 1693 IntNo = Op.getConstantOperandVal(1); 1694 break; 1695 case ISD::INTRINSIC_WO_CHAIN: 1696 IntNo = Op.getConstantOperandVal(0); 1697 break; 1698 default: 1699 llvm_unreachable("Invalid intrinsic"); 1700 } 1701 SDLoc DL(Op); 1702 1703 switch (IntNo) { 1704 default: 1705 return SDValue(); // Don't custom lower most intrinsics. 1706 1707 case Intrinsic::wasm_lsda: { 1708 EVT VT = Op.getValueType(); 1709 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1710 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1711 auto &Context = MF.getMMI().getContext(); 1712 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1713 Twine(MF.getFunctionNumber())); 1714 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1715 DAG.getMCSymbol(S, PtrVT)); 1716 } 1717 1718 case Intrinsic::wasm_shuffle: { 1719 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1720 SDValue Ops[18]; 1721 size_t OpIdx = 0; 1722 Ops[OpIdx++] = Op.getOperand(1); 1723 Ops[OpIdx++] = Op.getOperand(2); 1724 while (OpIdx < 18) { 1725 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1726 if (MaskIdx.isUndef() || 1727 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1728 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1729 } else { 1730 Ops[OpIdx++] = MaskIdx; 1731 } 1732 } 1733 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1734 } 1735 } 1736 } 1737 1738 SDValue 1739 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1740 SelectionDAG &DAG) const { 1741 SDLoc DL(Op); 1742 // If sign extension operations are disabled, allow sext_inreg only if operand 1743 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1744 // extension operations, but allowing sext_inreg in this context lets us have 1745 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1746 // everywhere would be simpler in this file, but would necessitate large and 1747 // brittle patterns to undo the expansion and select extract_lane_s 1748 // instructions. 1749 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1750 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1751 return SDValue(); 1752 1753 const SDValue &Extract = Op.getOperand(0); 1754 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1755 if (VecT.getVectorElementType().getSizeInBits() > 32) 1756 return SDValue(); 1757 MVT ExtractedLaneT = 1758 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1759 MVT ExtractedVecT = 1760 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1761 if (ExtractedVecT == VecT) 1762 return Op; 1763 1764 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1765 const SDNode *Index = Extract.getOperand(1).getNode(); 1766 if (!isa<ConstantSDNode>(Index)) 1767 return SDValue(); 1768 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1769 unsigned Scale = 1770 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1771 assert(Scale > 1); 1772 SDValue NewIndex = 1773 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1774 SDValue NewExtract = DAG.getNode( 1775 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1776 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1777 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1778 Op.getOperand(1)); 1779 } 1780 1781 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1782 SDLoc DL(Op); 1783 if (Op.getValueType() != MVT::v2f64) 1784 return SDValue(); 1785 1786 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1787 unsigned &Index) -> bool { 1788 switch (Op.getOpcode()) { 1789 case ISD::SINT_TO_FP: 1790 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1791 break; 1792 case ISD::UINT_TO_FP: 1793 Opcode = WebAssemblyISD::CONVERT_LOW_U; 1794 break; 1795 case ISD::FP_EXTEND: 1796 Opcode = WebAssemblyISD::PROMOTE_LOW; 1797 break; 1798 default: 1799 return false; 1800 } 1801 1802 auto ExtractVector = Op.getOperand(0); 1803 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1804 return false; 1805 1806 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 1807 return false; 1808 1809 SrcVec = ExtractVector.getOperand(0); 1810 Index = ExtractVector.getConstantOperandVal(1); 1811 return true; 1812 }; 1813 1814 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 1815 SDValue LHSSrcVec, RHSSrcVec; 1816 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 1817 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 1818 return SDValue(); 1819 1820 if (LHSOpcode != RHSOpcode) 1821 return SDValue(); 1822 1823 MVT ExpectedSrcVT; 1824 switch (LHSOpcode) { 1825 case WebAssemblyISD::CONVERT_LOW_S: 1826 case WebAssemblyISD::CONVERT_LOW_U: 1827 ExpectedSrcVT = MVT::v4i32; 1828 break; 1829 case WebAssemblyISD::PROMOTE_LOW: 1830 ExpectedSrcVT = MVT::v4f32; 1831 break; 1832 } 1833 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 1834 return SDValue(); 1835 1836 auto Src = LHSSrcVec; 1837 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 1838 // Shuffle the source vector so that the converted lanes are the low lanes. 1839 Src = DAG.getVectorShuffle( 1840 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 1841 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 1842 } 1843 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 1844 } 1845 1846 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1847 SelectionDAG &DAG) const { 1848 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 1849 return ConvertLow; 1850 1851 SDLoc DL(Op); 1852 const EVT VecT = Op.getValueType(); 1853 const EVT LaneT = Op.getOperand(0).getValueType(); 1854 const size_t Lanes = Op.getNumOperands(); 1855 bool CanSwizzle = VecT == MVT::v16i8; 1856 1857 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1858 // possible number of lanes at once followed by a sequence of replace_lane 1859 // instructions to individually initialize any remaining lanes. 1860 1861 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1862 // swizzled lanes should be given greater weight. 1863 1864 // TODO: Investigate looping rather than always extracting/replacing specific 1865 // lanes to fill gaps. 1866 1867 auto IsConstant = [](const SDValue &V) { 1868 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1869 }; 1870 1871 // Returns the source vector and index vector pair if they exist. Checks for: 1872 // (extract_vector_elt 1873 // $src, 1874 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1875 // ) 1876 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1877 auto Bail = std::make_pair(SDValue(), SDValue()); 1878 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1879 return Bail; 1880 const SDValue &SwizzleSrc = Lane->getOperand(0); 1881 const SDValue &IndexExt = Lane->getOperand(1); 1882 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1883 return Bail; 1884 const SDValue &Index = IndexExt->getOperand(0); 1885 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1886 return Bail; 1887 const SDValue &SwizzleIndices = Index->getOperand(0); 1888 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1889 SwizzleIndices.getValueType() != MVT::v16i8 || 1890 Index->getOperand(1)->getOpcode() != ISD::Constant || 1891 Index->getConstantOperandVal(1) != I) 1892 return Bail; 1893 return std::make_pair(SwizzleSrc, SwizzleIndices); 1894 }; 1895 1896 // If the lane is extracted from another vector at a constant index, return 1897 // that vector. The source vector must not have more lanes than the dest 1898 // because the shufflevector indices are in terms of the destination lanes and 1899 // would not be able to address the smaller individual source lanes. 1900 auto GetShuffleSrc = [&](const SDValue &Lane) { 1901 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1902 return SDValue(); 1903 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1904 return SDValue(); 1905 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1906 VecT.getVectorNumElements()) 1907 return SDValue(); 1908 return Lane->getOperand(0); 1909 }; 1910 1911 using ValueEntry = std::pair<SDValue, size_t>; 1912 SmallVector<ValueEntry, 16> SplatValueCounts; 1913 1914 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1915 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1916 1917 using ShuffleEntry = std::pair<SDValue, size_t>; 1918 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1919 1920 auto AddCount = [](auto &Counts, const auto &Val) { 1921 auto CountIt = 1922 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1923 if (CountIt == Counts.end()) { 1924 Counts.emplace_back(Val, 1); 1925 } else { 1926 CountIt->second++; 1927 } 1928 }; 1929 1930 auto GetMostCommon = [](auto &Counts) { 1931 auto CommonIt = 1932 std::max_element(Counts.begin(), Counts.end(), 1933 [](auto A, auto B) { return A.second < B.second; }); 1934 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1935 return *CommonIt; 1936 }; 1937 1938 size_t NumConstantLanes = 0; 1939 1940 // Count eligible lanes for each type of vector creation op 1941 for (size_t I = 0; I < Lanes; ++I) { 1942 const SDValue &Lane = Op->getOperand(I); 1943 if (Lane.isUndef()) 1944 continue; 1945 1946 AddCount(SplatValueCounts, Lane); 1947 1948 if (IsConstant(Lane)) 1949 NumConstantLanes++; 1950 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1951 AddCount(ShuffleCounts, ShuffleSrc); 1952 if (CanSwizzle) { 1953 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1954 if (SwizzleSrcs.first) 1955 AddCount(SwizzleCounts, SwizzleSrcs); 1956 } 1957 } 1958 1959 SDValue SplatValue; 1960 size_t NumSplatLanes; 1961 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1962 1963 SDValue SwizzleSrc; 1964 SDValue SwizzleIndices; 1965 size_t NumSwizzleLanes = 0; 1966 if (SwizzleCounts.size()) 1967 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1968 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1969 1970 // Shuffles can draw from up to two vectors, so find the two most common 1971 // sources. 1972 SDValue ShuffleSrc1, ShuffleSrc2; 1973 size_t NumShuffleLanes = 0; 1974 if (ShuffleCounts.size()) { 1975 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1976 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1977 ShuffleCounts.end(), 1978 [&](const auto &Pair) { 1979 return Pair.first == ShuffleSrc1; 1980 }), 1981 ShuffleCounts.end()); 1982 } 1983 if (ShuffleCounts.size()) { 1984 size_t AdditionalShuffleLanes; 1985 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 1986 GetMostCommon(ShuffleCounts); 1987 NumShuffleLanes += AdditionalShuffleLanes; 1988 } 1989 1990 // Predicate returning true if the lane is properly initialized by the 1991 // original instruction 1992 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1993 SDValue Result; 1994 // Prefer swizzles over shuffles over vector consts over splats 1995 if (NumSwizzleLanes >= NumShuffleLanes && 1996 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 1997 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1998 SwizzleIndices); 1999 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2000 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2001 return Swizzled == GetSwizzleSrcs(I, Lane); 2002 }; 2003 } else if (NumShuffleLanes >= NumConstantLanes && 2004 NumShuffleLanes >= NumSplatLanes) { 2005 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2006 size_t DestLaneCount = VecT.getVectorNumElements(); 2007 size_t Scale1 = 1; 2008 size_t Scale2 = 1; 2009 SDValue Src1 = ShuffleSrc1; 2010 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2011 if (Src1.getValueType() != VecT) { 2012 size_t LaneSize = 2013 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2014 assert(LaneSize > DestLaneSize); 2015 Scale1 = LaneSize / DestLaneSize; 2016 Src1 = DAG.getBitcast(VecT, Src1); 2017 } 2018 if (Src2.getValueType() != VecT) { 2019 size_t LaneSize = 2020 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2021 assert(LaneSize > DestLaneSize); 2022 Scale2 = LaneSize / DestLaneSize; 2023 Src2 = DAG.getBitcast(VecT, Src2); 2024 } 2025 2026 int Mask[16]; 2027 assert(DestLaneCount <= 16); 2028 for (size_t I = 0; I < DestLaneCount; ++I) { 2029 const SDValue &Lane = Op->getOperand(I); 2030 SDValue Src = GetShuffleSrc(Lane); 2031 if (Src == ShuffleSrc1) { 2032 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2033 } else if (Src && Src == ShuffleSrc2) { 2034 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2035 } else { 2036 Mask[I] = -1; 2037 } 2038 } 2039 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2040 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2041 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2042 auto Src = GetShuffleSrc(Lane); 2043 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2044 }; 2045 } else if (NumConstantLanes >= NumSplatLanes) { 2046 SmallVector<SDValue, 16> ConstLanes; 2047 for (const SDValue &Lane : Op->op_values()) { 2048 if (IsConstant(Lane)) { 2049 // Values may need to be fixed so that they will sign extend to be 2050 // within the expected range during ISel. Check whether the value is in 2051 // bounds based on the lane bit width and if it is out of bounds, lop 2052 // off the extra bits and subtract 2^n to reflect giving the high bit 2053 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2054 // cannot possibly be out of range. 2055 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2056 int64_t Val = Const ? Const->getSExtValue() : 0; 2057 uint64_t LaneBits = 128 / Lanes; 2058 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2059 "Unexpected out of bounds negative value"); 2060 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2061 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); 2062 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2063 } else { 2064 ConstLanes.push_back(Lane); 2065 } 2066 } else if (LaneT.isFloatingPoint()) { 2067 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2068 } else { 2069 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2070 } 2071 } 2072 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2073 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2074 return IsConstant(Lane); 2075 }; 2076 } else { 2077 // Use a splat, but possibly a load_splat 2078 LoadSDNode *SplattedLoad; 2079 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 2080 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 2081 Result = DAG.getMemIntrinsicNode( 2082 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 2083 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 2084 SplattedLoad->getOffset()}, 2085 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 2086 } else { 2087 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2088 } 2089 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2090 return Lane == SplatValue; 2091 }; 2092 } 2093 2094 assert(Result); 2095 assert(IsLaneConstructed); 2096 2097 // Add replace_lane instructions for any unhandled values 2098 for (size_t I = 0; I < Lanes; ++I) { 2099 const SDValue &Lane = Op->getOperand(I); 2100 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2101 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2102 DAG.getConstant(I, DL, MVT::i32)); 2103 } 2104 2105 return Result; 2106 } 2107 2108 SDValue 2109 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2110 SelectionDAG &DAG) const { 2111 SDLoc DL(Op); 2112 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2113 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2114 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2115 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2116 2117 // Space for two vector args and sixteen mask indices 2118 SDValue Ops[18]; 2119 size_t OpIdx = 0; 2120 Ops[OpIdx++] = Op.getOperand(0); 2121 Ops[OpIdx++] = Op.getOperand(1); 2122 2123 // Expand mask indices to byte indices and materialize them as operands 2124 for (int M : Mask) { 2125 for (size_t J = 0; J < LaneBytes; ++J) { 2126 // Lower undefs (represented by -1 in mask) to zero 2127 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 2128 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2129 } 2130 } 2131 2132 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2133 } 2134 2135 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2136 SelectionDAG &DAG) const { 2137 SDLoc DL(Op); 2138 // The legalizer does not know how to expand the unsupported comparison modes 2139 // of i64x2 vectors, so we manually unroll them here. 2140 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2141 SmallVector<SDValue, 2> LHS, RHS; 2142 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2143 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2144 const SDValue &CC = Op->getOperand(2); 2145 auto MakeLane = [&](unsigned I) { 2146 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2147 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2148 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2149 }; 2150 return DAG.getBuildVector(Op->getValueType(0), DL, 2151 {MakeLane(0), MakeLane(1)}); 2152 } 2153 2154 SDValue 2155 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2156 SelectionDAG &DAG) const { 2157 // Allow constant lane indices, expand variable lane indices 2158 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2159 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2160 return Op; 2161 else 2162 // Perform default expansion 2163 return SDValue(); 2164 } 2165 2166 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2167 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2168 // 32-bit and 64-bit unrolled shifts will have proper semantics 2169 if (LaneT.bitsGE(MVT::i32)) 2170 return DAG.UnrollVectorOp(Op.getNode()); 2171 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2172 SDLoc DL(Op); 2173 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2174 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2175 unsigned ShiftOpcode = Op.getOpcode(); 2176 SmallVector<SDValue, 16> ShiftedElements; 2177 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2178 SmallVector<SDValue, 16> ShiftElements; 2179 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2180 SmallVector<SDValue, 16> UnrolledOps; 2181 for (size_t i = 0; i < NumLanes; ++i) { 2182 SDValue MaskedShiftValue = 2183 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2184 SDValue ShiftedValue = ShiftedElements[i]; 2185 if (ShiftOpcode == ISD::SRA) 2186 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2187 ShiftedValue, DAG.getValueType(LaneT)); 2188 UnrolledOps.push_back( 2189 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2190 } 2191 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2192 } 2193 2194 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2195 SelectionDAG &DAG) const { 2196 SDLoc DL(Op); 2197 2198 // Only manually lower vector shifts 2199 assert(Op.getSimpleValueType().isVector()); 2200 2201 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2202 if (!ShiftVal) 2203 return unrollVectorShift(Op, DAG); 2204 2205 // Use anyext because none of the high bits can affect the shift 2206 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2207 2208 unsigned Opcode; 2209 switch (Op.getOpcode()) { 2210 case ISD::SHL: 2211 Opcode = WebAssemblyISD::VEC_SHL; 2212 break; 2213 case ISD::SRA: 2214 Opcode = WebAssemblyISD::VEC_SHR_S; 2215 break; 2216 case ISD::SRL: 2217 Opcode = WebAssemblyISD::VEC_SHR_U; 2218 break; 2219 default: 2220 llvm_unreachable("unexpected opcode"); 2221 } 2222 2223 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2224 } 2225 2226 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2227 SelectionDAG &DAG) const { 2228 SDLoc DL(Op); 2229 EVT ResT = Op.getValueType(); 2230 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2231 2232 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2233 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2234 return Op; 2235 2236 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2237 return Op; 2238 2239 return SDValue(); 2240 } 2241 2242 //===----------------------------------------------------------------------===// 2243 // Custom DAG combine hooks 2244 //===----------------------------------------------------------------------===// 2245 static SDValue 2246 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2247 auto &DAG = DCI.DAG; 2248 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2249 2250 // Hoist vector bitcasts that don't change the number of lanes out of unary 2251 // shuffles, where they are less likely to get in the way of other combines. 2252 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2253 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2254 SDValue Bitcast = N->getOperand(0); 2255 if (Bitcast.getOpcode() != ISD::BITCAST) 2256 return SDValue(); 2257 if (!N->getOperand(1).isUndef()) 2258 return SDValue(); 2259 SDValue CastOp = Bitcast.getOperand(0); 2260 MVT SrcType = CastOp.getSimpleValueType(); 2261 MVT DstType = Bitcast.getSimpleValueType(); 2262 if (!SrcType.is128BitVector() || 2263 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2264 return SDValue(); 2265 SDValue NewShuffle = DAG.getVectorShuffle( 2266 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2267 return DAG.getBitcast(DstType, NewShuffle); 2268 } 2269 2270 static SDValue 2271 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2272 auto &DAG = DCI.DAG; 2273 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2274 N->getOpcode() == ISD::ZERO_EXTEND); 2275 2276 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2277 // possible before the extract_subvector can be expanded. 2278 auto Extract = N->getOperand(0); 2279 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2280 return SDValue(); 2281 auto Source = Extract.getOperand(0); 2282 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2283 if (IndexNode == nullptr) 2284 return SDValue(); 2285 auto Index = IndexNode->getZExtValue(); 2286 2287 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2288 // extracted subvector is the low or high half of its source. 2289 EVT ResVT = N->getValueType(0); 2290 if (ResVT == MVT::v8i16) { 2291 if (Extract.getValueType() != MVT::v8i8 || 2292 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2293 return SDValue(); 2294 } else if (ResVT == MVT::v4i32) { 2295 if (Extract.getValueType() != MVT::v4i16 || 2296 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2297 return SDValue(); 2298 } else if (ResVT == MVT::v2i64) { 2299 if (Extract.getValueType() != MVT::v2i32 || 2300 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2301 return SDValue(); 2302 } else { 2303 return SDValue(); 2304 } 2305 2306 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2307 bool IsLow = Index == 0; 2308 2309 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2310 : WebAssemblyISD::EXTEND_HIGH_S) 2311 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2312 : WebAssemblyISD::EXTEND_HIGH_U); 2313 2314 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2315 } 2316 2317 static SDValue 2318 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2319 auto &DAG = DCI.DAG; 2320 2321 auto GetWasmConversionOp = [](unsigned Op) { 2322 switch (Op) { 2323 case ISD::FP_TO_SINT_SAT: 2324 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2325 case ISD::FP_TO_UINT_SAT: 2326 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2327 case ISD::FP_ROUND: 2328 return WebAssemblyISD::DEMOTE_ZERO; 2329 } 2330 llvm_unreachable("unexpected op"); 2331 }; 2332 2333 auto IsZeroSplat = [](SDValue SplatVal) { 2334 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2335 APInt SplatValue, SplatUndef; 2336 unsigned SplatBitSize; 2337 bool HasAnyUndefs; 2338 return Splat && 2339 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2340 HasAnyUndefs) && 2341 SplatValue == 0; 2342 }; 2343 2344 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2345 // Combine this: 2346 // 2347 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2348 // 2349 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2350 // 2351 // Or this: 2352 // 2353 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2354 // 2355 // into (f32x4.demote_zero_f64x2 $x). 2356 EVT ResVT; 2357 EVT ExpectedConversionType; 2358 auto Conversion = N->getOperand(0); 2359 auto ConversionOp = Conversion.getOpcode(); 2360 switch (ConversionOp) { 2361 case ISD::FP_TO_SINT_SAT: 2362 case ISD::FP_TO_UINT_SAT: 2363 ResVT = MVT::v4i32; 2364 ExpectedConversionType = MVT::v2i32; 2365 break; 2366 case ISD::FP_ROUND: 2367 ResVT = MVT::v4f32; 2368 ExpectedConversionType = MVT::v2f32; 2369 break; 2370 default: 2371 return SDValue(); 2372 } 2373 2374 if (N->getValueType(0) != ResVT) 2375 return SDValue(); 2376 2377 if (Conversion.getValueType() != ExpectedConversionType) 2378 return SDValue(); 2379 2380 auto Source = Conversion.getOperand(0); 2381 if (Source.getValueType() != MVT::v2f64) 2382 return SDValue(); 2383 2384 if (!IsZeroSplat(N->getOperand(1)) || 2385 N->getOperand(1).getValueType() != ExpectedConversionType) 2386 return SDValue(); 2387 2388 unsigned Op = GetWasmConversionOp(ConversionOp); 2389 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2390 } 2391 2392 // Combine this: 2393 // 2394 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2395 // 2396 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2397 // 2398 // Or this: 2399 // 2400 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2401 // 2402 // into (f32x4.demote_zero_f64x2 $x). 2403 EVT ResVT; 2404 auto ConversionOp = N->getOpcode(); 2405 switch (ConversionOp) { 2406 case ISD::FP_TO_SINT_SAT: 2407 case ISD::FP_TO_UINT_SAT: 2408 ResVT = MVT::v4i32; 2409 break; 2410 case ISD::FP_ROUND: 2411 ResVT = MVT::v4f32; 2412 break; 2413 default: 2414 llvm_unreachable("unexpected op"); 2415 } 2416 2417 if (N->getValueType(0) != ResVT) 2418 return SDValue(); 2419 2420 auto Concat = N->getOperand(0); 2421 if (Concat.getValueType() != MVT::v4f64) 2422 return SDValue(); 2423 2424 auto Source = Concat.getOperand(0); 2425 if (Source.getValueType() != MVT::v2f64) 2426 return SDValue(); 2427 2428 if (!IsZeroSplat(Concat.getOperand(1)) || 2429 Concat.getOperand(1).getValueType() != MVT::v2f64) 2430 return SDValue(); 2431 2432 unsigned Op = GetWasmConversionOp(ConversionOp); 2433 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2434 } 2435 2436 SDValue 2437 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2438 DAGCombinerInfo &DCI) const { 2439 switch (N->getOpcode()) { 2440 default: 2441 return SDValue(); 2442 case ISD::VECTOR_SHUFFLE: 2443 return performVECTOR_SHUFFLECombine(N, DCI); 2444 case ISD::SIGN_EXTEND: 2445 case ISD::ZERO_EXTEND: 2446 return performVectorExtendCombine(N, DCI); 2447 case ISD::FP_TO_SINT_SAT: 2448 case ISD::FP_TO_UINT_SAT: 2449 case ISD::FP_ROUND: 2450 case ISD::CONCAT_VECTORS: 2451 return performVectorTruncZeroCombine(N, DCI); 2452 } 2453 } 2454