1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "wasm-lower"
38 
39 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
40     const TargetMachine &TM, const WebAssemblySubtarget &STI)
41     : TargetLowering(TM), Subtarget(&STI) {
42   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
43 
44   // Booleans always contain 0 or 1.
45   setBooleanContents(ZeroOrOneBooleanContent);
46   // Except in SIMD vectors
47   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
48   // We don't know the microarchitecture here, so just reduce register pressure.
49   setSchedulingPreference(Sched::RegPressure);
50   // Tell ISel that we have a stack pointer.
51   setStackPointerRegisterToSaveRestore(
52       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
53   // Set up the register classes.
54   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
55   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
56   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
57   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
58   if (Subtarget->hasSIMD128()) {
59     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
60     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
61     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
62     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
63   }
64   if (Subtarget->hasUnimplementedSIMD128()) {
65     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
67   }
68   // Compute derived properties from the register classes.
69   computeRegisterProperties(Subtarget->getRegisterInfo());
70 
71   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
72   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
73   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
74   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
75   setOperationAction(ISD::BRIND, MVT::Other, Custom);
76 
77   // Take the default expansion for va_arg, va_copy, and va_end. There is no
78   // default action for va_start, so we do that custom.
79   setOperationAction(ISD::VASTART, MVT::Other, Custom);
80   setOperationAction(ISD::VAARG, MVT::Other, Expand);
81   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
82   setOperationAction(ISD::VAEND, MVT::Other, Expand);
83 
84   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
85     // Don't expand the floating-point types to constant pools.
86     setOperationAction(ISD::ConstantFP, T, Legal);
87     // Expand floating-point comparisons.
88     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
89                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
90       setCondCodeAction(CC, T, Expand);
91     // Expand floating-point library function operators.
92     for (auto Op :
93          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
94       setOperationAction(Op, T, Expand);
95     // Note supported floating-point library function operators that otherwise
96     // default to expand.
97     for (auto Op :
98          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
99       setOperationAction(Op, T, Legal);
100     // Support minimum and maximum, which otherwise default to expand.
101     setOperationAction(ISD::FMINIMUM, T, Legal);
102     setOperationAction(ISD::FMAXIMUM, T, Legal);
103     // WebAssembly currently has no builtin f16 support.
104     setOperationAction(ISD::FP16_TO_FP, T, Expand);
105     setOperationAction(ISD::FP_TO_FP16, T, Expand);
106     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
107     setTruncStoreAction(T, MVT::f16, Expand);
108   }
109 
110   // Expand unavailable integer operations.
111   for (auto Op :
112        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
113         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
114         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
115     for (auto T : {MVT::i32, MVT::i64})
116       setOperationAction(Op, T, Expand);
117     if (Subtarget->hasSIMD128())
118       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
119         setOperationAction(Op, T, Expand);
120     if (Subtarget->hasUnimplementedSIMD128())
121       setOperationAction(Op, MVT::v2i64, Expand);
122   }
123 
124   // SIMD-specific configuration
125   if (Subtarget->hasSIMD128()) {
126     // Support saturating add for i8x16 and i16x8
127     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
128       for (auto T : {MVT::v16i8, MVT::v8i16})
129         setOperationAction(Op, T, Legal);
130 
131     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
132     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
133       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
134     if (Subtarget->hasUnimplementedSIMD128())
135       for (auto T : {MVT::v2i64, MVT::v2f64})
136         setOperationAction(ISD::BUILD_VECTOR, T, Custom);
137 
138     // We have custom shuffle lowering to expose the shuffle mask
139     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
140       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
141     if (Subtarget->hasUnimplementedSIMD128())
142       for (auto T: {MVT::v2i64, MVT::v2f64})
143         setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
144 
145     // Custom lowering since wasm shifts must have a scalar shift amount
146     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
147       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
148         setOperationAction(Op, T, Custom);
149       if (Subtarget->hasUnimplementedSIMD128())
150         setOperationAction(Op, MVT::v2i64, Custom);
151     }
152 
153     // Custom lower lane accesses to expand out variable indices
154     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
155       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
156         setOperationAction(Op, T, Custom);
157       if (Subtarget->hasUnimplementedSIMD128())
158         for (auto T : {MVT::v2i64, MVT::v2f64})
159           setOperationAction(Op, T, Custom);
160     }
161 
162     // There is no i64x2.mul instruction
163     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
164 
165     // There are no vector select instructions
166     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
167       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
168         setOperationAction(Op, T, Expand);
169       if (Subtarget->hasUnimplementedSIMD128())
170         for (auto T : {MVT::v2i64, MVT::v2f64})
171           setOperationAction(Op, T, Expand);
172     }
173 
174     // Expand integer operations supported for scalars but not SIMD
175     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
176                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
177       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
178         setOperationAction(Op, T, Expand);
179       if (Subtarget->hasUnimplementedSIMD128())
180         setOperationAction(Op, MVT::v2i64, Expand);
181     }
182 
183     // Expand float operations supported for scalars but not SIMD
184     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
185                     ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
186                     ISD::FEXP, ISD::FEXP2, ISD::FRINT}) {
187       setOperationAction(Op, MVT::v4f32, Expand);
188       if (Subtarget->hasUnimplementedSIMD128())
189         setOperationAction(Op, MVT::v2f64, Expand);
190     }
191 
192     // Expand additional SIMD ops that V8 hasn't implemented yet
193     if (!Subtarget->hasUnimplementedSIMD128()) {
194       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
195       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
196     }
197   }
198 
199   // As a special case, these operators use the type to mean the type to
200   // sign-extend from.
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
202   if (!Subtarget->hasSignExt()) {
203     // Sign extends are legal only when extending a vector extract
204     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
205     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
206       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
207   }
208   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
209     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
210 
211   // Dynamic stack allocation: use the default expansion.
212   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
213   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
214   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
215 
216   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
217   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
218 
219   // Expand these forms; we pattern-match the forms that we can handle in isel.
220   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
221     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
222       setOperationAction(Op, T, Expand);
223 
224   // We have custom switch handling.
225   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
226 
227   // WebAssembly doesn't have:
228   //  - Floating-point extending loads.
229   //  - Floating-point truncating stores.
230   //  - i1 extending loads.
231   //  - truncating SIMD stores and most extending loads
232   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
233   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
234   for (auto T : MVT::integer_valuetypes())
235     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
236       setLoadExtAction(Ext, T, MVT::i1, Promote);
237   if (Subtarget->hasSIMD128()) {
238     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
239                    MVT::v2f64}) {
240       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
241         if (MVT(T) != MemT) {
242           setTruncStoreAction(T, MemT, Expand);
243           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
244             setLoadExtAction(Ext, T, MemT, Expand);
245         }
246       }
247     }
248     // But some vector extending loads are legal
249     if (Subtarget->hasUnimplementedSIMD128()) {
250       for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
251         setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
252         setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
253         setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
254       }
255     }
256   }
257 
258   // Don't do anything clever with build_pairs
259   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
260 
261   // Trap lowers to wasm unreachable
262   setOperationAction(ISD::TRAP, MVT::Other, Legal);
263 
264   // Exception handling intrinsics
265   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
266   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
267 
268   setMaxAtomicSizeInBitsSupported(64);
269 
270   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
271   // consistent with the f64 and f128 names.
272   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
273   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
274 
275   // Define the emscripten name for return address helper.
276   // TODO: when implementing other WASM backends, make this generic or only do
277   // this on emscripten depending on what they end up doing.
278   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
279 
280   // Always convert switches to br_tables unless there is only one case, which
281   // is equivalent to a simple branch. This reduces code size for wasm, and we
282   // defer possible jump table optimizations to the VM.
283   setMinimumJumpTableEntries(2);
284 }
285 
286 TargetLowering::AtomicExpansionKind
287 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
288   // We have wasm instructions for these
289   switch (AI->getOperation()) {
290   case AtomicRMWInst::Add:
291   case AtomicRMWInst::Sub:
292   case AtomicRMWInst::And:
293   case AtomicRMWInst::Or:
294   case AtomicRMWInst::Xor:
295   case AtomicRMWInst::Xchg:
296     return AtomicExpansionKind::None;
297   default:
298     break;
299   }
300   return AtomicExpansionKind::CmpXChg;
301 }
302 
303 FastISel *WebAssemblyTargetLowering::createFastISel(
304     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
305   return WebAssembly::createFastISel(FuncInfo, LibInfo);
306 }
307 
308 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
309                                                       EVT VT) const {
310   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
311   if (BitWidth > 1 && BitWidth < 8)
312     BitWidth = 8;
313 
314   if (BitWidth > 64) {
315     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
316     // the count to be an i32.
317     BitWidth = 32;
318     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
319            "32-bit shift counts ought to be enough for anyone");
320   }
321 
322   MVT Result = MVT::getIntegerVT(BitWidth);
323   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
324          "Unable to represent scalar shift amount type");
325   return Result;
326 }
327 
328 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
329 // undefined result on invalid/overflow, to the WebAssembly opcode, which
330 // traps on invalid/overflow.
331 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
332                                        MachineBasicBlock *BB,
333                                        const TargetInstrInfo &TII,
334                                        bool IsUnsigned, bool Int64,
335                                        bool Float64, unsigned LoweredOpcode) {
336   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
337 
338   Register OutReg = MI.getOperand(0).getReg();
339   Register InReg = MI.getOperand(1).getReg();
340 
341   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
342   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
343   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
344   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
345   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
346   unsigned Eqz = WebAssembly::EQZ_I32;
347   unsigned And = WebAssembly::AND_I32;
348   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
349   int64_t Substitute = IsUnsigned ? 0 : Limit;
350   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
351   auto &Context = BB->getParent()->getFunction().getContext();
352   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
353 
354   const BasicBlock *LLVMBB = BB->getBasicBlock();
355   MachineFunction *F = BB->getParent();
356   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
357   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
358   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
359 
360   MachineFunction::iterator It = ++BB->getIterator();
361   F->insert(It, FalseMBB);
362   F->insert(It, TrueMBB);
363   F->insert(It, DoneMBB);
364 
365   // Transfer the remainder of BB and its successor edges to DoneMBB.
366   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
367   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
368 
369   BB->addSuccessor(TrueMBB);
370   BB->addSuccessor(FalseMBB);
371   TrueMBB->addSuccessor(DoneMBB);
372   FalseMBB->addSuccessor(DoneMBB);
373 
374   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
375   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
376   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
377   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
378   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
379   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
380   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
381 
382   MI.eraseFromParent();
383   // For signed numbers, we can do a single comparison to determine whether
384   // fabs(x) is within range.
385   if (IsUnsigned) {
386     Tmp0 = InReg;
387   } else {
388     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
389   }
390   BuildMI(BB, DL, TII.get(FConst), Tmp1)
391       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
392   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
393 
394   // For unsigned numbers, we have to do a separate comparison with zero.
395   if (IsUnsigned) {
396     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
397     Register SecondCmpReg =
398         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
399     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
400     BuildMI(BB, DL, TII.get(FConst), Tmp1)
401         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
402     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
403     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
404     CmpReg = AndReg;
405   }
406 
407   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
408 
409   // Create the CFG diamond to select between doing the conversion or using
410   // the substitute value.
411   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
412   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
413   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
414   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
415   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
416       .addReg(FalseReg)
417       .addMBB(FalseMBB)
418       .addReg(TrueReg)
419       .addMBB(TrueMBB);
420 
421   return DoneMBB;
422 }
423 
424 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
425     MachineInstr &MI, MachineBasicBlock *BB) const {
426   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
427   DebugLoc DL = MI.getDebugLoc();
428 
429   switch (MI.getOpcode()) {
430   default:
431     llvm_unreachable("Unexpected instr type to insert");
432   case WebAssembly::FP_TO_SINT_I32_F32:
433     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
434                         WebAssembly::I32_TRUNC_S_F32);
435   case WebAssembly::FP_TO_UINT_I32_F32:
436     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
437                         WebAssembly::I32_TRUNC_U_F32);
438   case WebAssembly::FP_TO_SINT_I64_F32:
439     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
440                         WebAssembly::I64_TRUNC_S_F32);
441   case WebAssembly::FP_TO_UINT_I64_F32:
442     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
443                         WebAssembly::I64_TRUNC_U_F32);
444   case WebAssembly::FP_TO_SINT_I32_F64:
445     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
446                         WebAssembly::I32_TRUNC_S_F64);
447   case WebAssembly::FP_TO_UINT_I32_F64:
448     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
449                         WebAssembly::I32_TRUNC_U_F64);
450   case WebAssembly::FP_TO_SINT_I64_F64:
451     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
452                         WebAssembly::I64_TRUNC_S_F64);
453   case WebAssembly::FP_TO_UINT_I64_F64:
454     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
455                         WebAssembly::I64_TRUNC_U_F64);
456     llvm_unreachable("Unexpected instruction to emit with custom inserter");
457   }
458 }
459 
460 const char *
461 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
462   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
463   case WebAssemblyISD::FIRST_NUMBER:
464     break;
465 #define HANDLE_NODETYPE(NODE)                                                  \
466   case WebAssemblyISD::NODE:                                                   \
467     return "WebAssemblyISD::" #NODE;
468 #include "WebAssemblyISD.def"
469 #undef HANDLE_NODETYPE
470   }
471   return nullptr;
472 }
473 
474 std::pair<unsigned, const TargetRegisterClass *>
475 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
476     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
477   // First, see if this is a constraint that directly corresponds to a
478   // WebAssembly register class.
479   if (Constraint.size() == 1) {
480     switch (Constraint[0]) {
481     case 'r':
482       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
483       if (Subtarget->hasSIMD128() && VT.isVector()) {
484         if (VT.getSizeInBits() == 128)
485           return std::make_pair(0U, &WebAssembly::V128RegClass);
486       }
487       if (VT.isInteger() && !VT.isVector()) {
488         if (VT.getSizeInBits() <= 32)
489           return std::make_pair(0U, &WebAssembly::I32RegClass);
490         if (VT.getSizeInBits() <= 64)
491           return std::make_pair(0U, &WebAssembly::I64RegClass);
492       }
493       break;
494     default:
495       break;
496     }
497   }
498 
499   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
500 }
501 
502 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
503   // Assume ctz is a relatively cheap operation.
504   return true;
505 }
506 
507 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
508   // Assume clz is a relatively cheap operation.
509   return true;
510 }
511 
512 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
513                                                       const AddrMode &AM,
514                                                       Type *Ty, unsigned AS,
515                                                       Instruction *I) const {
516   // WebAssembly offsets are added as unsigned without wrapping. The
517   // isLegalAddressingMode gives us no way to determine if wrapping could be
518   // happening, so we approximate this by accepting only non-negative offsets.
519   if (AM.BaseOffs < 0)
520     return false;
521 
522   // WebAssembly has no scale register operands.
523   if (AM.Scale != 0)
524     return false;
525 
526   // Everything else is legal.
527   return true;
528 }
529 
530 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
531     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
532     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
533   // WebAssembly supports unaligned accesses, though it should be declared
534   // with the p2align attribute on loads and stores which do so, and there
535   // may be a performance impact. We tell LLVM they're "fast" because
536   // for the kinds of things that LLVM uses this for (merging adjacent stores
537   // of constants, etc.), WebAssembly implementations will either want the
538   // unaligned access or they'll split anyway.
539   if (Fast)
540     *Fast = true;
541   return true;
542 }
543 
544 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
545                                               AttributeList Attr) const {
546   // The current thinking is that wasm engines will perform this optimization,
547   // so we can save on code size.
548   return true;
549 }
550 
551 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
552   if (!Subtarget->hasUnimplementedSIMD128())
553     return false;
554   MVT ExtT = ExtVal.getSimpleValueType();
555   MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0);
556   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
557          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
558          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
559 }
560 
561 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
562                                                   LLVMContext &C,
563                                                   EVT VT) const {
564   if (VT.isVector())
565     return VT.changeVectorElementTypeToInteger();
566 
567   return TargetLowering::getSetCCResultType(DL, C, VT);
568 }
569 
570 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
571                                                    const CallInst &I,
572                                                    MachineFunction &MF,
573                                                    unsigned Intrinsic) const {
574   switch (Intrinsic) {
575   case Intrinsic::wasm_atomic_notify:
576     Info.opc = ISD::INTRINSIC_W_CHAIN;
577     Info.memVT = MVT::i32;
578     Info.ptrVal = I.getArgOperand(0);
579     Info.offset = 0;
580     Info.align = Align(4);
581     // atomic.notify instruction does not really load the memory specified with
582     // this argument, but MachineMemOperand should either be load or store, so
583     // we set this to a load.
584     // FIXME Volatile isn't really correct, but currently all LLVM atomic
585     // instructions are treated as volatiles in the backend, so we should be
586     // consistent. The same applies for wasm_atomic_wait intrinsics too.
587     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
588     return true;
589   case Intrinsic::wasm_atomic_wait_i32:
590     Info.opc = ISD::INTRINSIC_W_CHAIN;
591     Info.memVT = MVT::i32;
592     Info.ptrVal = I.getArgOperand(0);
593     Info.offset = 0;
594     Info.align = Align(4);
595     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
596     return true;
597   case Intrinsic::wasm_atomic_wait_i64:
598     Info.opc = ISD::INTRINSIC_W_CHAIN;
599     Info.memVT = MVT::i64;
600     Info.ptrVal = I.getArgOperand(0);
601     Info.offset = 0;
602     Info.align = Align(8);
603     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
604     return true;
605   default:
606     return false;
607   }
608 }
609 
610 //===----------------------------------------------------------------------===//
611 // WebAssembly Lowering private implementation.
612 //===----------------------------------------------------------------------===//
613 
614 //===----------------------------------------------------------------------===//
615 // Lowering Code
616 //===----------------------------------------------------------------------===//
617 
618 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
619   MachineFunction &MF = DAG.getMachineFunction();
620   DAG.getContext()->diagnose(
621       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
622 }
623 
624 // Test whether the given calling convention is supported.
625 static bool callingConvSupported(CallingConv::ID CallConv) {
626   // We currently support the language-independent target-independent
627   // conventions. We don't yet have a way to annotate calls with properties like
628   // "cold", and we don't have any call-clobbered registers, so these are mostly
629   // all handled the same.
630   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
631          CallConv == CallingConv::Cold ||
632          CallConv == CallingConv::PreserveMost ||
633          CallConv == CallingConv::PreserveAll ||
634          CallConv == CallingConv::CXX_FAST_TLS ||
635          CallConv == CallingConv::WASM_EmscriptenInvoke;
636 }
637 
638 SDValue
639 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
640                                      SmallVectorImpl<SDValue> &InVals) const {
641   SelectionDAG &DAG = CLI.DAG;
642   SDLoc DL = CLI.DL;
643   SDValue Chain = CLI.Chain;
644   SDValue Callee = CLI.Callee;
645   MachineFunction &MF = DAG.getMachineFunction();
646   auto Layout = MF.getDataLayout();
647 
648   CallingConv::ID CallConv = CLI.CallConv;
649   if (!callingConvSupported(CallConv))
650     fail(DL, DAG,
651          "WebAssembly doesn't support language-specific or target-specific "
652          "calling conventions yet");
653   if (CLI.IsPatchPoint)
654     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
655 
656   if (CLI.IsTailCall) {
657     bool MustTail = CLI.CS && CLI.CS.isMustTailCall();
658     if (Subtarget->hasTailCall() && !CLI.IsVarArg) {
659       // Do not tail call unless caller and callee return types match
660       const Function &F = MF.getFunction();
661       const TargetMachine &TM = getTargetMachine();
662       Type *RetTy = F.getReturnType();
663       SmallVector<MVT, 4> CallerRetTys;
664       SmallVector<MVT, 4> CalleeRetTys;
665       computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
666       computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
667       bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
668                         std::equal(CallerRetTys.begin(), CallerRetTys.end(),
669                                    CalleeRetTys.begin());
670       if (!TypesMatch) {
671         // musttail in this case would be an LLVM IR validation failure
672         assert(!MustTail);
673         CLI.IsTailCall = false;
674       }
675     } else {
676       CLI.IsTailCall = false;
677       if (MustTail) {
678         if (CLI.IsVarArg) {
679           // The return would pop the argument buffer
680           fail(DL, DAG, "WebAssembly does not support varargs tail calls");
681         } else {
682           fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled");
683         }
684       }
685     }
686   }
687 
688   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
689   if (Ins.size() > 1)
690     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
691 
692   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
693   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
694 
695   // The generic code may have added an sret argument. If we're lowering an
696   // invoke function, the ABI requires that the function pointer be the first
697   // argument, so we may have to swap the arguments.
698   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
699       Outs[0].Flags.isSRet()) {
700     std::swap(Outs[0], Outs[1]);
701     std::swap(OutVals[0], OutVals[1]);
702   }
703 
704   unsigned NumFixedArgs = 0;
705   for (unsigned I = 0; I < Outs.size(); ++I) {
706     const ISD::OutputArg &Out = Outs[I];
707     SDValue &OutVal = OutVals[I];
708     if (Out.Flags.isNest())
709       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
710     if (Out.Flags.isInAlloca())
711       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
712     if (Out.Flags.isInConsecutiveRegs())
713       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
714     if (Out.Flags.isInConsecutiveRegsLast())
715       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
716     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
717       auto &MFI = MF.getFrameInfo();
718       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
719                                      Out.Flags.getByValAlign(),
720                                      /*isSS=*/false);
721       SDValue SizeNode =
722           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
723       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
724       Chain = DAG.getMemcpy(
725           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
726           /*isVolatile*/ false, /*AlwaysInline=*/false,
727           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
728       OutVal = FINode;
729     }
730     // Count the number of fixed args *after* legalization.
731     NumFixedArgs += Out.IsFixed;
732   }
733 
734   bool IsVarArg = CLI.IsVarArg;
735   auto PtrVT = getPointerTy(Layout);
736 
737   // Analyze operands of the call, assigning locations to each operand.
738   SmallVector<CCValAssign, 16> ArgLocs;
739   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
740 
741   if (IsVarArg) {
742     // Outgoing non-fixed arguments are placed in a buffer. First
743     // compute their offsets and the total amount of buffer space needed.
744     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
745       const ISD::OutputArg &Out = Outs[I];
746       SDValue &Arg = OutVals[I];
747       EVT VT = Arg.getValueType();
748       assert(VT != MVT::iPTR && "Legalized args should be concrete");
749       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
750       unsigned Align = std::max(Out.Flags.getOrigAlign(),
751                                 Layout.getABITypeAlignment(Ty));
752       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
753                                              Align);
754       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
755                                         Offset, VT.getSimpleVT(),
756                                         CCValAssign::Full));
757     }
758   }
759 
760   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
761 
762   SDValue FINode;
763   if (IsVarArg && NumBytes) {
764     // For non-fixed arguments, next emit stores to store the argument values
765     // to the stack buffer at the offsets computed above.
766     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
767                                                  Layout.getStackAlignment(),
768                                                  /*isSS=*/false);
769     unsigned ValNo = 0;
770     SmallVector<SDValue, 8> Chains;
771     for (SDValue Arg :
772          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
773       assert(ArgLocs[ValNo].getValNo() == ValNo &&
774              "ArgLocs should remain in order and only hold varargs args");
775       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
776       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
777       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
778                                 DAG.getConstant(Offset, DL, PtrVT));
779       Chains.push_back(
780           DAG.getStore(Chain, DL, Arg, Add,
781                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
782     }
783     if (!Chains.empty())
784       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
785   } else if (IsVarArg) {
786     FINode = DAG.getIntPtrConstant(0, DL);
787   }
788 
789   if (Callee->getOpcode() == ISD::GlobalAddress) {
790     // If the callee is a GlobalAddress node (quite common, every direct call
791     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
792     // doesn't at MO_GOT which is not needed for direct calls.
793     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
794     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
795                                         getPointerTy(DAG.getDataLayout()),
796                                         GA->getOffset());
797     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
798                          getPointerTy(DAG.getDataLayout()), Callee);
799   }
800 
801   // Compute the operands for the CALLn node.
802   SmallVector<SDValue, 16> Ops;
803   Ops.push_back(Chain);
804   Ops.push_back(Callee);
805 
806   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
807   // isn't reliable.
808   Ops.append(OutVals.begin(),
809              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
810   // Add a pointer to the vararg buffer.
811   if (IsVarArg)
812     Ops.push_back(FINode);
813 
814   SmallVector<EVT, 8> InTys;
815   for (const auto &In : Ins) {
816     assert(!In.Flags.isByVal() && "byval is not valid for return values");
817     assert(!In.Flags.isNest() && "nest is not valid for return values");
818     if (In.Flags.isInAlloca())
819       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
820     if (In.Flags.isInConsecutiveRegs())
821       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
822     if (In.Flags.isInConsecutiveRegsLast())
823       fail(DL, DAG,
824            "WebAssembly hasn't implemented cons regs last return values");
825     // Ignore In.getOrigAlign() because all our arguments are passed in
826     // registers.
827     InTys.push_back(In.VT);
828   }
829 
830   if (CLI.IsTailCall) {
831     // ret_calls do not return values to the current frame
832     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
833     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
834   }
835 
836   InTys.push_back(MVT::Other);
837   SDVTList InTyList = DAG.getVTList(InTys);
838   SDValue Res =
839       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
840                   DL, InTyList, Ops);
841   if (Ins.empty()) {
842     Chain = Res;
843   } else {
844     InVals.push_back(Res);
845     Chain = Res.getValue(1);
846   }
847 
848   return Chain;
849 }
850 
851 bool WebAssemblyTargetLowering::CanLowerReturn(
852     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
853     const SmallVectorImpl<ISD::OutputArg> &Outs,
854     LLVMContext & /*Context*/) const {
855   // WebAssembly can't currently handle returning tuples.
856   return Outs.size() <= 1;
857 }
858 
859 SDValue WebAssemblyTargetLowering::LowerReturn(
860     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
861     const SmallVectorImpl<ISD::OutputArg> &Outs,
862     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
863     SelectionDAG &DAG) const {
864   assert(Outs.size() <= 1 && "WebAssembly can only return up to one value");
865   if (!callingConvSupported(CallConv))
866     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
867 
868   SmallVector<SDValue, 4> RetOps(1, Chain);
869   RetOps.append(OutVals.begin(), OutVals.end());
870   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
871 
872   // Record the number and types of the return values.
873   for (const ISD::OutputArg &Out : Outs) {
874     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
875     assert(!Out.Flags.isNest() && "nest is not valid for return values");
876     assert(Out.IsFixed && "non-fixed return value is not valid");
877     if (Out.Flags.isInAlloca())
878       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
879     if (Out.Flags.isInConsecutiveRegs())
880       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
881     if (Out.Flags.isInConsecutiveRegsLast())
882       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
883   }
884 
885   return Chain;
886 }
887 
888 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
889     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
890     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
891     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
892   if (!callingConvSupported(CallConv))
893     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
894 
895   MachineFunction &MF = DAG.getMachineFunction();
896   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
897 
898   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
899   // of the incoming values before they're represented by virtual registers.
900   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
901 
902   for (const ISD::InputArg &In : Ins) {
903     if (In.Flags.isInAlloca())
904       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
905     if (In.Flags.isNest())
906       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
907     if (In.Flags.isInConsecutiveRegs())
908       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
909     if (In.Flags.isInConsecutiveRegsLast())
910       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
911     // Ignore In.getOrigAlign() because all our arguments are passed in
912     // registers.
913     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
914                                            DAG.getTargetConstant(InVals.size(),
915                                                                  DL, MVT::i32))
916                              : DAG.getUNDEF(In.VT));
917 
918     // Record the number and types of arguments.
919     MFI->addParam(In.VT);
920   }
921 
922   // Varargs are copied into a buffer allocated by the caller, and a pointer to
923   // the buffer is passed as an argument.
924   if (IsVarArg) {
925     MVT PtrVT = getPointerTy(MF.getDataLayout());
926     Register VarargVreg =
927         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
928     MFI->setVarargBufferVreg(VarargVreg);
929     Chain = DAG.getCopyToReg(
930         Chain, DL, VarargVreg,
931         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
932                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
933     MFI->addParam(PtrVT);
934   }
935 
936   // Record the number and types of arguments and results.
937   SmallVector<MVT, 4> Params;
938   SmallVector<MVT, 4> Results;
939   computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
940                       DAG.getTarget(), Params, Results);
941   for (MVT VT : Results)
942     MFI->addResult(VT);
943   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
944   // the param logic here with ComputeSignatureVTs
945   assert(MFI->getParams().size() == Params.size() &&
946          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
947                     Params.begin()));
948 
949   return Chain;
950 }
951 
952 void WebAssemblyTargetLowering::ReplaceNodeResults(
953     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
954   switch (N->getOpcode()) {
955   case ISD::SIGN_EXTEND_INREG:
956     // Do not add any results, signifying that N should not be custom lowered
957     // after all. This happens because simd128 turns on custom lowering for
958     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
959     // illegal type.
960     break;
961   default:
962     llvm_unreachable(
963         "ReplaceNodeResults not implemented for this op for WebAssembly!");
964   }
965 }
966 
967 //===----------------------------------------------------------------------===//
968 //  Custom lowering hooks.
969 //===----------------------------------------------------------------------===//
970 
971 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
972                                                   SelectionDAG &DAG) const {
973   SDLoc DL(Op);
974   switch (Op.getOpcode()) {
975   default:
976     llvm_unreachable("unimplemented operation lowering");
977     return SDValue();
978   case ISD::FrameIndex:
979     return LowerFrameIndex(Op, DAG);
980   case ISD::GlobalAddress:
981     return LowerGlobalAddress(Op, DAG);
982   case ISD::ExternalSymbol:
983     return LowerExternalSymbol(Op, DAG);
984   case ISD::JumpTable:
985     return LowerJumpTable(Op, DAG);
986   case ISD::BR_JT:
987     return LowerBR_JT(Op, DAG);
988   case ISD::VASTART:
989     return LowerVASTART(Op, DAG);
990   case ISD::BlockAddress:
991   case ISD::BRIND:
992     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
993     return SDValue();
994   case ISD::RETURNADDR:
995     return LowerRETURNADDR(Op, DAG);
996   case ISD::FRAMEADDR:
997     return LowerFRAMEADDR(Op, DAG);
998   case ISD::CopyToReg:
999     return LowerCopyToReg(Op, DAG);
1000   case ISD::EXTRACT_VECTOR_ELT:
1001   case ISD::INSERT_VECTOR_ELT:
1002     return LowerAccessVectorElement(Op, DAG);
1003   case ISD::INTRINSIC_VOID:
1004   case ISD::INTRINSIC_WO_CHAIN:
1005   case ISD::INTRINSIC_W_CHAIN:
1006     return LowerIntrinsic(Op, DAG);
1007   case ISD::SIGN_EXTEND_INREG:
1008     return LowerSIGN_EXTEND_INREG(Op, DAG);
1009   case ISD::BUILD_VECTOR:
1010     return LowerBUILD_VECTOR(Op, DAG);
1011   case ISD::VECTOR_SHUFFLE:
1012     return LowerVECTOR_SHUFFLE(Op, DAG);
1013   case ISD::SHL:
1014   case ISD::SRA:
1015   case ISD::SRL:
1016     return LowerShift(Op, DAG);
1017   }
1018 }
1019 
1020 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1021                                                   SelectionDAG &DAG) const {
1022   SDValue Src = Op.getOperand(2);
1023   if (isa<FrameIndexSDNode>(Src.getNode())) {
1024     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1025     // the FI to some LEA-like instruction, but since we don't have that, we
1026     // need to insert some kind of instruction that can take an FI operand and
1027     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1028     // local.copy between Op and its FI operand.
1029     SDValue Chain = Op.getOperand(0);
1030     SDLoc DL(Op);
1031     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1032     EVT VT = Src.getValueType();
1033     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1034                                                    : WebAssembly::COPY_I64,
1035                                     DL, VT, Src),
1036                  0);
1037     return Op.getNode()->getNumValues() == 1
1038                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1039                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1040                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1041                                                            : SDValue());
1042   }
1043   return SDValue();
1044 }
1045 
1046 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1047                                                    SelectionDAG &DAG) const {
1048   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1049   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1050 }
1051 
1052 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1053                                                    SelectionDAG &DAG) const {
1054   SDLoc DL(Op);
1055 
1056   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1057     fail(DL, DAG,
1058          "Non-Emscripten WebAssembly hasn't implemented "
1059          "__builtin_return_address");
1060     return SDValue();
1061   }
1062 
1063   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1064     return SDValue();
1065 
1066   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1067   MakeLibCallOptions CallOptions;
1068   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1069                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1070       .first;
1071 }
1072 
1073 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1074                                                   SelectionDAG &DAG) const {
1075   // Non-zero depths are not supported by WebAssembly currently. Use the
1076   // legalizer's default expansion, which is to return 0 (what this function is
1077   // documented to do).
1078   if (Op.getConstantOperandVal(0) > 0)
1079     return SDValue();
1080 
1081   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1082   EVT VT = Op.getValueType();
1083   Register FP =
1084       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1085   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1086 }
1087 
1088 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1089                                                       SelectionDAG &DAG) const {
1090   SDLoc DL(Op);
1091   const auto *GA = cast<GlobalAddressSDNode>(Op);
1092   EVT VT = Op.getValueType();
1093   assert(GA->getTargetFlags() == 0 &&
1094          "Unexpected target flags on generic GlobalAddressSDNode");
1095   if (GA->getAddressSpace() != 0)
1096     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1097 
1098   unsigned OperandFlags = 0;
1099   if (isPositionIndependent()) {
1100     const GlobalValue *GV = GA->getGlobal();
1101     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1102       MachineFunction &MF = DAG.getMachineFunction();
1103       MVT PtrVT = getPointerTy(MF.getDataLayout());
1104       const char *BaseName;
1105       if (GV->getValueType()->isFunctionTy()) {
1106         BaseName = MF.createExternalSymbolName("__table_base");
1107         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1108       }
1109       else {
1110         BaseName = MF.createExternalSymbolName("__memory_base");
1111         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1112       }
1113       SDValue BaseAddr =
1114           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1115                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1116 
1117       SDValue SymAddr = DAG.getNode(
1118           WebAssemblyISD::WrapperPIC, DL, VT,
1119           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1120                                      OperandFlags));
1121 
1122       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1123     } else {
1124       OperandFlags = WebAssemblyII::MO_GOT;
1125     }
1126   }
1127 
1128   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1129                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1130                                                 GA->getOffset(), OperandFlags));
1131 }
1132 
1133 SDValue
1134 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1135                                                SelectionDAG &DAG) const {
1136   SDLoc DL(Op);
1137   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1138   EVT VT = Op.getValueType();
1139   assert(ES->getTargetFlags() == 0 &&
1140          "Unexpected target flags on generic ExternalSymbolSDNode");
1141   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1142                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1143 }
1144 
1145 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1146                                                   SelectionDAG &DAG) const {
1147   // There's no need for a Wrapper node because we always incorporate a jump
1148   // table operand into a BR_TABLE instruction, rather than ever
1149   // materializing it in a register.
1150   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1151   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1152                                 JT->getTargetFlags());
1153 }
1154 
1155 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1156                                               SelectionDAG &DAG) const {
1157   SDLoc DL(Op);
1158   SDValue Chain = Op.getOperand(0);
1159   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1160   SDValue Index = Op.getOperand(2);
1161   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1162 
1163   SmallVector<SDValue, 8> Ops;
1164   Ops.push_back(Chain);
1165   Ops.push_back(Index);
1166 
1167   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1168   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1169 
1170   // Add an operand for each case.
1171   for (auto MBB : MBBs)
1172     Ops.push_back(DAG.getBasicBlock(MBB));
1173 
1174   // TODO: For now, we just pick something arbitrary for a default case for now.
1175   // We really want to sniff out the guard and put in the real default case (and
1176   // delete the guard).
1177   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1178 
1179   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1180 }
1181 
1182 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1183                                                 SelectionDAG &DAG) const {
1184   SDLoc DL(Op);
1185   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1186 
1187   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1188   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1189 
1190   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1191                                     MFI->getVarargBufferVreg(), PtrVT);
1192   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1193                       MachinePointerInfo(SV), 0);
1194 }
1195 
1196 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1197                                                   SelectionDAG &DAG) const {
1198   MachineFunction &MF = DAG.getMachineFunction();
1199   unsigned IntNo;
1200   switch (Op.getOpcode()) {
1201   case ISD::INTRINSIC_VOID:
1202   case ISD::INTRINSIC_W_CHAIN:
1203     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1204     break;
1205   case ISD::INTRINSIC_WO_CHAIN:
1206     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1207     break;
1208   default:
1209     llvm_unreachable("Invalid intrinsic");
1210   }
1211   SDLoc DL(Op);
1212 
1213   switch (IntNo) {
1214   default:
1215     return SDValue(); // Don't custom lower most intrinsics.
1216 
1217   case Intrinsic::wasm_lsda: {
1218     EVT VT = Op.getValueType();
1219     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1220     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1221     auto &Context = MF.getMMI().getContext();
1222     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1223                                             Twine(MF.getFunctionNumber()));
1224     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1225                        DAG.getMCSymbol(S, PtrVT));
1226   }
1227 
1228   case Intrinsic::wasm_throw: {
1229     // We only support C++ exceptions for now
1230     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1231     if (Tag != CPP_EXCEPTION)
1232       llvm_unreachable("Invalid tag!");
1233     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1234     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1235     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1236     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1237                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
1238     return DAG.getNode(WebAssemblyISD::THROW, DL,
1239                        MVT::Other, // outchain type
1240                        {
1241                            Op.getOperand(0), // inchain
1242                            SymNode,          // exception symbol
1243                            Op.getOperand(3)  // thrown value
1244                        });
1245   }
1246   }
1247 }
1248 
1249 SDValue
1250 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1251                                                   SelectionDAG &DAG) const {
1252   SDLoc DL(Op);
1253   // If sign extension operations are disabled, allow sext_inreg only if operand
1254   // is a vector extract. SIMD does not depend on sign extension operations, but
1255   // allowing sext_inreg in this context lets us have simple patterns to select
1256   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1257   // simpler in this file, but would necessitate large and brittle patterns to
1258   // undo the expansion and select extract_lane_s instructions.
1259   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1260   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1261     const SDValue &Extract = Op.getOperand(0);
1262     MVT VecT = Extract.getOperand(0).getSimpleValueType();
1263     MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode())
1264                              ->getVT()
1265                              .getSimpleVT();
1266     MVT ExtractedVecT =
1267         MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1268     if (ExtractedVecT == VecT)
1269       return Op;
1270     // Bitcast vector to appropriate type to ensure ISel pattern coverage
1271     const SDValue &Index = Extract.getOperand(1);
1272     unsigned IndexVal =
1273         static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue();
1274     unsigned Scale =
1275         ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1276     assert(Scale > 1);
1277     SDValue NewIndex =
1278         DAG.getConstant(IndexVal * Scale, DL, Index.getValueType());
1279     SDValue NewExtract = DAG.getNode(
1280         ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1281         DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1282     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(),
1283                        NewExtract, Op.getOperand(1));
1284   }
1285   // Otherwise expand
1286   return SDValue();
1287 }
1288 
1289 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1290                                                      SelectionDAG &DAG) const {
1291   SDLoc DL(Op);
1292   const EVT VecT = Op.getValueType();
1293   const EVT LaneT = Op.getOperand(0).getValueType();
1294   const size_t Lanes = Op.getNumOperands();
1295   auto IsConstant = [](const SDValue &V) {
1296     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1297   };
1298 
1299   // Find the most common operand, which is approximately the best to splat
1300   using Entry = std::pair<SDValue, size_t>;
1301   SmallVector<Entry, 16> ValueCounts;
1302   size_t NumConst = 0, NumDynamic = 0;
1303   for (const SDValue &Lane : Op->op_values()) {
1304     if (Lane.isUndef()) {
1305       continue;
1306     } else if (IsConstant(Lane)) {
1307       NumConst++;
1308     } else {
1309       NumDynamic++;
1310     }
1311     auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(),
1312                                 [&Lane](Entry A) { return A.first == Lane; });
1313     if (CountIt == ValueCounts.end()) {
1314       ValueCounts.emplace_back(Lane, 1);
1315     } else {
1316       CountIt->second++;
1317     }
1318   }
1319   auto CommonIt =
1320       std::max_element(ValueCounts.begin(), ValueCounts.end(),
1321                        [](Entry A, Entry B) { return A.second < B.second; });
1322   assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector");
1323   SDValue SplatValue = CommonIt->first;
1324   size_t NumCommon = CommonIt->second;
1325 
1326   // If v128.const is available, consider using it instead of a splat
1327   if (Subtarget->hasUnimplementedSIMD128()) {
1328     // {i32,i64,f32,f64}.const opcode, and value
1329     const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes);
1330     // SIMD prefix and opcode
1331     const size_t SplatBytes = 2;
1332     const size_t SplatConstBytes = SplatBytes + ConstBytes;
1333     // SIMD prefix, opcode, and lane index
1334     const size_t ReplaceBytes = 3;
1335     const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes;
1336     // SIMD prefix, v128.const opcode, and 128-bit value
1337     const size_t VecConstBytes = 18;
1338     // Initial v128.const and a replace_lane for each non-const operand
1339     const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes;
1340     // Initial splat and all necessary replace_lanes
1341     const size_t SplatInitBytes =
1342         IsConstant(SplatValue)
1343             // Initial constant splat
1344             ? (SplatConstBytes +
1345                // Constant replace_lanes
1346                (NumConst - NumCommon) * ReplaceConstBytes +
1347                // Dynamic replace_lanes
1348                (NumDynamic * ReplaceBytes))
1349             // Initial dynamic splat
1350             : (SplatBytes +
1351                // Constant replace_lanes
1352                (NumConst * ReplaceConstBytes) +
1353                // Dynamic replace_lanes
1354                (NumDynamic - NumCommon) * ReplaceBytes);
1355     if (ConstInitBytes < SplatInitBytes) {
1356       // Create build_vector that will lower to initial v128.const
1357       SmallVector<SDValue, 16> ConstLanes;
1358       for (const SDValue &Lane : Op->op_values()) {
1359         if (IsConstant(Lane)) {
1360           ConstLanes.push_back(Lane);
1361         } else if (LaneT.isFloatingPoint()) {
1362           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1363         } else {
1364           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1365         }
1366       }
1367       SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1368       // Add replace_lane instructions for non-const lanes
1369       for (size_t I = 0; I < Lanes; ++I) {
1370         const SDValue &Lane = Op->getOperand(I);
1371         if (!Lane.isUndef() && !IsConstant(Lane))
1372           Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1373                                DAG.getConstant(I, DL, MVT::i32));
1374       }
1375       return Result;
1376     }
1377   }
1378   // Use a splat for the initial vector
1379   SDValue Result;
1380   // Possibly a load_splat
1381   LoadSDNode *SplattedLoad;
1382   if (Subtarget->hasUnimplementedSIMD128() &&
1383       (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1384       SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1385     Result = DAG.getNode(WebAssemblyISD::LOAD_SPLAT, DL, VecT, SplatValue);
1386   } else {
1387     Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1388   }
1389   // Add replace_lane instructions for other values
1390   for (size_t I = 0; I < Lanes; ++I) {
1391     const SDValue &Lane = Op->getOperand(I);
1392     if (Lane != SplatValue)
1393       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1394                            DAG.getConstant(I, DL, MVT::i32));
1395   }
1396   return Result;
1397 }
1398 
1399 SDValue
1400 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1401                                                SelectionDAG &DAG) const {
1402   SDLoc DL(Op);
1403   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1404   MVT VecType = Op.getOperand(0).getSimpleValueType();
1405   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1406   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1407 
1408   // Space for two vector args and sixteen mask indices
1409   SDValue Ops[18];
1410   size_t OpIdx = 0;
1411   Ops[OpIdx++] = Op.getOperand(0);
1412   Ops[OpIdx++] = Op.getOperand(1);
1413 
1414   // Expand mask indices to byte indices and materialize them as operands
1415   for (int M : Mask) {
1416     for (size_t J = 0; J < LaneBytes; ++J) {
1417       // Lower undefs (represented by -1 in mask) to zero
1418       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1419       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1420     }
1421   }
1422 
1423   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1424 }
1425 
1426 SDValue
1427 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1428                                                     SelectionDAG &DAG) const {
1429   // Allow constant lane indices, expand variable lane indices
1430   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1431   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1432     return Op;
1433   else
1434     // Perform default expansion
1435     return SDValue();
1436 }
1437 
1438 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1439   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1440   // 32-bit and 64-bit unrolled shifts will have proper semantics
1441   if (LaneT.bitsGE(MVT::i32))
1442     return DAG.UnrollVectorOp(Op.getNode());
1443   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1444   SDLoc DL(Op);
1445   SDValue ShiftVal = Op.getOperand(1);
1446   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1447   SDValue MaskedShiftVal = DAG.getNode(
1448       ISD::AND,                    // mask opcode
1449       DL, ShiftVal.getValueType(), // masked value type
1450       ShiftVal,                    // original shift value operand
1451       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1452   );
1453 
1454   return DAG.UnrollVectorOp(
1455       DAG.getNode(Op.getOpcode(),        // original shift opcode
1456                   DL, Op.getValueType(), // original return type
1457                   Op.getOperand(0),      // original vector operand,
1458                   MaskedShiftVal         // new masked shift value operand
1459                   )
1460           .getNode());
1461 }
1462 
1463 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1464                                               SelectionDAG &DAG) const {
1465   SDLoc DL(Op);
1466 
1467   // Only manually lower vector shifts
1468   assert(Op.getSimpleValueType().isVector());
1469 
1470   // Unroll non-splat vector shifts
1471   BuildVectorSDNode *ShiftVec;
1472   SDValue SplatVal;
1473   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1474       !(SplatVal = ShiftVec->getSplatValue()))
1475     return unrollVectorShift(Op, DAG);
1476 
1477   // All splats except i64x2 const splats are handled by patterns
1478   auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1479   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1480     return Op;
1481 
1482   // i64x2 const splats are custom lowered to avoid unnecessary wraps
1483   unsigned Opcode;
1484   switch (Op.getOpcode()) {
1485   case ISD::SHL:
1486     Opcode = WebAssemblyISD::VEC_SHL;
1487     break;
1488   case ISD::SRA:
1489     Opcode = WebAssemblyISD::VEC_SHR_S;
1490     break;
1491   case ISD::SRL:
1492     Opcode = WebAssemblyISD::VEC_SHR_U;
1493     break;
1494   default:
1495     llvm_unreachable("unexpected opcode");
1496   }
1497   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1498   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1499                      DAG.getConstant(Shift, DL, MVT::i32));
1500 }
1501 
1502 //===----------------------------------------------------------------------===//
1503 //                          WebAssembly Optimization Hooks
1504 //===----------------------------------------------------------------------===//
1505