1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyUtilities.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/SelectionDAGNodes.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 // Transform loads and stores to pointers in address space 1 to loads and 73 // stores to WebAssembly global variables, outside linear memory. 74 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 75 setOperationAction(ISD::LOAD, T, Custom); 76 setOperationAction(ISD::STORE, T, Custom); 77 } 78 if (Subtarget->hasSIMD128()) { 79 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 80 MVT::v2f64}) { 81 setOperationAction(ISD::LOAD, T, Custom); 82 setOperationAction(ISD::STORE, T, Custom); 83 } 84 } 85 86 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 87 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 88 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 89 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 90 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 91 setOperationAction(ISD::BRIND, MVT::Other, Custom); 92 93 // Take the default expansion for va_arg, va_copy, and va_end. There is no 94 // default action for va_start, so we do that custom. 95 setOperationAction(ISD::VASTART, MVT::Other, Custom); 96 setOperationAction(ISD::VAARG, MVT::Other, Expand); 97 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 98 setOperationAction(ISD::VAEND, MVT::Other, Expand); 99 100 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 101 // Don't expand the floating-point types to constant pools. 102 setOperationAction(ISD::ConstantFP, T, Legal); 103 // Expand floating-point comparisons. 104 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 105 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 106 setCondCodeAction(CC, T, Expand); 107 // Expand floating-point library function operators. 108 for (auto Op : 109 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 110 setOperationAction(Op, T, Expand); 111 // Note supported floating-point library function operators that otherwise 112 // default to expand. 113 for (auto Op : 114 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 115 setOperationAction(Op, T, Legal); 116 // Support minimum and maximum, which otherwise default to expand. 117 setOperationAction(ISD::FMINIMUM, T, Legal); 118 setOperationAction(ISD::FMAXIMUM, T, Legal); 119 // WebAssembly currently has no builtin f16 support. 120 setOperationAction(ISD::FP16_TO_FP, T, Expand); 121 setOperationAction(ISD::FP_TO_FP16, T, Expand); 122 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 123 setTruncStoreAction(T, MVT::f16, Expand); 124 } 125 126 // Expand unavailable integer operations. 127 for (auto Op : 128 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 129 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 130 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 131 for (auto T : {MVT::i32, MVT::i64}) 132 setOperationAction(Op, T, Expand); 133 if (Subtarget->hasSIMD128()) 134 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 135 setOperationAction(Op, T, Expand); 136 } 137 138 if (Subtarget->hasNontrappingFPToInt()) 139 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 140 for (auto T : {MVT::i32, MVT::i64}) 141 setOperationAction(Op, T, Custom); 142 143 // SIMD-specific configuration 144 if (Subtarget->hasSIMD128()) { 145 // Hoist bitcasts out of shuffles 146 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 147 148 // Combine extends of extract_subvectors into widening ops 149 setTargetDAGCombine(ISD::SIGN_EXTEND); 150 setTargetDAGCombine(ISD::ZERO_EXTEND); 151 152 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 153 // conversions ops 154 setTargetDAGCombine(ISD::SINT_TO_FP); 155 setTargetDAGCombine(ISD::UINT_TO_FP); 156 setTargetDAGCombine(ISD::FP_EXTEND); 157 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 158 159 // Combine concat of {s,u}int_to_fp_sat to i32x4.trunc_sat_f64x2_zero_{s,u} 160 setTargetDAGCombine(ISD::CONCAT_VECTORS); 161 162 // Support saturating add for i8x16 and i16x8 163 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 164 for (auto T : {MVT::v16i8, MVT::v8i16}) 165 setOperationAction(Op, T, Legal); 166 167 // Support integer abs 168 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 169 setOperationAction(ISD::ABS, T, Legal); 170 171 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 172 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 173 MVT::v2f64}) 174 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 175 176 // We have custom shuffle lowering to expose the shuffle mask 177 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 178 MVT::v2f64}) 179 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 180 181 // Custom lowering since wasm shifts must have a scalar shift amount 182 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 183 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 184 setOperationAction(Op, T, Custom); 185 186 // Custom lower lane accesses to expand out variable indices 187 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 188 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 189 MVT::v2f64}) 190 setOperationAction(Op, T, Custom); 191 192 // There is no i8x16.mul instruction 193 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 194 195 // There is no vector conditional select instruction 196 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 197 MVT::v2f64}) 198 setOperationAction(ISD::SELECT_CC, T, Expand); 199 200 // Expand integer operations supported for scalars but not SIMD 201 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 202 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 203 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 204 setOperationAction(Op, T, Expand); 205 206 // But we do have integer min and max operations 207 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 208 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 209 setOperationAction(Op, T, Legal); 210 211 // Expand float operations supported for scalars but not SIMD 212 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 213 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 214 for (auto T : {MVT::v4f32, MVT::v2f64}) 215 setOperationAction(Op, T, Expand); 216 217 // Unsigned comparison operations are unavailable for i64x2 vectors. 218 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 219 setCondCodeAction(CC, MVT::v2i64, Custom); 220 221 // 64x2 conversions are not in the spec 222 for (auto Op : 223 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 224 for (auto T : {MVT::v2i64, MVT::v2f64}) 225 setOperationAction(Op, T, Expand); 226 227 // But saturating fp_to_int converstions are 228 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 229 setOperationAction(Op, MVT::v4i32, Custom); 230 } 231 232 // As a special case, these operators use the type to mean the type to 233 // sign-extend from. 234 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 235 if (!Subtarget->hasSignExt()) { 236 // Sign extends are legal only when extending a vector extract 237 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 238 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 239 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 240 } 241 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 242 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 243 244 // Dynamic stack allocation: use the default expansion. 245 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 246 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 247 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 248 249 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 250 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 251 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 252 253 // Expand these forms; we pattern-match the forms that we can handle in isel. 254 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 255 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 256 setOperationAction(Op, T, Expand); 257 258 // We have custom switch handling. 259 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 260 261 // WebAssembly doesn't have: 262 // - Floating-point extending loads. 263 // - Floating-point truncating stores. 264 // - i1 extending loads. 265 // - truncating SIMD stores and most extending loads 266 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 267 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 268 for (auto T : MVT::integer_valuetypes()) 269 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 270 setLoadExtAction(Ext, T, MVT::i1, Promote); 271 if (Subtarget->hasSIMD128()) { 272 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 273 MVT::v2f64}) { 274 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 275 if (MVT(T) != MemT) { 276 setTruncStoreAction(T, MemT, Expand); 277 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 278 setLoadExtAction(Ext, T, MemT, Expand); 279 } 280 } 281 } 282 // But some vector extending loads are legal 283 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 284 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 285 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 286 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 287 } 288 // And some truncating stores are legal as well 289 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 290 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 291 } 292 293 // Don't do anything clever with build_pairs 294 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 295 296 // Trap lowers to wasm unreachable 297 setOperationAction(ISD::TRAP, MVT::Other, Legal); 298 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 299 300 // Exception handling intrinsics 301 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 302 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 303 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 304 305 setMaxAtomicSizeInBitsSupported(64); 306 307 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 308 // consistent with the f64 and f128 names. 309 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 310 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 311 312 // Define the emscripten name for return address helper. 313 // TODO: when implementing other Wasm backends, make this generic or only do 314 // this on emscripten depending on what they end up doing. 315 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 316 317 // Always convert switches to br_tables unless there is only one case, which 318 // is equivalent to a simple branch. This reduces code size for wasm, and we 319 // defer possible jump table optimizations to the VM. 320 setMinimumJumpTableEntries(2); 321 } 322 323 TargetLowering::AtomicExpansionKind 324 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 325 // We have wasm instructions for these 326 switch (AI->getOperation()) { 327 case AtomicRMWInst::Add: 328 case AtomicRMWInst::Sub: 329 case AtomicRMWInst::And: 330 case AtomicRMWInst::Or: 331 case AtomicRMWInst::Xor: 332 case AtomicRMWInst::Xchg: 333 return AtomicExpansionKind::None; 334 default: 335 break; 336 } 337 return AtomicExpansionKind::CmpXChg; 338 } 339 340 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 341 // Implementation copied from X86TargetLowering. 342 unsigned Opc = VecOp.getOpcode(); 343 344 // Assume target opcodes can't be scalarized. 345 // TODO - do we have any exceptions? 346 if (Opc >= ISD::BUILTIN_OP_END) 347 return false; 348 349 // If the vector op is not supported, try to convert to scalar. 350 EVT VecVT = VecOp.getValueType(); 351 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 352 return true; 353 354 // If the vector op is supported, but the scalar op is not, the transform may 355 // not be worthwhile. 356 EVT ScalarVT = VecVT.getScalarType(); 357 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 358 } 359 360 FastISel *WebAssemblyTargetLowering::createFastISel( 361 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 362 return WebAssembly::createFastISel(FuncInfo, LibInfo); 363 } 364 365 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 366 EVT VT) const { 367 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 368 if (BitWidth > 1 && BitWidth < 8) 369 BitWidth = 8; 370 371 if (BitWidth > 64) { 372 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 373 // the count to be an i32. 374 BitWidth = 32; 375 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 376 "32-bit shift counts ought to be enough for anyone"); 377 } 378 379 MVT Result = MVT::getIntegerVT(BitWidth); 380 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 381 "Unable to represent scalar shift amount type"); 382 return Result; 383 } 384 385 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 386 // undefined result on invalid/overflow, to the WebAssembly opcode, which 387 // traps on invalid/overflow. 388 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 389 MachineBasicBlock *BB, 390 const TargetInstrInfo &TII, 391 bool IsUnsigned, bool Int64, 392 bool Float64, unsigned LoweredOpcode) { 393 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 394 395 Register OutReg = MI.getOperand(0).getReg(); 396 Register InReg = MI.getOperand(1).getReg(); 397 398 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 399 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 400 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 401 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 402 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 403 unsigned Eqz = WebAssembly::EQZ_I32; 404 unsigned And = WebAssembly::AND_I32; 405 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 406 int64_t Substitute = IsUnsigned ? 0 : Limit; 407 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 408 auto &Context = BB->getParent()->getFunction().getContext(); 409 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 410 411 const BasicBlock *LLVMBB = BB->getBasicBlock(); 412 MachineFunction *F = BB->getParent(); 413 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 414 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 415 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 416 417 MachineFunction::iterator It = ++BB->getIterator(); 418 F->insert(It, FalseMBB); 419 F->insert(It, TrueMBB); 420 F->insert(It, DoneMBB); 421 422 // Transfer the remainder of BB and its successor edges to DoneMBB. 423 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 424 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 425 426 BB->addSuccessor(TrueMBB); 427 BB->addSuccessor(FalseMBB); 428 TrueMBB->addSuccessor(DoneMBB); 429 FalseMBB->addSuccessor(DoneMBB); 430 431 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 432 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 433 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 434 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 435 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 436 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 437 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 438 439 MI.eraseFromParent(); 440 // For signed numbers, we can do a single comparison to determine whether 441 // fabs(x) is within range. 442 if (IsUnsigned) { 443 Tmp0 = InReg; 444 } else { 445 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 446 } 447 BuildMI(BB, DL, TII.get(FConst), Tmp1) 448 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 449 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 450 451 // For unsigned numbers, we have to do a separate comparison with zero. 452 if (IsUnsigned) { 453 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 454 Register SecondCmpReg = 455 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 456 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 457 BuildMI(BB, DL, TII.get(FConst), Tmp1) 458 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 459 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 460 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 461 CmpReg = AndReg; 462 } 463 464 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 465 466 // Create the CFG diamond to select between doing the conversion or using 467 // the substitute value. 468 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 469 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 470 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 471 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 472 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 473 .addReg(FalseReg) 474 .addMBB(FalseMBB) 475 .addReg(TrueReg) 476 .addMBB(TrueMBB); 477 478 return DoneMBB; 479 } 480 481 static MachineBasicBlock * 482 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 483 const WebAssemblySubtarget *Subtarget, 484 const TargetInstrInfo &TII) { 485 MachineInstr &CallParams = *CallResults.getPrevNode(); 486 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 487 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 488 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 489 490 bool IsIndirect = CallParams.getOperand(0).isReg(); 491 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 492 493 unsigned CallOp; 494 if (IsIndirect && IsRetCall) { 495 CallOp = WebAssembly::RET_CALL_INDIRECT; 496 } else if (IsIndirect) { 497 CallOp = WebAssembly::CALL_INDIRECT; 498 } else if (IsRetCall) { 499 CallOp = WebAssembly::RET_CALL; 500 } else { 501 CallOp = WebAssembly::CALL; 502 } 503 504 MachineFunction &MF = *BB->getParent(); 505 const MCInstrDesc &MCID = TII.get(CallOp); 506 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 507 508 // See if we must truncate the function pointer. 509 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 510 // as 64-bit for uniformity with other pointer types. 511 // See also: WebAssemblyFastISel::selectCall 512 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 513 Register Reg32 = 514 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 515 auto &FnPtr = CallParams.getOperand(0); 516 BuildMI(*BB, CallResults.getIterator(), DL, 517 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 518 .addReg(FnPtr.getReg()); 519 FnPtr.setReg(Reg32); 520 } 521 522 // Move the function pointer to the end of the arguments for indirect calls 523 if (IsIndirect) { 524 auto FnPtr = CallParams.getOperand(0); 525 CallParams.RemoveOperand(0); 526 CallParams.addOperand(FnPtr); 527 } 528 529 for (auto Def : CallResults.defs()) 530 MIB.add(Def); 531 532 if (IsIndirect) { 533 // Placeholder for the type index. 534 MIB.addImm(0); 535 // The table into which this call_indirect indexes. 536 MCSymbolWasm *Table = 537 WebAssembly::getOrCreateFunctionTableSymbol(MF.getContext(), Subtarget); 538 if (Subtarget->hasReferenceTypes()) { 539 MIB.addSym(Table); 540 } else { 541 // For the MVP there is at most one table whose number is 0, but we can't 542 // write a table symbol or issue relocations. Instead we just ensure the 543 // table is live and write a zero. 544 Table->setNoStrip(); 545 MIB.addImm(0); 546 } 547 } 548 549 for (auto Use : CallParams.uses()) 550 MIB.add(Use); 551 552 BB->insert(CallResults.getIterator(), MIB); 553 CallParams.eraseFromParent(); 554 CallResults.eraseFromParent(); 555 556 return BB; 557 } 558 559 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 560 MachineInstr &MI, MachineBasicBlock *BB) const { 561 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 562 DebugLoc DL = MI.getDebugLoc(); 563 564 switch (MI.getOpcode()) { 565 default: 566 llvm_unreachable("Unexpected instr type to insert"); 567 case WebAssembly::FP_TO_SINT_I32_F32: 568 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 569 WebAssembly::I32_TRUNC_S_F32); 570 case WebAssembly::FP_TO_UINT_I32_F32: 571 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 572 WebAssembly::I32_TRUNC_U_F32); 573 case WebAssembly::FP_TO_SINT_I64_F32: 574 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 575 WebAssembly::I64_TRUNC_S_F32); 576 case WebAssembly::FP_TO_UINT_I64_F32: 577 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 578 WebAssembly::I64_TRUNC_U_F32); 579 case WebAssembly::FP_TO_SINT_I32_F64: 580 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 581 WebAssembly::I32_TRUNC_S_F64); 582 case WebAssembly::FP_TO_UINT_I32_F64: 583 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 584 WebAssembly::I32_TRUNC_U_F64); 585 case WebAssembly::FP_TO_SINT_I64_F64: 586 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 587 WebAssembly::I64_TRUNC_S_F64); 588 case WebAssembly::FP_TO_UINT_I64_F64: 589 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 590 WebAssembly::I64_TRUNC_U_F64); 591 case WebAssembly::CALL_RESULTS: 592 case WebAssembly::RET_CALL_RESULTS: 593 return LowerCallResults(MI, DL, BB, Subtarget, TII); 594 } 595 } 596 597 const char * 598 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 599 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 600 case WebAssemblyISD::FIRST_NUMBER: 601 case WebAssemblyISD::FIRST_MEM_OPCODE: 602 break; 603 #define HANDLE_NODETYPE(NODE) \ 604 case WebAssemblyISD::NODE: \ 605 return "WebAssemblyISD::" #NODE; 606 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 607 #include "WebAssemblyISD.def" 608 #undef HANDLE_MEM_NODETYPE 609 #undef HANDLE_NODETYPE 610 } 611 return nullptr; 612 } 613 614 std::pair<unsigned, const TargetRegisterClass *> 615 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 616 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 617 // First, see if this is a constraint that directly corresponds to a 618 // WebAssembly register class. 619 if (Constraint.size() == 1) { 620 switch (Constraint[0]) { 621 case 'r': 622 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 623 if (Subtarget->hasSIMD128() && VT.isVector()) { 624 if (VT.getSizeInBits() == 128) 625 return std::make_pair(0U, &WebAssembly::V128RegClass); 626 } 627 if (VT.isInteger() && !VT.isVector()) { 628 if (VT.getSizeInBits() <= 32) 629 return std::make_pair(0U, &WebAssembly::I32RegClass); 630 if (VT.getSizeInBits() <= 64) 631 return std::make_pair(0U, &WebAssembly::I64RegClass); 632 } 633 if (VT.isFloatingPoint() && !VT.isVector()) { 634 switch (VT.getSizeInBits()) { 635 case 32: 636 return std::make_pair(0U, &WebAssembly::F32RegClass); 637 case 64: 638 return std::make_pair(0U, &WebAssembly::F64RegClass); 639 default: 640 break; 641 } 642 } 643 break; 644 default: 645 break; 646 } 647 } 648 649 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 650 } 651 652 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 653 // Assume ctz is a relatively cheap operation. 654 return true; 655 } 656 657 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 658 // Assume clz is a relatively cheap operation. 659 return true; 660 } 661 662 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 663 const AddrMode &AM, 664 Type *Ty, unsigned AS, 665 Instruction *I) const { 666 // WebAssembly offsets are added as unsigned without wrapping. The 667 // isLegalAddressingMode gives us no way to determine if wrapping could be 668 // happening, so we approximate this by accepting only non-negative offsets. 669 if (AM.BaseOffs < 0) 670 return false; 671 672 // WebAssembly has no scale register operands. 673 if (AM.Scale != 0) 674 return false; 675 676 // Everything else is legal. 677 return true; 678 } 679 680 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 681 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 682 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 683 // WebAssembly supports unaligned accesses, though it should be declared 684 // with the p2align attribute on loads and stores which do so, and there 685 // may be a performance impact. We tell LLVM they're "fast" because 686 // for the kinds of things that LLVM uses this for (merging adjacent stores 687 // of constants, etc.), WebAssembly implementations will either want the 688 // unaligned access or they'll split anyway. 689 if (Fast) 690 *Fast = true; 691 return true; 692 } 693 694 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 695 AttributeList Attr) const { 696 // The current thinking is that wasm engines will perform this optimization, 697 // so we can save on code size. 698 return true; 699 } 700 701 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 702 EVT ExtT = ExtVal.getValueType(); 703 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 704 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 705 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 706 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 707 } 708 709 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 710 LLVMContext &C, 711 EVT VT) const { 712 if (VT.isVector()) 713 return VT.changeVectorElementTypeToInteger(); 714 715 // So far, all branch instructions in Wasm take an I32 condition. 716 // The default TargetLowering::getSetCCResultType returns the pointer size, 717 // which would be useful to reduce instruction counts when testing 718 // against 64-bit pointers/values if at some point Wasm supports that. 719 return EVT::getIntegerVT(C, 32); 720 } 721 722 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 723 const CallInst &I, 724 MachineFunction &MF, 725 unsigned Intrinsic) const { 726 switch (Intrinsic) { 727 case Intrinsic::wasm_memory_atomic_notify: 728 Info.opc = ISD::INTRINSIC_W_CHAIN; 729 Info.memVT = MVT::i32; 730 Info.ptrVal = I.getArgOperand(0); 731 Info.offset = 0; 732 Info.align = Align(4); 733 // atomic.notify instruction does not really load the memory specified with 734 // this argument, but MachineMemOperand should either be load or store, so 735 // we set this to a load. 736 // FIXME Volatile isn't really correct, but currently all LLVM atomic 737 // instructions are treated as volatiles in the backend, so we should be 738 // consistent. The same applies for wasm_atomic_wait intrinsics too. 739 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 740 return true; 741 case Intrinsic::wasm_memory_atomic_wait32: 742 Info.opc = ISD::INTRINSIC_W_CHAIN; 743 Info.memVT = MVT::i32; 744 Info.ptrVal = I.getArgOperand(0); 745 Info.offset = 0; 746 Info.align = Align(4); 747 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 748 return true; 749 case Intrinsic::wasm_memory_atomic_wait64: 750 Info.opc = ISD::INTRINSIC_W_CHAIN; 751 Info.memVT = MVT::i64; 752 Info.ptrVal = I.getArgOperand(0); 753 Info.offset = 0; 754 Info.align = Align(8); 755 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 756 return true; 757 case Intrinsic::wasm_load32_zero: 758 case Intrinsic::wasm_load64_zero: 759 Info.opc = ISD::INTRINSIC_W_CHAIN; 760 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 761 Info.ptrVal = I.getArgOperand(0); 762 Info.offset = 0; 763 Info.align = Align(1); 764 Info.flags = MachineMemOperand::MOLoad; 765 return true; 766 case Intrinsic::wasm_load8_lane: 767 case Intrinsic::wasm_load16_lane: 768 case Intrinsic::wasm_load32_lane: 769 case Intrinsic::wasm_load64_lane: 770 case Intrinsic::wasm_store8_lane: 771 case Intrinsic::wasm_store16_lane: 772 case Intrinsic::wasm_store32_lane: 773 case Intrinsic::wasm_store64_lane: { 774 MVT MemVT; 775 switch (Intrinsic) { 776 case Intrinsic::wasm_load8_lane: 777 case Intrinsic::wasm_store8_lane: 778 MemVT = MVT::i8; 779 break; 780 case Intrinsic::wasm_load16_lane: 781 case Intrinsic::wasm_store16_lane: 782 MemVT = MVT::i16; 783 break; 784 case Intrinsic::wasm_load32_lane: 785 case Intrinsic::wasm_store32_lane: 786 MemVT = MVT::i32; 787 break; 788 case Intrinsic::wasm_load64_lane: 789 case Intrinsic::wasm_store64_lane: 790 MemVT = MVT::i64; 791 break; 792 default: 793 llvm_unreachable("unexpected intrinsic"); 794 } 795 if (Intrinsic == Intrinsic::wasm_load8_lane || 796 Intrinsic == Intrinsic::wasm_load16_lane || 797 Intrinsic == Intrinsic::wasm_load32_lane || 798 Intrinsic == Intrinsic::wasm_load64_lane) { 799 Info.opc = ISD::INTRINSIC_W_CHAIN; 800 Info.flags = MachineMemOperand::MOLoad; 801 } else { 802 Info.opc = ISD::INTRINSIC_VOID; 803 Info.flags = MachineMemOperand::MOStore; 804 } 805 Info.ptrVal = I.getArgOperand(0); 806 Info.memVT = MemVT; 807 Info.offset = 0; 808 Info.align = Align(1); 809 return true; 810 } 811 default: 812 return false; 813 } 814 } 815 816 //===----------------------------------------------------------------------===// 817 // WebAssembly Lowering private implementation. 818 //===----------------------------------------------------------------------===// 819 820 //===----------------------------------------------------------------------===// 821 // Lowering Code 822 //===----------------------------------------------------------------------===// 823 824 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 825 MachineFunction &MF = DAG.getMachineFunction(); 826 DAG.getContext()->diagnose( 827 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 828 } 829 830 // Test whether the given calling convention is supported. 831 static bool callingConvSupported(CallingConv::ID CallConv) { 832 // We currently support the language-independent target-independent 833 // conventions. We don't yet have a way to annotate calls with properties like 834 // "cold", and we don't have any call-clobbered registers, so these are mostly 835 // all handled the same. 836 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 837 CallConv == CallingConv::Cold || 838 CallConv == CallingConv::PreserveMost || 839 CallConv == CallingConv::PreserveAll || 840 CallConv == CallingConv::CXX_FAST_TLS || 841 CallConv == CallingConv::WASM_EmscriptenInvoke || 842 CallConv == CallingConv::Swift; 843 } 844 845 SDValue 846 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 847 SmallVectorImpl<SDValue> &InVals) const { 848 SelectionDAG &DAG = CLI.DAG; 849 SDLoc DL = CLI.DL; 850 SDValue Chain = CLI.Chain; 851 SDValue Callee = CLI.Callee; 852 MachineFunction &MF = DAG.getMachineFunction(); 853 auto Layout = MF.getDataLayout(); 854 855 CallingConv::ID CallConv = CLI.CallConv; 856 if (!callingConvSupported(CallConv)) 857 fail(DL, DAG, 858 "WebAssembly doesn't support language-specific or target-specific " 859 "calling conventions yet"); 860 if (CLI.IsPatchPoint) 861 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 862 863 if (CLI.IsTailCall) { 864 auto NoTail = [&](const char *Msg) { 865 if (CLI.CB && CLI.CB->isMustTailCall()) 866 fail(DL, DAG, Msg); 867 CLI.IsTailCall = false; 868 }; 869 870 if (!Subtarget->hasTailCall()) 871 NoTail("WebAssembly 'tail-call' feature not enabled"); 872 873 // Varargs calls cannot be tail calls because the buffer is on the stack 874 if (CLI.IsVarArg) 875 NoTail("WebAssembly does not support varargs tail calls"); 876 877 // Do not tail call unless caller and callee return types match 878 const Function &F = MF.getFunction(); 879 const TargetMachine &TM = getTargetMachine(); 880 Type *RetTy = F.getReturnType(); 881 SmallVector<MVT, 4> CallerRetTys; 882 SmallVector<MVT, 4> CalleeRetTys; 883 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 884 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 885 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 886 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 887 CalleeRetTys.begin()); 888 if (!TypesMatch) 889 NoTail("WebAssembly tail call requires caller and callee return types to " 890 "match"); 891 892 // If pointers to local stack values are passed, we cannot tail call 893 if (CLI.CB) { 894 for (auto &Arg : CLI.CB->args()) { 895 Value *Val = Arg.get(); 896 // Trace the value back through pointer operations 897 while (true) { 898 Value *Src = Val->stripPointerCastsAndAliases(); 899 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 900 Src = GEP->getPointerOperand(); 901 if (Val == Src) 902 break; 903 Val = Src; 904 } 905 if (isa<AllocaInst>(Val)) { 906 NoTail( 907 "WebAssembly does not support tail calling with stack arguments"); 908 break; 909 } 910 } 911 } 912 } 913 914 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 915 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 916 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 917 918 // The generic code may have added an sret argument. If we're lowering an 919 // invoke function, the ABI requires that the function pointer be the first 920 // argument, so we may have to swap the arguments. 921 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 922 Outs[0].Flags.isSRet()) { 923 std::swap(Outs[0], Outs[1]); 924 std::swap(OutVals[0], OutVals[1]); 925 } 926 927 bool HasSwiftSelfArg = false; 928 bool HasSwiftErrorArg = false; 929 unsigned NumFixedArgs = 0; 930 for (unsigned I = 0; I < Outs.size(); ++I) { 931 const ISD::OutputArg &Out = Outs[I]; 932 SDValue &OutVal = OutVals[I]; 933 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 934 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 935 if (Out.Flags.isNest()) 936 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 937 if (Out.Flags.isInAlloca()) 938 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 939 if (Out.Flags.isInConsecutiveRegs()) 940 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 941 if (Out.Flags.isInConsecutiveRegsLast()) 942 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 943 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 944 auto &MFI = MF.getFrameInfo(); 945 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 946 Out.Flags.getNonZeroByValAlign(), 947 /*isSS=*/false); 948 SDValue SizeNode = 949 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 950 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 951 Chain = DAG.getMemcpy( 952 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 953 /*isVolatile*/ false, /*AlwaysInline=*/false, 954 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 955 OutVal = FINode; 956 } 957 // Count the number of fixed args *after* legalization. 958 NumFixedArgs += Out.IsFixed; 959 } 960 961 bool IsVarArg = CLI.IsVarArg; 962 auto PtrVT = getPointerTy(Layout); 963 964 // For swiftcc, emit additional swiftself and swifterror arguments 965 // if there aren't. These additional arguments are also added for callee 966 // signature They are necessary to match callee and caller signature for 967 // indirect call. 968 if (CallConv == CallingConv::Swift) { 969 if (!HasSwiftSelfArg) { 970 NumFixedArgs++; 971 ISD::OutputArg Arg; 972 Arg.Flags.setSwiftSelf(); 973 CLI.Outs.push_back(Arg); 974 SDValue ArgVal = DAG.getUNDEF(PtrVT); 975 CLI.OutVals.push_back(ArgVal); 976 } 977 if (!HasSwiftErrorArg) { 978 NumFixedArgs++; 979 ISD::OutputArg Arg; 980 Arg.Flags.setSwiftError(); 981 CLI.Outs.push_back(Arg); 982 SDValue ArgVal = DAG.getUNDEF(PtrVT); 983 CLI.OutVals.push_back(ArgVal); 984 } 985 } 986 987 // Analyze operands of the call, assigning locations to each operand. 988 SmallVector<CCValAssign, 16> ArgLocs; 989 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 990 991 if (IsVarArg) { 992 // Outgoing non-fixed arguments are placed in a buffer. First 993 // compute their offsets and the total amount of buffer space needed. 994 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 995 const ISD::OutputArg &Out = Outs[I]; 996 SDValue &Arg = OutVals[I]; 997 EVT VT = Arg.getValueType(); 998 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 999 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1000 Align Alignment = 1001 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1002 unsigned Offset = 1003 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1004 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1005 Offset, VT.getSimpleVT(), 1006 CCValAssign::Full)); 1007 } 1008 } 1009 1010 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1011 1012 SDValue FINode; 1013 if (IsVarArg && NumBytes) { 1014 // For non-fixed arguments, next emit stores to store the argument values 1015 // to the stack buffer at the offsets computed above. 1016 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1017 Layout.getStackAlignment(), 1018 /*isSS=*/false); 1019 unsigned ValNo = 0; 1020 SmallVector<SDValue, 8> Chains; 1021 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1022 assert(ArgLocs[ValNo].getValNo() == ValNo && 1023 "ArgLocs should remain in order and only hold varargs args"); 1024 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1025 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1026 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1027 DAG.getConstant(Offset, DL, PtrVT)); 1028 Chains.push_back( 1029 DAG.getStore(Chain, DL, Arg, Add, 1030 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1031 } 1032 if (!Chains.empty()) 1033 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1034 } else if (IsVarArg) { 1035 FINode = DAG.getIntPtrConstant(0, DL); 1036 } 1037 1038 if (Callee->getOpcode() == ISD::GlobalAddress) { 1039 // If the callee is a GlobalAddress node (quite common, every direct call 1040 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1041 // doesn't at MO_GOT which is not needed for direct calls. 1042 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1043 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1044 getPointerTy(DAG.getDataLayout()), 1045 GA->getOffset()); 1046 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1047 getPointerTy(DAG.getDataLayout()), Callee); 1048 } 1049 1050 // Compute the operands for the CALLn node. 1051 SmallVector<SDValue, 16> Ops; 1052 Ops.push_back(Chain); 1053 Ops.push_back(Callee); 1054 1055 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1056 // isn't reliable. 1057 Ops.append(OutVals.begin(), 1058 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1059 // Add a pointer to the vararg buffer. 1060 if (IsVarArg) 1061 Ops.push_back(FINode); 1062 1063 SmallVector<EVT, 8> InTys; 1064 for (const auto &In : Ins) { 1065 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1066 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1067 if (In.Flags.isInAlloca()) 1068 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1069 if (In.Flags.isInConsecutiveRegs()) 1070 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1071 if (In.Flags.isInConsecutiveRegsLast()) 1072 fail(DL, DAG, 1073 "WebAssembly hasn't implemented cons regs last return values"); 1074 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1075 // registers. 1076 InTys.push_back(In.VT); 1077 } 1078 1079 if (CLI.IsTailCall) { 1080 // ret_calls do not return values to the current frame 1081 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1082 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1083 } 1084 1085 InTys.push_back(MVT::Other); 1086 SDVTList InTyList = DAG.getVTList(InTys); 1087 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1088 1089 for (size_t I = 0; I < Ins.size(); ++I) 1090 InVals.push_back(Res.getValue(I)); 1091 1092 // Return the chain 1093 return Res.getValue(Ins.size()); 1094 } 1095 1096 bool WebAssemblyTargetLowering::CanLowerReturn( 1097 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1098 const SmallVectorImpl<ISD::OutputArg> &Outs, 1099 LLVMContext & /*Context*/) const { 1100 // WebAssembly can only handle returning tuples with multivalue enabled 1101 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1102 } 1103 1104 SDValue WebAssemblyTargetLowering::LowerReturn( 1105 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1106 const SmallVectorImpl<ISD::OutputArg> &Outs, 1107 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1108 SelectionDAG &DAG) const { 1109 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1110 "MVP WebAssembly can only return up to one value"); 1111 if (!callingConvSupported(CallConv)) 1112 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1113 1114 SmallVector<SDValue, 4> RetOps(1, Chain); 1115 RetOps.append(OutVals.begin(), OutVals.end()); 1116 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1117 1118 // Record the number and types of the return values. 1119 for (const ISD::OutputArg &Out : Outs) { 1120 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1121 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1122 assert(Out.IsFixed && "non-fixed return value is not valid"); 1123 if (Out.Flags.isInAlloca()) 1124 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1125 if (Out.Flags.isInConsecutiveRegs()) 1126 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1127 if (Out.Flags.isInConsecutiveRegsLast()) 1128 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1129 } 1130 1131 return Chain; 1132 } 1133 1134 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1135 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1136 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1137 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1138 if (!callingConvSupported(CallConv)) 1139 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1140 1141 MachineFunction &MF = DAG.getMachineFunction(); 1142 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1143 1144 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1145 // of the incoming values before they're represented by virtual registers. 1146 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1147 1148 bool HasSwiftErrorArg = false; 1149 bool HasSwiftSelfArg = false; 1150 for (const ISD::InputArg &In : Ins) { 1151 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1152 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1153 if (In.Flags.isInAlloca()) 1154 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1155 if (In.Flags.isNest()) 1156 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1157 if (In.Flags.isInConsecutiveRegs()) 1158 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1159 if (In.Flags.isInConsecutiveRegsLast()) 1160 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1161 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1162 // registers. 1163 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1164 DAG.getTargetConstant(InVals.size(), 1165 DL, MVT::i32)) 1166 : DAG.getUNDEF(In.VT)); 1167 1168 // Record the number and types of arguments. 1169 MFI->addParam(In.VT); 1170 } 1171 1172 // For swiftcc, emit additional swiftself and swifterror arguments 1173 // if there aren't. These additional arguments are also added for callee 1174 // signature They are necessary to match callee and caller signature for 1175 // indirect call. 1176 auto PtrVT = getPointerTy(MF.getDataLayout()); 1177 if (CallConv == CallingConv::Swift) { 1178 if (!HasSwiftSelfArg) { 1179 MFI->addParam(PtrVT); 1180 } 1181 if (!HasSwiftErrorArg) { 1182 MFI->addParam(PtrVT); 1183 } 1184 } 1185 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1186 // the buffer is passed as an argument. 1187 if (IsVarArg) { 1188 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1189 Register VarargVreg = 1190 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1191 MFI->setVarargBufferVreg(VarargVreg); 1192 Chain = DAG.getCopyToReg( 1193 Chain, DL, VarargVreg, 1194 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1195 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1196 MFI->addParam(PtrVT); 1197 } 1198 1199 // Record the number and types of arguments and results. 1200 SmallVector<MVT, 4> Params; 1201 SmallVector<MVT, 4> Results; 1202 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1203 MF.getFunction(), DAG.getTarget(), Params, Results); 1204 for (MVT VT : Results) 1205 MFI->addResult(VT); 1206 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1207 // the param logic here with ComputeSignatureVTs 1208 assert(MFI->getParams().size() == Params.size() && 1209 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1210 Params.begin())); 1211 1212 return Chain; 1213 } 1214 1215 void WebAssemblyTargetLowering::ReplaceNodeResults( 1216 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1217 switch (N->getOpcode()) { 1218 case ISD::SIGN_EXTEND_INREG: 1219 // Do not add any results, signifying that N should not be custom lowered 1220 // after all. This happens because simd128 turns on custom lowering for 1221 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1222 // illegal type. 1223 break; 1224 default: 1225 llvm_unreachable( 1226 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1227 } 1228 } 1229 1230 //===----------------------------------------------------------------------===// 1231 // Custom lowering hooks. 1232 //===----------------------------------------------------------------------===// 1233 1234 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1235 SelectionDAG &DAG) const { 1236 SDLoc DL(Op); 1237 switch (Op.getOpcode()) { 1238 default: 1239 llvm_unreachable("unimplemented operation lowering"); 1240 return SDValue(); 1241 case ISD::FrameIndex: 1242 return LowerFrameIndex(Op, DAG); 1243 case ISD::GlobalAddress: 1244 return LowerGlobalAddress(Op, DAG); 1245 case ISD::GlobalTLSAddress: 1246 return LowerGlobalTLSAddress(Op, DAG); 1247 case ISD::ExternalSymbol: 1248 return LowerExternalSymbol(Op, DAG); 1249 case ISD::JumpTable: 1250 return LowerJumpTable(Op, DAG); 1251 case ISD::BR_JT: 1252 return LowerBR_JT(Op, DAG); 1253 case ISD::VASTART: 1254 return LowerVASTART(Op, DAG); 1255 case ISD::BlockAddress: 1256 case ISD::BRIND: 1257 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1258 return SDValue(); 1259 case ISD::RETURNADDR: 1260 return LowerRETURNADDR(Op, DAG); 1261 case ISD::FRAMEADDR: 1262 return LowerFRAMEADDR(Op, DAG); 1263 case ISD::CopyToReg: 1264 return LowerCopyToReg(Op, DAG); 1265 case ISD::EXTRACT_VECTOR_ELT: 1266 case ISD::INSERT_VECTOR_ELT: 1267 return LowerAccessVectorElement(Op, DAG); 1268 case ISD::INTRINSIC_VOID: 1269 case ISD::INTRINSIC_WO_CHAIN: 1270 case ISD::INTRINSIC_W_CHAIN: 1271 return LowerIntrinsic(Op, DAG); 1272 case ISD::SIGN_EXTEND_INREG: 1273 return LowerSIGN_EXTEND_INREG(Op, DAG); 1274 case ISD::BUILD_VECTOR: 1275 return LowerBUILD_VECTOR(Op, DAG); 1276 case ISD::VECTOR_SHUFFLE: 1277 return LowerVECTOR_SHUFFLE(Op, DAG); 1278 case ISD::SETCC: 1279 return LowerSETCC(Op, DAG); 1280 case ISD::SHL: 1281 case ISD::SRA: 1282 case ISD::SRL: 1283 return LowerShift(Op, DAG); 1284 case ISD::FP_TO_SINT_SAT: 1285 case ISD::FP_TO_UINT_SAT: 1286 return LowerFP_TO_INT_SAT(Op, DAG); 1287 case ISD::LOAD: 1288 return LowerLoad(Op, DAG); 1289 case ISD::STORE: 1290 return LowerStore(Op, DAG); 1291 } 1292 } 1293 1294 static bool IsWebAssemblyGlobal(SDValue Op) { 1295 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1296 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1297 1298 return false; 1299 } 1300 1301 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1302 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1303 if (!FI) 1304 return None; 1305 1306 auto &MF = DAG.getMachineFunction(); 1307 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1308 } 1309 1310 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1311 SelectionDAG &DAG) const { 1312 SDLoc DL(Op); 1313 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1314 const SDValue &Value = SN->getValue(); 1315 const SDValue &Base = SN->getBasePtr(); 1316 const SDValue &Offset = SN->getOffset(); 1317 1318 if (IsWebAssemblyGlobal(Base)) { 1319 if (!Offset->isUndef()) 1320 report_fatal_error("unexpected offset when storing to webassembly global", 1321 false); 1322 1323 SDVTList Tys = DAG.getVTList(MVT::Other); 1324 SDValue Ops[] = {SN->getChain(), Value, Base}; 1325 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1326 SN->getMemoryVT(), SN->getMemOperand()); 1327 } 1328 1329 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1330 if (!Offset->isUndef()) 1331 report_fatal_error("unexpected offset when storing to webassembly local", 1332 false); 1333 1334 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1335 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1336 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1337 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1338 } 1339 1340 return Op; 1341 } 1342 1343 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1344 SelectionDAG &DAG) const { 1345 SDLoc DL(Op); 1346 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1347 const SDValue &Base = LN->getBasePtr(); 1348 const SDValue &Offset = LN->getOffset(); 1349 1350 if (IsWebAssemblyGlobal(Base)) { 1351 if (!Offset->isUndef()) 1352 report_fatal_error( 1353 "unexpected offset when loading from webassembly global", false); 1354 1355 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1356 SDValue Ops[] = {LN->getChain(), Base}; 1357 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1358 LN->getMemoryVT(), LN->getMemOperand()); 1359 } 1360 1361 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1362 if (!Offset->isUndef()) 1363 report_fatal_error( 1364 "unexpected offset when loading from webassembly local", false); 1365 1366 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1367 EVT LocalVT = LN->getValueType(0); 1368 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1369 {LN->getChain(), Idx}); 1370 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1371 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1372 return Result; 1373 } 1374 1375 return Op; 1376 } 1377 1378 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1379 SelectionDAG &DAG) const { 1380 SDValue Src = Op.getOperand(2); 1381 if (isa<FrameIndexSDNode>(Src.getNode())) { 1382 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1383 // the FI to some LEA-like instruction, but since we don't have that, we 1384 // need to insert some kind of instruction that can take an FI operand and 1385 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1386 // local.copy between Op and its FI operand. 1387 SDValue Chain = Op.getOperand(0); 1388 SDLoc DL(Op); 1389 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1390 EVT VT = Src.getValueType(); 1391 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1392 : WebAssembly::COPY_I64, 1393 DL, VT, Src), 1394 0); 1395 return Op.getNode()->getNumValues() == 1 1396 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1397 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1398 Op.getNumOperands() == 4 ? Op.getOperand(3) 1399 : SDValue()); 1400 } 1401 return SDValue(); 1402 } 1403 1404 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1405 SelectionDAG &DAG) const { 1406 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1407 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1408 } 1409 1410 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1411 SelectionDAG &DAG) const { 1412 SDLoc DL(Op); 1413 1414 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1415 fail(DL, DAG, 1416 "Non-Emscripten WebAssembly hasn't implemented " 1417 "__builtin_return_address"); 1418 return SDValue(); 1419 } 1420 1421 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1422 return SDValue(); 1423 1424 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1425 MakeLibCallOptions CallOptions; 1426 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1427 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1428 .first; 1429 } 1430 1431 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1432 SelectionDAG &DAG) const { 1433 // Non-zero depths are not supported by WebAssembly currently. Use the 1434 // legalizer's default expansion, which is to return 0 (what this function is 1435 // documented to do). 1436 if (Op.getConstantOperandVal(0) > 0) 1437 return SDValue(); 1438 1439 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1440 EVT VT = Op.getValueType(); 1441 Register FP = 1442 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1443 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1444 } 1445 1446 SDValue 1447 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1448 SelectionDAG &DAG) const { 1449 SDLoc DL(Op); 1450 const auto *GA = cast<GlobalAddressSDNode>(Op); 1451 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1452 1453 MachineFunction &MF = DAG.getMachineFunction(); 1454 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1455 report_fatal_error("cannot use thread-local storage without bulk memory", 1456 false); 1457 1458 const GlobalValue *GV = GA->getGlobal(); 1459 1460 // Currently Emscripten does not support dynamic linking with threads. 1461 // Therefore, if we have thread-local storage, only the local-exec model 1462 // is possible. 1463 // TODO: remove this and implement proper TLS models once Emscripten 1464 // supports dynamic linking with threads. 1465 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1466 !Subtarget->getTargetTriple().isOSEmscripten()) { 1467 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1468 "non-Emscripten OSes: variable " + 1469 GV->getName(), 1470 false); 1471 } 1472 1473 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1474 : WebAssembly::GLOBAL_GET_I32; 1475 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1476 1477 SDValue BaseAddr( 1478 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1479 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1480 0); 1481 1482 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1483 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1484 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1485 1486 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1487 } 1488 1489 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1490 SelectionDAG &DAG) const { 1491 SDLoc DL(Op); 1492 const auto *GA = cast<GlobalAddressSDNode>(Op); 1493 EVT VT = Op.getValueType(); 1494 assert(GA->getTargetFlags() == 0 && 1495 "Unexpected target flags on generic GlobalAddressSDNode"); 1496 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1497 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1498 1499 unsigned OperandFlags = 0; 1500 if (isPositionIndependent()) { 1501 const GlobalValue *GV = GA->getGlobal(); 1502 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1503 MachineFunction &MF = DAG.getMachineFunction(); 1504 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1505 const char *BaseName; 1506 if (GV->getValueType()->isFunctionTy()) { 1507 BaseName = MF.createExternalSymbolName("__table_base"); 1508 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1509 } 1510 else { 1511 BaseName = MF.createExternalSymbolName("__memory_base"); 1512 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1513 } 1514 SDValue BaseAddr = 1515 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1516 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1517 1518 SDValue SymAddr = DAG.getNode( 1519 WebAssemblyISD::WrapperPIC, DL, VT, 1520 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1521 OperandFlags)); 1522 1523 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1524 } else { 1525 OperandFlags = WebAssemblyII::MO_GOT; 1526 } 1527 } 1528 1529 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1530 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1531 GA->getOffset(), OperandFlags)); 1532 } 1533 1534 SDValue 1535 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1536 SelectionDAG &DAG) const { 1537 SDLoc DL(Op); 1538 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1539 EVT VT = Op.getValueType(); 1540 assert(ES->getTargetFlags() == 0 && 1541 "Unexpected target flags on generic ExternalSymbolSDNode"); 1542 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1543 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1544 } 1545 1546 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1547 SelectionDAG &DAG) const { 1548 // There's no need for a Wrapper node because we always incorporate a jump 1549 // table operand into a BR_TABLE instruction, rather than ever 1550 // materializing it in a register. 1551 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1552 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1553 JT->getTargetFlags()); 1554 } 1555 1556 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1557 SelectionDAG &DAG) const { 1558 SDLoc DL(Op); 1559 SDValue Chain = Op.getOperand(0); 1560 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1561 SDValue Index = Op.getOperand(2); 1562 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1563 1564 SmallVector<SDValue, 8> Ops; 1565 Ops.push_back(Chain); 1566 Ops.push_back(Index); 1567 1568 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1569 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1570 1571 // Add an operand for each case. 1572 for (auto MBB : MBBs) 1573 Ops.push_back(DAG.getBasicBlock(MBB)); 1574 1575 // Add the first MBB as a dummy default target for now. This will be replaced 1576 // with the proper default target (and the preceding range check eliminated) 1577 // if possible by WebAssemblyFixBrTableDefaults. 1578 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1579 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1580 } 1581 1582 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1583 SelectionDAG &DAG) const { 1584 SDLoc DL(Op); 1585 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1586 1587 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1588 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1589 1590 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1591 MFI->getVarargBufferVreg(), PtrVT); 1592 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1593 MachinePointerInfo(SV)); 1594 } 1595 1596 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1597 SelectionDAG &DAG) { 1598 // We only support C++ exceptions for now 1599 int Tag = 1600 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1601 if (Tag != WebAssembly::CPP_EXCEPTION) 1602 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1603 auto &MF = DAG.getMachineFunction(); 1604 const auto &TLI = DAG.getTargetLoweringInfo(); 1605 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1606 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1607 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1608 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1609 } 1610 1611 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1612 SelectionDAG &DAG) const { 1613 MachineFunction &MF = DAG.getMachineFunction(); 1614 unsigned IntNo; 1615 switch (Op.getOpcode()) { 1616 case ISD::INTRINSIC_VOID: 1617 case ISD::INTRINSIC_W_CHAIN: 1618 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1619 break; 1620 case ISD::INTRINSIC_WO_CHAIN: 1621 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1622 break; 1623 default: 1624 llvm_unreachable("Invalid intrinsic"); 1625 } 1626 SDLoc DL(Op); 1627 1628 switch (IntNo) { 1629 default: 1630 return SDValue(); // Don't custom lower most intrinsics. 1631 1632 case Intrinsic::wasm_lsda: { 1633 EVT VT = Op.getValueType(); 1634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1635 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1636 auto &Context = MF.getMMI().getContext(); 1637 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1638 Twine(MF.getFunctionNumber())); 1639 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1640 DAG.getMCSymbol(S, PtrVT)); 1641 } 1642 1643 case Intrinsic::wasm_throw: { 1644 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1645 return DAG.getNode(WebAssemblyISD::THROW, DL, 1646 MVT::Other, // outchain type 1647 { 1648 Op.getOperand(0), // inchain 1649 SymNode, // exception symbol 1650 Op.getOperand(3) // thrown value 1651 }); 1652 } 1653 1654 case Intrinsic::wasm_catch: { 1655 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1656 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1657 { 1658 MVT::i32, // outchain type 1659 MVT::Other // return value 1660 }, 1661 { 1662 Op.getOperand(0), // inchain 1663 SymNode // exception symbol 1664 }); 1665 } 1666 1667 case Intrinsic::wasm_shuffle: { 1668 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1669 SDValue Ops[18]; 1670 size_t OpIdx = 0; 1671 Ops[OpIdx++] = Op.getOperand(1); 1672 Ops[OpIdx++] = Op.getOperand(2); 1673 while (OpIdx < 18) { 1674 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1675 if (MaskIdx.isUndef() || 1676 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1677 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1678 } else { 1679 Ops[OpIdx++] = MaskIdx; 1680 } 1681 } 1682 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1683 } 1684 } 1685 } 1686 1687 SDValue 1688 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1689 SelectionDAG &DAG) const { 1690 SDLoc DL(Op); 1691 // If sign extension operations are disabled, allow sext_inreg only if operand 1692 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1693 // extension operations, but allowing sext_inreg in this context lets us have 1694 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1695 // everywhere would be simpler in this file, but would necessitate large and 1696 // brittle patterns to undo the expansion and select extract_lane_s 1697 // instructions. 1698 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1699 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1700 return SDValue(); 1701 1702 const SDValue &Extract = Op.getOperand(0); 1703 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1704 if (VecT.getVectorElementType().getSizeInBits() > 32) 1705 return SDValue(); 1706 MVT ExtractedLaneT = 1707 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1708 MVT ExtractedVecT = 1709 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1710 if (ExtractedVecT == VecT) 1711 return Op; 1712 1713 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1714 const SDNode *Index = Extract.getOperand(1).getNode(); 1715 if (!isa<ConstantSDNode>(Index)) 1716 return SDValue(); 1717 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1718 unsigned Scale = 1719 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1720 assert(Scale > 1); 1721 SDValue NewIndex = 1722 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1723 SDValue NewExtract = DAG.getNode( 1724 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1725 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1726 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1727 Op.getOperand(1)); 1728 } 1729 1730 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1731 SelectionDAG &DAG) const { 1732 SDLoc DL(Op); 1733 const EVT VecT = Op.getValueType(); 1734 const EVT LaneT = Op.getOperand(0).getValueType(); 1735 const size_t Lanes = Op.getNumOperands(); 1736 bool CanSwizzle = VecT == MVT::v16i8; 1737 1738 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1739 // possible number of lanes at once followed by a sequence of replace_lane 1740 // instructions to individually initialize any remaining lanes. 1741 1742 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1743 // swizzled lanes should be given greater weight. 1744 1745 // TODO: Investigate looping rather than always extracting/replacing specific 1746 // lanes to fill gaps. 1747 1748 auto IsConstant = [](const SDValue &V) { 1749 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1750 }; 1751 1752 // Returns the source vector and index vector pair if they exist. Checks for: 1753 // (extract_vector_elt 1754 // $src, 1755 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1756 // ) 1757 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1758 auto Bail = std::make_pair(SDValue(), SDValue()); 1759 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1760 return Bail; 1761 const SDValue &SwizzleSrc = Lane->getOperand(0); 1762 const SDValue &IndexExt = Lane->getOperand(1); 1763 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1764 return Bail; 1765 const SDValue &Index = IndexExt->getOperand(0); 1766 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1767 return Bail; 1768 const SDValue &SwizzleIndices = Index->getOperand(0); 1769 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1770 SwizzleIndices.getValueType() != MVT::v16i8 || 1771 Index->getOperand(1)->getOpcode() != ISD::Constant || 1772 Index->getConstantOperandVal(1) != I) 1773 return Bail; 1774 return std::make_pair(SwizzleSrc, SwizzleIndices); 1775 }; 1776 1777 // If the lane is extracted from another vector at a constant index, return 1778 // that vector. The source vector must not have more lanes than the dest 1779 // because the shufflevector indices are in terms of the destination lanes and 1780 // would not be able to address the smaller individual source lanes. 1781 auto GetShuffleSrc = [&](const SDValue &Lane) { 1782 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1783 return SDValue(); 1784 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1785 return SDValue(); 1786 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1787 VecT.getVectorNumElements()) 1788 return SDValue(); 1789 return Lane->getOperand(0); 1790 }; 1791 1792 using ValueEntry = std::pair<SDValue, size_t>; 1793 SmallVector<ValueEntry, 16> SplatValueCounts; 1794 1795 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1796 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1797 1798 using ShuffleEntry = std::pair<SDValue, size_t>; 1799 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1800 1801 auto AddCount = [](auto &Counts, const auto &Val) { 1802 auto CountIt = 1803 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1804 if (CountIt == Counts.end()) { 1805 Counts.emplace_back(Val, 1); 1806 } else { 1807 CountIt->second++; 1808 } 1809 }; 1810 1811 auto GetMostCommon = [](auto &Counts) { 1812 auto CommonIt = 1813 std::max_element(Counts.begin(), Counts.end(), 1814 [](auto A, auto B) { return A.second < B.second; }); 1815 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1816 return *CommonIt; 1817 }; 1818 1819 size_t NumConstantLanes = 0; 1820 1821 // Count eligible lanes for each type of vector creation op 1822 for (size_t I = 0; I < Lanes; ++I) { 1823 const SDValue &Lane = Op->getOperand(I); 1824 if (Lane.isUndef()) 1825 continue; 1826 1827 AddCount(SplatValueCounts, Lane); 1828 1829 if (IsConstant(Lane)) 1830 NumConstantLanes++; 1831 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1832 AddCount(ShuffleCounts, ShuffleSrc); 1833 if (CanSwizzle) { 1834 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1835 if (SwizzleSrcs.first) 1836 AddCount(SwizzleCounts, SwizzleSrcs); 1837 } 1838 } 1839 1840 SDValue SplatValue; 1841 size_t NumSplatLanes; 1842 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1843 1844 SDValue SwizzleSrc; 1845 SDValue SwizzleIndices; 1846 size_t NumSwizzleLanes = 0; 1847 if (SwizzleCounts.size()) 1848 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1849 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1850 1851 // Shuffles can draw from up to two vectors, so find the two most common 1852 // sources. 1853 SDValue ShuffleSrc1, ShuffleSrc2; 1854 size_t NumShuffleLanes = 0; 1855 if (ShuffleCounts.size()) { 1856 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1857 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1858 ShuffleCounts.end(), 1859 [&](const auto &Pair) { 1860 return Pair.first == ShuffleSrc1; 1861 }), 1862 ShuffleCounts.end()); 1863 } 1864 if (ShuffleCounts.size()) { 1865 size_t AdditionalShuffleLanes; 1866 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 1867 GetMostCommon(ShuffleCounts); 1868 NumShuffleLanes += AdditionalShuffleLanes; 1869 } 1870 1871 // Predicate returning true if the lane is properly initialized by the 1872 // original instruction 1873 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1874 SDValue Result; 1875 // Prefer swizzles over shuffles over vector consts over splats 1876 if (NumSwizzleLanes >= NumShuffleLanes && 1877 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 1878 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1879 SwizzleIndices); 1880 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1881 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1882 return Swizzled == GetSwizzleSrcs(I, Lane); 1883 }; 1884 } else if (NumShuffleLanes >= NumConstantLanes && 1885 NumShuffleLanes >= NumSplatLanes) { 1886 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 1887 size_t DestLaneCount = VecT.getVectorNumElements(); 1888 size_t Scale1 = 1; 1889 size_t Scale2 = 1; 1890 SDValue Src1 = ShuffleSrc1; 1891 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 1892 if (Src1.getValueType() != VecT) { 1893 size_t LaneSize = 1894 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1895 assert(LaneSize > DestLaneSize); 1896 Scale1 = LaneSize / DestLaneSize; 1897 Src1 = DAG.getBitcast(VecT, Src1); 1898 } 1899 if (Src2.getValueType() != VecT) { 1900 size_t LaneSize = 1901 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1902 assert(LaneSize > DestLaneSize); 1903 Scale2 = LaneSize / DestLaneSize; 1904 Src2 = DAG.getBitcast(VecT, Src2); 1905 } 1906 1907 int Mask[16]; 1908 assert(DestLaneCount <= 16); 1909 for (size_t I = 0; I < DestLaneCount; ++I) { 1910 const SDValue &Lane = Op->getOperand(I); 1911 SDValue Src = GetShuffleSrc(Lane); 1912 if (Src == ShuffleSrc1) { 1913 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 1914 } else if (Src && Src == ShuffleSrc2) { 1915 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 1916 } else { 1917 Mask[I] = -1; 1918 } 1919 } 1920 ArrayRef<int> MaskRef(Mask, DestLaneCount); 1921 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 1922 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 1923 auto Src = GetShuffleSrc(Lane); 1924 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 1925 }; 1926 } else if (NumConstantLanes >= NumSplatLanes) { 1927 SmallVector<SDValue, 16> ConstLanes; 1928 for (const SDValue &Lane : Op->op_values()) { 1929 if (IsConstant(Lane)) { 1930 ConstLanes.push_back(Lane); 1931 } else if (LaneT.isFloatingPoint()) { 1932 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1933 } else { 1934 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1935 } 1936 } 1937 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1938 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1939 return IsConstant(Lane); 1940 }; 1941 } else { 1942 // Use a splat, but possibly a load_splat 1943 LoadSDNode *SplattedLoad; 1944 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1945 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1946 Result = DAG.getMemIntrinsicNode( 1947 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1948 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1949 SplattedLoad->getOffset()}, 1950 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1951 } else { 1952 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1953 } 1954 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1955 return Lane == SplatValue; 1956 }; 1957 } 1958 1959 assert(Result); 1960 assert(IsLaneConstructed); 1961 1962 // Add replace_lane instructions for any unhandled values 1963 for (size_t I = 0; I < Lanes; ++I) { 1964 const SDValue &Lane = Op->getOperand(I); 1965 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1966 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1967 DAG.getConstant(I, DL, MVT::i32)); 1968 } 1969 1970 return Result; 1971 } 1972 1973 SDValue 1974 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1975 SelectionDAG &DAG) const { 1976 SDLoc DL(Op); 1977 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1978 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1979 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1980 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1981 1982 // Space for two vector args and sixteen mask indices 1983 SDValue Ops[18]; 1984 size_t OpIdx = 0; 1985 Ops[OpIdx++] = Op.getOperand(0); 1986 Ops[OpIdx++] = Op.getOperand(1); 1987 1988 // Expand mask indices to byte indices and materialize them as operands 1989 for (int M : Mask) { 1990 for (size_t J = 0; J < LaneBytes; ++J) { 1991 // Lower undefs (represented by -1 in mask) to zero 1992 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1993 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1994 } 1995 } 1996 1997 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1998 } 1999 2000 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2001 SelectionDAG &DAG) const { 2002 SDLoc DL(Op); 2003 // The legalizer does not know how to expand the unsupported comparison modes 2004 // of i64x2 vectors, so we manually unroll them here. 2005 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2006 SmallVector<SDValue, 2> LHS, RHS; 2007 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2008 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2009 const SDValue &CC = Op->getOperand(2); 2010 auto MakeLane = [&](unsigned I) { 2011 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2012 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2013 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2014 }; 2015 return DAG.getBuildVector(Op->getValueType(0), DL, 2016 {MakeLane(0), MakeLane(1)}); 2017 } 2018 2019 SDValue 2020 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2021 SelectionDAG &DAG) const { 2022 // Allow constant lane indices, expand variable lane indices 2023 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2024 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2025 return Op; 2026 else 2027 // Perform default expansion 2028 return SDValue(); 2029 } 2030 2031 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2032 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2033 // 32-bit and 64-bit unrolled shifts will have proper semantics 2034 if (LaneT.bitsGE(MVT::i32)) 2035 return DAG.UnrollVectorOp(Op.getNode()); 2036 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2037 SDLoc DL(Op); 2038 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2039 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2040 unsigned ShiftOpcode = Op.getOpcode(); 2041 SmallVector<SDValue, 16> ShiftedElements; 2042 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2043 SmallVector<SDValue, 16> ShiftElements; 2044 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2045 SmallVector<SDValue, 16> UnrolledOps; 2046 for (size_t i = 0; i < NumLanes; ++i) { 2047 SDValue MaskedShiftValue = 2048 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2049 SDValue ShiftedValue = ShiftedElements[i]; 2050 if (ShiftOpcode == ISD::SRA) 2051 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2052 ShiftedValue, DAG.getValueType(LaneT)); 2053 UnrolledOps.push_back( 2054 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2055 } 2056 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2057 } 2058 2059 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2060 SelectionDAG &DAG) const { 2061 SDLoc DL(Op); 2062 2063 // Only manually lower vector shifts 2064 assert(Op.getSimpleValueType().isVector()); 2065 2066 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2067 if (!ShiftVal) 2068 return unrollVectorShift(Op, DAG); 2069 2070 // Use anyext because none of the high bits can affect the shift 2071 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2072 2073 unsigned Opcode; 2074 switch (Op.getOpcode()) { 2075 case ISD::SHL: 2076 Opcode = WebAssemblyISD::VEC_SHL; 2077 break; 2078 case ISD::SRA: 2079 Opcode = WebAssemblyISD::VEC_SHR_S; 2080 break; 2081 case ISD::SRL: 2082 Opcode = WebAssemblyISD::VEC_SHR_U; 2083 break; 2084 default: 2085 llvm_unreachable("unexpected opcode"); 2086 } 2087 2088 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2089 } 2090 2091 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2092 SelectionDAG &DAG) const { 2093 SDLoc DL(Op); 2094 EVT ResT = Op.getValueType(); 2095 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2096 2097 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2098 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2099 return Op; 2100 2101 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2102 return Op; 2103 2104 return SDValue(); 2105 } 2106 2107 //===----------------------------------------------------------------------===// 2108 // Custom DAG combine hooks 2109 //===----------------------------------------------------------------------===// 2110 static SDValue 2111 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2112 auto &DAG = DCI.DAG; 2113 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2114 2115 // Hoist vector bitcasts that don't change the number of lanes out of unary 2116 // shuffles, where they are less likely to get in the way of other combines. 2117 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2118 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2119 SDValue Bitcast = N->getOperand(0); 2120 if (Bitcast.getOpcode() != ISD::BITCAST) 2121 return SDValue(); 2122 if (!N->getOperand(1).isUndef()) 2123 return SDValue(); 2124 SDValue CastOp = Bitcast.getOperand(0); 2125 MVT SrcType = CastOp.getSimpleValueType(); 2126 MVT DstType = Bitcast.getSimpleValueType(); 2127 if (!SrcType.is128BitVector() || 2128 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2129 return SDValue(); 2130 SDValue NewShuffle = DAG.getVectorShuffle( 2131 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2132 return DAG.getBitcast(DstType, NewShuffle); 2133 } 2134 2135 static SDValue 2136 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2137 auto &DAG = DCI.DAG; 2138 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2139 N->getOpcode() == ISD::ZERO_EXTEND); 2140 2141 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2142 // possible before the extract_subvector can be expanded. 2143 auto Extract = N->getOperand(0); 2144 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2145 return SDValue(); 2146 auto Source = Extract.getOperand(0); 2147 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2148 if (IndexNode == nullptr) 2149 return SDValue(); 2150 auto Index = IndexNode->getZExtValue(); 2151 2152 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2153 // extracted subvector is the low or high half of its source. 2154 EVT ResVT = N->getValueType(0); 2155 if (ResVT == MVT::v8i16) { 2156 if (Extract.getValueType() != MVT::v8i8 || 2157 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2158 return SDValue(); 2159 } else if (ResVT == MVT::v4i32) { 2160 if (Extract.getValueType() != MVT::v4i16 || 2161 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2162 return SDValue(); 2163 } else if (ResVT == MVT::v2i64) { 2164 if (Extract.getValueType() != MVT::v2i32 || 2165 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2166 return SDValue(); 2167 } else { 2168 return SDValue(); 2169 } 2170 2171 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2172 bool IsLow = Index == 0; 2173 2174 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2175 : WebAssemblyISD::EXTEND_HIGH_S) 2176 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2177 : WebAssemblyISD::EXTEND_HIGH_U); 2178 2179 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2180 } 2181 2182 static SDValue 2183 performVectorConvertLowCombine(SDNode *N, 2184 TargetLowering::DAGCombinerInfo &DCI) { 2185 auto &DAG = DCI.DAG; 2186 2187 EVT ResVT = N->getValueType(0); 2188 if (ResVT != MVT::v2f64) 2189 return SDValue(); 2190 2191 auto GetWasmConversionOp = [](unsigned Op) { 2192 switch (Op) { 2193 case ISD::SINT_TO_FP: 2194 return WebAssemblyISD::CONVERT_LOW_S; 2195 case ISD::UINT_TO_FP: 2196 return WebAssemblyISD::CONVERT_LOW_U; 2197 case ISD::FP_EXTEND: 2198 return WebAssemblyISD::PROMOTE_LOW; 2199 } 2200 llvm_unreachable("unexpected op"); 2201 }; 2202 2203 if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) { 2204 // Combine this: 2205 // 2206 // (v2f64 (extract_subvector 2207 // (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0)) 2208 // 2209 // into (f64x2.convert_low_i32x4_{s,u} $x). 2210 // 2211 // Or this: 2212 // 2213 // (v2f64 (extract_subvector 2214 // (v4f64 (fp_extend (v4f32 $x))), 0)) 2215 // 2216 // into (f64x2.promote_low_f32x4 $x). 2217 auto Conversion = N->getOperand(0); 2218 auto ConversionOp = Conversion.getOpcode(); 2219 MVT ExpectedSourceType; 2220 switch (ConversionOp) { 2221 case ISD::SINT_TO_FP: 2222 case ISD::UINT_TO_FP: 2223 ExpectedSourceType = MVT::v4i32; 2224 break; 2225 case ISD::FP_EXTEND: 2226 ExpectedSourceType = MVT::v4f32; 2227 break; 2228 default: 2229 return SDValue(); 2230 } 2231 2232 if (Conversion.getValueType() != MVT::v4f64) 2233 return SDValue(); 2234 2235 auto Source = Conversion.getOperand(0); 2236 if (Source.getValueType() != ExpectedSourceType) 2237 return SDValue(); 2238 2239 auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2240 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2241 return SDValue(); 2242 2243 auto Op = GetWasmConversionOp(ConversionOp); 2244 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2245 } 2246 2247 // Combine this: 2248 // 2249 // (v2f64 ({s,u}int_to_fp 2250 // (v2i32 (extract_subvector (v4i32 $x), 0)))) 2251 // 2252 // into (f64x2.convert_low_i32x4_{s,u} $x). 2253 // 2254 // Or this: 2255 // 2256 // (v2f64 (fp_extend 2257 // (v2f32 (extract_subvector (v4f32 $x), 0)))) 2258 // 2259 // into (f64x2.promote_low_f32x4 $x). 2260 auto ConversionOp = N->getOpcode(); 2261 MVT ExpectedExtractType; 2262 MVT ExpectedSourceType; 2263 switch (ConversionOp) { 2264 case ISD::SINT_TO_FP: 2265 case ISD::UINT_TO_FP: 2266 ExpectedExtractType = MVT::v2i32; 2267 ExpectedSourceType = MVT::v4i32; 2268 break; 2269 case ISD::FP_EXTEND: 2270 ExpectedExtractType = MVT::v2f32; 2271 ExpectedSourceType = MVT::v4f32; 2272 break; 2273 default: 2274 llvm_unreachable("unexpected opcode"); 2275 } 2276 2277 auto Extract = N->getOperand(0); 2278 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2279 return SDValue(); 2280 2281 if (Extract.getValueType() != ExpectedExtractType) 2282 return SDValue(); 2283 2284 auto Source = Extract.getOperand(0); 2285 if (Source.getValueType() != ExpectedSourceType) 2286 return SDValue(); 2287 2288 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2289 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2290 return SDValue(); 2291 2292 unsigned Op = GetWasmConversionOp(ConversionOp); 2293 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2294 } 2295 2296 static SDValue 2297 performVectorTruncSatLowCombine(SDNode *N, 2298 TargetLowering::DAGCombinerInfo &DCI) { 2299 auto &DAG = DCI.DAG; 2300 assert(N->getOpcode() == ISD::CONCAT_VECTORS); 2301 2302 // Combine this: 2303 // 2304 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2305 // 2306 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2307 EVT ResVT = N->getValueType(0); 2308 if (ResVT != MVT::v4i32) 2309 return SDValue(); 2310 2311 auto FPToInt = N->getOperand(0); 2312 auto FPToIntOp = FPToInt.getOpcode(); 2313 if (FPToIntOp != ISD::FP_TO_SINT_SAT && FPToIntOp != ISD::FP_TO_UINT_SAT) 2314 return SDValue(); 2315 if (cast<VTSDNode>(FPToInt.getOperand(1))->getVT() != MVT::i32) 2316 return SDValue(); 2317 2318 auto Source = FPToInt.getOperand(0); 2319 if (Source.getValueType() != MVT::v2f64) 2320 return SDValue(); 2321 2322 auto *Splat = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 2323 APInt SplatValue, SplatUndef; 2324 unsigned SplatBitSize; 2325 bool HasAnyUndefs; 2326 if (!Splat || !Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2327 HasAnyUndefs)) 2328 return SDValue(); 2329 if (SplatValue != 0) 2330 return SDValue(); 2331 2332 unsigned Op = FPToIntOp == ISD::FP_TO_SINT_SAT 2333 ? WebAssemblyISD::TRUNC_SAT_ZERO_S 2334 : WebAssemblyISD::TRUNC_SAT_ZERO_U; 2335 2336 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2337 } 2338 2339 SDValue 2340 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2341 DAGCombinerInfo &DCI) const { 2342 switch (N->getOpcode()) { 2343 default: 2344 return SDValue(); 2345 case ISD::VECTOR_SHUFFLE: 2346 return performVECTOR_SHUFFLECombine(N, DCI); 2347 case ISD::SIGN_EXTEND: 2348 case ISD::ZERO_EXTEND: 2349 return performVectorExtendCombine(N, DCI); 2350 case ISD::SINT_TO_FP: 2351 case ISD::UINT_TO_FP: 2352 case ISD::FP_EXTEND: 2353 case ISD::EXTRACT_SUBVECTOR: 2354 return performVectorConvertLowCombine(N, DCI); 2355 case ISD::CONCAT_VECTORS: 2356 return performVectorTruncSatLowCombine(N, DCI); 2357 } 2358 } 2359