1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // We don't know the microarchitecture here, so just reduce register pressure. 49 setSchedulingPreference(Sched::RegPressure); 50 // Tell ISel that we have a stack pointer. 51 setStackPointerRegisterToSaveRestore( 52 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 53 // Set up the register classes. 54 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 55 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 56 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 57 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 58 if (Subtarget->hasSIMD128()) { 59 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 60 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 63 } 64 if (Subtarget->hasUnimplementedSIMD128()) { 65 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 67 } 68 // Compute derived properties from the register classes. 69 computeRegisterProperties(Subtarget->getRegisterInfo()); 70 71 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 72 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 73 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 74 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 75 setOperationAction(ISD::BRIND, MVT::Other, Custom); 76 77 // Take the default expansion for va_arg, va_copy, and va_end. There is no 78 // default action for va_start, so we do that custom. 79 setOperationAction(ISD::VASTART, MVT::Other, Custom); 80 setOperationAction(ISD::VAARG, MVT::Other, Expand); 81 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 82 setOperationAction(ISD::VAEND, MVT::Other, Expand); 83 84 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 85 // Don't expand the floating-point types to constant pools. 86 setOperationAction(ISD::ConstantFP, T, Legal); 87 // Expand floating-point comparisons. 88 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 89 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 90 setCondCodeAction(CC, T, Expand); 91 // Expand floating-point library function operators. 92 for (auto Op : 93 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 94 setOperationAction(Op, T, Expand); 95 // Note supported floating-point library function operators that otherwise 96 // default to expand. 97 for (auto Op : 98 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 99 setOperationAction(Op, T, Legal); 100 // Support minimum and maximum, which otherwise default to expand. 101 setOperationAction(ISD::FMINIMUM, T, Legal); 102 setOperationAction(ISD::FMAXIMUM, T, Legal); 103 // WebAssembly currently has no builtin f16 support. 104 setOperationAction(ISD::FP16_TO_FP, T, Expand); 105 setOperationAction(ISD::FP_TO_FP16, T, Expand); 106 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 107 setTruncStoreAction(T, MVT::f16, Expand); 108 } 109 110 // Expand unavailable integer operations. 111 for (auto Op : 112 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 113 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 114 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 115 for (auto T : {MVT::i32, MVT::i64}) 116 setOperationAction(Op, T, Expand); 117 if (Subtarget->hasSIMD128()) 118 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasUnimplementedSIMD128()) 121 setOperationAction(Op, MVT::v2i64, Expand); 122 } 123 124 // SIMD-specific configuration 125 if (Subtarget->hasSIMD128()) { 126 // Support saturating add for i8x16 and i16x8 127 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 128 for (auto T : {MVT::v16i8, MVT::v8i16}) 129 setOperationAction(Op, T, Legal); 130 131 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 132 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 133 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 134 if (Subtarget->hasUnimplementedSIMD128()) 135 for (auto T : {MVT::v2i64, MVT::v2f64}) 136 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 137 138 // We have custom shuffle lowering to expose the shuffle mask 139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 140 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 141 if (Subtarget->hasUnimplementedSIMD128()) 142 for (auto T: {MVT::v2i64, MVT::v2f64}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 145 // Custom lowering since wasm shifts must have a scalar shift amount 146 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 148 setOperationAction(Op, T, Custom); 149 if (Subtarget->hasUnimplementedSIMD128()) 150 setOperationAction(Op, MVT::v2i64, Custom); 151 } 152 153 // Custom lower lane accesses to expand out variable indices 154 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 155 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 156 setOperationAction(Op, T, Custom); 157 if (Subtarget->hasUnimplementedSIMD128()) 158 for (auto T : {MVT::v2i64, MVT::v2f64}) 159 setOperationAction(Op, T, Custom); 160 } 161 162 // There is no i64x2.mul instruction 163 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 164 165 // There are no vector select instructions 166 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 168 setOperationAction(Op, T, Expand); 169 if (Subtarget->hasUnimplementedSIMD128()) 170 for (auto T : {MVT::v2i64, MVT::v2f64}) 171 setOperationAction(Op, T, Expand); 172 } 173 174 // Expand integer operations supported for scalars but not SIMD 175 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 176 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 177 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 178 setOperationAction(Op, T, Expand); 179 if (Subtarget->hasUnimplementedSIMD128()) 180 setOperationAction(Op, MVT::v2i64, Expand); 181 } 182 183 // Expand float operations supported for scalars but not SIMD 184 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 185 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 186 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) { 187 setOperationAction(Op, MVT::v4f32, Expand); 188 if (Subtarget->hasUnimplementedSIMD128()) 189 setOperationAction(Op, MVT::v2f64, Expand); 190 } 191 192 // Expand additional SIMD ops that V8 hasn't implemented yet 193 if (!Subtarget->hasUnimplementedSIMD128()) { 194 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 195 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 196 } 197 } 198 199 // As a special case, these operators use the type to mean the type to 200 // sign-extend from. 201 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 202 if (!Subtarget->hasSignExt()) { 203 // Sign extends are legal only when extending a vector extract 204 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 205 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 206 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 207 } 208 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 209 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 210 211 // Dynamic stack allocation: use the default expansion. 212 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 213 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 214 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 215 216 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 217 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 218 219 // Expand these forms; we pattern-match the forms that we can handle in isel. 220 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 221 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 222 setOperationAction(Op, T, Expand); 223 224 // We have custom switch handling. 225 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 226 227 // WebAssembly doesn't have: 228 // - Floating-point extending loads. 229 // - Floating-point truncating stores. 230 // - i1 extending loads. 231 // - truncating SIMD stores and most extending loads 232 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 233 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 234 for (auto T : MVT::integer_valuetypes()) 235 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 236 setLoadExtAction(Ext, T, MVT::i1, Promote); 237 if (Subtarget->hasSIMD128()) { 238 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 239 MVT::v2f64}) { 240 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 241 if (MVT(T) != MemT) { 242 setTruncStoreAction(T, MemT, Expand); 243 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 244 setLoadExtAction(Ext, T, MemT, Expand); 245 } 246 } 247 } 248 // But some vector extending loads are legal 249 if (Subtarget->hasUnimplementedSIMD128()) { 250 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 251 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 252 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 253 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 254 } 255 } 256 } 257 258 // Don't do anything clever with build_pairs 259 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 260 261 // Trap lowers to wasm unreachable 262 setOperationAction(ISD::TRAP, MVT::Other, Legal); 263 264 // Exception handling intrinsics 265 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 266 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 267 268 setMaxAtomicSizeInBitsSupported(64); 269 270 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 271 // consistent with the f64 and f128 names. 272 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 273 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 274 275 // Define the emscripten name for return address helper. 276 // TODO: when implementing other WASM backends, make this generic or only do 277 // this on emscripten depending on what they end up doing. 278 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 279 280 // Always convert switches to br_tables unless there is only one case, which 281 // is equivalent to a simple branch. This reduces code size for wasm, and we 282 // defer possible jump table optimizations to the VM. 283 setMinimumJumpTableEntries(2); 284 } 285 286 TargetLowering::AtomicExpansionKind 287 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 288 // We have wasm instructions for these 289 switch (AI->getOperation()) { 290 case AtomicRMWInst::Add: 291 case AtomicRMWInst::Sub: 292 case AtomicRMWInst::And: 293 case AtomicRMWInst::Or: 294 case AtomicRMWInst::Xor: 295 case AtomicRMWInst::Xchg: 296 return AtomicExpansionKind::None; 297 default: 298 break; 299 } 300 return AtomicExpansionKind::CmpXChg; 301 } 302 303 FastISel *WebAssemblyTargetLowering::createFastISel( 304 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 305 return WebAssembly::createFastISel(FuncInfo, LibInfo); 306 } 307 308 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 309 EVT VT) const { 310 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 311 if (BitWidth > 1 && BitWidth < 8) 312 BitWidth = 8; 313 314 if (BitWidth > 64) { 315 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 316 // the count to be an i32. 317 BitWidth = 32; 318 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 319 "32-bit shift counts ought to be enough for anyone"); 320 } 321 322 MVT Result = MVT::getIntegerVT(BitWidth); 323 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 324 "Unable to represent scalar shift amount type"); 325 return Result; 326 } 327 328 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 329 // undefined result on invalid/overflow, to the WebAssembly opcode, which 330 // traps on invalid/overflow. 331 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 332 MachineBasicBlock *BB, 333 const TargetInstrInfo &TII, 334 bool IsUnsigned, bool Int64, 335 bool Float64, unsigned LoweredOpcode) { 336 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 337 338 Register OutReg = MI.getOperand(0).getReg(); 339 Register InReg = MI.getOperand(1).getReg(); 340 341 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 342 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 343 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 344 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 345 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 346 unsigned Eqz = WebAssembly::EQZ_I32; 347 unsigned And = WebAssembly::AND_I32; 348 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 349 int64_t Substitute = IsUnsigned ? 0 : Limit; 350 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 351 auto &Context = BB->getParent()->getFunction().getContext(); 352 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 353 354 const BasicBlock *LLVMBB = BB->getBasicBlock(); 355 MachineFunction *F = BB->getParent(); 356 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 357 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 358 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 359 360 MachineFunction::iterator It = ++BB->getIterator(); 361 F->insert(It, FalseMBB); 362 F->insert(It, TrueMBB); 363 F->insert(It, DoneMBB); 364 365 // Transfer the remainder of BB and its successor edges to DoneMBB. 366 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 367 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 368 369 BB->addSuccessor(TrueMBB); 370 BB->addSuccessor(FalseMBB); 371 TrueMBB->addSuccessor(DoneMBB); 372 FalseMBB->addSuccessor(DoneMBB); 373 374 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 375 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 376 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 377 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 378 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 379 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 380 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 381 382 MI.eraseFromParent(); 383 // For signed numbers, we can do a single comparison to determine whether 384 // fabs(x) is within range. 385 if (IsUnsigned) { 386 Tmp0 = InReg; 387 } else { 388 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 389 } 390 BuildMI(BB, DL, TII.get(FConst), Tmp1) 391 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 392 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 393 394 // For unsigned numbers, we have to do a separate comparison with zero. 395 if (IsUnsigned) { 396 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 397 Register SecondCmpReg = 398 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 399 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 400 BuildMI(BB, DL, TII.get(FConst), Tmp1) 401 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 402 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 403 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 404 CmpReg = AndReg; 405 } 406 407 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 408 409 // Create the CFG diamond to select between doing the conversion or using 410 // the substitute value. 411 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 412 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 413 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 414 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 415 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 416 .addReg(FalseReg) 417 .addMBB(FalseMBB) 418 .addReg(TrueReg) 419 .addMBB(TrueMBB); 420 421 return DoneMBB; 422 } 423 424 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 425 MachineInstr &MI, MachineBasicBlock *BB) const { 426 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 427 DebugLoc DL = MI.getDebugLoc(); 428 429 switch (MI.getOpcode()) { 430 default: 431 llvm_unreachable("Unexpected instr type to insert"); 432 case WebAssembly::FP_TO_SINT_I32_F32: 433 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 434 WebAssembly::I32_TRUNC_S_F32); 435 case WebAssembly::FP_TO_UINT_I32_F32: 436 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 437 WebAssembly::I32_TRUNC_U_F32); 438 case WebAssembly::FP_TO_SINT_I64_F32: 439 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 440 WebAssembly::I64_TRUNC_S_F32); 441 case WebAssembly::FP_TO_UINT_I64_F32: 442 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 443 WebAssembly::I64_TRUNC_U_F32); 444 case WebAssembly::FP_TO_SINT_I32_F64: 445 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 446 WebAssembly::I32_TRUNC_S_F64); 447 case WebAssembly::FP_TO_UINT_I32_F64: 448 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 449 WebAssembly::I32_TRUNC_U_F64); 450 case WebAssembly::FP_TO_SINT_I64_F64: 451 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 452 WebAssembly::I64_TRUNC_S_F64); 453 case WebAssembly::FP_TO_UINT_I64_F64: 454 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 455 WebAssembly::I64_TRUNC_U_F64); 456 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 457 } 458 } 459 460 const char * 461 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 462 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 463 case WebAssemblyISD::FIRST_NUMBER: 464 break; 465 #define HANDLE_NODETYPE(NODE) \ 466 case WebAssemblyISD::NODE: \ 467 return "WebAssemblyISD::" #NODE; 468 #include "WebAssemblyISD.def" 469 #undef HANDLE_NODETYPE 470 } 471 return nullptr; 472 } 473 474 std::pair<unsigned, const TargetRegisterClass *> 475 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 476 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 477 // First, see if this is a constraint that directly corresponds to a 478 // WebAssembly register class. 479 if (Constraint.size() == 1) { 480 switch (Constraint[0]) { 481 case 'r': 482 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 483 if (Subtarget->hasSIMD128() && VT.isVector()) { 484 if (VT.getSizeInBits() == 128) 485 return std::make_pair(0U, &WebAssembly::V128RegClass); 486 } 487 if (VT.isInteger() && !VT.isVector()) { 488 if (VT.getSizeInBits() <= 32) 489 return std::make_pair(0U, &WebAssembly::I32RegClass); 490 if (VT.getSizeInBits() <= 64) 491 return std::make_pair(0U, &WebAssembly::I64RegClass); 492 } 493 break; 494 default: 495 break; 496 } 497 } 498 499 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 500 } 501 502 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 503 // Assume ctz is a relatively cheap operation. 504 return true; 505 } 506 507 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 508 // Assume clz is a relatively cheap operation. 509 return true; 510 } 511 512 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 513 const AddrMode &AM, 514 Type *Ty, unsigned AS, 515 Instruction *I) const { 516 // WebAssembly offsets are added as unsigned without wrapping. The 517 // isLegalAddressingMode gives us no way to determine if wrapping could be 518 // happening, so we approximate this by accepting only non-negative offsets. 519 if (AM.BaseOffs < 0) 520 return false; 521 522 // WebAssembly has no scale register operands. 523 if (AM.Scale != 0) 524 return false; 525 526 // Everything else is legal. 527 return true; 528 } 529 530 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 531 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 532 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 533 // WebAssembly supports unaligned accesses, though it should be declared 534 // with the p2align attribute on loads and stores which do so, and there 535 // may be a performance impact. We tell LLVM they're "fast" because 536 // for the kinds of things that LLVM uses this for (merging adjacent stores 537 // of constants, etc.), WebAssembly implementations will either want the 538 // unaligned access or they'll split anyway. 539 if (Fast) 540 *Fast = true; 541 return true; 542 } 543 544 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 545 AttributeList Attr) const { 546 // The current thinking is that wasm engines will perform this optimization, 547 // so we can save on code size. 548 return true; 549 } 550 551 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 552 if (!Subtarget->hasUnimplementedSIMD128()) 553 return false; 554 MVT ExtT = ExtVal.getSimpleValueType(); 555 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 556 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 557 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 558 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 559 } 560 561 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 562 LLVMContext &C, 563 EVT VT) const { 564 if (VT.isVector()) 565 return VT.changeVectorElementTypeToInteger(); 566 567 return TargetLowering::getSetCCResultType(DL, C, VT); 568 } 569 570 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 571 const CallInst &I, 572 MachineFunction &MF, 573 unsigned Intrinsic) const { 574 switch (Intrinsic) { 575 case Intrinsic::wasm_atomic_notify: 576 Info.opc = ISD::INTRINSIC_W_CHAIN; 577 Info.memVT = MVT::i32; 578 Info.ptrVal = I.getArgOperand(0); 579 Info.offset = 0; 580 Info.align = Align(4); 581 // atomic.notify instruction does not really load the memory specified with 582 // this argument, but MachineMemOperand should either be load or store, so 583 // we set this to a load. 584 // FIXME Volatile isn't really correct, but currently all LLVM atomic 585 // instructions are treated as volatiles in the backend, so we should be 586 // consistent. The same applies for wasm_atomic_wait intrinsics too. 587 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 588 return true; 589 case Intrinsic::wasm_atomic_wait_i32: 590 Info.opc = ISD::INTRINSIC_W_CHAIN; 591 Info.memVT = MVT::i32; 592 Info.ptrVal = I.getArgOperand(0); 593 Info.offset = 0; 594 Info.align = Align(4); 595 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 596 return true; 597 case Intrinsic::wasm_atomic_wait_i64: 598 Info.opc = ISD::INTRINSIC_W_CHAIN; 599 Info.memVT = MVT::i64; 600 Info.ptrVal = I.getArgOperand(0); 601 Info.offset = 0; 602 Info.align = Align(8); 603 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 604 return true; 605 default: 606 return false; 607 } 608 } 609 610 //===----------------------------------------------------------------------===// 611 // WebAssembly Lowering private implementation. 612 //===----------------------------------------------------------------------===// 613 614 //===----------------------------------------------------------------------===// 615 // Lowering Code 616 //===----------------------------------------------------------------------===// 617 618 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 619 MachineFunction &MF = DAG.getMachineFunction(); 620 DAG.getContext()->diagnose( 621 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 622 } 623 624 // Test whether the given calling convention is supported. 625 static bool callingConvSupported(CallingConv::ID CallConv) { 626 // We currently support the language-independent target-independent 627 // conventions. We don't yet have a way to annotate calls with properties like 628 // "cold", and we don't have any call-clobbered registers, so these are mostly 629 // all handled the same. 630 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 631 CallConv == CallingConv::Cold || 632 CallConv == CallingConv::PreserveMost || 633 CallConv == CallingConv::PreserveAll || 634 CallConv == CallingConv::CXX_FAST_TLS || 635 CallConv == CallingConv::WASM_EmscriptenInvoke; 636 } 637 638 SDValue 639 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 640 SmallVectorImpl<SDValue> &InVals) const { 641 SelectionDAG &DAG = CLI.DAG; 642 SDLoc DL = CLI.DL; 643 SDValue Chain = CLI.Chain; 644 SDValue Callee = CLI.Callee; 645 MachineFunction &MF = DAG.getMachineFunction(); 646 auto Layout = MF.getDataLayout(); 647 648 CallingConv::ID CallConv = CLI.CallConv; 649 if (!callingConvSupported(CallConv)) 650 fail(DL, DAG, 651 "WebAssembly doesn't support language-specific or target-specific " 652 "calling conventions yet"); 653 if (CLI.IsPatchPoint) 654 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 655 656 if (CLI.IsTailCall) { 657 bool MustTail = CLI.CS && CLI.CS.isMustTailCall(); 658 if (Subtarget->hasTailCall() && !CLI.IsVarArg) { 659 // Do not tail call unless caller and callee return types match 660 const Function &F = MF.getFunction(); 661 const TargetMachine &TM = getTargetMachine(); 662 Type *RetTy = F.getReturnType(); 663 SmallVector<MVT, 4> CallerRetTys; 664 SmallVector<MVT, 4> CalleeRetTys; 665 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 666 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 667 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 668 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 669 CalleeRetTys.begin()); 670 if (!TypesMatch) { 671 // musttail in this case would be an LLVM IR validation failure 672 assert(!MustTail); 673 CLI.IsTailCall = false; 674 } 675 } else { 676 CLI.IsTailCall = false; 677 if (MustTail) { 678 if (CLI.IsVarArg) { 679 // The return would pop the argument buffer 680 fail(DL, DAG, "WebAssembly does not support varargs tail calls"); 681 } else { 682 fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled"); 683 } 684 } 685 } 686 } 687 688 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 689 if (Ins.size() > 1) 690 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 691 692 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 693 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 694 695 // The generic code may have added an sret argument. If we're lowering an 696 // invoke function, the ABI requires that the function pointer be the first 697 // argument, so we may have to swap the arguments. 698 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 699 Outs[0].Flags.isSRet()) { 700 std::swap(Outs[0], Outs[1]); 701 std::swap(OutVals[0], OutVals[1]); 702 } 703 704 unsigned NumFixedArgs = 0; 705 for (unsigned I = 0; I < Outs.size(); ++I) { 706 const ISD::OutputArg &Out = Outs[I]; 707 SDValue &OutVal = OutVals[I]; 708 if (Out.Flags.isNest()) 709 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 710 if (Out.Flags.isInAlloca()) 711 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 712 if (Out.Flags.isInConsecutiveRegs()) 713 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 714 if (Out.Flags.isInConsecutiveRegsLast()) 715 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 716 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 717 auto &MFI = MF.getFrameInfo(); 718 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 719 Out.Flags.getByValAlign(), 720 /*isSS=*/false); 721 SDValue SizeNode = 722 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 723 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 724 Chain = DAG.getMemcpy( 725 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 726 /*isVolatile*/ false, /*AlwaysInline=*/false, 727 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 728 OutVal = FINode; 729 } 730 // Count the number of fixed args *after* legalization. 731 NumFixedArgs += Out.IsFixed; 732 } 733 734 bool IsVarArg = CLI.IsVarArg; 735 auto PtrVT = getPointerTy(Layout); 736 737 // Analyze operands of the call, assigning locations to each operand. 738 SmallVector<CCValAssign, 16> ArgLocs; 739 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 740 741 if (IsVarArg) { 742 // Outgoing non-fixed arguments are placed in a buffer. First 743 // compute their offsets and the total amount of buffer space needed. 744 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 745 const ISD::OutputArg &Out = Outs[I]; 746 SDValue &Arg = OutVals[I]; 747 EVT VT = Arg.getValueType(); 748 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 749 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 750 unsigned Align = std::max(Out.Flags.getOrigAlign(), 751 Layout.getABITypeAlignment(Ty)); 752 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 753 Align); 754 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 755 Offset, VT.getSimpleVT(), 756 CCValAssign::Full)); 757 } 758 } 759 760 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 761 762 SDValue FINode; 763 if (IsVarArg && NumBytes) { 764 // For non-fixed arguments, next emit stores to store the argument values 765 // to the stack buffer at the offsets computed above. 766 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 767 Layout.getStackAlignment(), 768 /*isSS=*/false); 769 unsigned ValNo = 0; 770 SmallVector<SDValue, 8> Chains; 771 for (SDValue Arg : 772 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 773 assert(ArgLocs[ValNo].getValNo() == ValNo && 774 "ArgLocs should remain in order and only hold varargs args"); 775 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 776 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 777 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 778 DAG.getConstant(Offset, DL, PtrVT)); 779 Chains.push_back( 780 DAG.getStore(Chain, DL, Arg, Add, 781 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 782 } 783 if (!Chains.empty()) 784 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 785 } else if (IsVarArg) { 786 FINode = DAG.getIntPtrConstant(0, DL); 787 } 788 789 if (Callee->getOpcode() == ISD::GlobalAddress) { 790 // If the callee is a GlobalAddress node (quite common, every direct call 791 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 792 // doesn't at MO_GOT which is not needed for direct calls. 793 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 794 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 795 getPointerTy(DAG.getDataLayout()), 796 GA->getOffset()); 797 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 798 getPointerTy(DAG.getDataLayout()), Callee); 799 } 800 801 // Compute the operands for the CALLn node. 802 SmallVector<SDValue, 16> Ops; 803 Ops.push_back(Chain); 804 Ops.push_back(Callee); 805 806 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 807 // isn't reliable. 808 Ops.append(OutVals.begin(), 809 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 810 // Add a pointer to the vararg buffer. 811 if (IsVarArg) 812 Ops.push_back(FINode); 813 814 SmallVector<EVT, 8> InTys; 815 for (const auto &In : Ins) { 816 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 817 assert(!In.Flags.isNest() && "nest is not valid for return values"); 818 if (In.Flags.isInAlloca()) 819 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 820 if (In.Flags.isInConsecutiveRegs()) 821 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 822 if (In.Flags.isInConsecutiveRegsLast()) 823 fail(DL, DAG, 824 "WebAssembly hasn't implemented cons regs last return values"); 825 // Ignore In.getOrigAlign() because all our arguments are passed in 826 // registers. 827 InTys.push_back(In.VT); 828 } 829 830 if (CLI.IsTailCall) { 831 // ret_calls do not return values to the current frame 832 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 833 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 834 } 835 836 InTys.push_back(MVT::Other); 837 SDVTList InTyList = DAG.getVTList(InTys); 838 SDValue Res = 839 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 840 DL, InTyList, Ops); 841 if (Ins.empty()) { 842 Chain = Res; 843 } else { 844 InVals.push_back(Res); 845 Chain = Res.getValue(1); 846 } 847 848 return Chain; 849 } 850 851 bool WebAssemblyTargetLowering::CanLowerReturn( 852 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 853 const SmallVectorImpl<ISD::OutputArg> &Outs, 854 LLVMContext & /*Context*/) const { 855 // WebAssembly can't currently handle returning tuples. 856 return Outs.size() <= 1; 857 } 858 859 SDValue WebAssemblyTargetLowering::LowerReturn( 860 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 861 const SmallVectorImpl<ISD::OutputArg> &Outs, 862 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 863 SelectionDAG &DAG) const { 864 assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); 865 if (!callingConvSupported(CallConv)) 866 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 867 868 SmallVector<SDValue, 4> RetOps(1, Chain); 869 RetOps.append(OutVals.begin(), OutVals.end()); 870 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 871 872 // Record the number and types of the return values. 873 for (const ISD::OutputArg &Out : Outs) { 874 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 875 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 876 assert(Out.IsFixed && "non-fixed return value is not valid"); 877 if (Out.Flags.isInAlloca()) 878 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 879 if (Out.Flags.isInConsecutiveRegs()) 880 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 881 if (Out.Flags.isInConsecutiveRegsLast()) 882 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 883 } 884 885 return Chain; 886 } 887 888 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 889 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 890 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 891 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 892 if (!callingConvSupported(CallConv)) 893 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 894 895 MachineFunction &MF = DAG.getMachineFunction(); 896 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 897 898 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 899 // of the incoming values before they're represented by virtual registers. 900 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 901 902 for (const ISD::InputArg &In : Ins) { 903 if (In.Flags.isInAlloca()) 904 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 905 if (In.Flags.isNest()) 906 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 907 if (In.Flags.isInConsecutiveRegs()) 908 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 909 if (In.Flags.isInConsecutiveRegsLast()) 910 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 911 // Ignore In.getOrigAlign() because all our arguments are passed in 912 // registers. 913 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 914 DAG.getTargetConstant(InVals.size(), 915 DL, MVT::i32)) 916 : DAG.getUNDEF(In.VT)); 917 918 // Record the number and types of arguments. 919 MFI->addParam(In.VT); 920 } 921 922 // Varargs are copied into a buffer allocated by the caller, and a pointer to 923 // the buffer is passed as an argument. 924 if (IsVarArg) { 925 MVT PtrVT = getPointerTy(MF.getDataLayout()); 926 Register VarargVreg = 927 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 928 MFI->setVarargBufferVreg(VarargVreg); 929 Chain = DAG.getCopyToReg( 930 Chain, DL, VarargVreg, 931 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 932 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 933 MFI->addParam(PtrVT); 934 } 935 936 // Record the number and types of arguments and results. 937 SmallVector<MVT, 4> Params; 938 SmallVector<MVT, 4> Results; 939 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 940 DAG.getTarget(), Params, Results); 941 for (MVT VT : Results) 942 MFI->addResult(VT); 943 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 944 // the param logic here with ComputeSignatureVTs 945 assert(MFI->getParams().size() == Params.size() && 946 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 947 Params.begin())); 948 949 return Chain; 950 } 951 952 void WebAssemblyTargetLowering::ReplaceNodeResults( 953 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 954 switch (N->getOpcode()) { 955 case ISD::SIGN_EXTEND_INREG: 956 // Do not add any results, signifying that N should not be custom lowered 957 // after all. This happens because simd128 turns on custom lowering for 958 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 959 // illegal type. 960 break; 961 default: 962 llvm_unreachable( 963 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 964 } 965 } 966 967 //===----------------------------------------------------------------------===// 968 // Custom lowering hooks. 969 //===----------------------------------------------------------------------===// 970 971 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 972 SelectionDAG &DAG) const { 973 SDLoc DL(Op); 974 switch (Op.getOpcode()) { 975 default: 976 llvm_unreachable("unimplemented operation lowering"); 977 return SDValue(); 978 case ISD::FrameIndex: 979 return LowerFrameIndex(Op, DAG); 980 case ISD::GlobalAddress: 981 return LowerGlobalAddress(Op, DAG); 982 case ISD::ExternalSymbol: 983 return LowerExternalSymbol(Op, DAG); 984 case ISD::JumpTable: 985 return LowerJumpTable(Op, DAG); 986 case ISD::BR_JT: 987 return LowerBR_JT(Op, DAG); 988 case ISD::VASTART: 989 return LowerVASTART(Op, DAG); 990 case ISD::BlockAddress: 991 case ISD::BRIND: 992 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 993 return SDValue(); 994 case ISD::RETURNADDR: 995 return LowerRETURNADDR(Op, DAG); 996 case ISD::FRAMEADDR: 997 return LowerFRAMEADDR(Op, DAG); 998 case ISD::CopyToReg: 999 return LowerCopyToReg(Op, DAG); 1000 case ISD::EXTRACT_VECTOR_ELT: 1001 case ISD::INSERT_VECTOR_ELT: 1002 return LowerAccessVectorElement(Op, DAG); 1003 case ISD::INTRINSIC_VOID: 1004 case ISD::INTRINSIC_WO_CHAIN: 1005 case ISD::INTRINSIC_W_CHAIN: 1006 return LowerIntrinsic(Op, DAG); 1007 case ISD::SIGN_EXTEND_INREG: 1008 return LowerSIGN_EXTEND_INREG(Op, DAG); 1009 case ISD::BUILD_VECTOR: 1010 return LowerBUILD_VECTOR(Op, DAG); 1011 case ISD::VECTOR_SHUFFLE: 1012 return LowerVECTOR_SHUFFLE(Op, DAG); 1013 case ISD::SHL: 1014 case ISD::SRA: 1015 case ISD::SRL: 1016 return LowerShift(Op, DAG); 1017 } 1018 } 1019 1020 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1021 SelectionDAG &DAG) const { 1022 SDValue Src = Op.getOperand(2); 1023 if (isa<FrameIndexSDNode>(Src.getNode())) { 1024 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1025 // the FI to some LEA-like instruction, but since we don't have that, we 1026 // need to insert some kind of instruction that can take an FI operand and 1027 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1028 // local.copy between Op and its FI operand. 1029 SDValue Chain = Op.getOperand(0); 1030 SDLoc DL(Op); 1031 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1032 EVT VT = Src.getValueType(); 1033 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1034 : WebAssembly::COPY_I64, 1035 DL, VT, Src), 1036 0); 1037 return Op.getNode()->getNumValues() == 1 1038 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1039 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1040 Op.getNumOperands() == 4 ? Op.getOperand(3) 1041 : SDValue()); 1042 } 1043 return SDValue(); 1044 } 1045 1046 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1047 SelectionDAG &DAG) const { 1048 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1049 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1050 } 1051 1052 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1053 SelectionDAG &DAG) const { 1054 SDLoc DL(Op); 1055 1056 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1057 fail(DL, DAG, 1058 "Non-Emscripten WebAssembly hasn't implemented " 1059 "__builtin_return_address"); 1060 return SDValue(); 1061 } 1062 1063 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1064 return SDValue(); 1065 1066 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1067 MakeLibCallOptions CallOptions; 1068 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1069 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1070 .first; 1071 } 1072 1073 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1074 SelectionDAG &DAG) const { 1075 // Non-zero depths are not supported by WebAssembly currently. Use the 1076 // legalizer's default expansion, which is to return 0 (what this function is 1077 // documented to do). 1078 if (Op.getConstantOperandVal(0) > 0) 1079 return SDValue(); 1080 1081 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1082 EVT VT = Op.getValueType(); 1083 Register FP = 1084 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1085 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1086 } 1087 1088 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1089 SelectionDAG &DAG) const { 1090 SDLoc DL(Op); 1091 const auto *GA = cast<GlobalAddressSDNode>(Op); 1092 EVT VT = Op.getValueType(); 1093 assert(GA->getTargetFlags() == 0 && 1094 "Unexpected target flags on generic GlobalAddressSDNode"); 1095 if (GA->getAddressSpace() != 0) 1096 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1097 1098 unsigned OperandFlags = 0; 1099 if (isPositionIndependent()) { 1100 const GlobalValue *GV = GA->getGlobal(); 1101 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1102 MachineFunction &MF = DAG.getMachineFunction(); 1103 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1104 const char *BaseName; 1105 if (GV->getValueType()->isFunctionTy()) { 1106 BaseName = MF.createExternalSymbolName("__table_base"); 1107 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1108 } 1109 else { 1110 BaseName = MF.createExternalSymbolName("__memory_base"); 1111 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1112 } 1113 SDValue BaseAddr = 1114 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1115 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1116 1117 SDValue SymAddr = DAG.getNode( 1118 WebAssemblyISD::WrapperPIC, DL, VT, 1119 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1120 OperandFlags)); 1121 1122 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1123 } else { 1124 OperandFlags = WebAssemblyII::MO_GOT; 1125 } 1126 } 1127 1128 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1129 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1130 GA->getOffset(), OperandFlags)); 1131 } 1132 1133 SDValue 1134 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1135 SelectionDAG &DAG) const { 1136 SDLoc DL(Op); 1137 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1138 EVT VT = Op.getValueType(); 1139 assert(ES->getTargetFlags() == 0 && 1140 "Unexpected target flags on generic ExternalSymbolSDNode"); 1141 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1142 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1143 } 1144 1145 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1146 SelectionDAG &DAG) const { 1147 // There's no need for a Wrapper node because we always incorporate a jump 1148 // table operand into a BR_TABLE instruction, rather than ever 1149 // materializing it in a register. 1150 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1151 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1152 JT->getTargetFlags()); 1153 } 1154 1155 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1156 SelectionDAG &DAG) const { 1157 SDLoc DL(Op); 1158 SDValue Chain = Op.getOperand(0); 1159 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1160 SDValue Index = Op.getOperand(2); 1161 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1162 1163 SmallVector<SDValue, 8> Ops; 1164 Ops.push_back(Chain); 1165 Ops.push_back(Index); 1166 1167 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1168 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1169 1170 // Add an operand for each case. 1171 for (auto MBB : MBBs) 1172 Ops.push_back(DAG.getBasicBlock(MBB)); 1173 1174 // TODO: For now, we just pick something arbitrary for a default case for now. 1175 // We really want to sniff out the guard and put in the real default case (and 1176 // delete the guard). 1177 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1178 1179 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1180 } 1181 1182 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1183 SelectionDAG &DAG) const { 1184 SDLoc DL(Op); 1185 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1186 1187 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1188 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1189 1190 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1191 MFI->getVarargBufferVreg(), PtrVT); 1192 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1193 MachinePointerInfo(SV), 0); 1194 } 1195 1196 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1197 SelectionDAG &DAG) const { 1198 MachineFunction &MF = DAG.getMachineFunction(); 1199 unsigned IntNo; 1200 switch (Op.getOpcode()) { 1201 case ISD::INTRINSIC_VOID: 1202 case ISD::INTRINSIC_W_CHAIN: 1203 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1204 break; 1205 case ISD::INTRINSIC_WO_CHAIN: 1206 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1207 break; 1208 default: 1209 llvm_unreachable("Invalid intrinsic"); 1210 } 1211 SDLoc DL(Op); 1212 1213 switch (IntNo) { 1214 default: 1215 return SDValue(); // Don't custom lower most intrinsics. 1216 1217 case Intrinsic::wasm_lsda: { 1218 EVT VT = Op.getValueType(); 1219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1220 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1221 auto &Context = MF.getMMI().getContext(); 1222 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1223 Twine(MF.getFunctionNumber())); 1224 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1225 DAG.getMCSymbol(S, PtrVT)); 1226 } 1227 1228 case Intrinsic::wasm_throw: { 1229 // We only support C++ exceptions for now 1230 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1231 if (Tag != CPP_EXCEPTION) 1232 llvm_unreachable("Invalid tag!"); 1233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1234 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1235 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1236 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1237 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1238 return DAG.getNode(WebAssemblyISD::THROW, DL, 1239 MVT::Other, // outchain type 1240 { 1241 Op.getOperand(0), // inchain 1242 SymNode, // exception symbol 1243 Op.getOperand(3) // thrown value 1244 }); 1245 } 1246 } 1247 } 1248 1249 SDValue 1250 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1251 SelectionDAG &DAG) const { 1252 SDLoc DL(Op); 1253 // If sign extension operations are disabled, allow sext_inreg only if operand 1254 // is a vector extract. SIMD does not depend on sign extension operations, but 1255 // allowing sext_inreg in this context lets us have simple patterns to select 1256 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1257 // simpler in this file, but would necessitate large and brittle patterns to 1258 // undo the expansion and select extract_lane_s instructions. 1259 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1260 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1261 const SDValue &Extract = Op.getOperand(0); 1262 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1263 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1264 ->getVT() 1265 .getSimpleVT(); 1266 MVT ExtractedVecT = 1267 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1268 if (ExtractedVecT == VecT) 1269 return Op; 1270 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1271 const SDValue &Index = Extract.getOperand(1); 1272 unsigned IndexVal = 1273 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1274 unsigned Scale = 1275 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1276 assert(Scale > 1); 1277 SDValue NewIndex = 1278 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1279 SDValue NewExtract = DAG.getNode( 1280 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1281 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1282 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), 1283 NewExtract, Op.getOperand(1)); 1284 } 1285 // Otherwise expand 1286 return SDValue(); 1287 } 1288 1289 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1290 SelectionDAG &DAG) const { 1291 SDLoc DL(Op); 1292 const EVT VecT = Op.getValueType(); 1293 const EVT LaneT = Op.getOperand(0).getValueType(); 1294 const size_t Lanes = Op.getNumOperands(); 1295 auto IsConstant = [](const SDValue &V) { 1296 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1297 }; 1298 1299 // Find the most common operand, which is approximately the best to splat 1300 using Entry = std::pair<SDValue, size_t>; 1301 SmallVector<Entry, 16> ValueCounts; 1302 size_t NumConst = 0, NumDynamic = 0; 1303 for (const SDValue &Lane : Op->op_values()) { 1304 if (Lane.isUndef()) { 1305 continue; 1306 } else if (IsConstant(Lane)) { 1307 NumConst++; 1308 } else { 1309 NumDynamic++; 1310 } 1311 auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(), 1312 [&Lane](Entry A) { return A.first == Lane; }); 1313 if (CountIt == ValueCounts.end()) { 1314 ValueCounts.emplace_back(Lane, 1); 1315 } else { 1316 CountIt->second++; 1317 } 1318 } 1319 auto CommonIt = 1320 std::max_element(ValueCounts.begin(), ValueCounts.end(), 1321 [](Entry A, Entry B) { return A.second < B.second; }); 1322 assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector"); 1323 SDValue SplatValue = CommonIt->first; 1324 size_t NumCommon = CommonIt->second; 1325 1326 // If v128.const is available, consider using it instead of a splat 1327 if (Subtarget->hasUnimplementedSIMD128()) { 1328 // {i32,i64,f32,f64}.const opcode, and value 1329 const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes); 1330 // SIMD prefix and opcode 1331 const size_t SplatBytes = 2; 1332 const size_t SplatConstBytes = SplatBytes + ConstBytes; 1333 // SIMD prefix, opcode, and lane index 1334 const size_t ReplaceBytes = 3; 1335 const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes; 1336 // SIMD prefix, v128.const opcode, and 128-bit value 1337 const size_t VecConstBytes = 18; 1338 // Initial v128.const and a replace_lane for each non-const operand 1339 const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes; 1340 // Initial splat and all necessary replace_lanes 1341 const size_t SplatInitBytes = 1342 IsConstant(SplatValue) 1343 // Initial constant splat 1344 ? (SplatConstBytes + 1345 // Constant replace_lanes 1346 (NumConst - NumCommon) * ReplaceConstBytes + 1347 // Dynamic replace_lanes 1348 (NumDynamic * ReplaceBytes)) 1349 // Initial dynamic splat 1350 : (SplatBytes + 1351 // Constant replace_lanes 1352 (NumConst * ReplaceConstBytes) + 1353 // Dynamic replace_lanes 1354 (NumDynamic - NumCommon) * ReplaceBytes); 1355 if (ConstInitBytes < SplatInitBytes) { 1356 // Create build_vector that will lower to initial v128.const 1357 SmallVector<SDValue, 16> ConstLanes; 1358 for (const SDValue &Lane : Op->op_values()) { 1359 if (IsConstant(Lane)) { 1360 ConstLanes.push_back(Lane); 1361 } else if (LaneT.isFloatingPoint()) { 1362 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1363 } else { 1364 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1365 } 1366 } 1367 SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1368 // Add replace_lane instructions for non-const lanes 1369 for (size_t I = 0; I < Lanes; ++I) { 1370 const SDValue &Lane = Op->getOperand(I); 1371 if (!Lane.isUndef() && !IsConstant(Lane)) 1372 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1373 DAG.getConstant(I, DL, MVT::i32)); 1374 } 1375 return Result; 1376 } 1377 } 1378 // Use a splat for the initial vector 1379 SDValue Result; 1380 // Possibly a load_splat 1381 LoadSDNode *SplattedLoad; 1382 if (Subtarget->hasUnimplementedSIMD128() && 1383 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1384 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1385 Result = DAG.getNode(WebAssemblyISD::LOAD_SPLAT, DL, VecT, SplatValue); 1386 } else { 1387 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1388 } 1389 // Add replace_lane instructions for other values 1390 for (size_t I = 0; I < Lanes; ++I) { 1391 const SDValue &Lane = Op->getOperand(I); 1392 if (Lane != SplatValue) 1393 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1394 DAG.getConstant(I, DL, MVT::i32)); 1395 } 1396 return Result; 1397 } 1398 1399 SDValue 1400 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1401 SelectionDAG &DAG) const { 1402 SDLoc DL(Op); 1403 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1404 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1405 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1406 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1407 1408 // Space for two vector args and sixteen mask indices 1409 SDValue Ops[18]; 1410 size_t OpIdx = 0; 1411 Ops[OpIdx++] = Op.getOperand(0); 1412 Ops[OpIdx++] = Op.getOperand(1); 1413 1414 // Expand mask indices to byte indices and materialize them as operands 1415 for (int M : Mask) { 1416 for (size_t J = 0; J < LaneBytes; ++J) { 1417 // Lower undefs (represented by -1 in mask) to zero 1418 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1419 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1420 } 1421 } 1422 1423 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1424 } 1425 1426 SDValue 1427 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1428 SelectionDAG &DAG) const { 1429 // Allow constant lane indices, expand variable lane indices 1430 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1431 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1432 return Op; 1433 else 1434 // Perform default expansion 1435 return SDValue(); 1436 } 1437 1438 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1439 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1440 // 32-bit and 64-bit unrolled shifts will have proper semantics 1441 if (LaneT.bitsGE(MVT::i32)) 1442 return DAG.UnrollVectorOp(Op.getNode()); 1443 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1444 SDLoc DL(Op); 1445 SDValue ShiftVal = Op.getOperand(1); 1446 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1447 SDValue MaskedShiftVal = DAG.getNode( 1448 ISD::AND, // mask opcode 1449 DL, ShiftVal.getValueType(), // masked value type 1450 ShiftVal, // original shift value operand 1451 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1452 ); 1453 1454 return DAG.UnrollVectorOp( 1455 DAG.getNode(Op.getOpcode(), // original shift opcode 1456 DL, Op.getValueType(), // original return type 1457 Op.getOperand(0), // original vector operand, 1458 MaskedShiftVal // new masked shift value operand 1459 ) 1460 .getNode()); 1461 } 1462 1463 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1464 SelectionDAG &DAG) const { 1465 SDLoc DL(Op); 1466 1467 // Only manually lower vector shifts 1468 assert(Op.getSimpleValueType().isVector()); 1469 1470 // Unroll non-splat vector shifts 1471 BuildVectorSDNode *ShiftVec; 1472 SDValue SplatVal; 1473 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1474 !(SplatVal = ShiftVec->getSplatValue())) 1475 return unrollVectorShift(Op, DAG); 1476 1477 // All splats except i64x2 const splats are handled by patterns 1478 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1479 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1480 return Op; 1481 1482 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1483 unsigned Opcode; 1484 switch (Op.getOpcode()) { 1485 case ISD::SHL: 1486 Opcode = WebAssemblyISD::VEC_SHL; 1487 break; 1488 case ISD::SRA: 1489 Opcode = WebAssemblyISD::VEC_SHR_S; 1490 break; 1491 case ISD::SRL: 1492 Opcode = WebAssemblyISD::VEC_SHR_U; 1493 break; 1494 default: 1495 llvm_unreachable("unexpected opcode"); 1496 } 1497 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1498 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1499 DAG.getConstant(Shift, DL, MVT::i32)); 1500 } 1501 1502 //===----------------------------------------------------------------------===// 1503 // WebAssembly Optimization Hooks 1504 //===----------------------------------------------------------------------===// 1505